GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>

PROJECT NO. IST-2000-26070 <TITLE>
PAGE 1/15

IST BASIC RESEARCH PROJECT

SHARED COST RTD PROJECT

THEME: FET DISAPPEARING COMPUTER
COMMISSION OF THE EUROPEAN COMMUNITIES
DIRECTORATE GENERAL INFSO

PROJECT OFFICER: JAKUB WEJCHERT

Global Smart Spaces

First Smart Spaces

D8, WP5
1 SEPTEMBER 2002

GRAHAM KIRBY, ALAN DEARLE, ANDREW M CCARTHY, RON M ORRISON, KEVIN
MULLEN, YANYAN YANG, RICHARD CONNOR, PAULA WELEN, AND ANDY
WILSON

<DATE>

© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES

<DELIVERABLE NO>

PROJECT NoO. IST-2000-26070 <TITLE>
PAGE 2/15

IST Project Number IST-2000-26070 Acronym GLOSS
Full title Global Smart Spaces
EU Project officer Jakub Wejchert
Deliverable Number D8 Name First Smart Spaces
Task Number T Name
Work Package Number WP Name WP5 Physical infrastructure
Date of delivery Contractual Project Month 21 Actual Project Month 21

Codename
Nature
Distribution Type
Authors (Partner)

Contact Person

Abstract
(for dissemination)

Keywords

Version 1.0 draft O final &
Prototype 0 Report @ Specificationd Tool 0 Other:

Public 4 Restricted O to: <partners>

University of St Andrews, University of Strathclyde,
Al Dearle

Email Al@dcs.st Phone Fax
andrews.ac.uk

This document describes the Gloss software currently implemented. The description of the
Gloss demonstrator for multi-surface interaction can be found in D17. The ongoing integration
activity for the work described in D17 and D8 constitutes our development of infrastructure for a
first smart space. In this report, the focus is on infrastructure to support the implementation of
location aware services. A local architecture provides a framework for constructing Gloss
applications, termed assemblies, that run on individual physical nodes. A global architecture
defines an overlay network for linking individual assemblies. Both local and global architectures are
under active development.

Global architecture, local architecture, assemblies.

© 2001 GLOSS CONSORTIUM

<DATE>
<VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 3/15

1 INTRODUCTION

This document describes the Gloss software currently implemented. The description
of the Gloss demonstrator for multi-surface interaction can be found in D17. The
ongoing integration activity for the work described in D17 and D8 constitutes our
development of infrastructure for afirst smart space.

In this report, the focus is on infrastructure to support the implementation of location
aware services. A local architecture provides a framework for constructing Gloss
applications, termed assemblies, that run on individual physica nodes. A global
architecture defines an overlay network for linking individual assemblies. Both local
and global architectures are under active development.

The structure of the software is outlined below. At the top level, the infrastructure
package contains support for both local and global architectures; model contains the
Gloss ontology; services contains the implementation of various web services; and
simulation contains code for simulating various global architectural policies.

glogs
= infrastructure
B glokal
= E] local
[l azzembly
[+ componernt
& [E] factory
[F] pipeline
[+ [E] ui
mE local
] i
o infrastructure
= B] model
[+ metaphors
[+ space
& E] time
[+ universe
B i
T madel
= services
[+ mapRing
[smartTown
oo services
= B simulation
architecture
oo simulation

I

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 4/15

2 LOCAL ARCHITECTURE

Any particular locationaware service, such as Radar or Hearsay [1], will be
implemented as a distributed collection of communicating assemblies. The loca
architecture defines a pattern for implementing individual assemblies.

2.1 PIPELINES

The local architecture, implemented in Java, is based on a pipeline of modular
components. Events flow between components as strings, XML fragments or structured
objects, as appropriate. The modularity facilitates the construction of various assemblies
containing common components.

'&U’ '

| nput Pnf‘(’

GOTipe. GOfg Gote
!

iy

Outpst P;
o 7
Pipeline architecture for local assemblies

The pipeline structure is defined by a number of interfaces. Plug interfaces allow
components to be connected to upstream components. PlugSocket interfaces alow
components to accept registrations from downstream components. There are variants for
different types of events, currently either Strings or Objects.

