
RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy

Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J.

McCarthy

School of Computer Science

University of St Andrews

St Andrews
{scott,al,stuart,graham,ajm}@dcs.st-and.ac.uk

Abstract. Middleware technologies, often limit the way in which object classes

may be used in distributed applications due to the fixed distribution policies

imposed by the Middleware system. These policies permeate the applications

developed using them and force an unnatural encoding of application level

semantics. For example, the application programmer has no direct control over

inter-address-space parameter passing semantics since it is fixed by the

application’s distribution topology which is dictated early in the design cycle by

the Middleware. This creates applications that are brittle with respect to

changes in the way in which the applications are distributed. This paper

explores technology permitting arbitrary objects in an application to be

dynamically exposed for remote access. Using this, the application can be

written without concern for its distribution with object placement and

distribution boundaries decided late in the design cycle and even dynamically.

Inter-address-space parameter passing semantics may also be decided

independently of object implementation and at varying times in the design

cycle, again, possibly as late as run-time. Furthermore, transmission policy may

be defined on a per-class, per-method or per-parameter basis maximizing

plasticity. This flexibility is of utility in the development of new distributed

applications and the creation of management and monitoring infrastructures for

existing applications.

Introduction

Existing middleware systems including CORBA [1], Java RMI [2], Microsoft DCOM

[3] and Microsoft .NET Remoting [4] suffer from several limitations that restrict the

kinds of application that can be created using them and hamper their flexibility with

respect to distribution and adaptability. In this paper we focus on four of these

limitations, namely,

1. They force decisions to be made early in the design process about which

classes may participate in inter-address-space communication.

2. They are brittle with respect to changes in the way in which the applications

are distributed.

2 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

3. It is difficult to understand and maintain distributed applications since the

use of middleware systems may force an unnatural encoding of application

level semantics.

4. It is difficult to control the policy used to determine how objects are

transmitted among the available address-spaces in a distributed application.

Early Design Decisions - The industry standard middleware systems all require

the programmer to decide at application design time which classes will support

remote access and to follow similar steps in order to create the remotely accessible

classes. The programmer must decide the interfaces between distribution boundaries

statically then determine which classes will implement these interfaces and thus be

remotely accessible. These classes, known as remote classes, are hard-coded at the

source level to support remote accessibility and only instances of these classes can be

accessed from another address-space. Therefore, the programmer must know how the

application objects will be distributed at run-time before creating any classes.

These middleware systems require the manual creation of ancillary code such as

skeletons, proxies and stub implementation classes, which must extend special

classes, implement special interfaces or handle distribution related error conditions,

based on programmer-defined interfaces. All require the creation of server

applications that configure the middleware infrastructure then instantiate and register

objects for remote access.

Brittleness with Respect to Change - The brittleness of distributed applications

created using existing middleware systems is due to the fact that the distribution of

the application must be known early in the design process. The possible partitions of a

distributed application are dependent on which classes within the application are

remotely accessible and so the classes of object that can be separated from their

reference holders is restricted. The problem of brittleness and inflexibility to change is

more than a question of support for remote accessibility within application classes.

Distorted Application Level Semantics - Industry standard middleware systems

decide the parameter-passing semantics applied during remote method call statically

based on the remote accessibility of the application classes. In general, remotely

accessible objects are passed by-reference and other objects are passed-by-value,

though CORBA exhibits the same limitation in a slightly different way; only CORBA

components may be transmitted across the network and each class is explicitly

defined as either pass by-reference or pass by-value.

The parameter-passing semantics is tightly bound to the distribution of the

application so changes to the distribution of an application have the side effect that

application semantics may be altered. All objects of the same class must be

transmitted in the same way, whether this is appropriate or not, and the programmer

does not have the freedom to choose different parameter-passing semantics for classes

on a per-application or per-call basis.

Since industry standard middleware systems force remotely accessible classes to

extend special classes, implement special interfaces or handle network related errors

explicitly, it is not possible to make application classes remotely accessible unless

their super-classes also meet the necessary requirements. At best, this forces an

unnatural or inappropriate encoding of the application semantics because classes are

forced to be remotely accessible for the benefit of their sub-classes and, at worst,

application classes that extend library classes cannot be remotely accessible at all.

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 3

This paper introduces RAFDA [5] a Java Middleware that permits arbitrary

application objects to be dynamically exposed for remote access. Object instances are

exposed as Web Services through which remote method invocations may be made.

RAFDA has four notable features that differentiate it from other Middleware

technologies.

1. The programmer does not need to decide statically which component classes

support remote access. Any object instance from any application, including

compiled classes and library classes, can be deployed as a Web Service

without the need to access or alter the application’s source code.

2. The system integrates the notions of Web Services, Grid Services and

Distributed Object Models by providing a remote reference scheme,

synergistic with standard Web Services infrastructure extending the pass by-

value semantics provided by Web Services with pass by-reference semantics.

Specific object instances rather object classes are deployed as Web Services

further integrating the Web Service and Distributed Object Models. This

contrasts with systems such as Apache Axis [6] in which object classes are

deployed as Web Services.

3. Parameter passing mechanisms are flexible and may be dynamically

controlled through policies. A deployed component can be called using

either pass by-reference or pass by-value semantics on a per-call basis.

4. The system automatically deploys referenced objects on demand. Thus an

object b that is returned by method m of deployed object a is automatically

deployed before method m returns.

