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Abstract 

One-dimensional heterostructured nanomaterials represent key building blocks for 

nanotechnologies due to a large number of applications such as electronics, catalysis, drug 

delivery, and energy storage and conversion devices. Electrospinning has been considered a 

straightforward and versatile method to prepare inorganic nanowires, but the heterostructured 

nanowires have been only fabricated by using dual-nozzle or by introducing additional 

encapsulating step. Here we report one-step fabrication of surface-decorated inorganic 

nanowires via single-nozzle electrospinning. Although the electrospinning precursor uses one 

mixed solution containing nickel salt, ceria nanoparticles, and polyvinylpyrrolidine (PVP), 

the nanowires show a core/shell-like shape. The surface-decorated nanowires consist of 

nickel shell and ceria core, which exhibits 95.52 % of methane conversion at 600 °C whereas 

conventional particle-type catalysts have only 60 % at the same temperature in steam 

reforming. 
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Introduction 

Heterogeneous catalysis is of overriding importance in many areas of the chemical and 

energy industries. The multi-functionality in catalytic processes highly depends on 

architectures designed from nanoscale building blocks, which provides new opportunities to 

improvement of the catalytic performance.[1,2] In recent years, heterostructured nanowires 

have attracted great attentions in a wide variety of fields such as catalysis, sensing, and 

energy conversion and storage because they simultaneously satisfy the smallest dimension for 

efficient transport of electrons or ions and catalytic bifunctionality for each of the two 

components to provide a necessary but different reactive contribution to the final product.[3-

6] Jiang et al. recently reported Pt alloy nanowires for oxygen-reduction reactions (ORR), 

which leading to high activity and stability by more (111) facets on the surfaces of Pt alloy 

nanowires.[7] Nakajima et al. reported that CuO/ZnO nanowires achieved great 

improvements in hydrogen production by methane steam reforming, and showed high 

durability because of suppressing particle agglomerations in the nanowires.[8] Therefore, the 

fibrous heterogeneous catalysts showed peculiar properties and high performances for 

catalytic reactions.[9-11]  

Several preparation methods have been developed for nanowire structures such as chemical 

etching, hydrothermal synthesis, chemical vapor deposition, electrospinning, or gas-solid 

reaction. Among these processes, an electrospinning technique has been considered a 

straightforward and versatile method to prepare inorganic nanowires alongside various 

fabrication methods.[12-16] However, fabricating the surface-decorated nanowires via the 

electrospinning technique is more complicated than single-structured nanowires. General 

fabrication process is separated to more than 2 steps: fabricating nanowire cores and then 

encapsulating them with nano-particles using deposition devices or wet chemical 

synthesis.[17,18] Coaxial dual-nozzle electrospinning have been recently reported for one-
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step fabrication of the surface-decorated inorganic nanowires, but various factors such as 

surface tension and viscosity should be carefully controlled between different two 

solutions.[19-22] In recent year, we have reported that the surface-decorated inorganic 

nanowires via advanced electrospinning and Pechini (AE&P) process is very effective in an 

energy conversion device.[18] However, the fabrication method is still separated to 2 steps.  

In this study, we report that one-step fabrication of the surface-decorated Ni/CeO2 nanowires 

via single-nozzle electrospinning based on one mixed solution. The prepared nanowires show 

core/shell-like shapes, large surface area, and high catalytic activity for CH4 reduction. From 

these results, the electrospinning based on the particle/salt mixed solution can be a 

straightforward method to prepare surface-decorated inorganic nanowires for a large number 

of catalytic applications such as hydrogen production, fuel cell, or batteries.  

Experimental 

Fabrication of the surface-decorated nanowires: CeO2 nanoparticles (Sigma Aldrich) were 

pre-heated at 300 °C for 3 h to remove moistures and organic residues. Poly vinyl pyrrolidine 

(PVP, Mw ≈ 1,300,000) were dissolved in ethanol under vigorous stirring, and then 

Ni(NO3)26H2O (Sigma Aldrich) was added to the solutions. The solutions were stirred when 

the Ni precursors were completely dissolved. CeO2 nanoparticles were added into the 

solutions, and the sonication was conducted for 1 h. The solutions were stirred for overnight. 

