
 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 1/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

IST BASIC RESEARCH PROJECT
SHARED COST RTD PROJECT
THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO
PROJECT OFFICER: JAKUB WEJCHERT

Global Smart Spaces

First Smart Spaces

D8, WP5

1 SEPTEMBER 2002
GRAHAM KIRBY, ALAN DEARLE, ANDREW MCCARTHY, RON MORRISON, KEVIN

MULLEN, YANYAN YANG, RICHARD CONNOR, PAULA WELEN, AND ANDY
WILSON

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 2/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

IST Project Number IST-2000-26070 Acronym GLOSS

Full title Global Smart Spaces

EU Project officer Jakub Wejchert

Deliverable Number D 8 Name First Smart Spaces

Task Number T Name

Work Package Number WP Name WP5 Physical infrastructure

Date of delivery Contractual Project Month 21 Actual Project Month 21

Code name Version 1.0 draft ̈ final þ

Nature Prototype ¨ Report þ Specification ̈ Tool ¨ Other:

Distribution Type Public þ Restricted ̈ to: <partners>

Authors (Partner) University of St Andrews, University of Strathclyde,

Al Dearle Contact Person

Email Al@dcs.st-
andrews.ac.uk

Phone Fax

Abstract
(for dissemination)

This document describes the Gloss software currently implemented. The description of the
Gloss demonstrator for multi-surface interaction can be found in D17. The ongoing integration
activity for the work described in D17 and D8 constitutes our development of infrastructure for a
first smart space. In this report, the focus is on infrastructure to support the implementation of
location aware services. A local architecture provides a framework for constructing Gloss
applications, termed assemblies, that run on individual physical nodes. A global architecture
defines an overlay network for linking individual assemblies. Both local and global architectures are
under active development.

Keywords Global architecture, local architecture, assemblies.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 3/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

1 INTRODUCTION
This document describes the Gloss software currently implemented. The description

of the Gloss demonstrator for multi-surface interaction can be found in D17. The
ongoing integration activity for the work described in D17 and D8 constitutes our
development of infrastructure for a first smart space.

In this report, the focus is on infrastructure to support the implementation of location
aware services. A local architecture provides a framework for constructing Gloss
applications, termed assemblies, that run on individual physical nodes. A global
architecture defines an overlay network for linking individual assemblies. Both local
and global architectures are under active development.

The structure of the software is outlined below. At the top level, the infrastructure
package contains support for both local and global architectures; model contains the
Gloss ontology; services contains the implementation of various web services; and
simulation contains code for simulating various global architectural policies.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 4/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

2 LOCAL ARCHITECTURE
Any particular location-aware service, such as Radar or Hearsay [1], will be

implemented as a distributed collection of communicating assemblies. The local
architecture defines a pattern for implementing individual assemblies.

2.1 PIPELINES

The local architecture, implemented in Java, is based on a pipeline of modular
components. Events flow between components as strings, XML fragments or structured
objects, as appropriate. The modularity facilitates the construction of various assemblies
containing common components.

Pipeline architecture for local assemblies

The pipeline structure is defined by a number of interfaces. Plug interfaces allow
components to be connected to upstream components. PlugSocket interfaces allow
components to accept registrations from downstream components. There are variants for
different types of events, currently either Strings or Objects.

/** Interface defining pipeline components that can accept object

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 5/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

 * events from up-stream components. */
public interface ObjectPlug {

 /** Injects an object event into the component; invoked by the
 * upstream component with which this component is registered. */
 void put(Object object);
}

/** Interface defining pipeline components that can accept
 * registrations from down-stream ObjectPlug components. */
public interface ObjectPlugSocket {

 /** Registers a downstream ObjectPlug component in the pipeline.*/
 public void register(ObjectPlug objectPlug);
}

/** Interface defining pipeline components that can accept string
 * events from upstream components. */
public interface StringPlug {

 /** Injects a string event into the component; invoked by the
 * upstream component with which this component is registered. */
 void put(String string);
}

/** Interface defining pipeline components that can accept
 * registrations from downstream StringPlug components. */
public interface StringPlugSocket {

 /** Registers a downstream StringPlug component in the pipeline.*/
 void register(StringPlug stringPlug);
}

Plugs and sockets are connected into pipelines as illustrated below:

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 6/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

Components in pipelines

In the simple pipeline on the left, object events are passed progressively down the
linear pipeline. The more complex example on the right shows how the event types may
be transformed by adapters as the events flow down the pipeline, and how there may be
forks in the pipeline due to components that implement multiple interfaces.