The process of implementing the application logic is thus separated from the

process of distributing the application. Since any object can be made remotely

accessible, changes to distribution boundaries do not require re-engineering of the

application, making it easier to change the application’s distribution topology. This

separation of concerns simplifies the software engineering process to the

programmer’s advantage both when creating a distributed application and introducing

distribution into an existing application. This simplifies the creation of tools such as

monitoring and management components that need to access and modify object state

from outwith those objects’ local address space. Using traditional middleware

systems, it is difficult to attach such tools to existing objects without access to source

code and extensive engineering effort.

This functionality is provided by the RAFDA Run-Time (RRT), a Middleware

system for Java development that tackles the problems inherent in existing

middleware systems. The RRT simplifies the kinds of tasks that are common to the

creation of distributed application such as dynamically exposing objects for remote

access, obtaining remote references to remotely accessible objects and remote method

invocation. The RRT can ensure the preservation of local application semantics in a

distributed application and can automate object placement based on programmer-

defined policies. Although the RRT is written in Java and is designed to support Java,

it does not however employ any language-specific features unique to Java and so the

techniques described here are applicable in other languages.

4 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Exposing Arbitrary Objects for Remote Access

The RRT permits arbitrary application objects to be exposed for remote access.

Specific application objects rather than application classes are exposed via Web

Services. In order to make an object remotely accessible it is first deployed; that is

registered with the RRT, which exposes the object to remote access. Deployment

creates a Web Service running within the RRT that uses the deployed object as the

underlying service object on which incoming Web Service requests are performed. In

effect, the RRT maps Web Service requests to method calls on object instances and

performs appropriate encoding of the results. Deployed objects may be referenced by

other local objects and neither the reference holders nor the deployed objects are

aware of the deployment.

public static void deploy(Object objectForDeployment,

 Class deploymentInterface,

 String serviceName) throws Exception;

Figure 1: The deploy() method.

The signature of the deploy() method is shown in Figure 1. This takes three

parameters which specify the object to be deployed, the interface with which the

object is to be deployed, and a logical name for accessing the object. A number of

issues arise from this simple method. Firstly, the objectForDeployment need not

implement any special interfaces or extend any particular classes, maximizing

flexibility. Secondly, the objectForDeployment need not implement the interface

specified in the deploymentInterface parameter although it must be structurally

compliant with that interface. This again maximizes flexibility and permits classes to

be remotely exposed even if they were not envisioned to be so at design time. The

deploymentInterface parameter can be a class or an interface but in either case the

method signatures are extracted to form the Web Service interface for the deployed

object. The deploymentInterface parameter is optional and if omitted, the object is

deployed with an interface matching its concrete type. The deploymentInterface is a

mechanism to allow control over which methods may be called remotely on an object

and is supplied on a per-object, not a per-class, basis. Any method can be made

remotely accessible, irrespective of its local protection modifier. The

deploymentInterface acts as a remote protection mechanism that is independent of the

local protection mechanism of the implementation language; in Java, the public,

protected, private and default modifiers. Only the methods listed in the deployment

interface are remotely accessible and, by default, the RRT will deploy only the public

methods. The servicename parameter, which is also optional, permits the deployed

object to be addressed using a logical name which must, of course, be unique within

the deploying address space. Deployment can fail, resulting in an exception, if the

deployment interface contains methods that do not exist in the class of the object

being deployment or if the specified service name is already in use.

The deploy method may be called multiple times with the same

objectForDeployment parameter with different deploymentInterface and serviceName

parameters. This allows the programmer to expose the object with different logical

names and potentially different interfaces.

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 5

An object of any class can be deployed including precompiled classes and those

with native members. There is one caveat: the Web Services model provides no

facility to allow field access, only method call. Thus the fields of a deployed object

cannot be directly accessed and if the object does not provide get() and set() accessor

methods then the fields cannot be accessed at all. This is a problem for all Java

Middleware systems since field access cannot be intercepted. To address this

problem, the RRT generates named accessor methods automatically at deployment

time and adds them to the Web Service interface for the deployed object.

To illustrate the use of deploy, we use a small Peer-to-Peer (P2P) application as an

example. A programmer has implemented a class called P2PNode which represents a

node in a P2P routing network. This class is shown in Figure 2. This class has not be

written with distribution in mind and does not implement any special interface or

extend any base classes.

public class P2PNode {

 private final Key key;

 public P2PNode(Key key){…}

 public void addPeer(P2PNode peer){…}

 public void route(Key key, Message msg){…}

 public String getLog(){…}

 public void stop(){…}

 public void start(){…}

}

Figure 2: The P2P Node Implementation

Figure 3 shows how another programmer could deploy an instance of this class as part

of some P2P application. The programmer wishes to expose the functionality of the

node using three different interfaces — a management interface for controlling the

node remotely, a monitoring interface and an interface exposing the P2P functionality.

These interfaces are named IManage , IMonitor and IP2PNode respectively. Each of

these interfaces is associated with the names Manage, Monitor and P2P respectively.