The suspension was transferred into a syringe with 24 gauge needle connected to the high 

voltage power supply. The electrospinning condition was as following: about 9 kV applied 

current voltage, 20 µl/min feed rate of precursor solution using syringe pump and 15 cm 

distance from spinneret to collector. The fibres were calcined at 500 °C for 2 h in air, and 

then reduced at 500 °C for 3 h in 5 % H2/N2 atmosphere. 

Characterizations: The crystal structure of the electrospun Ni-CeO2 fibres was measured by 

X-ray diffractometer (XRD) (Rigaku, Miniflex model) with Cu Kα radiation at room 
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temperature. Field emission scanning electron microscopy (FE-SEM, JEOL, JSM-6701F 

model) was used to observe microstructures of the electrospun fibres. Field emission 

transmission electron microscopy (FE-TEM or HRTEM) (JEOL, JEM 2100-F model) was 

used to distinguish the Ni shell nanoparticles from the CeO2 core fibres. Temperature-

programmed reduction (TPR) of the same weighted sample (0.1g) was packed in a quartz 

tube and treated at 900 °C for 30 min in 10% CH4 atmosphere with flow rate as 50 sccm. The 

heating rate was 10 
o
C min

-1
. Methane consumption was measured by a thermal conductivity 

detector (TCD). Steam reforming reactor was operated in CH4, H2O and N2 gas atmosphere 

with the flow rates of 10 sccm, 30 sccm and 40 sccm, respectively. The sample weight was 

0.4 g for bulk (GHSV (Gas hourly space velocity) 2000 h
-1

), fibre (GHSV 5000 h
-1

) samples 

and 2 g for bulk sample (GHSV 5000 h
-1

) which were loaded on the reactor. The samples 

were pre-treated with H2 atmosphere at 700 
o
C with the heating rate of 5 

o
C min

-1
 and 

retained at 600 
o
C for 25 h. The reactor outlet was connected to GC (Gas chromatography): 

an asymmetric thermal conductivity detector (TCD) simultaneously records H2, CO2, N2, and 

CO, and a flame ionisation detector (FID) measures CH4. 

Results and discussion 

Polyvinylpyrrolidine (PVP) is typically adsorbed on oxide surfaces, and then acts as a 

dispersion agent in aqueous medium due to electrostatically repulsive force between 

PVP chains. It largely depends on the surface charge of oxide particles, molecular 

weight, and concentration of PVP. The well-dispersed CeO2 nanoparticles in ethanol 

can be found when the small amount of PVP was added into the solution as shown in 

Figure 1a. In the schematic diagram, the CeO2 nanoparticles may be dispersed by the 

repulsive force of PVP adsorbed on the CeO2 surfaces. Normally, the aggregation 

between colloidal nanoparticles can be avoided by strongly adsorbed stabilizer due to 

its steric hindrance effect referring to bumper effect of polymers in the colloidal 
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dispersion.[23] In this study, FT-IR spectra exhibited similar patterns between PVP 

and CeO2/PVP. The peaks of both samples appeared at the wavelength of 1670, 1430, 

and 1280 cm
-1

 which are related to C=O or C-N stretch, CH2 scissoring vibrations, and 

CH2 wag or C-N stretch, respectively.[24] The slight peak shift of the CeO2/PVP from 

1670 cm
-1

 to 1664 cm
-1

 may be due to weak adsorption of PVP onto the surfaces of 

CeO2 nanoparticles (Figure S1a). This corresponds to the result reported by Si et 

al.[25] They also reported PVP was weakly adsorbed on the ceria nano-crystals, and 

acted as a bridge-linking due to its linear structure and multiple coordinating sites such 

as carbonyls. Figure 1b shows HRTEM and electron diffraction images of the 

CeO2/PVP solution. It was found that the linear-structured PVP molecule links several 

