
Analysis of algorithm components and
parameters: Some case studies

Nguyen Dang and Patrick De Causmaecker

Department of Computer Science, CODeS & imec-ITEC
KU Leuven, Belgium

Abstract. Modern high-performing algorithms are usually highly pa-
rameterised, and can be configured either manually or by an automatic
algorithm configurator. The algorithm performance dataset obtained af-
ter the configuration step can be used to gain insights into how different
algorithm parameters influence algorithm performance. This can be done
by a number of analysis methods that exploit the idea of learning pre-
diction models from an algorithm performance dataset and then using
them for the data analysis on the importance of variables. In this pa-
per, we demonstrate the complementary usage of three methods along
this line, namely forward selection, fANOVA and ablation analysis with
surrogates on three case studies, each of which represents some special
situations that the analyses can fall into. By these examples, we illustrate
how to interpret analysis results and discuss the advantage of combining
different analysis methods.

Keywords: forward selection, fANOVA, ablation analysis with surro-
gates, parameter analysis

1 Introduction

Given a parameterised algorithm with different design choices and a distribu-
tion of problem instances to be solved, algorithm configuration is the task of
choosing a good design and parameter setting (a configuration) of the algorithm
to be used. This can be done either manually or by an automatic algorithm
configurator such as ParamILS [11], SMAC [8] or irace [14]. Besides finding a
good algorithm configuration, algorithm developers are usually also interested
in understanding how different algorithm components and parameters influence
algorithm performance. Various approaches for analysing the importance of al-
gorithm parameters have been proposed, such as [3, 1, 9, 10, 6]. The insights pro-
vided by these methods may produce useful knowledge that can be transferred
back into the algorithm development process in an iterative manner, leading to
higher performing algorithms.

Many analysis methods exploit the idea of learning prediction models from
an algorithm performance dataset and then using them for the data analysis on
the importance of variables. Among them, there is a group of methods that do
not require a specific way of sampling algorithm performance data or particular



2 Nguyen Dang and Patrick De Causmaecker

experimental designs, are able to handle any types of algorithm parameters (in-
cluding categorical ones), and have been shown to be applicable to cases with a
large number of parameters. These include forward selection [9], fANOVA [10]
and ablation analysis with surrogates [2]. Due to the general applicability of
these methods, they can be used as a next step after the automatic algorithm
configuration procedure to give more insights into the decisions of the configu-
rator. More specifically, results of algorithm runs called by the configurator can
be given to these analysis methods for building their prediction models.

Unlike the algorithm configuration problem, where the result obtained is a
well-performing algorithm configuration, the analysis of algorithm components
and parameters does not have a unique output. Different analysis methods can
provide results on different perspectives. Forward selection identifies a key sub-
set of algorithm parameters. fANOVA is based on functional analysis of variance
[7], where the overall algorithm performance variance is decomposed into com-
ponents associated with parameter subsets. Ablation analysis [6] addresses the
local region between two algorithm configurations, and helps to recognise the
contribution of each algorithm component or parameter on performance gain
between two configurations under study.

The question of when to apply these methods is related to the kind of infor-
mation we want to gain for a deeper understanding of how the analysed algorithm
works. It might not always be straightforward for an algorithm developer to in-
terpret analysis results and decide what to use for improving his/her algorithm.
In the original papers of the three analysis methods [9, 10, 6, 2], interesting ex-
ample applications in domains of machine learning, propositional satisfiability,
mixed-integer programming, answer set programming, and automated planning
and scheduling have been discussed. The main aim of this paper is to add to
this discussion by illustrating the applications of these analysis methods on a
number of case studies, each of which represents a specific situation where the
advantage of combining different analyses is illustrated.

The implementation of all three analysis methods is from PIMP (https://
github.com/automl/ParameterImportance), a Python-based package for anal-
ysis parameter importance provided by the ML4AAD Group. 1

The paper is organised as follows. The three analysis methods [9, 10, 2] are
briefly described in Section 2. The application and combination of the analysis
methods on three case studies are then explained in Section 3. Finally, conclu-
sions and future work are given in Section 4.