It is assumed that these are well known names that are used by client programmers to

access the services.

public interface IManage {

 public void stop();

 public void start();

}

public interface IMonitor {

 public String getLog();

}

public interface IP2PNode {

 public void addPeer(IP2PNode peer);

 public void route(Key key, Message msg);

 public Key getKey();

}

6 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

public class DeployP2PApp {

 public static void main(String[] args){

 P2PNode p2pNode = P2PAppFactory.makeNode()

 RAFDARunTime.deploy(p2pNode, IManage.class,

 "Manage");

 RAFDARunTime.deploy(p2pNode,

 IMonitor.class, "Monitor");

 RAFDARunTime.deploy(p2pNode,

 IP2PNode.class, "P2P");

 }

}

Figure 3: Deploying an instance of P2P Node

Browsing exposed objects

Deployed objects may be accessed either using their service name or a Globally

Unique Identifier (GUID) allocated to the service at deployment time. Both of these

may be discovered dynamically by clients. Typically, an application will deploy a

small collection of objects with well known names thus often avoiding the need for

dynamic GUID discovery. Deployed objects may addressed using a URL of the

following form:
http://<machineName>:<port>/<NAME or GUID>

The RRT contains a web server and provides a web interface that can be accessed

using a conventional web browser to obtain information about deployed objects. Each

deployed service is listed, showing the deployment interface, service name, a string

representation of the service object and a link to the WSDL.

Figure 4. Browsing an RRT

Since a deployed object appears to remote clients as if it were a normal Web

Service, the RRT can be used as a Web Services container. Like conventional Web

Services containers, a list of available services and the WSDL for a particular service

can be obtained from the RRT. Since WSDL is used to describe the methods provided

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 7

by each service in a standardized manner, deployed objects are accessible using any

Web Services technology, not just RRT-based clients. Figure 4 shows an RRT being

browsed after the deployment code shown in Figure 3 has been executed.

Client-side Distributed Object Programming using the RRT

The RRT may be used by client-side programmers to access remote objects. The RRT

provides a method called getObjectByName() that permits a handle to be obtained to a

deployed object. As will show later, the handle returned may be a reference to a proxy

for a remote object, a local copy of the object or a hybrid of the two (a smart proxy).

The getObjectByName() method takes three arguments as shown in Figure 5. These

identify the host name of the machine on which the remote RRT runs, the port to

which it is connected and the name with which the requisite object was deployed. The

name can be either the programmer-defined service name or the automatically

generated object GUID.
public static Object getObjectByName(String host,

 int port, String name) throws Exception;

Figure 5: The getObjectByName() Method

The object returned by getObjectByName() is same type as the deployment interface,

to which it may be cast. Figure 6 shows the client-side code necessary to use the

P2PNode deployed in Figure 3. The object returned by getObjectByName() is cast to

type IP2PNode which was the interface used to specify its deployed type.

public class P2PClient {

 private String node = “host.RAFDA.org”;

 private int port = 5001;

 public void deliver(Key dest, Message msg)

 throws Exception {

 IP2PNode node = (IP2PNode)

 RAFDARunTime.getObjectByName(node, port, "P2P");

 node.route(dest, msg);

 }

}

Figure 6: Client side code accessing a remote P2PNode

Failure

Distributing an application introduces new failure modes. The RRT treats network

failure differently from application failure. The RRT propagates application

exceptions across the network and throws them locally for the client application to

catch and handle. By contrast, network failures may either be hidden from or handled

by the application programmer. The programmer indicates if network failures are to

be handled buy the application by adding a throws java.rmi.RemoteException clause

to the appropriate interface methods. If such a clause is present, the RRT will

8 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

propagate network failure exceptions to the client, otherwise they are handled by the

RRT. By default the RRT will continue to execute if possible, log the exception and

returning null or zero values as results to the remote method calls. However it can be

configured to exhibit fast-fail behaviour in the event of exceptions.

Controlling Object Transmission Policy

As described in the introduction, using traditional middleware, the distribution

topology of an application determines the object transmission semantics that are

employed during remote method calls. For example, in Java RMI [2], only classes

that implement the java.rmi.Remote interface and meet certain other criteria may be

deployed for remote access. Such objects are always passed by-reference if they are

accessed across an address space boundary. All other objects that traverse address-

space boundaries must be instances of classes that implement the java.io.Serializable

interface and these objects are always passed by-value. This problem can also be

observed in Microsoft .NET Remoting [4], CORBA [1] and Web Services [7].

Within a single application, instances of some class may be required to be

transmitted by-value or by-reference depending on the circumstances. In most

existing middleware systems this would require that different classes be created.

Hybridisation is sometimes desirable whereby some object state is cached at a client

whilst other state is remotely accessed. Using the RRT’s transmission policy

framework, the application programmer can employ the most advantageous object

transmission policy for the circumstances. In addition to providing the programmer

with the flexibility to control the application semantics, the dynamic specification of

policy independently of class implementation allows the roles of library class

programmer and application programmer to be separated. The library class

programmer is concerned only with the functional requirements. Thus, library classes

make fewer assumptions about the environment in which they are to be deployed and

the application programmer has the freedom to apply any parameter-passing policy to

instances of any class, increasing the likelihood that any given class will be reusable

in another context.

Defining Transmission Policy

By default the RRT passes objects by-reference when interacting with other RRTs

and by-value when interacting with standard Web Service Clients. However, the

transmission policy framework described here provides a mechanism to allow the

programmer to dynamically specify how objects should be transmitted during inter-

RRT remote method calls. This is achieved using the local RRT’s

TransmissionPolicyManager which supports five types of policy rule as shown in

Figure 7 and contains query methods (not shown) which permit the policies that are

currently in place to be inspected. Each of type of policy rule has an associated set

and get (again not shown) method.

