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Abstract 37 

Archaeological records provide a unique source of direct data on long-term human-38 

environment interactions and samples of ecosystems affected by differing degrees of human 39 

impact. Distributed long-term datasets from archaeological sites provide a significant 40 

contribution to establish local, regional, and continental-scale environmental baselines and can 41 

be used to understand the implications of human decision-making and its impacts on the 42 

environment and the resources it provides for human use. Deeper temporal environmental 43 

baselines are essential for resource and environmental managers to restore biodiversity and build 44 

resilience in depleted ecosystems. Human actions are likely to have impacts that reorganize 45 

ecosystem structures by reducing diversity through processes such as niche construction. This 46 

makes data from archaeological sites key assets for the management of contemporary and future 47 

climate change scenarios because they combine information about human behavior, 48 

environmental baselines, and biological systems. Sites of this kind collectively form Distributed 49 

Long-term Observing Networks of the Past (DONOP), allowing human behavior and 50 

environmental impacts to be assessed over space and time. Behavioral perspectives are gained 51 

from direct evidence of human actions in response to environmental opportunities and change. 52 

Baseline perspectives are gained from data on species, landforms, and ecology over timescales 53 

that long predate our typically recent datasets that only record systems already disturbed by 54 

people. And biological perspectives can provide essential data for modern managers wanting to 55 

understand and utilize past diversity (i.e., trophic and/or genetic) as a way of revealing, and 56 

potentially correcting, weaknesses in our contemporary wild and domestic animal populations. 57 

 58 

1. Introduction 59 
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Archaeological data is a vital but underutilized resource for environmental managers and 60 

policy makers. Archaeological sites are currently valued for preserving cultural heritage, tourism, 61 

and place-based education for sustainability, but they can also generate very large, well-62 

documented collections of animal and human bone, shells, insects, and carbonized and 63 

waterlogged botanical materials that span thousands of years. Advances in stable isotope, ancient 64 

DNA (aDNA), and macrofossil analyses have improved the resolution of diverse organic 65 

samples, improving key archives for understanding long-term biogeographical change (Hofman 66 

et al., 2015), food web structure (Dunne et al., 2016), marine and terrestrial resource fluctuations 67 

(McKetchnie et al., 2014, Moss et al., 2016), and the long-term impacts of climate and human 68 

settlement on both individual species and whole ecosystems (Erlandson et al., 2008). Improved 69 

archaeological and palaeoecological datasets have significant relevance to contemporary 70 

researchers and resource managers who face the challenge of shifting baselines syndrome in 71 

which each successive generation of natural resource managers falsely identify their 72 

contemporary (and already heavily depleted) ecosystems as a pristine natural baseline (e.g., 73 

Jackson et al., 2001; Bolster et al., 2012). Identification of accurate environmental baselines has 74 

an essential relevance to major challenges of our time, including food security through 75 

overexploitation of marine and terrestrial ecosystems (Yletyinen et al., 2016), restoring 76 

biodiversity in heavily degraded environments, and the preservation of sustainable resource-use 77 

practices (Klein et al., 2007; Barthel et al., 2013). The relevance of long-term (century- to 78 

millennial-scale) perspectives offered by archaeologists and the natural sciences are recognized 79 

increasingly as key data sources for future sustainable resource use (Engelhard et al., 2015; 80 

Laparidou et al,. 2015). The authors of this article are generally operating in a time scale that 81 

encompasses the last millennium. Archaeology in the most general sense operates on two 82 
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temporal scales. The last ten thousand years, meaning the period beginning with the Neolithic 83 

and the appearance of plant and animal domestication, and then the last two million years, 84 

meaning the period beginning with the emergence of our genus and the appearance of material 85 

culture. The authors belong to the first group. In each case the matching of millennial and 86 

century-scale to the lived experience of humans at the generational-scale is a central priority of 87 

archaeology. 88 

While many archaeologists have been aware of the potential of the growing global 89 

assemblage of well-dated, well-excavated sites with comprehensive archives of ecological 90 

material since the birth of our discipline, it can be challenging to communicate this potential to 91 

scientists from other disciplines engaged in global change research or to a wider public whose 92 

perceptions of archaeology are conditioned by images of Indiana Jones and Laura Croft. A 93 

challenge for archaeologists has been to shrug-off the perception of archaeology as an 94 

antiquarian pursuit focused on collecting high-value artifacts, rather than a science-based 95 

discipline that, among other pursuits, provides unique datasets for understanding long-term 96 

human interactions with changing environments. As highlighted in Kintigh and colleagues’ 97 

(2014, pp. 6) Grand Challenges for Archaeology, “archaeological data and interpretations have 98 

entered political and public, as well as scholarly, debates on such topics as human response to 99 

climate change, the eradication of poverty, and the effects of urbanization and globalization on 100 

humanity.” Communicating the relevance of archaeological data to practitioners, such as 101 

resource managers, using deep time perspectives illustrate not only the value of establishing 102 

environmental baselines and understanding ecosystem structures, but also supply narratives 103 

spanning multiple centuries to millennia of human resource-use and adaptation (Nelson et al., 104 

2016; Spielmann et al., 2016).  105 
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At a 2013 meeting in Paris between the interim Future Earth management team 106 

