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Abstract: We present a finger-mounted quantitative micro-elastography (QME) probe, 
capable of measuring the elasticity of biological tissue in a format that avails of the dexterity 
of the human finger. Finger-mounted QME represents the first demonstration of a wearable 
elastography probe. The approach realizes optical coherence tomography-based elastography 
by focusing the optical beam into the sample via a single-mode fiber that is fused to a length 
of graded-index fiber. The fiber is rigidly affixed to a 3D-printed thimble that is mounted on 
the finger. Analogous to manual palpation, the probe compresses the tissue through the force 
exerted by the finger. The resulting deformation is measured using optical coherence 
tomography. Elasticity is estimated as the ratio of local stress at the sample surface, measured 
using a compliant layer, to the local strain in the sample. We describe the probe fabrication 
method and the signal processing developed to achieve accurate elasticity measurements in 
the presence of motion artifact. We demonstrate the probe’s performance in motion-mode 
scans performed on homogeneous, bi-layer and inclusion phantoms and its ability to measure 
a thermally-induced increase in elasticity in ex vivo muscle tissue. In addition, we 
demonstrate the ability to acquire 2D images with the finger-mounted probe where lateral 
scanning is achieved by swiping the probe across the sample surface. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

For centuries, physicians have relied on the sense of touch to qualitatively assess disease 
based on changes in the mechanical properties of tissue, i.e., manual palpation [1]. The 
sustained and widespread clinical use of manual palpation is largely attributed to the dexterity 
of hand motion and its ease of use [2,3]. However, the inherent subjectivity, lack of 
quantification and relatively low spatial resolution, limit the efficacy of manual palpation in 
correctly identifying diseased tissue [4]. One proposed solution is elastography, a family of 
imaging techniques developed over the past 30 years that map tissue elasticity by combining 
medical imaging with mechanical deformation [5]. Elastography was initially developed 
using ultrasound [6,7] and magnetic resonance imaging [8], and has been proposed for a 
range of clinical applications, particularly in hepatology [9,10] and oncology [11]. More 
recently, optical coherence tomography (OCT)-based elastography, optical coherence 
elastography (OCE), has been developed to improve both the spatial resolution (to 10s–100s 
µm) and sensitivity (to nanometer-scale deformations) in comparison to other approaches, 
albeit to a relatively shallow imaging depth of ~1 mm in turbid tissue [12–18]. OCE is 
undergoing development in a range of fields, most prominently in ophthalmology [19], 
cardiology [20], and oncology [21,22]. As a photonics-based technique, OCE is amenable to 
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miniaturization into small form factor probes, such as needles and endoscopes [23–25]. Such 
probes have the potential to enhance the clinical applicability of OCE. Initially, OCE probes, 
such as needle OCE, were limited to measurements of strain, yielding qualitative assessments 
and providing low contrast in some instances [26]. For clinical applications, quantitative 
imaging can aid in the identification of diseased tissue, facilitate rapid interpretation of results 
and also enable more ready comparison of results obtained from different patients. More 
recently, to address this, there have been several demonstrations of quantitative OCE probes 
[25,27], however, in these demonstrations mechanical loading was applied using bulky 
mounted set-ups or by motorized stages that are impractical for routine use by clinicians. 

Here, we propose a novel OCE probe, in which the sample arm of an OCE system is 
encased in a 3D-printed thimble and worn on the finger. This technique represents the first 
finger-mounted, and indeed wearable, version of OCE. In addition, more broadly, there have 
been few demonstrations of a free-hand OCE probe without the need for supporting apparatus 
[28]. Our methodology is based on quantitative micro-elastography (QME) [29,30], a 
compression-based OCE technique that utilizes phase-sensitive detection to estimate the 
elasticity of a sample by combining the surface stress, measured using a compliant layer, with 
the local axial strain measured throughout the OCT field-of-view. To realize finger-mounted 
QME, we extend on QME signal processing to generate accurate elasticity measurements in 
the presence of motion artifact induced by the finger. 