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 9

public class TransmissionPolicyManager {

 public static void setMethodPolicy(String className,

 String methodName, int policy, int depth,

 boolean isOverrideable) { ... }

 public static void setReturnValuePolicy(

 String className, String methodName, int policy,

 boolean isOverrideable) { ... }

 public static void setParamPolicy (String className,

 String methodName, int paramNumber, int policy,

 int depth, boolean isOverrideable) { ... }

 public static void setClassPolicy(String className,

 int policy, boolean isOverrideable) { ... }

 public static void setFieldToBeCached(

 String className, String fieldName) { ... }

}

Figure 7: The TransmissionPolicyManager

The five types of rule are as follows:

 Method policy rules are associated with methods as a whole and are set using

the setMethodPolicy() method. This method specifies how method

arguments should be transmitted. For example, a method policy rule might

specify that during a call to a particular method, the arguments should all be

passed by-reference. The parameters to setMethodPolicy include the method

name to which the policy applies, the policy to be applied (using static

values from PolicyType shown below), the depth to which the closure of the

parameters should be traversed in the case of pass by-value, and whether the

policy may be overridden (discussed below).

 Return policy rules, set using the setReturnPolicy() method, are also

associated with methods but control how the return values from methods

should be transmitted. For example, a return policy rule might specify that

the return value from a particular method should be passed by-value. The

method policy rule and return policy rule associated with a single method are

independent of each other and need not specify the same behaviour. The

setReturnPolicy() method takes the same arguments as the

setMethodPolicy() method which apply to the return value rather than the

parameters.

 Argument policy rules, set using the setArgumentPolicy() method, are

associated with individual method arguments and indicate how particular

arguments within a method signature should be transmitted. They allow the

programmer fine-grain control over the policy that is applied to each of the

arguments of a method. The parameters to this method are similar to the

previous two but an extra parameter is required to specify the parameter to

which the policy applies.

10 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

 Class policy rules, set using the setClassPolicy() method, are associated with

classes rather than methods and indicate how instances of particular classes

should be transmitted. For example, a class policy rule might specify that all

instances of a particular class should be passed by-value. Class policy rules

are applied based on the actual classes of the transmitted objects, rather than

the classes specified in the method signature, which may be super-classes of

the arguments. Class policy rules do not take a depth parameter since the

object classes they reference may have a class policy associated with them.

The programmer can however, specify whether the class policy rule should

be applied to sub-classes of the indicated class.

 Smart Proxy Rules, set using the setFieldToBeCached() method, permit

individual fields of objects that are transmitted by-reference to be cached

within proxies to those objects. If a field of a remotely accessible object is

cached in a proxy for that object then the host holding the proxy can access

the field value with the need for a network call.

An application programmer may specify or change policy rules at run-time, thus

allowing for dynamic adaptation of the application. To specify policy rules statically,

a library class programmer can specify the policy rules in the class’ initialization

code. The policy manager can also be configured to read and write policy rules stored

in XML files, allowing the programmer to specify policies completely independently

of the application source, as well as library class source.

Clearly, there is scope for contention between policy rules. For example, if an

instance of class X is passed as a parameter to method m. A class policy rule may

indicate that instances of X are passed-by-value while a method policy rule

simultaneously indicates that parameters to method m are always passed-by-reference.

As shown in Figure 7, each rule is specified as being overrideable or not. The RRT

uses this information to break contention between rules by defining the following

hierarchy in which the higher priority rules appear first:

1. Parameter policy rule (non-overridable)

2. Method policy rule (non-overridable)

3. Class policy rule (non-overridable)

4. Parameter policy rule (overridable)

5. Method policy rule (overridable)

6. Class policy rule (overridable)

7. Default policy

Revisiting the Example

In our Peer-to-peer example introduced earlier, a Message might be transmitted by-

value to an end-point using the route method on a P2PNode. However, if some of

these objects are very large, the client programmer may with to transmit them by-

reference. Figure 8 shows how the deliver method form Figure 6 may be modified to

use the TransmissionPolicyManager to send those Message objects which exceed

some maximum size by-reference, and smaller Message objects by-value.

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 11

public synchronized void deliver(Key destination

 IMessage message) throws Exception {

 IP2PNode node = (IP2PNode)

 RAFDARunTime.getObjectByName(node, port, "P2P");

 if (message.getSize() > MAX){

 TransmissionPolicyManager.setClassPolicy(

 Message.class.getName(), BY_REF, true);

 node.route(destination, message);

 } else {

 TransmissionPolicyManager.setClassPolicy(

 Message.class.getName(), BY_VALUE, true);

 node.route(destination, message);

 }

}

Figure 8: The modified deliver method

Figure 9 illustrates the code necessary to instruct the TransmissionPolicyManager to

make proxies for P2PNodes cache the immutable field key and that Key instances

should always be passed by-value. On the client-side, the call to getObjectByName

will yield a proxy of the remote P2PNode object which can be cast to the deployment

interface type IP2PNode. A client holding such a proxy can access the key value of

the remote P2PNode without having to make a remote call.

