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Abstract: Optical coherence elastography (OCE) is emerging as a method to image the
mechanical properties of tissue on the microscale. However, the spatial resolution, a main
advantage of OCE, has not been investigated and is not trivial to evaluate. To address this, we
present a framework to analyze resolution in phase-sensitive compression OCE that
incorporates the three main determinants of resolution: mechanical deformation of the
sample, detection of this deformation using optical coherence tomography (OCT), and signal
processing to estimate local axial strain. We demonstrate for the first time, through close
correspondence between experiment and simulation of structured phantoms, that resolution in
compression OCE is both spatially varying and sample dependent, which we link to the
discrepancies between the model of elasticity and the mechanical deformation of the sample.
We demonstrate that resolution is dependent on factors such as feature size and mechanical
contrast. We believe that the analysis of image formation provided by our framework can
expedite the development of compression OCE.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence elastography (OCE) is emerging as a higher resolution alternative to both
ultrasound elastography and magnetic resonance elastography in a range of applications
including in oncology [1-3], cardiology [4,5], ophthalmology [6,7], and dermatology [8,9].
Although the higher spatial resolution of OCE has been purported to be a main advantage
over the more established elastography techniques, it has yet to be clearly defined or
measured. As a result, it is challenging to evaluate and compare the performance of OCE
systems, and to identify the most suitable applications or, indeed, which variant to use in a
given application.

In medical imaging more generally, spatial resolution is often defined as the smallest
distance that two objects can be brought together and still be distinguishable as separate
objects, and is an important metric to assess image quality. In optical coherence tomography
(OCT) and other optical microscopy techniques, resolution is treated as a system parameter,
i.e., independent of the sample, and can be estimated from the point-spread function (PSF) of
the imaging system [10,11]. Following the precedent set by OCT, until now, OCE resolution
has been loosely defined as a combination of system parameters, namely, the resolution of the
underlying OCT system, and the signal processing used to map displacement or velocity to a
mechanical property, such as elasticity [12-15]. However, in OCE, the resolution of
mechanical properties is intrinsically linked to the mechanical deformation of the sample.
Whilst this has been suggested in the literature, it has yet to be investigated or demonstrated.
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Importantly, the mechanical properties of the sample cannot be measured directly, instead,
the sample deformation induced by mechanical loading is measured. The observed
deformation is then used to infer the distribution of mechanical properties in the sample using
a mechanical model. A range of loading mechanisms can be used, e.g., compression and shear
wave [16,17], resulting in a specific form of sample deformation and, in turn, requiring a
specific mechanical model. The majority of mechanical models assume homogeneity,
linearity and isotropy to readily generate elastograms. For example, in compression OCE, a
quasi-static, uniaxial compression is typically applied to the entire sample surface, where
stress is assumed to be uniform and uniaxial, such that the local elasticity (Young’s modulus)
is inversely proportional to the experimentally measured local axial strain [12—15]. This
approach provides a practical means to generate elastograms, and facilitates the rapid
generation of elastograms over large tissue volumes: a requirement for clinical applications,
such as breast tumor margin assessment [1,2,18]. In many instances, however, these
assumptions result in deviations between the measured and true mechanical properties of the
sample that degrade, in a sample-dependent manner, the spatial resolution of elastograms. An
approach to reduce the need for such simplifying assumptions is to localize the mechanical
loading to a single point in the sample. This is a motivation of techniques such as magneto-
motive OCE [19,20], nanobomb OCE [21] and photonic-force OCE [22]. Whilst these
techniques show promise, the localization of loading can be challenging to achieve in practice
and to deploy in clinical applications. Current approaches provide a limited imaging field-of-
view and have an elastogram acquisition rate that is considerably slower than compression
and shear wave approaches, making it difficult to achieve two-dimensional (2D) and three-
dimensional (3D) imaging.