/** Interface defining pipeline conmponents that can accept object

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 5/15

* events from up-stream conponents. */
public interface ObjectPlug {

[** Injects an object event into the conponent; invoked by the
* upstream conponent with which this conponent is registered. */
voi d put (CObj ect object);

}

/[** Interface defining pipeline components that can accept
* registrations from down-stream CbjectPlug conponents. */
public interface ObjectPlugSocket {

/** Registers a downstream Obj ect Pl ug conponent in the pipeline.*/
public void register(ObjectPlug objectPlug);
}

[** Interface defining pipeline conponents that can accept string
* events from upstream conponents. */
public interface StringPlug {

[** Injects a string event into the conponent; invoked by the
* upstream conponent with which this conponent is registered. */
void put(String string);

}

/[** Interface defining pipeline conponents that can accept
* registrations fromdownstream StringPl ug conponents. */
public interface StringPlugSocket {

/** Registers a downstream StringPlug conponent in the pipeline.*/

void register(StringPlug stringPlug);
}

Plugs and sockets are connected into pipelines asillustrated below:

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 6/15

ObpctPlug Soc leet

Ok Plg
[15}&&??hﬂ55¢¢k{?

!
D"wé,e,d' ﬂ"’b I'|

Components in pipelines

In the simple pipeline on the left, object events are passed progressively down the
linear pipeline. The more complex example on the right shows how the event types may
be transformed by adapters as the events flow down the pipeline, and how there may be
forks in the pipeline due to components that implement multiple interfaces.

2.2 PIPELINE COMPONENTS

Components currently implemented provide GPS and SMS wrappers, XML storage
and retrieval, and an ‘event bus' to alow delivery of events to multiple consumers.

/** Pipeline component inplenenting an event bus, with which

* multiple downstream conponents may register. Events received

* fromupstreamare distributed to all registered conmponents. */
public class EventBus inplenments ObjectPlugSocket, ObjectPlug ..

/** Pipeline conmponent representing a GPS device; emts
* Lat LongCoordi nate events at user-deternm ned intervals. */
public class GPSDevice inplenents ObjectPlugSocket

/** Pipeline component representing an SMS-capabl e devi ce; accepts
and enmits arbitrary string messages. Messages flowing into the
conmponent are sent via SMS5 to an SMS gateway. SMS nessages

* received by the conponent are injected into the pipeline. */
public class SMsSDevice inplenents StringPlugSocket, StringPlug ..

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 7/15

/** Pipeline component representing an SMS-capabl e devi ce; accepts

*

* and enmits String nessages, which nust be valid XM. fragnents.

* Messages flowing into the conponent are sent via SM5 to an SMS
* gateway. SMS nessages received by the component are injected

* into the pipeline. */

public class SMSXM.Devi ce extends SMsDevi ce

i mpl enents StringPl ugSocket, StringPlug ..

/** Pipeline component that records each string received from
* upstreaminto a date-stanped file. */
public class SaveStringToDat eSt anpedFile inplements StringPlug ..

2.3 ASSEMBLIES

With appropriate reuse of components, simple assemblies can be defined using only
afew lines of code; assemblies currently in use include a mobile assembly running on a
Pocket PC to transmit GPS-derived location information via SMS, and a server-based
assembly for processing and storing such location events. These are motivated by the
use case outlined below:

GLOSSE Global
i Brussels Architecture
Ewvent : ey : :

i = Brussels !r L.

Bob k= at ¥ Gateway | Transistor
xy) ™

———

Belgum

GPS Sateling

|-

gl—m:'ga’ | I-E Streat - 4 Linaw Profie
™

| Feadar

A motivating use case. Bob transmits his location to the GLOSS infrastructure via his
mobile device. This enables various services. relevant hearsay is delivered to him when
he enters the corresponding proximity; histrail is accumulated and may be observed by
others (with appropriate permission); his radar indicates the relative locations of
various landmarks, commercial services and other mobile users.

The figure below shows a user interface tool for dynamically creating assemblies. In
many Gloss applications we envisage assemblies being created by an assembly program
(an application factory).