2 Analysis methods

2.1 fANOVA

The fANOVA method [10] is an approach for analysing the importance of al-
gorithm parameters using a random forest prediction model and the functional
analysis of variance [7]. Given an algorithm performance dataset, fANOVA first

1 http://www.ml4aad.org/



Analysis of algorithm components and parameters: Some case studies 3

builds a random forest-based prediction model to predict the average perfor-
mance of every algorithm configuration over the whole problem instance space.
Afterwards, the functional analysis of variance is applied to the prediction model
to decompose the overall algorithm performance variance into additive compo-
nents, each of which corresponds to a subset of the algorithm parameters. The
ratio between the variance associated with each component and the overall per-
formance variance is then used as an indicator of the importance of the corre-
sponding algorithm parameter subset. fANOVA also provides some insights on
which regions are good and bad (with a degree of uncertainty) for each param-
eter inside the subset through marginal plots. Given a specific value for each
algorithm parameter in the subset, the marginal prediction value is the average
performance value of the algorithm over the whole configuration space associ-
ated with all parameters not belonging to the subset. A marginal plot shows the
mean and the variance of the marginal prediction values given by the random
forest’s individual trees.

An implementation of fANOVA is provided as a Python package,2 wrapped
by the PIMP package. As a choice of implementation, the package only lists the
contribution percentage and shows marginal plots of all single parameters and
pairwise interactions. It is also possible to acquire the importance of a specific
higher-order interaction given a fixed value for each parameter in the interaction.

2.2 Forward selection

Forward selection is a popular method for selecting key variables in model con-
struction. In [9], it was used to identify a subset of key algorithm parameters.
Given a performance dataset of an algorithm, the method first splits this dataset
into training and validation sets. Starting from an empty subset of parameters,
the method iteratively adds one parameter at a time to the subset, in such a way
that the regression model built on the training set using the resulting parame-
ter subset yields the lowest root mean square error (RMSE) on the validation
set. Random forest is used as the regression model, since it has been shown to
be generally the best for predicting optimization algorithm performance in the
literature [12]. Problem instance features can also be added into the analysis by
treating them just as algorithm parameters. It should be noted that the result-
ing selection paths of different runs of this analysis could be different, due to a
number of factors: (i) the prediction model’s randomness (ii) the availability of
correlated variables (iii) different splits of training and validation sets.

2.3 Ablation analysis with surrogates

If an algorithm developer already has a default configuration for their algorithm
in mind, and receives a better performing configuration from an automatic algo-
rithm configurator, he/she might wonder which parameters in the default config-
uration should be modified in order to gain such performance improvement. The

2 https://github.com/automl/fanova



4 Nguyen Dang and Patrick De Causmaecker

ablation analysis [6] answers this question by examining performance changes
in the local path between the two configurations in the algorithm configuration
space. Starting from the default configuration, the method iteratively modifies
one parameter at a time from its default value to the value in the tuned config-
uration in such a way that the resulting configuration gains the largest amount
of performance improvement. Important parameters in the local path can then
be recognised by the percentage of their contribution to the total performance
gains. The analysis can also be done in the reverse direction, in which param-
eters that yield the smallest performance loss are chosen first. Since results of
the reverse path can be different from the original path, doing ablation in both
directions was recommended.

The original ablation method [6] performs real algorithm runs during its
search. Instead, in this paper, we take the surrogate-based version [2], where
algorithm performance is provided by a prediction model. This allows re-using
the algorithm performance dataset given by automatic algorithm configuration,
hence reducing the computational cost of the ablation analysis significantly.