(http://www.futureearth.org) and representatives of the Integrated History and Future of People 107 

on Earth (IHOPE) group (http://www.ihopenet.org), the IHOPE presenters (Carole Crumley, 108 

Tom McGovern, Jago Cooper, Steven Hartman, Andy Dugmore) coined the phrase ‘distributed 109 

observing network of the past’ (DONOP) to communicate the value of archaeological sites for 110 

global change research (GCR), and adopt a vernacular more familiar to the wider scientific 111 

community and help argue the case for better inclusion of archaeologically-derived data sets into 112 

the Future Earth agenda. The DONOP concept resonates with the description of existing 113 

instrumental observation networks that monitor the current impacts of human activities on 114 

environmental change (Hari et al., 2016; Proença et al., 2016; Theobald, 2016; Marzeion et al., 115 

2017). For examples, the Intergovernmental Panel on Climate Change (IPCC) occupies an 116 

authoritative position monitoring the impacts of climate change on biophysical systems and 117 

human societies. The International Oceanographic Commission (IOC) of UNESCO operates a 118 

Global Ocean Observation System (GOOS) to monitor global changes to ocean temperature, its 119 

ecosystems, and human communities reliant on the resources it provides. But long-term human 120 

processes have been largely absent from many major monitoring efforts reports despite being in 121 

a position to disseminate data relevant to GCR. This paper explores the relevance of DONOP 122 

with a specific focus on work carried out in the North Atlantic region. 123 

Archaeological sites are a core aspect of DONOP as they have the ability to both show 124 

change through time as well as reveal local and regional dynamics. Ideally, the best DONOP 125 

sites would be those that have deep temporal range and are parts of networks of sites that can 126 

cover spatial scales from the local through the regional. Given the variety of sites and projects in 127 

the Archaeological community such data can be relevant from the scale of the household (i.e. 128 
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how a particular individual settlement interacted with its local environment) to regional scales of 129 

varying size. The examples offered by this article show some of the spatial and temporal range of 130 

the application of DONOP.  131 

2. Archaeological Sites as Distributed Long-term Observing Networks of the Past 132 

Through the analysis of archaeological datasets, we have the potential to access long-133 

term records of human interactions with natural systems at a wide variety of temporal and spatial 134 

scales and thus both reconstruct past environmental conditions and reveal the human dimensions 135 

of these processes. There is a rich record of research into the shifting relationship between 136 

culture, climate, and landscape change using archaeological data (Brown et al., 2012; Golding et 137 

al., 2015a; McGovern et al., 2007; Simpson et al., 2001a; Streeter et al., 2012; Thomson and 138 

Simpson, 2006). This effort has intensified as the key role of people within ecological systems 139 

and the wide spectrum of natural and anthropogenic environmental change have been recognized 140 

(Crumley, 2016). Alongside this, there have been major developments in the quantity and quality 141 

of paleoclimate reconstructions at multiple temporal and spatial scales that make possible 142 

effective connections to human systems. The increasing availability of sophisticated climate data 143 

sets whose scales match those of human societies and the human experience has made a 144 

profound difference to the ways in which we can understand interactions of people and 145 

environment (Hoggarth et al., 2016). The growing recognition in the scientific, global policy, and 146 

political arenas of anthropogenic climate change and the levels of extreme disruption that this 147 

will bring to contemporary societies have served as a final, and possibly most potent, influence 148 

on current research agendas and raising new questions that can only be answered with long-term 149 

perspectives of our interactions with the natural world (Anderson et al., 2013).  150 
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The development of refined, high-precision chronologies has played a key role in the 151 

translation of DONOP into a practical and very worthwhile reality. With tight chronological 152 

controls, such as those provided by AMS radiocarbon dating using a Bayesian framework, data 153 

from multiple sites can be combined with greater confidence. Thus, the extensive spatial 154 

distribution of archaeological sites, each with variable temporal continuity, can be transformed 155 

from a perceived weakness of DONOP to a real strength. Highly detailed but temporally-156 

inconsistent records can be combined to chart the waxing and waning interactions of people and 157 

environment. An example of this is provided by the coastal middens that record long-term 158 

human exploitation of marine ecosystems. This data illustrates the reality of ‘shifting baselines’ 159 

and the chronic limitations of short observational timescales in fisheries management, as 160 

discussed in Bolster’s (2014) The Mortal Sea (see also Jackson et al., 2001). There is a clear 161 

need for the effective integration of the longue durée with urgent issues of fisheries and marine 162 

resource management (Moss et al., 1990; Holm, 1995; Ogilvie and Jónsdóttir, 2000; Jackson et 163 

al., 2001; Perdikaris and McGovern, 2009). A major EU-funded initiative, the Oceans Past 164 

program (http://www.tcd.ie/history/opp), has begun to correct the effects of shifting baselines 165 

that can result in fundamentally flawed decision making with historical and archaeological data 166 

sets (Pinnegar and Engelhard, 2008). 167 

Archaeological DONOP are our best (and for many regions and periods of time our only 168 

realistic) source of information on the resilience of past cultures to natural hazards. Past cultures 169 

provide a vast range of human interactions with different climatic and ecological conditions 170 