Finger-mounted QME has the potential to preserve much of the dexterity and ease of use 
of manual palpation, whilst also providing the quantification, relatively high spatial resolution 
and depth-sectioning capability of OCE. This technique may increase the clinical applicability 
of OCE, particularly in scenarios where the use of a relatively bulky handheld probe is not 
convenient, e.g., in assessing if residual tumor is present in small cavities following excision 
of the main tumor mass in breast-conserving surgery. In this paper, we provide experimental 
validation of finger-mounted QME on homogeneous, bi-layer and inclusion phantoms and ex 
vivo muscle tissue. We demonstrate that finger-mounted QME is capable of measuring the 
elasticity of silicone phantoms to within 21% of the expected value (compared to 8% for a 
bench-top implementation of QME [29]), and that it can distinguish the change in mechanical 
properties between raw and cooked kangaroo muscle tissue. Furthermore, we demonstrate a 
method to perform 2D scanning in finger-mounted QME by swiping the probe across the 
sample surface with a gentle, yet increasing, compression. The results presented in this paper 
highlight the potential of finger-mounted QME for development towards clinical applications 
that currently rely on manual palpation. 

2. Methods and materials

2.1 Probe design 

Finger-mounted QME comprises a fiber probe (illustrated in Figs. 1(a) and 1(b)) connected to 
a spectral-domain OCT system (TEL320, Thorlabs, USA) with a central wavelength of 
1300 nm, a 3 dB-bandwidth of 170 nm, and a measured full-width-at-half-maximum 
(FWHM) axial resolution of 5.2 µm. The probe is configured as a common-path 
interferometer to maximize displacement sensitivity [10], which was measured to be 1.44 nm 
for an OCT signal-to-noise (SNR) of 40 dB [30]. The probe consists of a single mode fiber 
(SMF) spliced to a  270  µm length of graded-index (GRIN) fiber (Miniprobes, Australia) that 
focuses the beam into the sample. The fiber probe is embedded within a thin channel along 
the underside of a 3D-printed thimble, as illustrated in Fig. 1(b), using an ultra-violet-curable 
optical adhesive (NOA68, Norland Products, USA). The adhesive also seals the fiber in place 
at the tip of the thimble (adhesive thickness, 70 µm) and provides the reference reflection in 
the common-path interferometer. In finger-mounted QME, A-scans are acquired at 10 kHz. 

Two fiber probes were used in this study, manufactured to the same specifications; Probe 
1 was used to generate the results presented in Figs. 2-4, and Probe 2 was used for Figs. 1, 5-
7. The working distance of Probe 1 was 1.9 mm from the tip of the probe and the FWHM
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confirmed qualitatively during the experiment by manual palpation and is consistent with 
prior studies on muscle tissue from other species [36]. We can see in Fig. 6(e) that the 
measurements for the cooked sample in the stress range 0-3 kPa, show a lower elasticity than 
the raw sample. This discrepancy is likely due to the probe not being positioned exactly 
perpendicular to the surface, decoupling the direction of the applied force and the axis which 
is scanned, resulting in a lower measured elasticity. This phenomenon is noticeable in tissue 
scans due to the heterogeneous structure, however, it reduces with higher stresses. This is 
most likely because of the operator’s finger naturally tending towards perpendicular in order 
to apply higher forces to the sample [37]. 

3.4 2D scanning on a silicone inclusion phantom 

In addition to M-mode scanning, as shown in Fig. 7, we also acquired preliminary 2D scans 
with finger-mounted QME by swiping the finger across a silicone inclusion phantom whilst 
acquiring A-scans. A compliant layer was placed on the inclusion phantom and the probe was 
brought into contact with the layer. During scanning, the finger applied both a lateral and 
axial motion, resulting in a ramp compression to the compliant layer and phantom. The 
increasing axial compression is a function of lateral position and ensured sufficient 
incremental strain was applied between consecutive A-scans. The speed at which the finger 
was swept across the sample was determined empirically by observing the real-time OCT 
image. The scans presented in Fig. 7 were taken on the inclusion phantom described in 
Section 2.2. The contrast between the surrounding bulk and the embedded inclusion is visible 
in the OCT image shown in  Fig.  7(a). It is worth noting that the total length of the scan was 
~5 mm and the inclusion was 1 mm wide. Considering this, it is apparent from Fig. 7 that the 
scanning performed by the finger is non-uniform, highlighting the effect of varying speeds of 
lateral hand motion. This results in a difference between the perceived and true dimensions of 
the imaged features, suggesting that a mechanism to compensate for this non-uniform 
scanning is required. This issue is described in more detail in the Discussion. 