3 Case studies

3.1 Case study 1: Ant Colony Optimization algorithms for the
Travelling Salesman Problem

In this case study, we consider ACOTSP [15], a software package that imple-
ments various Ant Colony Optimization algorithms for the symmetric Travelling
Salesman Problem. The algorithm has 11 parameters, including two categorical
parameters (algorithm, localsearch), 4 integer parameters (ants, nnls, rasrank,
elitistants), and 5 continuous parameters (alpha, beta, rho, dlb, q0 ). These are
configured by the automatic algorithm configuration tool irace [14] with a bud-
get of 5000 algorithm runs. ACOTSP’s default configuration and the five best
configurations returned by irace are listed in Table 1. The improvement over the
default configuration is statistically significant (Wilcoxon signed rank test with
a confidence level of 99%). We apply fANOVA and ablation analyses with sur-
rogates on the performance dataset obtained after the configuration step. The
analyses aim at explaining the choice of irace on selecting the best configurations.

algorithm localsearch alpha beta rho ants nnls q0 dlb rasrank elitistants
(Best configurations)

acs 3 2.31 8.77 0.48 34 10 0.45 1
acs 3 2.95 8.64 0.49 48 14 0.54 1
acs 3 2.67 7.78 0.46 47 12 0.51 1
acs 3 2.98 9.58 0.14 31 15 0.81 1
acs 3 2.44 8.13 0.48 42 13 0.53 1

(Default configuration)
mmas 1 1.64 4.65 0.5 50 31 0

Table 1: The five best configurations returned by irace and the default configu-
ration of ACOTSP



Analysis of algorithm components and parameters: Some case studies 5

fANOVA analysis. There is a difference between fANOVA and irace (default
version) in the way the algorithm performance is measured. The random forest
in fANOVA evaluates performance of an algorithm configuration as the mean
of performance values across all problem instances. The default setting of irace,
on the other hand, uses the Friedman test as the statistical test for identify-
ing bad configurations, which means that the performances of configurations
are converted to ranks before being compared. Each strategy has its own ad-
vantage. When the ranges of performance values greatly vary among different
instances (for example, due to different problem sizes), the Friedman test can
avoid the dominance of instances with large performance values. However, there
are cases where the magnitude of performance difference is important. For exam-
ple, when a configuration is slightly better than another one on many instances,
but performs dramatically worse on a smaller fraction of instances, the latter
configuration may be preferrable. In order to use fANOVA results to explain
irace’s decisions, performance values should be normalised so that they belong
to the same range across different problem instances before they are given to
fANOVA. For each problem instance, the normalisation value is calculated by
equation 1:

normalised cost =
cost−min cost

max cost−min cost
(1)

where min cost and max cost are the smallest and the largest cost values in
the performance dataset for the corresponding problem instance.

Following is fANOVA’s partial output on the normalised performance dataset:

All single-parameter effects: 87.63%

All pairwise interaction effects: 11.72%

localsearch: 77.85%

rho: 4.86%

... (remaining effects: < 4%)

Results indicate that single parameters and pairwise interactions can explain
99.35% of the total performance variance. The categorical parameter localsearch,
which defines the choice of the local search used inside ACOTSP, is obviously
the most important parameter. Its effect clearly dominates all of the others,
as it explains 77.85% of the total algorithm performance variance. Its marginal
plot shown in Figure 1 points out that 3 is the best value for this parameter,
which explains the consistent choice of localsearch = 3 in the best configurations
returned by irace.

Ablation analysis. Next, we apply the ablation analysis with surrogates on the
path from the default configuration to the best one using the same normalised
performance dataset. Figure 2 shows the order of parameters chosen and their
corresponding percentage of performance gains along the path. Again, the lo-
calsearch parameter shows a clear dominance over the others, which is in line
with fANOVA findings. In this local region between the two configurations, the



6 Nguyen Dang and Patrick De Causmaecker

Fig. 1: Marginal plot of parameter localsearch given by fANOVA

influence of this parameter is quite strong, as it provides 92% of the improvement
gain when switching from the value of 2 (default) to 3.

Fig. 2: Ablation analysis (with surrogate) on the path from ACOTSP default
configuration to the best configuration returned by irace. The y-axis shows the
percentage of performance gain when switching the value of each parameter.