CeO2 nanoparticles in about 50-100 nm size simultaneously (Figure S2). Figure 1c 

shows green-coloured Ni
2+

 solution. Liu et al. reported weak interaction between Ni
2+

 

ions and PVP in ethanol.[26] The reasons for the weak interaction between Ni
2+

 ions 

and PVP are high reduction potential and low reduction degree of Ni species in the 

absence of seed.[27] In the FT-IR spectra (Figure S1b), the peak shift of the Ni
2+

/PVP 

from 1670 cm
-1

 to 1658 cm
-1

 can be observed, which may be attributed to the 

interaction between carbonyl group of PVP and Ni
2+

 ions. The result corresponds well 

to that of Liu et al. Moreover, the new peak at 1580 cm
-1

 appeared in Ni
2+

/PVP 

solution. We could not clarify the vibration mode of the peak, but suggest that the 

peak may result from asymmetric carboxylate units of PVP coordinated to Ni
2+

 ions or 

from nickel acetate as the starting salt.[28] The HRTEM image in Figure 1d was 

considered Ni nanoparticles captured in PVP chains. Thus, we suggest that Ni, CeO2 

nanoparticles and PVP may co-exist in the prepared mixed solution as the schematic 

diagram in Figure 1.  
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In the electrospinning principle, the fluid with high viscosity is located on the inside 

wall of the nozzle tip and released in a form of nanowires by the electric charge 

generated on the wall of the nozzle tip. Based on the mechanisms, Alexander et al. 

prepared the core/shell (PMMA/PAN) nanowires by using one mixed solution 

consisting of polyacrylonitrile (PAN) with high molecular weight and 

poly(methylmethacrylate) (PMMA) with relatively low molecular weight.[29] The 

main reason for this is phase separation between PMMA and PAN, but we assume that 

viscosity derived from molecular weight may have effects on the core/shell form. The 

viscosity data shows that PVP play a key role in introduction of the viscosity in the 

solution (Figure S3). Although the viscosity may be same in the solution containing 

polymer/metal/CeO2, but the extra PVP linked with Ni ions may be more favourable to 

be located on the inside wall of the nozzle tip. When the Ni/PVP is released from the 

nozzle tip, the dispersed CeO2 nanoparticles may be carried away by the pulling force 

of the Ni/PVP. Figure 2b clearly shows that despite of the particle-based 

electrospinning, the as-electrospun Ni/CeO2/PVP nanowires had very smooth surfaces, 

which implies that the Ni/PVP covered the particle-based CeO2 nanowires. The 

nanowire diameter was about 400 nm. Figure 2c shows SEM image of the NiO/CeO2 

nanowires after calcination at 600 °C for 5 h in air. The nanowire diameter was 

decreased to about 300 nm due to PVP removal. As PVP was removed from the 

nanowires, the smooth surfaces were changed to the rough surfaces. This may be 

attributed to NiO nanoparticles on the CeO2 nanowires. The XRD patterns of the 

nanowires calcined in air can support above suggestion (Figure S4). Furthermore, the 

NiO/CeO2 nanowires maintained the shape of the surface-decorated nanowire even 

when they were reduced into Ni/CeO2-δ nanowires at 500 °C for 3 h in 5 % H2/N2 

atmosphere.  
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The surface-decorated nanowire structures were confirmed by HRTEM as shown in 

Figure 3. The Ni/CeO2 nanowires consisted of the Ni shells with about 20-30 nm 

thickness on CeO2 core wires (Figure 3a). The Ni nanoparticles were well-distributed 

on the surfaces of the CeO2 nanowires. Figure 3b indicates the magnified image and 

electron diffraction patterns of the shells, which clearly demonstrates that the shells 

were Ni nanoparticles. In Figure 3c, the line profile data shows the small amount of Ni 

nanoparticles was contained inside the CeO2 nanowires. This may be due to PVP 

adsorbed on the surfaces of the CeO2 nanoparticles in preparation of the CeO2/PVP 

solution. It proves that the surface-decorated nanowires can be formed via single-

nozzle electrospinning based on the one mixed Ni/CeO2 solution although they were 

not perfectly symmetrical core/shell nanowires. The amount of Ni loading was about 

15 wt.% as shown in Figure S5. 