(Cooper and Sheets, 2012). Contrasting outcomes illustrate the consequences of different social 171 

organizations, alternative adaptive strategies, and contrasting approaches to resource use, 172 

sustainability, and building resilience. Though the past cannot be used as a direct analogue to 173 
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explain how present and future populations will deal with external environmental threats, it does 174 

offer us significant opportunities to better understand processes of social interactions with 175 

environmental change and to generate both data and new theory that can contribute to a wide 176 

spectrum of managerial issues raised by contemporary anthropogenic climate change.  177 

Distributed long-term observing networks have been (and can be) used to emphasize the 178 

anthropogenic dimensions of data sourced from archaeological sites because the record is created 179 

by people and extracted from the lived environment (Crumley, 2015). By aggregating in situ 180 

evidence of human impacts on their local environments – through extirpation of local resources 181 

and engineering of cultural landscapes (Smith, 2007) – to the regional and continental scale, 182 

DONOP assimilate comparative interactions between humans and their environments with 183 

chronological controls. 184 

Firstly, the physical assemblages have been deposited as a direct result of human actions. 185 

They will have specific biases created by diverse ways in which the environment has been 186 

sampled and contrasts that reflect the beliefs, values, and knowledge of different social groups. 187 

As such, DONOP provide comparative data reflecting different human behaviors. Secondly, 188 

DONOP data is sourced from an environmental context that has been directly impacted and in 189 

many cases directly formed through human actions. Whether the sample is from a wild species 190 

that is subject to human predation or from an ecosystem that is shaped by the interaction of 191 

human actions, ecosystem dynamics, Earth surface processes, and climate, this type of data holds 192 

information about both natural and human processes. 193 

 Humans selectively sample the surrounding ecology and they collect specimens 194 

(consciously and unconsciously) from across trophic webs, landscapes, and seascapes. Then, 195 

given favorable post-depositional conditions, these samples are preserved in one place – the 196 
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archaeological site. Wherever (and whenever) humans and our ancestors have lived, and when 197 

conditions allow for survival and preservation, it is possible to find these sites. Some DONOP 198 

records are scattered and of limited duration but can be linked together to create a coherent 199 

regional picture of change through the rigorous application of both relative and absolute dating. 200 

If these sites accumulate long-term records they can produce very deep cultural layers and thus 201 

large accumulations of material for analysis. Very high temporal resolutions can be achieved 202 

within such contexts due to the wide range of dating methods that can be applied to both organic 203 

(e.g., dendrochronology or radiocarbon dating within a Bayesian framework) and inorganic 204 

artifacts (e.g., ceramic seriation). In turn, these datasets contain the signatures of environmental, 205 

climatic, and cultural dynamics (Figure 1). Additionally, archaeological survey and 206 
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environmental analysis of landscapes dotted with small, ephemeral sites can reveal patterns in 207 

the timing and nature of past landscape occupations, ecosystem impacts and resource usage that 208 

are important for understanding complex processes such as colonization, adaptation and 209 

abandonment (e.g., Altschul and Rankin 2008) and engaging with other grand challenge agendas 210 

for research that have relevance for contemporary debates (Kintigh et al., 2014; Jackson et al., in 211 

review). All of these optimal conditions are dependent on a wide set of variables that span from 212 

the effectiveness of the excavation strategy and methods, the local environmental conditions and 213 

the potential for organic remains to survive in situ until excavation, and the availability of 214 

continuous and deep chronological control. Yet such assemblages do exist and their number and 215 

spatial and temporal resolution are increasing.  216 

Figure 1- Observation records of natural and human processes in the past. DONOP is the aggregation of short sequences 
within the archaeological and environmental record to build a multidimensional record of human-environmental interaction 
and modification. Greenland Ice Sheet Project 2 (GISP2) data provides a local-to-regional scale proxy record of climate, 
storm and sea ice conditions, but provides no direct evidence of influence on human processes in the past (Dugmore et al., 
2007). In regions with significant volcanic activity, such as Iceland, human impact on the environment and vegetation 
change can be measured using the tephra profile as a chronological control (Streeter and Dugmore, 2013). At the individual 
settlement scale, excavation data (for example: diet, artifacts, and architecture) can be aggregated to form regional and even 
continental-scale networks of subsistence, trade, and environmental modification.  
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There is a growing body of work focusing on archaeological data as a proxy for the 217 

complex relationships between cause, response, and outcome in human ecodynamics (Hegmon et 218 

al., 2008; Dugmore et al., 2013; Vésteinsson et al., 2014; Boivin et al., 2016; ďAlpoim Guedes et 219 

al., 2016). DONOP provide detailed records of these completed long-term human ecodynamics 220 

experiments of the past and the range of outcomes stemming from different pathways taken by 221 

past cultures in the face of environmental change (Diamond and Robinson, 2010; Hegmon et al., 222 