It should be noted that the finding of fANOVA and ablation analysis on the
most important parameters is not necessarily consistent in all cases. fANOVA
analysis works on the whole configuration space, while ablation analysis focuses
on the local path between two specific configurations. Therefore, the dominance
of parameter localsearch given by both analyses emphasises the importance of
this parameter on both the global and the local scale.

In the next case study, we will demonstrate an opposite situation where
the analyses become more complicated and the impact of parameters on irace’s
choices is quite local.



Analysis of algorithm components and parameters: Some case studies 7

3.2 Case study 2: tuning irace on a configuration benchmark

irace is an automatic algorithm configurator, but it also has its own parameters.
In [5], irace is used to configure irace on different configuration benchmarks
in a procedure called meta-tuning. To avoid confusion, the higher-layer irace
is named meta-irace. In an algorithm configuration setting, the tuned irace is
simply considered as a parametrised optimisation algorithm, and each algorithm
configuration benchmark plays the role of a problem instance. In this case study,
we consider one of the meta-tuning experiments in [5], where irace is tuned on a
configuration benchmark of the mixed-integer programming solver CPLEX [13],
namely CPLEX-REG, with a budget of 5000 irace runs. The tuned irace has 9
parameters, including 3 categorical parameters (elitist, testType, softRestart), 5
integer parameters (nbIterations, minNbSurvival, elitistInstances, mu, firstTest)
and one continuous parameter (confidence). The default configuration of irace
and the five best configurations returned by meta-irace are shown in Table 2. The
improvement given by meta-irace over the default configuration is statistically
significant (Wilcoxon signed rank test with a confidence level of 99%).

The aim of the analyses in this case study is to understand the choice of
the configurator (here, meta-irace) on the best irace’s configurations. We will
show that the interpretation of the analyses here is more complicated compared
to the previous case study. In particular, the ablation analysis in the two di-
rections can provide different results due to the complex interactions between
irace’s parameters. Moreover, a complementary usage of various fANOVA pack-
age’s functionalities to gain more insights into the findings given by the ablation
analysis is also presented.

nbIterations minNbSurvival confidence elitist elitistInstances testType mu firstTest softRestart

(Elite configurations)
35 2 0.52 false t-test-holm 4 6 true
29 1 0.55 false t-test-holm 4 5 true
37 1 0.51 false t-test-holm 4 5 false
29 1 0.55 false t-test-holm 3 5 true
12 1 0.77 false t-test 7 5 true

(Default configuration)
8 8 0.95 true 1 t-test 5 5 true

Table 2: irace’s default configuration and the five best configurations given by
meta-irace.

Ablation analysis. Ablation in both directions between two algorithm config-
urations was recommended [6]. The rationale for this is due to the possibility
of interactions between parameters. This case study is a clear example of this
situation. We will show that the reverse path can give interesting information
that is not really obvious in the original path.

First, we apply the ablation from the default irace configuration to the best
one for ten times. One thing we notice from the results is that the orders in which



8 Nguyen Dang and Patrick De Causmaecker

the parameters are chosen as well as their contribution on the performance gain
vary quite a bit among different runs. This can be seen in the plots of three
example paths shown in Figure 3. Because of those fluctuations, it is difficult to
draw any conclusions from the ablation analysis in this direction.

(a) Run 1 (b) Run 2 (c) Run 3

Fig. 3: Three ablation paths from the irace default configuration to the best one
returned by meta-irace.

We apply another ten times the ablation, now on the reverse path from the
best configuration to the default configuration. At each step, the parameter that
introduces the least performance loss when changing its value from the best con-
figuration to the default one is chosen. Figure 4 shows the reverse paths with
the same random seeds as in the ones used in Figure 3. We can see that the
orders in which the parameters are chosen along the paths are more consistent
among different runs. In particular, the four parameters nbIterations, confidence,
minNbSurvival and elitist are always chosen at the end of the path, which means
that changing their values in the best configuration will cause more performance
loss than all other parameters. Indeed, most of the performance loss on the paths
are due to the three parameters nbIterations, confidence, minNbSurvival. Param-
eter elitist is constantly the last one chosen in the ten paths although it is not
explicitly associated with a big loss in performance. This indicates two things:
(i) the importance of setting this parameter at the right value for achieving the
good performance of the best configuration, as changing its value in the path
between the best configuration to the default one will induce larger performance
loss than any other parameters, (ii) the strong dependency of this parameter
and the others, especially the three parameters nbIterations, confidence, minNb-
Survival ; or, in other words, the possibly complicated interactions between these
parameters in the local region between the two configurations under study.