This paper presents the first investigation of spatial resolution in compression OCE. We
demonstrate, in both simulation and experiment, the spatially varying and sample dependent
nature of resolution, and detail the relationship between the OCE system resolution (the
combination of the OCT and signal processing), and the measured resolution of features in
the elastogram, which we term feature resolution. To achieve this, we present a framework
for assessing resolution in phase-sensitive compression OCE that combines a model of
mechanical deformation using finite-element analysis (FEA) with models of the OCT system
and signal processing based on linear systems theory. We measure the feature resolution at
each stage of this framework to estimate the relative contribution from each of the three
processes. Using this approach, we analyze spatial resolution in a number of scenarios, which
are experimentally validated using tissue-mimicking silicone phantoms containing stiff
inclusions, following the precedent of ultrasound elastography [23,24]. These inclusions
provide a step response in elasticity in both axial and lateral directions, and we demonstrate
that feature resolution in compression OCE varies along boundaries and is directly related to
feature size and mechanical contrast. For instance, for a phantom containing a rectangular
prism inclusion that hasa 1 mm X 1 mm cross section, we show that the axial and lateral
feature resolution varies from 100 um to 200 pum and from 100 pm to 380 pm, respectively.

The results presented in this paper demonstrate that in compression OCE, mechanical
deformation can impact feature resolution on length scales greater than that of the system
resolution. The framework may be extended to investigate other imaging parameters, such as
sensitivity and contrast, and could be adapted to other forms of OCE, such as shear wave
OCE, or indeed to ultrasound elastography and magnetic resonance elastography.
Importantly, our framework could be used to assess which form of mechanical loading is
optimal in a given sample and can quantify the improvement in resolution brought about by
using high resolution OCT systems [25-27], improved signal processing [28] and solutions to
the inverse elasticity problem [29].
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2. Background

OCE eclastogram generation can be described in three stages; the deformation of the sample
under mechanical loading, the measurement of this deformation using OCT, and the signal
processing used to relate measured deformation to elasticity. In this section, we describe each
of these stages in the context of phase-sensitive compression OCE.

2.1 The contribution of mechanical deformation to resolution

Typically, the goal of elastography is to recover the mechanical properties of the sample by
applying mechanical loading and observing the resulting deformation. In compression OCE,
the sample is placed under a static preload (referred to as the unloaded state) and a microscale
compressive load is then applied (referred to as the loaded state). The change in position of
each point in the sample is described by the displacement field, #. The sample in both the
unloaded and loaded states is taken to be in a state of static equilibrium and, additionally, the
deformation between the two states is assumed to be much smaller than the size of
the sample [30]. As a result, the equations of equilibrium reduce to:

V.o=0, (1)

where o is the infinitesimal Cauchy stress tensor field, which describes the internal stress field
present in the sample [31]. The resulting deformation is described by the corresponding

infinitesimal strain tensor, &, whose components, ¢;, are derived from the partial derivatives of
u [32]:

. du,
g, =%Eaa—bjl_’+%],fori,je{x,y,z}. )

Commonly, the sample is assumed to be a linear elastic solid [33], whose mechanical
properties are represented by a fourth-order elasticity tensor, C, that relates the stress and
strain tensors:

o, =22 Couty-fori, jk,le {x,y,z}. A3)

Equation (3) is termed the constitutive equation for the sample, and produces 6 independent
equations with 36 material coefficients. To further simplify the analysis, the sample’s
mechanical properties are typically assumed to be isotropic, which reduces Eq. (3) to:
0, =AY &0, +2ue, fori, j.ke{x,y,z}, “4)

where 4 and A are the Lamé parameters and J;; is the Kronecker delta, which is equivalent to 1
if i =j and O otherwise.

In phase-sensitive compression OCE, only the axial component of the displacement field,
u,, is measured [34]. Given an observed u,, to solve for the mechanical properties at each
point in the sample, one would need to solve for ¢. However, this requires challenging
numerical methods, thus, simpler models of ¢ are typically employed, i.e., that ¢ is uniaxial
and uniform throughout the sample [12—15]. Under these assumptions, elasticity is specified
by Young’s modulus (E), as a combination of the Lamé parameters, or the ratio of uniaxial
stress, o.,, over uniaxial strain, &..,

E:ﬂ(3ﬂ+2ﬂ):%. )
A+u £

zz

That is, the elastogram of uniaxial strain is assumed to be inversely proportional to elasticity
[12—15]. These assumptions have enabled elastography to be relatively easily and robustly
performed with straightforward mechanical loading. However, sample characteristics such as
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mechanical heterogeneity, local compressible features, friction at the tissue surface, and non-
uniform surface topology lead to non-uniform stress distributions which can distort the
relationship between axial strain and elasticity as described by Eq. (5) [14]. It is important to
note that whilst the strain resolution is determined by the system resolution, deviations from
Eq. (5) result in a discrepancy between the system and feature resolution.