TransmissionPolicyManager.setClassPolicy(

 Key.class.getName(),BY_VALUE, true);

TransmissionPolicyManager.setFieldToBeCached(

 P2PNode.class.getName(), "key");

Figure 9: Defining a smart proxy for P2PNode objects

Implementation issues

The deployment of an object requires several steps. Firstly a skeleton of the

appropriate class is generated if necessary. Skeletons are the boundary between the

application object (servant in Corba parlance) and the Web Services infrastructure.

RRT skeletons all implement the interface shown in Figure 10. There is one skeleton

class associated with each application class and one instance of a skeleton class is

created and associated with each deployed object. Thus there is a one-to-one

correspondence between skeletons and services. A service map maps from names and

GUIDs to the skeleton associated with the particular service. The RRT automatically

generates skeleton classes, instances of which reference the deployed objects and

allow the RRT to perform method calls on them without using reflection. Skeleton

generation incurs a one time cost and obviates the need for reflection during normal

execution. Generated code is cached in the RRT for the duration of the JVM lifetime

but can be configured to cache across multiple runs of the distributed application.

12 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

The invokeMethod() method allows the RRT to invoke a particular method with the

supplied arguments on the underlying deployed object, while getReturnType() is used

during automatic deployment to determine the signature types of exposed methods.

The getServiceObject() and init() are used by the RRT to access the deployed object

directly and to initialize the skeleton at instantiation time, respectively.

public interface SkeletonInterface {

 Object invokeMethod(String methodIdentifier,

 Object[] arguments) throws Exception;

 Class getReturnType(String methodIdentifier)

 throws Exception;

 Object getServiceObject();

 void init(Object serviceObject) throws Exception;

}

Figure 10: The Skeleton Interface

Serialisation

During the object marshalling phase of a remote method call, the RRT will determine

which object transmission semantics to employ and if pass by-value semantics have

been chosen then it will serialize the closure of the return value. The serializer can

handle the primitive SOAP types, such as ints and strings, by default and employs

custom serializers to handle complex types. Custom serializers are singletons that are

automatically generated on a per-class basis and each custom serializer is only

capable of serializing instances of its associated application class.

All custom serializer classes provide two methods – one to serialize objects and

another to perform deserialization. The serialize() method takes three arguments; the

object to be serialized, the depth of this object within the closure of the return value

being serialized, and an instance of the SerializedObjects’ class.

Implementing Remote References

The RRT implements remote references using remote identifiers, called RRT

Interoperable Object References (RIORs), and proxy objects. RIORs uniquely

identify deployed services in the distributed system and consist of:

 The machine name and port for the referenced object’s RRT,

 Type information about the deployment interface used to create the service,

 The 128-bit randomly generated GUID,

 The programmer-defined service name,

 Smart proxy information.

To pass objects by-reference, the RRT serializes the associated RIORs by-value

and, on deserialization, the client-side RRT uses it to initialize a proxy. Proxies, like

skeletons and serializers, are automatically generated as required by the RRT and are

created from the deployment interface type specified in the RIOR. If the deployment

interface is a Java class then the proxy class extends it, while if it is a Java interface

the proxy class implements it. As a result, the proxy is the same type as the

deployment interface from the client’s perspective. For every method in the

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 13

deployment interface, the proxy implements an associated method with the same

signature, which calls into the RRT to make a remote call to the deployed object on

behalf of the client.

Application objects cannot make use of RIORs directly; they can only use

references to other application objects or correctly typed proxy objects that have been

initialized with the RIORs. Therefore, when RIORs are received by RRTs during

remote method calls, the RRTs will convert them into references that the application

can use. Initially, the RRT determines whether the referenced object exists in the local

address space and if it does then a direct reference to the object is passed to the

application. If not, the RRT determines whether a proxy to the referenced object has

already been instantiated in the local address-space and, if the proxy exists then a

reference to it is passed into the application. If a proxy does not already exist, then an

instance of the associated proxy class is instantiated, automatically generating the

class if necessary. This approach avoids the unnecessary use of remote references that

loop-back into the same address spaces or the instantiation of more proxies than

necessary.

Smart proxies

All proxies have the capability to be smart proxies, which are proxies capable of

caching some of the deployed objects’ fields or code. RIORs contain smart proxy

information indicating which fields and methods should be cached in the proxy and

from this, an appropriate proxy class can be generated. The proxy class inherits the

cached fields and methods from the deployment interface and the cached fields’ get()

and set() methods are modified to access the fields locally rather than invoke the

equivalent method on the remote deployed object. Non-cached methods are

overridden with proxy versions while cached methods are not overridden, leaving the

original functionality in place. A new proxy class is generated for each combination

of cached fields and methods in use within the distributed application.

Immediately before the RIOR is serialized, the RRT records the current values of

the cached fields in it and they are serialized as part of the RIOR. On deserialization,

the cached fields in the proxy object are initialized using a method similar to the

custom serializer init() method described previously.

The RRT does not provide any form of automatic coherency control and so the

programmer has responsibility for ensuring that application semantics remain as

expected. Caching is particularly useful when object fields are known to be

immutable.

Custom Class Loaders

In order to implement proxies, custom serializers and skeletons, all applications class

must be non-final and all their fields must be accessible to the RRT. Clearly not all

classes written by application programmers comply with this requirement. A class

loader is therefore provided that modifies application classes at load-time so that all

fields are public and all classes are non-final. These transformations may not be made

on classes in the standard Java libraries, resulting in the limitations with respect to the

serialization of system classes described earlier.