fANOVA analysis. Next, we use fANOVA analysis to gain additional infor-
mation on the findings given by the ablation. In particular, we want to see how
parameter elitist interacts with the others, especially the three parameters nbIt-
erations, confidence, minNbSurvival, and whether their impacts are global.



Analysis of algorithm components and parameters: Some case studies 9

(a) Run 1 (b) Run 2 (c) Run 3

Fig. 4: Three ablation paths from the best one returned by meta-irace the default
irace configuration.

We do two fANOVA analyses, one on the global space, dubbed global-fANOVA
and one on the local space where the algorithm performance is not worse than
the default one, namely capped-fANOVA. Parts of them are shown in Table 3.

global-fANOVA capped-fANOVA

All single-parameter effects: 38.01% All single-parameter effects: 11.69%
All pairwise interaction effects: 34.31% All pairwise interaction effects: 28.17%
nbIterations: 11.8% firstTest x nbIterations: 3.89%
minNbSurvival: 6.22% minNbSurvival: 3.28%
firstTest: 5.73% firstTest x minNbSurvival: 2.82%
testType: 5.25% firstTest: 2.55%
confidence: 5.21% minNbSurvival x nbIterations: 2.26%
... (remaining effects: <4%) ... (remaining effects: <2%)

Table 3: Partial results of fANOVA analyses on irace’s performance data

The differences between the two analyses are that in the local one, single
parameter effects become less important, both single parameter and pairwise
interaction effects have less contribution to the total performance variance, and
their contribution is more widely spread. One possible explanation for these
differences is that in the local space, the interactions of algorithm parameters
are more complicated. Anyway, one clear thing is that eliltist parameter is not
among the top list effects in both analyses.

In capped-fANOVA results, the total contribution of all single parameters
and pairwise interactions on the overall performance variance is less than 40%,
leaving a potential for some important higher-order interaction. We can check if
this is the case for any of the interactions between elitist and the three param-
eters nbIterations, confidence, minNbSurvival by giving those four parameters
to fANOVA and asking for the percentage of variance explained by all relevant
interactions. Results show that the total contribution of all (pairwise and higher-



10 Nguyen Dang and Patrick De Causmaecker

order) interactions between elitist and the other three parameters is only 5.18%,
and it generally is spread evenly among them. It means that there are no impor-
tant interactions as expected. Since capped-fANOVA works on the configuration
space where performance value is not worse than the default configuration, the
observations in this analysis indicate that the importance of elitist is even more
local, i.e., it only works when not only the three parameters nbIterations, confi-
dence, minNbSurvival are set properly, but also the other ones have to be in the
appropriate ranges. In fact, if we look at the values of the other parameters in
the default and the best configurations, we can see that they are already quite
close to each other. For example, the parameter firstTest has the values of 5 and
6 in the default and the best configurations, respectively, while its domain is
[4,20]. We can further confirm our conjecture as follows. First, we ask fANOVA
for the predicted average cost of the default and the best configurations (here
we get 138.92 and 135.81). Next, we modify the value of parameter firstTest in
the best configuration to a more distant one, say 12. Then we ask fANOVA for
the predicted cost of this new configuration (here we get 138.78). This increasing
cost implies the importance of having firstTest near the local region around 6.

In summary, the conclusion from this fANOVA analysis is that the impor-
tance of irace parameters and the choice of the meta-irace are very local, i.e., al-
though the four parameters elitist, nbIterations, confidence, minNbSurvival play
essential roles in improving the performance between the default and the best
configurations, the other parameters also need to be set in the appropriate ranges
that are not far from their values indicated in the best configuration. Therefore, if
irace’s developers want to explain what changes in irace’s behaviours (according
to its parameters) make the performance improved, they will need to associate
those changes with all parameters instead of only a few of them.