Figure 1 illustrates the degradation in feature resolution resulting from these assumptions
in compression OCE. Here, we present a 2D FEA simulation of a soft bulk material featuring
a stiff, square 500 um feature (Fig. 1(a)), with the stiffness of the bulk and feature set
to 21 kPa and 625 kPa, respectively. A detailed description of the FEA simulation used in
this study is provided in Section 3.1. A bulk compressive strain of 15% is applied to the
sample and Fig. 1(b) shows the distribution of axial strain evaluated at each node in the model
mesh. Figures 1(c) and 1(d) provide close ups of the distribution of elasticity and axial strain,
corresponding to the regions highlighted in the dashed boxes in Figs. 1(a) and 1(b),
respectively. Figures 1(e) and 1(f) show one-dimensional (1D) plots of elasticity (a step
response from soft to stiff) overlaid on the axial strain across the axial and lateral boundaries
of the feature marked by the vertical and horizontal dotted lines in Figs. 1(c) and 1(d). The
discrepancy between the elasticity map, and the resulting axial strain distribution in FEA is
due to the three-dimensional nature of elastic deformation in incompressible materials that
leads to a mechanical coupling between all parts of the sample. That is, when a load is
applied, adjacent areas of the sample will deform in a dependent fashion as they are
mechanically connected. This leads to a gradient in the strain distribution that effectively
“blurs” the boundaries between connected components of different elasticity. We verified
through simulation that this is independent of the size of the FEA mesh, assuming the mesh is
fine enough to adequately sample the strain distribution. In Figs. 1(e) and 1(f), it is apparent
that, considering the step response of strain to be a qualitative measure of resolution, the
assumption that elasticity is inversely proportional to axial strain leads to an effective
degradation in both axial and lateral resolution.
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Fig. 1. Illustration of mechanical deformation in compression OCE. (a) 2D FEA model of a
stiff square feature embedded in a softer bulk material (CP: compression
plate, F: feature, B: bulk, RP: rigid plate). (b) Corresponding FEA axial strain map after a
15% bulk strain is applied. Close-ups of the regions corresponding to the green rectangle in (a)
and blue rectangle in (b) are shown in (c) and (d), respectively. (e) Normalized plots of
elasticity (green) overlaid on axial strain (blue) across the axial boundary of the feature marked
by the vertical dotted green line in (c) and blue line in (d). Similarly, (f) shows normalized
plots of elasticity overlaid on axial strain across the lateral boundary of the feature marked by
the horizontal dotted green line in (c¢) and blue line in (d). Scale bars represent 500 um.
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2.2 The contribution of OCT to resolution

In our implementation of compression OCE, axial displacement is measured using phase-
sensitive OCT. OCT images of the sample are modeled as a convolution of the sample
scatterers with the complex OCT PSF [10]. The OCT resolution, and hence the resolution of
the displacement measurement, are defined by the width of the PSF envelope. For this study,
we consider 2D elastograms presented in the x-z plane where the envelope of the OCT PSF is
defined as [11]:

2x* 27°
PSFOCT(va):H(x’Z) |= IO exp| — W2 exp -— |, (6)

x z

where w. and w, are the 1/¢” radii of the OCT intensity in z and x respectively; and /, is a
scaling factor. By convention, OCT resolution is typically given in terms of the full-width-at-

half-maximum (FWHM) of the intensity PSF where the axial and lateral resolution is+/21n2
times w, and w,, respectively.

2.3 The contribution of least-squares regression to resolution

For the elastograms presented in this study, least-squares linear regression (LSR) is used to
estimate the axial strain as the gradient of axial displacement with depth, over a sliding
window of length Az, typically 15 pm — 100 pm [12—14] to alleviate the impact of system
noise [34]. As all measurements of axial displacement are acquired with equal spacing,
ordinary least-squares linear regression is equivalent to convolution with a Savitzky-Golay
(SG) kernel [35]. A 2n + 1 point, first order, SG differentiation kernel is given by [35]:

&,for—nh <z<nh
SG(z)={ K’ (7
0, otherwise

where f = 3/n(n + 1)(2n + 1) is the smoothing coefficient corresponding to fitting a first
degree polynomial (i.e., a line) [36] and # is the spacing of the voxels in the axial dimension.
Convolution of SG(z) with a unit step displacement, a(z), gives the PSF corresponding to
LSR:

2
ﬁ[nz —Z—zj,for—nhs z<nh

PSF ; (2) =5G(2)®a(z) =< h h ®)
0, otherwise
For a fit length given by Az = h(2n + 1), the FWHM of the PSF for LSR is:
FWHM,, =22 ©)

PSF, g \/E

In this study, the system resolution in compression OCE is modeled by the FWHM of the
result of convolving PSFocr(x,z), Eq. (6), with PSFisr(z), Eq. (8). Feature resolution is
modeled as the convolution of the system resolution with the effective local PSF from
mechanical deformation determined from FEA, as detailed in Section 3.4.

3. Methods
3.1 Simulation

To simulate OCE, we combine a finite-element model of mechanical deformation using the
Abaqus simulation software package (Dassault Systémes, Providence, USA, v6.14), with a
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model of the OCT system given in Eq. (6) and a model of the method used to estimate axial
strain, given in Eq. (8). This is illustrated in Fig. 2. Both the feature and bulk of each
phantom, shown in Fig. 2(a), are modeled as nearly incompressible, mechanically isotropic,
linear-elastic materials with a Poisson’s ratio of 0.485 for numerical stability [37]. Phantoms
were fixed on the bottom surface, free on the sides and compressed from the top surface. The
coefficient of static friction at the phantom-compression plate interface was varied between a
lower limit of 0.05 and an upper limit of 0.3 to achieve the best match between simulation
and experiment as derived in a previous study [38]. The bulk of each phantom was meshed
with 50 pm quadrilateral elements and the meshing of the feature was set to one twentieth of
the feature side length. Each phantom was 3 mm X 15 mm (height X width), and in all
simulations, the stiff inclusion was placed 600 um from the top surface of the phantom. A
square inclusion geometry was used in all cases, and the size of the inclusion was varied by
changing the height and width of the inclusion from 250 pm to 1 mm.

As the phantoms are wide (15 mm) relative to the imaging field of view (5 mm), the 3D
sample deformation was approximated by a 2D plane-strain model, which set the
displacement and strain in the out-of-plane (y) dimension to zero [39]. Deformation in each
case is simulated by applying a bulk compressive strain of 15% to the entire phantom and
solving for the resulting axial strain at each point in the phantom mesh. To verify that the
variation in mesh size did not affect the measured step response in axial strain across the
feature, the mesh size was varied by a factor of four for each simulated phantom. In each
phantom, the difference in the step response in axial strain was less than 5%, indicating that
the choice of mesh size adequately sampled the strain distribution. The process used to
measure the step response in axial strain is detailed in Section 3.4. The output of the FEA
simulation is an elastogram of axial strain (e, rg4), shown in Fig. 2(b), representing the
impact of deformation prior to measurement with OCT and least-squares regression. Shown
in Fig. 2(c), the impact on resolution of sampling the deformation using OCT is simulated by
convolving &, pp4 With PSFocr(x,z) using MATLAB (v2016b, The MathWorks, USA). The
FWHM of PSFocr(x,z) was matched to that of the OCT system used in
experiment (Section 3.3). Figure 2(d) shows the impact on resolution of performing least-
squares regression, simulated by convolving the axial strain elastogram in Fig. 2(c) with
PSFisr(z) with Az equal to 100 um. For the results presented in Sections 4.1 — 4.3, Az was
100 um, and in Section 4.4, Az was varied from 50 pm to 250 um. Figure 2 clearly illustrates
the dominant effect of deformation on feature resolution for this feature geometry.

(@) (b) (©) (d)

« Elasticity €22,FEA €2, rea®PSFocr(X,2)  €5,rea®PSFocr(X,2) ® PSF sr(2)
. YW 0 . YW 0 0
z — —_— —
E1 ’ g(a.u.) ' g(a.u.) g(a.u.)

- -1 -1 -1
Fig. 2. Tllustration of the compression OCE simulation used to study resolution. (a) A
heterogeneous sample represented by a phantom with a soft bulk material (with stiffness E;)
featuring a stiff square feature (with stiffness E,, where E;, > E;). A compressive bulk strain of
15% applied to (a) is simulated in FEA, and the output is an axial strain elastogram (e.., rr4)

shown in (b). The elastogram in (b) is convolved with PSFocr(x,z) to obtain (c). The
elastogram in (c) is convolved with the PSFsr(z) to obtain (d). Scale bars represent 500 pm.