14 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Automatic Deployment

The RRT can export references to un-deployed objects, for example, as return values

or in the closure of returned objects. Automatic deployment ensures that appropriate

deployment interfaces are chosen when exposing objects to remote access; the

deployment interfaces must expose enough methods to preserve application semantics

while not exposing any more methods than necessary to preserve the usefulness of the

protection mechanism that the deployment interfaces provide. These two

requirements are mutually antagonistic as the use of a deployment interface as a

protection mechanism is by its very nature a restriction on the operations that can be

performed on an object.

The process of automatic deployment proceeds as follows. If the object is deployed

as a Web Service using its own class as a deployment interface, then no further

deployment is required and the remote reference is typed as this service. If the object

is deployed using other deployment interfaces, then if any of these are identical to or

sub-types of the signature type, no further deployment is performed and the remote

reference is typed as the narrowest of these types. Finally, if the object is not deployed

using an interface that is related to the signature type or if it is not deployed at all,

then the object is automatically deployed using its own concrete type as the

deployment interface type.

The deployment of an object using the signature type preserves the protection

mechanism role of the deployment interface but does not permit the client to cast the

received object into a narrower type, even if such a cast is compatible with the actual

type of the deployed object. The RRT can be configured to perform automatic

deployment such that the object is always deployed using its own class as deployment

interface. This approach means that all methods will be remotely accessible negating

the protection mechanism but the proxy can be cast safely to any type compatible

with the deployed object itself. The latter approach requires that private and protected

methods as well as public methods be exposed in order to preserve local application

semantics.

Implementation of the Transmission Policy Framework

The policy framework is implemented using five associative stores, one for each rule

type. Each associative store records argument policy rules and maps from keys to

prioritized lists of policy rules. The keys are deterministically generated from the

identity of the class and method being called and the argument numbers (where

appropriate). To determine if an argument policy exists, the policy manager looks up

the associative stores in order and if a mapping from the specified key exists, then the

dominant argument policy rule is used. This approach is both simple and efficient.

The cost associated with evaluating the policy rules in order to determine which

object transmission policy should be applied to a particular object is heavily

dependent on the particular policy rules that are associated with the object to be

transmitted. Figure 11 shows the cost imposed by the evaluation of policy on the

overall remote method call time.

The test application performed a call on a remote method that took one argument

and returned a return value. Both the argument and the return value were passed by-

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 15

reference. The first row shows the time to perform one method call, averaged over

1600 method calls, without any policy evaluation phase, while the second shows the

same set of calls with the policy evaluation phase included. In the latter case, the

specified policy consists of a method policy rule and a return policy rule, both of

which dictate that pass by-reference semantics should be employed. The test

application represents the worst-case for the policy manager because no objects are

serialized or transmitted and serialization of application objects increases the overall

cost of the remote call and so proportionately decreases the cost of the policy

evaluation phase. The introduction of additional arguments will have no effect on the

proportionate cost of the policy evaluation phase.

Time to perform 1 remote method call Milliseconds

Without policy evaluation 6.22

With policy evaluation 6.39

Figure 11: Cost of policy evaluation on remote method invocation

It can be seen that the policy evaluation phase has minimal impact on the overall cost

of the remote method call—around 2% in this pathological case. In practice, the cost

of dynamically evaluating policy is subsumed by the cost of marshalling and

serialising the objects for remote method call. It is believed that the benefits gained

outweigh the expense.

Related Work

Web Services provide an RPC mechanism. A Web Service is a remote interface to a

component class that has been deployed in a Web Service container. The Web Service

container acts as a web server accepting incoming method calls in the form of HTTP

requests. The URL specified in the request indicates which Web Service is being

invoked. The body of the request contains the name of the method to invoke and the

arguments to be passed, encoded using SOAP [8]. The Web Service Description

Language (WSDL) [9] is used to describe the methods available in a Web Service.

Web Service technologies such as Apache Axis [6] and Microsoft .NET Web

Services [4] deploy a class of component, not a specific instance of a component. The

class is automatically instantiated to handle incoming requests on a per-call basis or

on first access. Web Services systems do not permit the deployment of a specific

component. Consequently, using standard Web Services, the only way in which

specific components can be accessed is to manually provide a multiplexing Web

Service which maps from keys to specific components. This makes it difficult to

expose application components using standard Web Service technology.

Web Service technologies do not provide any form of remote object reference

scheme. Web Services use only pass by-value semantics. In contrast, Distributed

Object Models (DOMs) provide both RPC mechanisms and remote object reference

schemes but do not allow arbitrary exposure of application components. A reference

to a remotely accessible component can be passed across address space boundaries.

16 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

Method calls performed on the remotely referenced component are transparently

propagated across the network to the referenced component.

The creation of a remotely accessible component using DOMs such as CORBA[1],

Java RMI [2] and Microsoft .NET Remoting [4] requires the programmer to follow

similar steps:

 The programmer is forced to decide statically the interfaces between

distribution boundaries.

 The programmer is forced to decide statically which classes of component

will implement these interfaces and thus be remotely accessible.

 These remotely accessible classes must extend a special base class that

provides the functionality necessary for remote accessibility. This has two

effects: to force the static identification of accessible classes, as above, and,

in languages without multiple inheritance, to prevent the creation of

accessible subclasses of existing non-accessible classes.