3.3 Case study 3: a Large Neighbourhood Search for a Vehicle
Routing Problem with Time Windows

The example analyses so far are only on the algorithm configuration space. In
this case study, we illustrate the integration of problem instance features into
fANOVA analysis, so that we can study not only the impact of algorithm pa-
rameters, but also their interactions with instance features.

The algorithm and problem instances considered in this case study are pro-
vided in [4]. The algorithm is a Large Neighbhourhood Search (LNS) meta-
heuristic algorithm for solving a typical Vehicle Routing Problem with Time
Windows. The algorithm has 8 parameters, including 2 categorical parameters
(repair, destroy), 2 integer parameters (random seed, deterministic parameter)
and 4 continuous parameters (noise parameter, cooling rate, control parameter,
start temperature). There are 200 problem instances generated randomly accord-
ing to 5 problem features, including 3 integer features (customer numer, cus-
tomer demand, max running time) and 2 continuous features (average service time,
average time windows). For each problem instance, 20 random algorithm config-
urations are randomly generated and tested. In total, the performance dataset
contains 4000 data points.



Analysis of algorithm components and parameters: Some case studies 11

fANOVA analysis. We can add instance features into fANOVA analysis by
treating them as algorithm parameters, i.e., each combination of algorithm con-
figuration and instance feature is given to fANOVA as an algorithm configura-
tion. It must be noted that this integration can only be done when the instance
features are independent, since this is one of the key assumptions fANOVA makes
on its input variables. In this case study, the problem instances are generated
based on random values drawn from all instance features in an independent way.
A part of fANOVA’s output is given in the left column of Table 4.

On original performance data On normalised performance data

All single-parameter effects: 80.87% All single-parameter effects: 60.74%
All pairwise interaction effects: 12.23% All pairwise interaction effects: 15.38%
customer number: 75.24% repair: 52.68%
average service time x customer number: 5.24% destroy x repair: 4.42%
average service time: 3.78% customer number x repair: 4.19%
... (remaining effects: <2%) customer number: 4.0%

destroy: 3.14%
... (remaining effects: <3%)

Table 4: Partial results of fANOVA analyses on LNS algorithm performance data

An obvious observation from this result is that only instance features are
listed as the most important variables. In particular, the feature customer number
has a clear dominant influence, as it explains 75.24% of the total performance
variance. Looking at its marginal plot shown in Figure 5, we can see that the av-
erage performance values increase according to this feature. This means that the
range of the algorithm performance values greatly depends on problem instance
size (here it is the number of customers).

Fig. 5: Marginal plot of instance feature customer number given by fANOVA



12 Nguyen Dang and Patrick De Causmaecker

In situations like this, depending on the aim of our analysis, normalisation
can be necessary. Here we aim to study the algorithm performance without any
bias towards particular instances, which is similar to what irace’s default setting
does as described in section 3.1. Therefore, we re-run the fANOVA analysis, now
with normalised performance values. A part of the new results is listed in the
right column of Table 4. The impact of customer number is now significantly
reduced, so that the influence of algorithm parameters becomes visible. The two
categorical algorithm parameters repair and destroy, which represent the choices
of the repair and the destroy operators inside the Large Neighbourhood Search,
now involves in the top list of important parameters and pairwise interactions.
In particular, the high contribution percentage of parameter repair (52.68%) on
the total performance variance and its marginal plot (Figure 6a) show that the
repair operators Regret2 and Greedy work generally best and worst, respectively,
across the whole problem instance space. In addition, we can also see how much
influence the choice is according to different problem sizes by looking at the
marginal plot of the pairwise interaction repair x customer number (Figure 6b):
on instances with the number of customers less than 50, the bad performance
of Greedy is not as obvious as on instances with larger sizes; for the other two
choices, Regret2 and GreedyRegret2, their overall performance difference also
gets clearer when the number of customers increases. Other problem instance
features do not have important interactions with algorithm parameters.