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>

PROJECT NO. IST-2000-26070 <TITLE>
PAGE 8/15

F=3 GLOSS Client Application

rPlease Select Component for Assembling-

SMSDevice |~ SMEDevice
GPSDevice o — GPSDevice
H“MLGenerator| | | Select-» | [<MLGenerator
RadarTool |

TrailBroadcast]=

Assembhy Exit

Prototype user interface for dynamic construction of new assemblies

231 MOBILE ASSEMBLY

The nobile assembly currently in use generates XML-encoded user location events,
for use by various locationaware services such as trails, radar and hearsay. The events
are transmitted via SMS to a location database server.

The physical components are a Compaq iPaq handheld PocketPC, a compact flash
format GPS device, and a PCMCIA format GSM device. The assembly is shown below.
The various adapters and extenders are needed to overcome a problem caused by the
close physical proximity of the two PCMCIA dots on the PocketPC jacket.

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 9/15

Close-up of mobile assembly

In the next version, the handheld will communicate with a separate GSM phone via
BlueTooth, to overcome the physical awkwardness of the current prototype.

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 10/15

Mobile assembly in use

The mobile assembly is programmed in Java using IBM’s WebSphere Studio
Workbench environment [3]. The constituent pipeline components are:

awrapper for the GPS device, emitting Latitude/L ongitude location objects;

an XML generator that converts location objects to XML strings,

an event bus;

a wrapper for the GSM/SMS device, that sends string messages to a remote
server;

adapters that convert between objects and strings.

The Java code to create and run the mobile assembly is as follows:

/** Create the conponents. */
GPSDevi ce GPS device
XM_Gener at or XM__gener at or
GPSAdapt er GPS_adapter
Event Bus event _bus
SMSAdapt er SMS_adapt er

new GPSDevi ce();
new XM_Cenerator () ;
new GPSAdapter();
new Event Bus();

new SMSAdapter();

StringPlug SMs device =
SMSDevi ceFact ory. cr eat eSMSDevi ce(GSMsSer i al Connecti on. POCKET_PC) ;

/** Assenbl e the pipeline. */
GPS_devi ce.regi ster(XM._generator);
XM._generator.regi ster(GPS_adapter);

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 11/15

GPS_adapter.register(event _bus);
event _bus. regi ster(SMS_adapter);
SMS_adapter. regi ster (SMS_devi ce);

/[** Start the assenbly. */
GPS_device.run();

In this example the event bus is not strictly necessary since only one downstream
component is registered with it, but is retained for generality.

2.3.2 SERVERASSEMBLIES

The server assembly corresponding to the mobile assembly described above runs on
a PC equipped with a GSM card. It receives incoming SMS messages and stores the
user location information as date-stamped XML documents in afile directory. The code
to create and run the server assembly is as follows:

/** Create the conmponents. */

SMsDevi ce SMS_devi ce =
SMSDevi ceFact ory. cr eat eSMSXM.Devi ce(GSMSer i al Connecti on. W N32) ;

StringPlug saviour = new SaveStringToDat eSt anpedFil e();

/** Assenbl e the pipeline. */
SMS_devi ce. regi ster(saviour);

[** Start the assenbly. */
SM5_device.start();

The XML file repository is accessed by a web service running on the same machine
as the server assembly, or another that can mount the same file system. This service
monitors the file system and automatically 1oads any incoming XML files, first as DOM
objects and then, via a collection of GLOSS object factories, into instances of classesin
the ontology [4] used to model the GLOSS domain. The graph of loaded objects,
representing the server’s current knowledge of the world, may be queried via a web
form. Experiments with various services that may be provided on top of this are
ongoing.

The queries currently supported are:

user location: this retrieves the most recent known location for a particular
user, specified using a GSM phone number as an approximation to a Globally
Unique Identifier (GUID), and if possible displays the position on a map.
Maps may be obtained dynamically from various public online services, or
specified as static maps stored on the server.

user trail: this renders the sequence of al known locations for a particular
user as atrail over amap of suitable size.

smart town: this indexes a user's current location against a database
containing information on local facilities and commercial services, and
returns a linked set of web pages that enable this to be traversed.