In finger-mounted QME, we consider compressive strain to be negative, and tensile strain 
to be positive [38]. Furthermore, we assume that compression is uniform and uniaxial. This, 
however, does not always hold true as mechanical heterogeneity and complex surface 
topologies can introduce tensile strain as well as compressive strain [38]. This is evident in 
2D finger-mounted QME as the probe sweeps over the boundary between the bulk and 
inclusion, where regions of tensile strain were measured. To account for the presence of both 
compressive and tensile strain, Fig. 7(b) displays the magnitude of the elasticity, taken from 
both the positive (tensile) and negative (compressive) strains. The mean measured elasticity 
and standard deviation of this scan was 51 ± 4 kPa and 318 ± 67 kPa over 10–15% preload 
strain in the bulk and inclusion, respectively. These values are approximately twice the 
expected elasticity. While the contrast between the inclusion and bulk is apparent, there are 
regions of high elasticity that appear as orange lines in Fig. 7(b). The local boundary between 
tensile and compressive strain crosses zero, resulting in an asymptote in elasticity, 
corresponding to the orange lines. Due to the large smoothing kernels used in the processing 
code, this artifact also effects the surrounding regions of the bulk and inclusion, contributing 
to the overestimation of elasticity in these regions. This can be observed in the thin region of 
bulk above the inclusion. The mean measured elasticity in this region is 125 ± 12 kPa, ~2.5 
times the measured elasticity in the rest of the bulk. Furthermore, the use of a logarithmic 
scale reduces the contrast of this particular region relative to the inclusion, however, there is 
still sufficient contrast in the elasticity measurements to delineate the inclusion from the bulk. 
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applied to both sides of the compliant layer to mitigate this friction on both the imaging 
window and the sample [29]. In finger-mounted QME, however, PDMS oil is only applied to 
the probe-compliant layer interface as PDMS oil between the sample and compliant layer, 
coupled with the indenter-like profile of the probe tip, will cause the compliant layer to slip 
during scanning. At higher stresses, the compliant layer will slip completely off the sample, 
therefore preventing the estimation of elasticity. Applying oil to only the probe-compliant 
layer interface, results in an increased error due to friction compared to the bench-top 
counterpart. This error is also seen in the measurement of Layer 2 for the bi-layer scans 
presented in Fig. 5, however, in the same scan Layer 1 was slightly overestimated. This 
overestimation may be due to a similar effect, where Layer 2 restricts the lateral expansion of 
the thinner top layer, resulting in a lower axial strain and a higher measured elasticity, which 
was prominent enough to dominate the effects of friction at the compliant layer-Layer 1 
interface. Finger-mounted QME demonstrated a MAPE of 22% and 8% for the upper and 
lower layers respectively, which is similar to the 15% reported by benchtop QME [29]. This 
shows that despite the simplified optical design and hand-motion associated with the finger-
mounted probe, this technique is still capable of reproducing elasticity measurements with 
high accuracy and providing high contrast between different materials. 