(a) repair

(b) customer number x repair

Fig. 6: Marginal plots of the algorithm parameter repair and its pairwise inter-
action with the instance feature customer number given by fANOVA analysis
with performance normalisation.

Forward selection. Although the fANOVA analysis provides interesting in-
sights into interactions between algorithm parameters and instance features,



Analysis of algorithm components and parameters: Some case studies 13

such an analysis, in this case study, takes a large amount of time to run (16
hours on a single core Intel CPU 2.4Ghz) 3. The reason is due to the heavy
computation of all pairwise interactions. In this part, we demonstrate a cheaper
alternative for this particular case using a combination of fANOVA and forward
selection. First, we use fANOVA to calculate the importance of single variables.
Next, we use forward selection to identify the key subset of variables, and then
use fANOVA to examine interactions of the variables in that set only. In this
way, the whole analysis takes less than half an hour.

First, we apply fANOVA on single parameter effects only, which takes less
than one minute to finish. Next, we apply forward selection to the normalised
performance dataset. Since analysis results might vary among different runs, we
repeat it ten times. It takes about 3 minutes in total. The visualisation of one
run’s result, which is a path of sequentially adding one variable to the model
at a time so that the resulting root mean square error on the validation set
is minimised, is shown in Figure 7a. We can see that the first three parameters
chosen are repair, destroy and customer number. This happens to be the case for
all the ten runs; these three parameters are always chosen first, while the fourth
parameter onwards in the path can vary among different runs. This indicates
the high relevance of these three parameters on the prediction model.

Since these experiments are computationally cheap, we also apply backward
elimination, the reverse procedure of forward selection, where starting from the
whole variable set, one variable resulting the least decrease in the prediction
error is removed sequentially. This may help to take into account dependency
between the parameters. These runs take about 5 minutes in total. The chosen
path and the error values in one of the ten runs is shown in Figure 7b. The three
parameters repair, destroy and customer number are the last one to be chosen,
and this is again consistent among the ten runs. This implies the importance of
these parameters’ interactions.

Given those indications, we can now focus on analysing the interactions be-
tween these three variables using fANOVA. Results of the importance quan-
tification and marginal plots given the three variables repair, destroy and cus-
tomer number are obviously the same as the original fANOVA, with an addition
of the three-way interaction between those variables. However, since the impor-
tance of this interaction is rather small (2.3%), we can simply ignore it. This
particular fANOVA analysis takes about two minutes. So the whole analysis only
needs 12 minutes.

4 Conclusions and future work

In this paper, we have demonstrated and discussed the complementary usage of
three parameter analysis techniques, namely forward selection [9], fANOVA [10]
and ablation [6, 2] analyses. This is done using three case studies, each of which

3 This amount of running time is reported on the Python-based fANOVA package
linked by PIMP. The previous fANOVA version, which is Java-based, is faster, al-
though it still needs several hours to finish this analysis.



14 Nguyen Dang and Patrick De Causmaecker

(a) Forward selection (b) Backward elimination

Fig. 7: Prediction error of the model trained on a subset of variables chosen
during one run of forward selection and backward elimination analyses.

represents some special situations that the analyses can fall into. In the first and
the second case study, where the aim is to use fANOVA and ablation analyses
to understand the choice of the best configuration given by an automatic algo-
rithm configuration tool (here irace), analysis conclusions diverge: in the first
one, there is a dominant parameter in both the global configuration space and
the local space between the default and best algorithm configurations, so that
the algorithm developers can focus on this particular parameter for explaining
the improvement over the default configuration; in the second one, the impact of
parameters are very local and the algorithm performance improvement gained re-
quires all parameters to be in their reasonable ranges of values, which means that
the developers need to look at all parameter values as a whole instead of focusing
on a few of them. In the third case study, the integration of problem instance
features into fANOVA analysis is illustrated. This shows how the range of al-
gorithm performance values changes according to problem instance sizes; hence,
it emphasises the necessity of normalising performance data to avoid bias. The
interaction between algorithm parameters and instance features also provides
interesting insights into how the impact of important algorithm parameters can
vary among different problem sizes. Moreover, a complementary usage of the
forward selection analysis that can help to significantly reduce the computation
cost of fANOVA analysis in this particular case study is also presented.