2014). They can serve as examples of alternative choices and the pathways they create, and these 223 

case studies can be used to assess contemporary ideas of how to build resilience and reduce 224 

vulnerability in the face of both environmental and social stresses. They can provide both 225 

inspiration and warnings.  226 

The ideal of deep temporal and broad spatial data that is at the core of DONOP aligns it, 227 

and reveals a debt to, attempts to conceptually break down the borders between the ideas of 228 

nature and culture (Chakrabarty, 2009). For example the concepts of coupled natural and human 229 

systems (CNH) and socio-environmental systems (SES) both inspire much of the following 230 

scholarship (Zeder et al., 2014).  When examined over the longue durée, the myriad 231 

interconnections between human and natural systems becomes clearer and the idea of static and 232 

pristine ecosystems that host humans but that see no anthropogenic impact becomes much harder 233 

to support. The history of the impact of humans, and other organisms, on landscapes continues to 234 

be pushed deeper in time through archaeological work. The dynamics behind these impacts is 235 

being revealed as more nuanced and increasingly complex. Niche Construction Theory is 236 

perhaps the best expression of these relationships and is relevant to all the projects presented in 237 

this article (Boivin et al., 2016; Sullivan et al., 2017; Zeder, 2016). 238 
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The utility of DONOP sites and the data they contain for contemporary global change 239 

research can be explored from three perspectives: those that are 1) concerned with human 240 

behaviors, 2) related to shifting baselines, and 3) addressing biology. The behavioral perspective 241 

examines human action within intertwined social and natural systems. The shifting baselines 242 

perspective emphasizes the contrasting implications of baseline data for species, landforms, and 243 

ecology set before industrial expansion, commercial-scale resource exploitation, the ‘great 244 

acceleration’ and other trends representing significant human impacts on their environments – all 245 

in stark contrast to the typical temporally shallow modern data currently in use (Pinnegar and 246 

Engelhard, 2008; Steffen et al., 2015a, 2015b). Finally, the biology perspective seeks to 247 

understand and utilize past diversity (i.e., trophic and/or genetic) as recovered through 248 

archaeological remains in order to develop tools and datasets that can be used to better manage 249 

contemporary wild and domestic animal populations (Hofman et al., 2015; Boivin et al., 2016; 250 

Zeder, 2015, 2016).  251 

In the following section, we evaluate archaeological sites as DONOP within the 252 

conceptual frameworks of human behavior, shifting baselines, and biological systems. We argue 253 

that archaeological sites contain valuable, and at times unique, data that have the potential to 254 

provide solutions to problems in the present and future. For this reason, there is a need to view 255 

and value archaeological sites as ‘observable networks’ that capture the resourcefulness of the 256 

past for understanding the impacts of human populations on their environments, establish 257 

accurate environmental baselines, and learn from human adaptation to climate change over 258 

century-to-millennial timescales. Furthermore, given the current and increasing threats to 259 

archaeological sites from anthropogenic climate change, there is a pressing need to act quickly 260 
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and decisively to collect critical archives before they are lost forever (Dawson, 2015; Hambrecht 261 

and Rockman, 2017).  262 

 263 

 264 

Figure 2. A map of the eastern North Atlantic region showing the locations of sites in the Faroe Islands, Iceland, 265 
and Greenland that are discussed in this article. 266 

 267 

2.1 Human Behavior and DONOP 268 

Over the last thirty years, research in the North Atlantic by the North Atlantic Biocultural 269 

Organization (NABO, http://www.nabohome.org) has, in part, been focused on comparing 270 

datasets from separate geographical areas towards understanding the contrasting fates of Norse 271 

medieval communities in the Faroe Islands, Iceland, and Norse Greenland (Figure 2; see Nelson 272 
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et al., 2016). These settlements were established by Scandinavians over several centuries, 273 

starting with: the Faroes (ca. 860 CE), Iceland (ca. 870 CE), and Greenland (ca. 985 CE). These 274 

three areas were settled by people of a shared cultural and biological heritage (Jesch, 2015). Yet 275 

the paths chosen by these communities and their long-term fates contrast starkly. The Faroes 276 

survived centuries of relative economic isolation, limited natural resources, and numerous socio-277 

political challenges, enduring to this day as a small but resilient nation (Brewington, 2015). 278 

Despite environmental, economic, and epidemiological challenges, Iceland was able to transform 279 

its economy, and has since become a highly-developed society with among the highest living 280 

standards and health care in the world (Karlsson, 2000). The Norse settlement in Greenland, by 281 

contrast, came to an end in the late fifteenth century. The contrasting fates of Iceland and 282 

Greenland have come to be discussed in popular discourses around ideas of ‘collapse’ (Diamond, 283 

2005) and remain active subjects for international interdisciplinary research (Dugmore et al., 284 

2012, 2013; Streeter et al., 2012; Nelson et al., 2016).  285 

Viewing these cases through the lens of DONOP distills the research down to a series of 286 

narratives that have important implications for current debates. First, the simple ‘collapse’ 287 

narrative of why societies choose to fail through maladaptation is too simplistic and actively 288 

misleading for these cases (Dugmore et al., 2009, 2012). DONOP-based long-term perspectives 289 

of the Scandinavian communities of the Atlantic islands in general, and Iceland and Greenland in 290 

particular, provide specific examples of human behavior that was environmentally-nuanced, 291 

adaptive, and sustainable over multi-century time scales. This creates a picture that is far more 292 

disturbing than the simple collapse thesis because it shows that societies may undertake entirely 293 

rational, adaptive strategies in the face of unprecedented challenges and yet still undergo painful 294 

transformational changes (Butzer, 2012; Dugmore et al., 2012). 295 
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The example of Norse Greenland, which has often been used as a parable of human 296 

inaction in the face of increasingly hazardous climates to the point of self-extinction, offers a 297 

complex and bleak message (Diamond, 2005). A combination of new data acquisitions, 298 

reinterpretation of established knowledge, and a somewhat different philosophical approach to 299 