One of the key challenges facing finger-mounted QME is the implementation of accurate 
2D and, eventually, 3D scanning. In this paper, we have presented preliminary 2D scans that 
serve as an example for the extension of the technique to 2D. These results were acquired by 
swiping the finger along the tissue surface and using the finger motion as both the scanning 
and mechanical loading mechanism. A main issue with this approach is that the 
reconstruction of OCT images and elastograms does not account for non-uniform velocities of 
the scanning finger. Without implementing a method to accurately track the motion of the 
probe, it is challenging to determine the location of A-scans within a 2D scan, resulting in 
distortion of the apparent dimensions of sample features as seen in Fig. 7. This could be 
overcome by using a lateral scanning mechanism, such as compact microelectromechanical 
system (MEMS) scanning mirrors, already deployed in other OCT probes [42–45]. This, 
however, would add considerable bulk to the design, increasing the probe footprint and 
reducing dexterity. Alternatively, an external tracking system, such as a magnetic position 
sensor, could be used to determine the probe location during the scan [46]. However, the 
spatial and temporal resolution of magnetic tracking systems is low compared to OCT, and 
such a system would likely need to be complemented by additional sensors, such as 
accelerometers, or some form of image registration to infer the motion of the probe from the 
changes in the acquired images. Another option would be to exploit the decorrelation time of 
the speckle pattern to estimate velocity [47]. This approach has been employed to account for 
non-uniform rotation distortion (NURD) in endoscopic OCT applications [47], and could be 
modified to account for linear motion across the sample surface in finger-mounted QME. 

Finger-mounted QME aims to improve diagnostic outcomes by complementing manual 
palpation with a quantitative assessment of disease. One area of potential application, is in 
breast-conserving surgery, which relies heavily on manual palpation to detect traces of tumor 
during surgery [4]. During this procedure, the surgeon strives to excise the tumor, in addition 
to a thin surrounding layer of healthy tissue [48,49]. Surgeons then often manually palpate the 
surgical cavity to determine if there is residual tumor in the patient [4]. However, in 20–30% 
of breast-conserving surgery patients, additional surgery is required as not all of the residual 
tumor was excised [50]. Finger-mounted QME scanning of the cavity walls could improve the 
detection of residual tumor. By looking for changes in the mechanical properties of cancerous 
tissue, our technique could potentially identify tumor that was not picked up by manual 
palpation. Finger-mounted QME also holds potential in applications relating to the 
intraoperative detection of hepatic metastases [51] and pancreatic insulinomas [52], both of 
which typically present as stiff lesions. As with BCS, surgeons performing these procedures 
rely on manual palpation to detect changes in the mechanical properties of tissue to guide 
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them in locating the malignancies and finger-mounted QME has the potential to improve on 
this existing approach [51,52]. Finger-mounted QME is particularly well-suited to these 
applications as the compact design is ideal for confined spaces such as a surgical cavity and 
the acquisition rate used (10 kHz) enables finger-mounted QME to be performed within 
several seconds, comparable to the time scale of some manual palpation techniques. 
Furthermore, OCT systems with acquisition times orders of magnitude faster than 10 kHz are 
readily available [53]. In this first demonstration of finger-mounted QME, we chose to use 
conservative acquisition times and to focus on the proof-of-principle. In future development, 
using faster acquisition times, combined with more rapid compression of the tissue with the 
finger, would allow measurements to be acquired in milliseconds. 

The clinical suitability of finger-mounted QME could be enhanced by replacing the plastic 
thimble case with a surgical glove to ensure the probe can be used in sterile scenarios. 
Embedding the optical components in a glove would better preserve tactile sensation and 
could provide surgeons with improved dexterity over the rigid plastic case currently used. 
However, even the addition of a second set of gloves has shown reductions in hand sensitivity 
during surgery [54] and the addition of the optical fiber and associated components would 
more than likely incur a similar or greater reduction in sensitivity. As manual palpation is 
predominantly performed using the fingertips [3], positioning any components that would 
hinder sensitivity away from the fingertip would better preserve tactile sensitivity whilst still 
providing the surgeon with the benefits of QME. 

5. Conclusions 

This paper presented the first finger-mounted OCE probe. The probe features a forward-
facing fiber probe in a compact implementation of QME. Demonstrations in 1D on silicone 
samples have shown that finger-mounted QME is capable of estimating the elasticity of 
materials within 21% of the expected value. Finger-mounted QME was also capable of 
measuring the thermally-induced changes in kangaroo muscle tissue. In addition, a 
preliminary 2D scan over an inclusion phantom showed the capability to detect features based 
on the mechanical contrast, albeit, at a reduced accuracy compared to the 1D measurements. 
With further enhancement of 2D scanning, we believe that finger-mounted QME has potential 
to augment existing clinical practices that rely on manual palpation. 
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