To estimate the catalytic activities of the Ni/CeO2 bulk and fibres and understand the 

differences between the two, CH4-TPR and steam reforming test were conducted to 

the samples. The initial temperature for CH4 consumption was around 400 °C in the 

Ni-decorated CeO2 fibres and 580 °C in the Ni/CeO2 bulk (Figure 4a) which indicates 

that the Ni-decorated CeO2 fibres can improve CH4 reductions at lower temperatures. 

Additionally, the peak area was larger in the Ni-decorated CeO2 fibres than in the bulk 

samples, which indirectly implies higher CH4 reductions in the former. To conduct 

precise comparative analysis of CH4 conversion between bulk and Ni-decorated CeO2 

fibre samples, two identical conditions, GHSV and weight, were considered. The 

results of steam reforming tests showed significant difference between two samples. 

Methane was consumed averagely 95.52 % on Ni-decorated CeO2 fibres, but the bulk 

samples showed below 60 %. Fibrous structure was not adversely affected by mass 

transfer which results in the stable operation for 25 h. It was strong point of fibrous 
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structure to steam reforming which simplifies the catalyst preparation process because 

it probably skips the pelleting process. 

Conclusions 

We prepared the Ni-decorated CeO2 fibres via single-nozzle electrospinning. The 

interactions among PVP/Ni/CeO2 can produce core-shell like fibres spontaneously. 

The fibres showed high specific surface area and possibility for improvements in CH4 

reductions at low temperatures. Thus, we suggest that this technique and theoretical 

backgrounds may be helpful for easy preparation of metal-decorated ceramic 

nanowires, which can extend a variety of applications in energy or catalytic fields. 
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Figure 1. Preparation process of the mixed solution consisting of CeO2 nanoparticles, Ni
2+

 

ions, polyvinylpyrrolidine (PVP), and ethanol. (a) real image of the well-dispersed CeO2 

nanoparticles by the small amount of PVP and the corresponding schematic diagram, (b) real 

image of the Ni
2+

 solution and the corresponding schematic diagram, (c) HRTEM and 

electron diffraction images (inset) of the CeO2 solution. The CeO2 nanoparticles are 

surrounded by PVP, and the electron diffraction image of the dark black particles corresponds 
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to the crystal structure of CeO2. (d) HRTEM and electron diffraction images (inset) of the 

Ni
2+

 solution, showing Ni particle captured in PVP chains. 

Figure 2. Electrospinning processes based on the mixed solution and the corresponding SEM 

and HRTEM images to each step. (a) schematic diagram of the electrospinning using the 

mixed solution. The polymer/metal ions with high viscosity may be located on the inside wall 

of the nozzle tip, and the CeO2 nanoparticles with relatively low viscosity may move out to 

the entrance of the nozzle tip by pulling force. (b) SEM image of the as-electrospun Ni/CeO2 

nanowire, showing the fine surfaces of the nanowire despite of the particle-based 

electrospinning. (c) SEM image of the calcined nanowires in air. NiO nanoparticles appear on 

the CeO2 nanowires. (d) schematic diagram and HRTEM image of the Ni/CeO2 nanowire 

after heat treatment in reducing atmosphere. 

Figure 3. HRTEM images of the Ni/CeO2 nanowires after heat treatment in reducing 

atmosphere. (a) HRTEM image of the Ni/CeO2 nanowire surfaces, (b) magnified image of 

the Ni shells and electron diffraction image (inset) clearly shows the crystal structure of Ni. 

(c) line profile data of the Ni/CeO2 nanowire, showing the core/shell-like structure. 

Figure 4. (a) CH4 TPR signals of the Ni/CeO2 particle mixtures (bulk) and nanowires (fiber) 

after heat treatment in reducing atmosphere. (b) Methane conversion of the Ni/CeO2 particle 

mixtures and nanowires with steam reforming condition at 600 
o
C. 
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