In future work, more case studies can be investigated, especially the ones for
local search metaheuristics and evolutionary algorithms in solving combinato-
rial optimisation problems, where the applications of these analysis techniques
are still scarce. Moreover, the integration of problem instance features into the
combined analyses can be further investigated. As performance of optimisation
algorithms might greatly vary according to different types of problem instances,
insights acquired by studying both algorithm parameters and problem instance
features would provide useful information for algorithm developers.



Analysis of algorithm components and parameters: Some case studies 15

Acknowledgement This work is funded by COMEX (Project P7/36), a BEL-
SPO/IAP Programme. The computational resources and services were provided
by the VSC (Flemish Supercomputer Center), funded by the Research Founda-
tion - Flanders (FWO) and the Flemish Government - department EWI. The
authors are grateful to Thomas Stützle and the anonymous reviewers for their
valuable comments, which help to improve the quality of the paper.

References

1. Bartz-Beielstein, T., Lasarczyk, C., and Preuss, M. The sequential parame-
ter optimization toolbox. In Experimental Methods for the Analysis of Optimization
Algorithms, T. Bartz-Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, Eds.
Springer, Berlin, Germany, 2010, pp. 337–360.

2. Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett,
C., and Hoos, H. H. Efficient parameter importance analysis via ablation with
surrogates. In AAAI Conference on Artificial Intelligence (Feb. 2017), S. P. Singh
and S. Markovitch, Eds., AAAI Press.

3. Chiarandini, M., and Goegebeur, Y. Mixed models for the analysis of op-
timization algorithms. Experimental Methods for the Analysis of Optimization
Algorithms 1 (2010), 225.

4. Corstjens, J., Caris, A., Depaire, B., and Sörensen, K. A multilevel method-
ology for analysing metaheuristic algorithms for the VRPTW.

5. Dang, N., Pérez Cáceres, L., De Causmaecker, P., and Stützle, T. Con-
figuring irace using surrogate configuration benchmarks. In Proceedings of the
Genetic and Evolutionary Computation Conference (2017), ACM, pp. 243–250.

6. Fawcett, C., and Hoos, H. H. Analysing differences between algorithm config-
urations through ablation. Journal of Heuristics 22, 4 (2016), 431–458.

7. Hooker, G. Generalized functional ANOVA diagnostics for high-dimensional
functions of dependent variables. J. Comput. Graph. Stat 16, 3 (2012), 709–732.

8. Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-based
optimization for general algorithm configuration. In LION 5, C. A. Coello Coello,
Ed., vol. 6683 of LNCS. Springer, Heidelberg, 2011, pp. 507–523.

9. Hutter, F., Hoos, H. H., and Leyton-Brown, K. Identifying key algorithm pa-
rameters and instance features using forward selection. In LION7 (2013), Springer,
pp. 364–381.

10. Hutter, F., Hoos, H. H., and Leyton-Brown, K. An efficient approach for as-
sessing hyperparameter importance. In Proc. of the 31th International Conference
on Machine Learning (2014), vol. 32, pp. 754–762.

11. Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. ParamILS:
an automatic algorithm configuration framework. J. Artif. Intell. Res 36 (Oct.
2009), 267–306.

12. Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206 (2014), 79–111.

13. IBM. ILOG CPLEX optimizer. http://www.ibm.com/software/integration/

optimization/cplex-optimizer/, 2017.
14. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T.,

and Birattari, M. The irace package: Iterated racing for automatic algorithm
configuration. Operations Research Perspectives 3 (2016), 43–58.

15. Stützle, T. ACOTSP: A software package of various ant colony optimization
algorithms applied to the symmetric traveling salesman problem, 2002.