3.2 Tissue-simulating phantoms

To validate simulation with experiment, tissue-mimicking phantoms were fabricated using
silicone elastomers with controlled optical and mechanical properties. The phantoms
were 3 mm thick cylinders with a diameter of 15 mm, made from Elastosil RT601, P7676,
and AKS50 Silicone oil (Wacker, Germany). The optical scattering properties were controlled
using titanium dioxide particles (refractive index = 2.3) with a mean diameter of 1 um, evenly
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mixed into the silicone (refractive index = 1.4) in concentrations of 0.5 mg/ml in the bulk and
2.5 mg/ml in the inclusions [40]. The mechanical properties were controlled by selecting
different elastomers and varying the ratio of the catalyst, curing agent, and silicone oil. The
stress-strain relationship of each silicone was characterized using a custom-built uniaxial
compression testing apparatus. The 2D plane-strain model used in the simulations effectively
assumes that the sample is infinitely long in the out-of-plane () dimension [39] and to best
match this assumption, the inclusions were made longer (10 mm long rectangular prisms) in
the y-dimension, than in the x- and z-dimensions. The inclusions were cut using a custom
made silicone slicing tool, to improve the accuracy of the cross-section geometry. Each
phantom was made in four steps to ensure the inclusion was placed 600 um from the top
surface. Firstly, a base layer of silicone was poured into a glass petri dish, using real-time
OCT in the x-z plane to aid in achieving the correct height, which, for each inclusion size, was
determined as the total phantom height (3 mm) minus the sum of 600 pm and the inclusion
height. Secondly, once the base had cured, the inclusion was placed on top. Thirdly, silicone
was poured over the inclusion and base, guided by real-time OCT, to a height of 600 pm
above the inclusion. Finally, once cured, the phantom was removed from the petri dish using
a 15 mm diameter biopsy punch. Five different phantoms were made with varying inclusion
size and mechanical contrast, as shown in Table 1.

Table 1. Characterization of the silicone phantoms.

Phantom Inclusion dimensions Young’s modulus Modulus
number  height X width (um)  inclusion / bulk (kPa)  contrast
1 250 x 250 625/21 30
2 500 x 500 295/200 1.5
3 500 x 500 295/21 10
4 500 x 500 625/21 30
5 1000 x 1000 625/21 30

3.3 Phase-sensitive compression OCE system

OCE measurements were performed using a fiber-based spectral-domain OCT system
(Telesto 320, Thorlabs Inc., USA). The light source is a superluminescent diode with a mean
wavelength of 1300 nm and a spectral bandwidth of 170 nm. The measured OCT axial
resolution in air is 4.8 um (FWHM of irradiance). The objective lens (OL in Fig. 3(a))
(LSMO03, Thorlabs) has a measured lateral resolution in air of 7.2 um (FWHM of irradiance).
AKS50 silicone oil was applied to Iubricate the phantom-imaging window interface. A preload
of 15% bulk strain was applied to each phantom using a translation stage to ensure uniform
contact between the rigid plate (RP in Fig. 3(a)), the phantom (P in Fig. 3(a)), and the
imaging window (IW in Fig. 3(a)). The ring actuator (RA in Fig. 3(a)) (Piezomechanik
GmbH, Germany) has an aperture of 65 mm and a maximum stroke of 10 pum. A 75 mm
diameter imaging window (Edmund Optics Inc., USA), fixed to the ring actuator, transfers
the compressive load from the actuator to the phantom. The system was operated in common-
path where the imaging window itself, a partial reflector, acted as the OCT reference
reflection. Scans were acquired by taking 2,000 A-scans per B-scan, and 2,000 B-scans
per C-scan over a 5 mm X 5 mm region with a lateral sampling density of 2.5 um per voxel.
The ring actuator was driven in a quasi-static regime by a 12.5 Hz square wave, collinearly
with the imaging beam and synchronized with the acquisition of OCT B-scans, such that
alternate B-scans are acquired at different compression levels. Local axial displacement, u.,
in Fig. 3(b), is calculated from the change in phase, A¢(z), between B-scans acquired at the
same lateral location [41]:
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_ M)A,

drn

(10)

where 1, is the mean wavelength of the light source, and » is the group refractive index of
silicone (approximately 1.4) [40]. Local axial strain, ¢, is calculated from the gradient of
axial displacement using weighted-least squares (WLS) linear regression over a fit
length, Az [34].