the question of collapse has revealed a society that was, in fact, flexible and adaptive in the face 300 

of changing climates (Dugmore et al., 2012). Within the first generation of settlement in the late 301 

tenth and early eleventh centuries CE, the Norse Greenlanders adjusted their diet to fit the 302 

seasonal availability of local resources: fishing ceased and the large-scale exploitation of 303 

migrating seals began (Ogilvie et al., 2009; Arneborg et al., 2012). The Norse went on to create 304 

an effective economic network for communal provisioning and international trade (i.e., walrus 305 

ivory). Provisioning networks consisted of imported domesticated species (sheep, goats, cattle, 306 

horses, and pigs) supplemented with a broad set of wild resources (seals, caribou, seabirds, small 307 

mammals, and some berries and herbs). Zooarchaeological and stable isotope data from DONOP 308 

show that native caribou and non-migratory seal populations were managed sustainably over 309 

multiple centuries (Arneborg et al., 2012; Dugmore et al., 2012; Ascough et al., 2014) . 310 

Organization of economic networks emerged from the twelfth century, integrating domestic 311 

subsistence systems with wild resource cycles, such as the spring harp seal migration, late-312 

summer bird collections, and walrus hunting (Ogilvie et al., 2009; Frei et al., 2015). In the mid-313 

to-late thirteenth century, further adjustment of lifeways and diet towards a deeper exploitation 314 

of marine mammals in response to unprecedented climate change can be seen in the 315 

zooarchaeological record as well as in stable isotope analysis of human burials (Arneborg et al., 316 

2012). The poignant and rather grim conclusion to this is that even with adaptive flexibility and, 317 

in some cases, sustainable management systems, the Scandinavian settlement of Greenland still 318 
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failed. This was not a collapse due to simple maladaptation but change driven by a variety of 319 

factors: spatial, climatic, demographic, social, political, and economic (Dugmore et al., 2012). 320 

While a full explanation of the current understanding of the nature of the Greenland Norse 321 

collapse is outside of the remit of this article, a recent assessment of the North Atlantic by 322 

Nelson and colleagues (2016) offers a good summary of current research.  323 

On a more successful note, DONOP records of archaeofauna from the Mývatn region in 324 

the north of Iceland documents a millennial-scale case of successful, community-level 325 

management of migratory waterfowl beginning at first settlement (Landnám) and continuing to 326 

the present day (McGovern et al., 2006; Hicks et al., 2016). Today, there is an annual collection 327 

of eggs from nesting migratory waterfowl that does not adversely impact these species 328 

(Guðmundsson, 1979). Nesting waterfowl are monitored and protected; only a few eggs per nest 329 

are taken and adults are rarely hunted (Beck, 2013). Looking further back in time, the restricted 330 

collection of waterfowl eggs is documented in mid-nineteenth century written records, such as 331 

diaries, journals, and visitors accounts. Using DONOP we can create even longer time 332 

perspectives; some terrestrial (non-waterfowl) bird hunting has happened alongside waterfowl 333 

conservation and egg utilization since the Viking age; archaeofaunal assemblages are rich in 334 

waterfowl eggshells while bones were mostly from ptarmigan (grouse), a non-aquatic terrestrial 335 

species (McGovern et al., 2006, 2007). This suggests that a community-level avian management 336 

system produced a valuable crop of eggs while maintaining adult waterfowl populations. This 337 

management strategy was not only useful in conserving waterfowl populations over the long 338 

term: there is also historical and archaeological evidence that careful use of wild resources 339 

helped Mývatn inhabitants buffer themselves against starvation during hard times caused by 340 

climate change (McGovern et al., 2013). 341 
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Successful long-term resource management is also evident from DONOP records in the 342 

Faroe Islands, where zooarchaeological (Brewington and McGovern, 2008; Brewington, 2011, 343 

2014) and documentary (Baldwin 1994, 2005) evidence suggests that local seabird colonies have 344 

been sustainably exploited for over a millennium. As in Mývatn, fowling in the Faroes has long 345 

been carefully controlled by local communities (Nørrevang, 1986; Baldwin, 2005). This 346 

community-level management regime employs a sophisticated body of local ecological 347 

knowledge to gauge the relative vulnerability of individual bird species and nesting areas on a 348 

year-by-year basis. Faroese resource managers (traditionally, landowners) are thus able to 349 

determine sustainable harvest limits for birds and eggs each season (Williamson, 1970, pp. 153–350 

156; Nørrevang, 1986). Also of critical importance for the success of the system has been the 351 

ability to effectively monitor and manage nesting sites, protecting this sensitive resource both 352 

from overexploitation by people and from destructive domesticates such as pigs (Brewington et 353 

al., 2015).  354 

In terms of behavior, DONOP from the North Atlantic can be used to draw two key 355 

lessons relevant to the present and future: sustainable millennial-scale management of natural 356 

resources is an attainable goal and adaptability in the short- or even medium-term is no guarantee 357 

of long-term survival.  358 

 359 

2.2 Shifting Baselines and DONOP 360 

Shifting baseline syndrome is a concept that describes situations in which communities 361 

formulate natural resource management decisions on ideas about primal or pristine natural 362 

resource populations that are inaccurate (Pauly, 1995; Pinnegar and Engelhard, 2008). Given that 363 