2.2 PIPELINE COMPONENTS

Components currently implemented provide GPS and SMS wrappers, XML storage
and retrieval, and an ‘event bus’ to allow delivery of events to multiple consumers.

/** Pipeline component implementing an event bus, with which
 * multiple downstream components may register. Events received
 * from upstream are distributed to all registered components. */
public class EventBus implements ObjectPlugSocket, ObjectPlug ...

/** Pipeline component representing a GPS device; emits
 * LatLongCoordinate events at user-determined intervals. */
public class GPSDevice implements ObjectPlugSocket ...

/** Pipeline component representing an SMS-capable device; accepts
 * and emits arbitrary string messages. Messages flowing into the
 * component are sent via SMS to an SMS gateway. SMS messages
 * received by the component are injected into the pipeline. */
public class SMSDevice implements StringPlugSocket, StringPlug ...

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 7/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

/** Pipeline component representing an SMS-capable device; accepts
 * and emits String messages, which must be valid XML fragments.
 * Messages flowing into the component are sent via SMS to an SMS
 * gateway. SMS messages received by the component are injected
 * into the pipeline. */
public class SMSXMLDevice extends SMSDevice
 implements StringPlugSocket, StringPlug ...

/** Pipeline component that records each string received from
 * upstream into a date-stamped file. */
public class SaveStringToDateStampedFile implements StringPlug ...

2.3 ASSEMBLIES

With appropriate reuse of components, simple assemblies can be defined using only
a few lines of code; assemblies currently in use include a mobile assembly running on a
Pocket PC to transmit GPS-derived location information via SMS, and a server-based
assembly for processing and storing such location events. These are motivated by the
use case outlined below:

A motivating use case. Bob transmits his location to the GLOSS infrastructure via his

mobile device. This enables various services: relevant hearsay is delivered to him when
he enters the corresponding proximity; his trail is accumulated and may be observed by
others (with appropriate permission); his radar indicates the relative locations of
various landmarks, commercial services and other mobile users.

The figure below shows a user interface tool for dynamically creating assemblies. In
many Gloss applications we envisage assemblies being created by an assembly program
(an application factory).

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 8/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

Prototype user interface for dynamic construction of new assemblies

2.3.1 MOBILE ASSEMBLY

The mobile assembly currently in use generates XML-encoded user location events,
for use by various location-aware services such as trails, radar and hearsay. The events
are transmitted via SMS to a location database server.

The physical components are a Compaq iPaq handheld PocketPC, a compact flash
format GPS device, and a PCMCIA format GSM device. The assembly is shown below.
The various adapters and extenders are needed to overcome a problem caused by the
close physical proximity of the two PCMCIA slots on the PocketPC jacket.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 9/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

Close-up of mobile assembly

In the next version, the handheld will communicate with a separate GSM phone via
BlueTooth, to overcome the physical awkwardness of the current prototype.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 10/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

Mobile assembly in use

The mobile assembly is programmed in Java using IBM’s WebSphere Studio
Workbench environment [3]. The constituent pipeline components are:

• a wrapper for the GPS device, emitting Latitude/Longitude location objects;
• an XML generator that converts location objects to XML strings;
• an event bus;
• a wrapper for the GSM/SMS device, that sends string messages to a remote

server;
• adapters that convert between objects and strings.