(a) To OCT system X (b) (c)
oL z Axial displacement, u, Axial strain, €,,
IwW I
RA I é .....
P L
Eq
RP

E2 > E1 Imaging beam Mlcroscale actuation NSNS\ Rigid boundary

Fig. 3. Illustration of 2D compression OCE on an inclusion phantom. (a) Sample arm of the
imaging system. OL: objective lens, IW: imaging window, RA: ring actuator (the RA
surrounds the IW and is shown cut-though in 2D), P: phantom (subjected to a bulk
compressive strain of 15%), RP: rigid plate. (b) Axial displacement measured using phase-
sensitive OCT from scans taken between different levels of microscale actuation. Least-
squares regression is performed on (b) to obtain the strain elastogram of the phantom in (c).
Images (b) and (c) correspond to the region denoted by the dotted black lines in (a). Scale bars
represent 500 um.

The WLS estimator is used to alleviate the impact of optical noise by assigning a greater
weight to measurements of displacement acquired in regions of high OCT signal-to-noise
ratio (SNR) [34]. In the case of zero optical noise, or uniform OCT SNR, WLS and ordinary
least-squares (OLS) regression are equivalent [42]. Thus, although WLS is not a linear
operation, in this study, its effect on resolution is modeled by OLS, as described
in Section 2.3. To further reduce the effect of noise, the strain elastograms generated from
experiment are averaged over a 125 um length along the inclusion strip in the out of plane ()
dimension.

In experiment, the sample is preloaded to 15% bulk compressive strain, to achieve an even
contact between the imaging window and phantom surface. A microscale actuation is then
applied around this preload point, and the experimental strain elastograms were a result of
this microscale actuation.

3.4 Quantifying resolution in OCE

We measure feature resolution using the step response in axial strain over the axial and lateral
feature boundaries. The derivative of the step response provides an effective PSF, the width
of which is defined as the resolution of elasticity at that location in the image. This process is
illustrated in Fig. 4, which shows simulated (Fig. 4(a)) and experimental (Fig. 4(b)) strain
elastograms of Phantom 4. The blue plots in Figs. 4(c) and 4(e) show the axial strain across
the feature boundary, in the locations indicated by the vertical dotted lines in Figs. 4(a) and
4(b), respectively, normalized to between —1 and 1. The red plots in Figs. 4(c) and 4(e) show
an error function,

erf (%) \/_ J.W exp dt, 11

which is fit to the normalized axial strain plots using least-squares regression to solve for the
scaling factor, a. The derivative of this error function with respect to z gives the equivalent
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1D Gaussian axial OCE PSF (axial PSFocg), shown in Figs. 4(d) and 4(f), the FWHM width
of which provides a measure of axial feature resolution at that location in the image.

Similarly, Figs. 4(g) and 4(i) show the same process applied to the axial strain in the
locations indicated by the horizontal dotted lines from Figs. 4(a) and 4(b), respectively. The
derivative of these error function fits with respect to x gives the equivalent 1D Gaussian
lateral OCE PSF (lateral PSFocg), shown in Figs. 4(h) and 4(j), and FWHM width of this PSF
provides a measure of lateral feature resolution at that point in the image. In the following
sections, we implement this technique at each point along each feature boundary, for each
phantom, to investigate the spatially varying and sample dependent nature of feature
resolution in OCE.

€22,7en ® PSFocr(X,2) ® PSF sR(2) Axial strain, €,
I—X 0 0
z
g(a.u.) g(a.u.)
U-1 =1
Axial step response Axial PSFoce Axial step response Axial PSFoce
1 1
(©) 19 (d) (e) 195 (f)
oz oz
E— _—
FWHM FWHM
-1 -1
0 0
z z z z
= Axial strain = Axial strain
= Error function fit = Error function fit
Lateral step response Lateral PSFoce Lateral step response Lateral PSFoce
(@ .6 ™ /\ S I0) T [O) / \ )
_ox ox
FWHM - FWHM
-1 -1
X X 0 X X 0
= Axial strain = Axial strain
= Error function fit = Error function fit