decisions about the management of natural resources can often be based on a ‘baseline’ standard 364 
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that is constructed around an idea of a minimally exploited population, then the assumptions 365 

behind this baseline are very important. This can be a problem in conservation and resource 366 

management if the baselines used to define sustainable exploitation of populations are based on 367 

inaccurate, misleading data such as that from flawed human memory or temporally shallow data 368 

sets (Papworth et al., 2009). Recent discussions of fishery management in the North Atlantic 369 

have a distinct relevance to DONOP. The problem centers on what datasets people are using to 370 

define a sustainable fish population. Pauly (1995) and others have described a phenomenon 371 

where fishermen and fisheries managers use a combination of their own memory of the early 372 

days of their fishing careers and catch data with a shallow time depth as baselines for what a 373 

sustainable fish population should be. This concern runs deeper into environmental movements, 374 

the media, and scientific works about rewilding (Monbiot, 2013). A specific example of this is 375 

described by Bolster and colleagues (2012) in which they argue that the North Atlantic fisheries, 376 

especially cod fisheries, have seen significant human impacts on fish populations from at least 377 

the early nineteenth century. Yet consistent catch data on North Atlantic Cod (Gadus morhua) in 378 

the North Atlantic has only been consistently collected since the beginning of the twentieth 379 

century (Bolster et al., 2012). Thus, many of the assumptions about what baseline cod 380 

populations and catch levels should be are based on populations that were already significantly 381 

impacted by human exploitation. This situation can lead to a misperception of the level of human 382 

impacts on a natural resource that can lead to much higher levels of stress on these populations 383 

than anticipated. Zooarchaeology (the analysis of animal remains sourced from archaeological 384 

sites) can help clarify if this is in fact a problem, especially when it utilizes recent advances in 385 

the analysis of aDNA and stable isotopes of animal remains. Though there has been significant 386 

and innovative research on shifting baselines in the North Atlantic that focuses on past ecological 387 
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conditions and past landforms, this article, in the interest of brevity, will discuss examples that 388 

are addressing the species level of analysis (i.e., Dugmore et al., 2000; Simpson et al., 2001; 389 

Dugmore and Newton, 2012; Streeter and Dugmore, 2013, 2014; Golding et al., 2015).   390 

In 2012, Atlantic cod (Gadus morhua) was ranked by the Food and Agriculture 391 

Organization of the Union Nations (2014) as the 11th-most fished species in the world. In 392 

addition to being an important contemporary marine resource, this species was also crucial in 393 

both the medieval and early modern European colonial expansions. It was, and continues to be, a 394 

key species for both subsistence and the economic well-being of communities across the Atlantic 395 

from Maine to Norway. 396 

The DONOP data represented by fish bones found in middens (refuse deposits from 397 

which archaeologists often excavate organic remains) across the North Atlantic region have long 398 

been of interest to zooarchaeologists focusing on the origins of the trade in dried cod and the 399 

onset of intensified non-subsistence fishing in North West Europe (Barrett et al., 2004). 400 

Zooarchaeological analysis charting the changing patterns of fish utilization has produced data 401 

crucial to understanding Atlantic cod’s transformation from a subsistence good to an 402 

internationally traded commodity (Perdikaris, 1999; Perdikaris et al., 2007). Stable isotope 403 

analysis of fish bones is now revealing what regional populations of Atlantic cod are represented 404 

in the archaeological record (Orton et al., 2014). 405 

CodStory is a current project that examines demographic and ecological data of Atlantic 406 

cod derived from archaeological excavations of DONOP fishing sites (Ólafsdóttir et al., 2014). 407 

In 2011, a pilot project began to investigate the feasibility of using Atlantic cod vertebrae to 408 

examine the historical genetic structure of Atlantic cod populations, and showed that this work is 409 

both feasible and rewarding. DNA was successfully extracted from fish bones and the 410 
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cytochrome B gene sequenced from a time series of zooarchaeological samples in western 411 

Iceland dated from 1500-1910 CE. Further analysis of the genetic variation indicates a sharp 412 

decline in effective population size of Atlantic cod in the fifteenth century, and further 413 

population size fluctuations coinciding with recorded temperature changes (Ólafsdóttir et al., 414 

2014). Although the concomitant loss of genetic variation in the sixteenth century does suggest a 415 

severe bottleneck, estimates of the genetic structure of Atlantic cod may be complicated by shifts 416 

in population structure distribution and changes in feeding migrations that occur as the cod seek 417 

favorable temperatures and feeding grounds because the Icelandic cod stock comprises both 418 

migratory and coastal elements (Hovgård and Buch, 1990; Rose, 1993; Vilhjálmsson, 1997; 419 

Pampoulie et al., 2006). To test these ideas, the CodStory project has continued by producing 420 

higher resolution genetic data, stable isotopes assays, and shape analysis and growth 421 

reconstruction based on otolith increments. The otolith analysis indicates a shift in the abundance 422 

of migratory and coastal Atlantic cod populations in the historical catch and suggests that growth 423 

conditions for the two Atlantic cod ecotypes changed in the early modern period (Ólafsdóttir et 424 

al. 2017). Together, these results signal a disruption in the North Atlantic marine ecosystem 425 

coinciding with a temperature minimum in the North Atlantic. Using archaeological samples, the 426 