 Once a remotely accessible class is instantiated, the instance is associated

with a naming service that allows remote callers to obtain a remote reference

to it.

Some research DOMs, such as JavaParty [10] Fargo [11], and ProActive [12], have

similar motivation to the work described in this paper and are briefly described below.

JavaParty

JavaParty [10] semantically extends Java with the addition of new keyword remote

in order to simplify the process of creating remote classes. This keyword is

permissible only in class signatures and indicates that instances of the class are

remotely accessible. The JavaParty compiler generates pure Java code that uses RMI

to implement remote accessibility. The generated Java and RMI source code is

compiled in the usual manner to produce standard byte-code.

The remote keyword acts as a marker to the JavaParty compiler indicating which

classes must be transformed into remote accessible versions. When creating a remote

version of a class, the JavaParty compiler generates five Java classes, which replace

the original class marked as remote. Initially, it separates the non-static and static

members of the original class into two separate RMI enabled implementation classes,

one of which contains only the non-static members and another which contains only

the static members transformed into a non-static form. Accessor methods are

generated for all fields and all members are made public so that interfaces can be

extracted from each of these two classes. Extracted interfaces extend the RMI

java.rmi.Remote interface. Finally, a wrapper class with the same name as the original

class is generated.

This wrapper class holds interface-typed references to each of the generated

implementation objects that capture the non-static and static functionality of the

original class. However, as these implementation classes are RMI enabled the

wrapper may actually be referencing RMI proxies to remote instances. Each method

now acts as a wrapper method that calls its counterpart on the implementation object

and handles any distribution related exceptions as best it can. JavaParty adopts the

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 17

principle that this approach supersedes traditional RMI because an exception due to

network failure is unlikely to occur on a local network, but if one does occur, it is

unlikely that the programmer could handle it any better than the generated code. In

addition, all RMI related code has been automatically generated negating the

possibility of programmer-introduced errors at this level.

The motivation for JavaParty is similar to RAFDA. The major differences are in

JavaParty’s use of a pre-compiler and the integration of Web Services and Distributed

Object Models along with the flexible policy framework provided by RAFDA.

FarGo

FarGo [11] implements an RMI-based DOM that supports migration and allows

the programmer to impose policy rules on the references between objects. Like

ProActive [12], the granularity of distribution is at the component level and the

components are known as complets. A complet consists of a root object, known as an

anchor object, and its closure, excluding any other anchor objects, which are

considered the roots of distinct complets. Only the anchor object of a complet can be

remotely referenced, though any object within a complet can hold a remote reference

to a complet in another address-space. The infrastructure in which complets execute is

known as a core, one of which exists in each address-space.

FarGo supports five types of remote reference:

 link references that are resilient in the face of complet migration, ensuring

that referential integrity is preserved even if the referenced complet migrates

to a new core.

 pull references express a migration policy between the reference holder and

referenced complet indicating that if the reference holder migrates to a

different core then the referenced complet should also migrate to that core.

 duplicate references indicate that if the reference holder migrates to a new

core then it should take a duplicate copy of the referenced complet with it.

 stamp references indicate that after the reference holder migrates to a

different it should rebind to any complet of the same class as the previously

referenced complet.

 bi-directional pull references indicate if either the reference holder or

referenced complet migrates to a different core then the other should also

migrate to the same core,

The programmer expresses migration policy by reifying references in the

application code and converting them into one of the above types or by specifying

policy independently of source code using a scripting language.

ProActive

ProActive [12] is a Java library that provides tools for the creation of distributed

applications using RMI or JMS for inter-address-space communication. Remotely

accessible objects are known in ProActive as active objects, while all other objects are

known as passive objects. Objects are made active by the programmer and one

activated are remotely accessed and can be migrated from one address-space to

18 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

another. Multiple active objects may not directly or indirectly reference a shared

passive object. Each active object has a single thread executing within it that performs

all computation on the Java objects. Method calls are queued up in each active object

and serviced by this worker thread, which schedules and synchronises them.

Any non-final object can be made active by either instantiating it using a ProActive

factory or by calling an activation method that takes an existing Java object and

makes it active. The active version of an object comprises four Java objects; a

conventional proxy and an object known as the body proxy are located in the client

address-space and an object called the body proxy and the original object are located

in the server address-space.

ProActive work is closest to the work described in this paper. It differs in that only

certain active objects may be remotely accessed and sharing of passive objects is

forbidden. In ProActive, each active object carries out the work performed by the

RRT in our system. By contrast, in our work there is only one RRT instance per

address space, which provides a view onto arbitrary application components.

Furthermore, ProActive is based on RMI and JMS whereas the RRT is based on Web

Services. Finally, ProActive does not provide the flexible transmission policy

management supported by RAFDA.

Java Management Extensions

Java Management Extensions [13] (JMX) provide a framework for the

management and monitoring of Java applications. Resources are instrumented with

Management Beans (MBeans) which must be implemented following specified design

patterns. MBeans must specify or be associated with a Management Interface and it is

only via this interface which external applications/clients may access the MBean.