The Java code to create and run the mobile assembly is as follows:
/** Create the components. */
GPSDevice GPS_device = new GPSDevice();
XMLGenerator XML_generator = new XMLGenerator();
GPSAdapter GPS_adapter = new GPSAdapter();
EventBus event_bus = new EventBus();
SMSAdapter SMS_adapter = new SMSAdapter();

StringPlug SMS_device =
 SMSDeviceFactory.createSMSDevice(GSMSerialConnection.POCKET_PC);

/** Assemble the pipeline. */
GPS_device.register(XML_generator);
XML_generator.register(GPS_adapter);

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 11/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

GPS_adapter.register(event_bus);
event_bus.register(SMS_adapter);
SMS_adapter.register(SMS_device);

/** Start the assembly. */
GPS_device.run();

In this example the event bus is not strictly necessary since only one downstream
component is registered with it, but is retained for generality.

2.3.2 SERVER ASSEMBLIES

The server assembly corresponding to the mobile assembly described above runs on
a PC equipped with a GSM card. It receives incoming SMS messages and stores the
user location information as date-stamped XML documents in a file directory. The code
to create and run the server assembly is as follows:

/** Create the components. */
SMSDevice SMS_device =
 SMSDeviceFactory.createSMSXMLDevice(GSMSerialConnection.WIN32);

StringPlug saviour = new SaveStringToDateStampedFile();

/** Assemble the pipeline. */
SMS_device.register(saviour);

/** Start the assembly. */
SMS_device.start();

The XML file repository is accessed by a web service running on the same machine
as the server assembly, or another that can mount the same file system. This service
monitors the file system and automatically loads any incoming XML files, first as DOM
objects and then, via a collection of GLOSS object factories, into instances of classes in
the ontology [4] used to model the GLOSS domain. The graph of loaded objects,
representing the server’s current knowledge of the world, may be queried via a web
form. Experiments with various services that may be provided on top of this are
ongoing.

The queries currently supported are:

• user location: this retrieves the most recent known location for a particular
user, specified using a GSM phone number as an approximation to a Globally
Unique Identifier (GUID), and if possible displays the position on a map.
Maps may be obtained dynamically from various public online services, or
specified as static maps stored on the server.

• user trail: this renders the sequence of all known locations for a particular
user as a trail over a map of suitable size.

• smart town: this indexes a user’s current location against a database
containing information on local facilities and commercial services, and
returns a linked set of web pages that enable this to be traversed.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 12/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

The example below shows the result of a user location query:

User location web service

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 13/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

The following example below shows the result of a smart town query:

Smart town web service returning Information relevant to user’s current location

3 GLOBAL ARCHITECTURE
Global location-aware services will require deployment of large number of

geographically disparate assemblies, with events flowing both within and between
assemblies. We do not yet take a strong position on the structure of such a global
network, indeed it seems likely that optimal configurations may vary markedly for
different services. Currently we assume only the following:

• GLOSS will require an overlay network of assemblies communicating over
various transport mechanisms such as IP, SMS, Bluetooth, passive proximity
detectors etc.

• The network will be heavily decentralised, perhaps exploiting current activity in
peer-to-peer routing algorithms.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 14/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

A possible global architecture supporting use case

To investigate various strategies for global deployment, we have developed a
simulation infrastructure that allows us to describe and run particular services in terms
of a topology of assemblies, the event message types and the local processing triggered
by each event. Such a network can then be simulated on a single physical node, or
deployed across a Beowulf cluster. The example below shows the output from the
simulator:

Simulation of a particular global architecture

4 REFERENCES
[1] A Recursive Software Architecture for Location-Aware Services. Alan Dearle,

Graham Kirby, Ron Morrison, Kevin Mullen, Yanyan Yang, Richard Connor,
Paula Welen, and Andy Wilson. GLOSS internal report.

 GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

 PAGE 15/15

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

[2] Location-Aware Services in the Global Context. Ron Morrison, Kevin Mullen,
Alan Dearle, Graham Kirby, YanyanYang, Richard Connor, Paula Welen and
Andy Wilson. Submitted to 4th International Conference on Mobile Data
Management, Melbourne, Australia, January 2003.

[3] WebSphere Studio Workbench. IBM.
http://www.ibm.com/software/ad/workbench/

[4] Working Document on Gloss Ontology. Gloss Consortium.