CodStory project is generating paleodemographic data on one of the most important maritime 427 

resources of the North Atlantic while also investigating the effects of changing climate on these 428 

fish populations at a high temporal resolution.  429 

It is also possible to use DONOP archaeological data coupled with aDNA analysis to 430 

understand the distribution of marine mammal populations before the commercial and industrial 431 

exploitation of the Arctic oceans with potentially major implications for historical biogeography, 432 

modern conservation biology, and marine management. A pilot project, completed in 2014, 433 
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included 35 presumed marine mammal specimens from archaeological sites in Iceland, 434 

Greenland, and the Faroes; six samples gave positive results for aDNA. Four specimens were 435 

identified to the species level, including one blue whale (Balaenoptera musculus, AK-CESP-436 

001), two fin whales (Balaenoptera physalis, UJF-CESP-003 and HRH-CESP-002) and one 437 

harbour porpoise (Phocoena phocoena, SGN.103-CESP-507). Two additional specimens (UJF-438 

CESP-001 and UJF-CESP-008) were identified as being species of right whales, but were not 439 

isolated to unique species beyond Eubalena spp. In order to further test how universal the 440 

primers were, DNA extracted from a 13,000 year old bowhead whale bone was included, and 441 

two samples from the Swedish Museum of Natural History, one bone sample previously 442 

identified as being a humpback whale and a sample from a sperm whale tooth. The primers 443 

managed to amplify DNA confirming the species (Anderung et al., 2014). The successful results 444 

of this pilot project mean that marine mammal bone from DONOP sites, which can be difficult 445 

for zooarchaeologists to identify morphologically, can now be identified, providing a window 446 

into species distributions in past seascapes. Future work will also use methods such as protein 447 

analysis, ZooMS, which is proving to be cheaper and often more useful under a variety of 448 

different taphonomic circumstances than aDNA analysis (Buckley, 2018). 449 

Due in part to the success of this pilot project, a three year NSF-funded project (Assessing 450 

the Distribution and Variability of Marine Mammals through Archaeology, Ancient DNA, and 451 

History in the North Atlantic – NSF award #1503714 – PI Dr. Vicki Szabo) commenced in 2016. 452 

This has explanded analysis to approximately 300 archaeological samples of whale, seal, and 453 

walrus bones across the Norse North Atlantic. Species-level identification of DONOP 454 

archaeological material will allow deeper historical access into the premodern Arctic, Subarctic, 455 

and North Atlantic societies’ impacts on marine mammals, adding to recent groundbreaking 456 
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studies of pre-modern North Atlantic walrus exploitation and biogeographies (McLeod et al., 457 

2014; Frei et al., 2015). Norse economies, hunting or scavenging strategies, commercial uses of 458 

marine mammals, and subsistence will be reassessed. aDNA analysis will allow insights into 459 

genetic diversity and drift, possibly paleodemographic data, identification of now-lost or 460 

endangered species in certain regions, and provide historical depth to the management of species 461 

under threat today.  462 

These projects are pushing baseline data of key natural species back into the last 463 

millennium. In both cases they are focusing on species that have seen predation by humans, at 464 

varying levels of intensity since the Neolithic period. Each one is focusing on the medieval to 465 

early modern transition and attempting to build demographic data that could radically alter 466 

current ideas of what a ‘normal’ or sustainable population is and of the historical spatial ranges 467 

of these species. 468 

 469 

2.3 Biological Records and DONOP 470 

Analysis of aDNA has revolutionized our understanding of the history of our species as 471 

well as that of our commensals and domesticates (Magee et al., 2014; Orlando, 2015; Scheu et 472 

al., 2015; Zeder, 2015). aDNA analysis from DONOP sites can also directly contribute to 473 

understanding the results of modern day breeding programs; revealing vulnerabilities and 474 

suggesting improvements (Fahrenkrug et al., 2010). Finally, aDNA, with the advent of gene 475 

editing technology, has the potential to become a source for past genetic variation that could be 476 

reintroduced into modern domestic animal populations, allowing us to restore some of the 477 

variability lost to modern industrial breeding programs. 478 
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A collaboration between the University of Maryland Zooarchaeology Laboratory, 479 

Recombinetics LLC, and the aDNA Laboratory of the Catholic University of the Sacred Heart in 480 

Piacenza, Italy is aligning the interests of the historical sciences with those of present-day animal 481 

sciences. This project is beginning with an initial investigation focusing on aDNA analysis of 482 

cattle bones from archaeological sites in Iceland. This will produce DNA sequence-based data 483 

that sheds light on the interactions between humans, domestic animals, and a variety of 484 

exogenous forces such as climate change, epidemics, trade, and ideology. In addition, the 485 

sequence data provides an orthogonal element to the genetic record of livestock that shed insight 486 

into decoding the genomes of contemporary domestic animals. The discovery of unique genetic 487 

variation from the past could, for example, represent lost genetic variants effecting a wide 488 

spectrum of phenotypes. Bioinformatic analyses will attempt to isolate unique genetic variants 489 

underlying specific traits in pre-modern domestic animals that could be introduced back into 490 

current domestic animal populations using genome editing technology. This project will attempt 491 

to mine the genetic heritage of domestic animals that can be found within the faunal component 492 

of archaeological sites to create resources that increase the resilience or reproductive capacity of 493 

current populations of domestic animals. Given the stresses and hazards that anthropogenic 494 

climate change will generate, this project is also attempting to utilize historical data as a tangible 495 

resource for mitigation and adaptation to climate change threats and the improvement of animal 496 

well-being. The sequence data and results from subsequent analyses that includes information 497 

from the archaeological long-term observational networks will form the basis for direct and 498 

tangible resources for mitigating against climate change threats to food animal production while 499 

also producing key data for understanding the dynamics between social and ecological systems.  500 
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This is, of course, a ‘brave new world’ for the potential uses of historical genetic 501 

material. The most dramatic and potentially visible impacts that aDNA could have in the near 502 

future are best demonstrated in the projects that are investigating the possibility of reviving 503 

extinct species (Charo and Greely, 2015; Diehm, 2015; Edwards, 2015; Shapiro, 2015; Weaver, 504 