MBeans are registered with an MBean Server, responsible for mediating access to

Mbeans to the MBean. The JMX framework supports access to the MBean Server via

a variety of transport mechansims (RMI is standard), and allows for the

implementation of custom transports. Related to the RRT, the framework includes

mechansims to expose user defined classes (which may be precompiled) for

management by an external application. In JMX, the management interface must be

defined either statically (specifying and implementing a programmer defined

interface) or dynamically by describing the Management Interface using standard

Meta information classes. We have demonstrated that the facilities provided by the

RRT may be used to provide the same functionality as JMX arguably but with more

generality and less complexity.

Conclusions

The RAFDA Run-Time (RRT) is a Java Middleware designed to improve the

software engineering process for implementers of new distributed systems and for

implementers of monitoring and management infrastructures aimed at existing

applications. The work described in this paper has identified a number of key

RAFDA: Middleware Supporting the Separation of

Application Logic from Distribution Policy 19

limitations exhibited by standard Middleware systems and had shown how the

mechanisms provided by the RRT addresses each of these limitations.

Middleware systems typically require the programmer to decide at application

design time which classes will support remote access and to follow a number of steps

in order to create the remotely accessible classes. The programmer must decide the

interfaces between distribution boundaries statically then determine which classes will

implement these interfaces and thus be remotely accessible. This hard-coding of the

distribution boundaries requires that the application programmer know if instances of

a class will be remotely accessed before implementing that class.

The RRT permits instances of arbitrary classes within an application to be exposed

for remote access. This is achieved through the dynamic deployment of a standard

Web Service for the deployed object and the implementation of a mapping from

remote calls on the Web Service to method calls on the deployed object. The RRT

adds pass by-reference semantics to standard Web Services allowing methods on

deployed objects to be called remotely.

In contrast to conventional Middleware systems, in order to deploy an instance of a

class using the RRT, it is not necessary that class implement any special interfaces or

extend any special classes. Thus the application programmer can implement the

classes providing core application functionality without regard for the remote

accessibility of the instances of those classes. Decisions about the remote accessibility

of a particular object can be delayed until much later in the design cycle, even until

run-time. Monitoring and management infrastructure that views and controls

application state from another address space can be created without modification, or

even access, to the application’s original source code.

Another limitation of industry standard middleware systems is that the parameter-

passing semantics is tightly bound to the distribution of the application and thus

changes to the distribution of an application may potentially alter the application

semantics.

The RRT addresses this limitation by providing a framework for the static and

dynamic specification of object transmission policy. Using this framework the

application programmer can employ the most advantageous object transmission

policy for the particular circumstances. This increases flexibility and allows the

programmer to control the application semantics. By specifying object transmission

policy independently of class implementation, the roles of library class programmer

and application programmer are separated. Library implementers must make less

assumptions about the ways in which their classes will be used while application

programmers can use class instances in the most appropriate way, as dictated by the

particular situation. Before making a method call the application programmer can

configure the transmission policy for the individual method parameters and any return

value.

The transmission policy framework also supports the specification of smart proxies

which increase the flexibility of deployed object without imposing implementation

constraints on the programmer. This mechanism allows arbitrary field values of an

object to be cached in the same address space as a remote reference (proxy) to that

object. Thus a call to an accessor method on the proxy yields the field value without

the execution of a network call.

20 Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby, Andrew J. McCarthy

The RRT employs dynamic code generation and compilation techniques to create

the ancillary code necessary to allow dynamic object deployment. It is capable of

marshalling instances of any class either by-reference or by-value and complete

control over this is given to the programmer in order to separate parameter-passing

semantics completely from application distribution.

The RRT provides significant advantages to programmers of distributed

applications, when compared to industry standard Middleware systems, simplifying

the software engineering process, decreasing the opportunity for errors in distribution

code and increasing code reuse through better flexibility.

The RRT has been used in the construction of a global scale P2P routing network

in which the application code can be run in both a fully distributed environment and

in a centralised simulation environment without modification.

References

1. OMG, Common Object Request Broker Architecture: Core Specification.

Vol. 3.0.3. 2004.

2. Sun Microsystems, Java™ Remote Method Invocation Specification. 1996-

1999.

3. Microsoft Corporation, The Component Object Model Specification. 1995.

4. Microsoft Corporation, .Net Framework.

http://msdn.microsoft.com/netframework/, 2004.

5. The Rafda project. http://www-os.dcs.st-and.ac.uk/rafda/, 2005.

6. Apache, Apache Axis. http://ws.apache.org/axis/, 2004.

7. W3C, Web Services. http://w3c.org/2002/ws/, 2004.

8. Box, D., et al., Simple Object Access Protocol (SOAP) 1.1. 2000, W3C.

9. Christensen, E., et al., Web Services Description Language (WSDL) 1.1.

2001, W3C.

10. Philippsen, M. and M. Zenger, JavaParty - Transparent Remote Objects in

Java. Concurrency: Practice and Experience, 1997. 9(11): p. 1225-1242.

11. Holder, O., I. Ben-Shaul, and H. Gazit. Dynamic Layout of Distributed

Applications in FarGo. in 21st International Conference on Software

Engineering (ICSE'99). 1999. Los Angeles, California.

12. Caromel, D., W. Klauser, and J. Vayssiere, Towards Seamless Computing

and Metacomputing in Java. Concurrency Practice and Experience, 1998.

10(11-13): p. 1043-1061.

13. Sun Microsystems, Java Management Extensions Specification. 2002. v1.1.