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES
PROJECT NO. IST-2000-26070

<DELIVERABLE NO>
<TITLE>

PAGE 12/15

The example below shows the result of a user location query:

3 UserLocated - Microsoft Internet Explorer

© File Edt ‘View Favorites Tools Help th
@Back =) - [® 2 (» S search Ut Favorites @ Media £
! Address I@j hittp: flvwen-systems, dos st-and, ac, ki 8180/ gloss fLocation ServicesFront Vi Lirks *
GO=.‘-glEv| :_j ffsearch web @ysearchsite | €WPageInfo - Egup -
A
(lozs User Located
_The_Links
Gloss User 10 metres from Computer Science Department
Coordinates Latitude: 56 33971405029297 Longitude -2 807574987411489 Position Correct (@ Fri Aug 30 172534 BST 2002
Zoom Qut ” Zoom In A
&] Done ® Internet
User location web service
<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 13/15

The following example below shows the result of a smart town query:

<} ..:: GLOSS Location Seryices ::.. - Microsoft Internet Explorer E”EJE|

. File Edt ‘iew Favorites Tools Help lfr!

[& » Jsearch 7 Favortes @ Meda £

| Address i@ http: fhann-systems. des st-and. ac. uk: &180gloss/Location Display ¥ jumpTo={6CA4EIBC-0980-4D5E-A595-3CAGZES 1 4AE3} | : Links ¥

G(‘):}glﬁ'vl j @b 5earch web @y Search Site #¥rage nfo ~ EBp - #Hahich

Where Information
e MWathematics Department
Infarmation hittp: /e, st-and. ac. uk

REGION Distinguished Point : 55.34M
Region 2.81E Bounds : Rectangular Bounds ;: Top Left ;; 56.34N 2. 81E
Bottorn Left :: 55.34N 2 81E

false

Uniwversity Locale
MWathematical Institute of the university of st andrews

university
maths
MarneMumber : Maths Department Street : Morth Haugh Town @ St
Address Andrews County : Fife PostCode : KY16 955 WebAddress :
http: e, st-and. ac. uk Email : maths@st-and. ac.uk

0 Inkternet

Smart town web service returning Information relevant to user’s current location

3 GLOBAL ARCHITECTURE

Globa locationaware services will require deployment of large number of
geographically disparate assemblies, with events flowing both within and between
assemblies. We do not yet take a strong position on the structure of such a global
network, indeed it seems likely that optima configurations may vary markedly for
different services. Currently we assume only the following:

GLOSS will require an overlay network of assemblies communicating over
various transport mechanisms such as IP, SMS, Bluetooth, passive proximity
detectors etc.

The network will be heavily decentralised, perhaps exploiting current activity in
peer-to-peer routing algorithms.

<DATE>
© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>
PROJECT NO. IST-2000-26070 <TITLE>
PAGE 14/15

Beb's F'rd'l‘el

Brussels
{uﬁcm:-

A possible global architecture supporting use case

To investigate various strategies for global deployment, we have developed a
simulation infrastructure that allows us to describe and run particular services in terms
of atopology of assemblies, the event message types and the local processing triggered

by each event. Such a network can then be simulated on a single physical node, or
deployed across a Beowulf cluster. The example below shows the output from the

simulator:

| ok 5 Dl)

- H; o
— e TN -

- -? I:u--p:qr-rl

Smulation of a particular global architecture

4 REFERENCES

[1] A Recursive Software Architecture for LocationAware Services. Alan Dearle,
Graham Kirby, Ron Morrison, Kevin Mullen, Yanyan Yang, Richard Connor,
Paula Welen, and Andy Wilson. GLOSS internal report.

<DATE>

© 2001 GLOSS CONSORTIUM <VERSION>

GLOSS: GLOBAL SMART SPACES <DELIVERABLE NO>

PROJECT NO. IST-2000-26070 <TITLE>
PAGE 15/15

[2] LocationAware Services in the Global Context. Ron Morrison, Kevin Mullen,
Alan Dearle, Graham Kirby, YanyanYang, Richard Connor, Paula Welen and
Andy Wilson. Submitted to 4th International Conference on Mobile Data
Management, Melbourne, Australia, January 2003.

[3] WebSphere Studio Workbench. IBM.
http://www.ibm.convsoftware/ad/workbench/

[4] Working Document on Gloss Ontology. Gloss Consortium.

<DATE>

© 2001 GLOSS CONSORTIUM <VERSION>