2015). Such projects could not be possible without access to genetic material from either 505 

museum or archaeological specimens. A vigorous debate is developing around the ethical and 506 

practical ramifications of such approaches (Kristensen et al., 2015; Martinelli et al., 2014; 507 

Oksanen, 2008; Oksanen and Siipi, 2014; Siipi, 2016). Yet what can be said without debate at 508 

this point is that developing biotechnologies focusing on editing genomes will have a profound 509 

impact on the way historical genetic material is perceived and utilized.  510 

 511 

3. Discussion 512 

 The article presents just a few of the projects that illustrate how data from archaeological 513 

sites can be mobilized for application to contemporary problems. This idea is at the core of the 514 

concept of DONOP. Indeed, an important difference in perspective between traditional 515 

archaeological research focused on the interpretation of specific sites and the DONOP concept is 516 

the selective use of records from archaeological contexts to tackle specific ‘grand challenge’ 517 

research agendas of demonstrable importance beyond narrow disciplinary confines (Kintigh et 518 

al., 2014; Armstrong et al., 2017; Jackson et al., in review). They represent research projects that 519 

could form key contributors from the historical sciences towards navigating the future challenges 520 

of global change. Cooperative scholarly organizations such as IHOPE are driving efforts to 521 

increase engagement with GCR, while governmental and non-governmental organizations have 522 
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recognized the potential of archaeological data, and threats to cultural heritage arising from 523 

anthropogenic climate change.  524 

The archive of DONOP sites and the behavioral, baseline, and biological data they 525 

contain is unique. Yet this archive is threatened with destruction by the very global changes it 526 

records; this is a modern equivalent to the burning Library of Alexandria. The rate of damage to 527 

archaeological remains is continuing to accelerate as ground temperatures, moisture regimes, and 528 

erosion patterns change (Rockman, 2015; Hollesen et al., 2016; Hambrecht and Rockman, 2017; 529 

Hollesen et al., 2017). Without the mobilization of substantial international resources to 530 

recognize, manage, and when needed, rescue these endangered archaeological archives, 531 

irreplaceable records will be lost. DONOP sites are important not just because of the inherent 532 

value of our shared human historical inheritance but also as a direct cultural archive of social-533 

ecological interaction over the longue durée.  534 

Recognition of the importance and utility of DONOP has grown beyond direct 535 

practitioners. The US National Park Service has taken the lead within the US government, setting 536 

out federal policy and strategic guidance on the importance of addressing impacts of climate 537 

change on cultural heritage (including archaeology) and using cultural heritage to inform both 538 

research and the management of climate science, adaptation, mitigation, and communication 539 

policies (National Park Service, 2014; Rockman, 2015; Rockman et al., 2017). In this approach, 540 

it is recognized that cultural heritage is both affected by climate change and is a source of data on 541 

how to address climate change (Harvey and Perry, 2015).  542 

There are many other international, national, and local efforts addressing the interaction 543 

of climate change with cultural heritage but there is a danger that a piecemeal approach will not 544 

be the most effective. A global response to threatened archaeological sites focused on their utility 545 
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as DONOP is likely to produce the most effective global outcomes. International funding 546 

organizations such as the US National Science Foundation, the Belmont Forum, the EU Science 547 

Commission, and Future Earth have the potential to create funding streams that are focused on 548 

utilizing the past to better understand the present and navigate the future (Costanza et al., 2007, 549 

2012). Many archaeological sites, especially in coastal, montane, and polar regions, are now at 550 

critical risk of loss to climate change. Saving all threatened sites will not be possible. Many will 551 

be irrevocably lost over the next century due to the impacts of climate change. Guided by a series 552 

of focused research questions, it is essential that archaeologists identify, excavate, or at least 553 

sample ‘at risk’ sites and, where possible, protect key archives under threat (Van de Noort, 554 

2013). The issue is no longer one of just preserving archaeological sites so that they survive for 555 

future generations, though that is important on its own terms. It is now an issue of protecting 556 

and/or rescuing key data sources that will help us better face the future. On a local and regional 557 

scale, past societies have experienced global changes that have dramatically altered the structure 558 

of their spatially-limited worlds; the scale of future change is such that it is likely to have 559 

unknown impacts on contemporary societies and their cultural, social, environmental, and 560 

economic capital. Archaeological sites and heritage in general should be redefined to include 561 

their utility towards addressing and recording anthropogenic global change. Funding 562 

organizations and governments are recognizing the importance of archaeological data, but more 563 

needs to be done to encourage engagement between archaeologists, GCR, and practitioners. 564 
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