Fig. 4. Illustration of the method used to measure feature resolution in phase-sensitive
compression OCE. Strain elastograms of Phantom 4 in (a) simulation, and (b) experiment. In
(c) and (e), the axial strain, and corresponding error function approximations, across the
feature boundary at the locations denoted by the vertical dotted blue lines in (a) and (b) are
presented. In (d) and (f), the axial derivatives of the error function fits, and corresponding
FWHM are presented. Similarly, (g) and (i), respectively, show the axial strain and
corresponding error function approximations across the lateral feature boundary denoted by the
horizontal dotted blue line in (a) and (b) where (h) and (j), for simulation and experiment,
respectively, show the lateral derivatives of the error function fits and corresponding FWHM.
Scale bars represent 500 pm.

4. Results
4.1 Intra-sample resolution

Figures 5(a) and 5(b) are strain elastograms of Phantom 5, from simulation and experiment,
respectively, which show the variation in axial and lateral feature resolution as a function of
position. The color maps indicate the feature resolution along the orthogonal feature
boundaries. This is further illustrated in the plots in Figs. 5(c) and 5(d), which show that
feature resolution varies in the axial direction from 100 pm to 200 pm, and in the lateral
direction, from 100 pm to 380 um. Figure 5 shows close correspondence between simulation
and experiment, validating the linear systems approach taken to studying resolution in the
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simulation. These results demonstrate that feature resolution does not match the system
resolution, but instead varies significantly within one elastogram.

As silicone, like many soft tissues, is incompressible [43], when a compression loading is
applied to the entire sample, the axial deformation will be accompanied by a corresponding
lateral deformation. The lateral deformation of the soft bulk is restricted by both adhesion to
the stiff inclusion and friction at the imaging window surface, inducing lower strain in the
bulk near these boundaries, resulting in a higher apparent Young's modulus. This leads to an
axial gradient in axial strain at the axial inclusion boundaries, and a lateral gradient at the
lateral inclusion boundaries. Toward the edges, and in particular, at the inclusion corners, the
deformation of the bulk is less restricted. This introduces additional lateral gradients in axial
strain at the axial inclusion boundaries, and axial gradients at the lateral inclusion boundaries.
These gradients decrease toward the corners of the inclusion, effectively improving axial and
lateral feature resolution in these locations.
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Fig. 5. Intrasample resolution in compression OCE. Strain elastograms of Phantom 5, with a
feature cross section of 1000 pm x 1000 pm, acquired in (a) simulation and (b) experiment.
The colored bars correspond to the feature resolution across the orthogonal feature boundary.
(c) The measured values of axial feature resolution measured along the axial feature boundary
in (a) and (b). (d) The measured values of lateral feature resolution measured along the lateral
feature boundary in (a) and (b). Scale bars represent 500 pum.

4.2 Effect of feature size

In Fig. 6, we demonstrate the impact of varying feature size on feature resolution for a fixed
axial and lateral system resolution of 72 um and 7.2 um, respectively. Strain elastograms of
phantoms with feature cross-sections in the X-z plane
of 250 pm X 250 pm, 500 pm X 500 pm and 1000 pm X 1000 pm are presented in
Figs. 6(a)-6(c) from simulation, and Figs. 6(d)—6(f) from experiment. The feature and bulk
stiffness (at 15% strain) was maintained at 625 kPa and 21 kPa, respectively, and the axial
and lateral feature resolution was measured in line with the central axis of the feature as
denoted by the vertical and horizontal dotted blue lines, respectively.

In simulation, the feature cross-sectional size was varied from 250 um x 250 pm
to 1000 pum X 1000 pm in increments of 1 um X 1 um, and the measured values of axial
and lateral feature resolution are shown as the solid black curves in Figs. 6(g) and 6(h),
respectively. In experiment, six strain elastograms were generated for each feature size,
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obtained from six independent regions along the inclusion strip in the out-of-plane (y)
dimension, and the axial and lateral feature resolution (mean + standard deviation) are
presented in Figs. 6(g) and 6(h) respectively, showing close agreement with the simulation.
Figures 6(g) and 6(h) show that degradation in both axial and lateral feature resolution is
proportional to feature size, where the axial and lateral feature resolution varies from 100 um
to 180 um, and 100 um to 400 um, respectively.
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Fig. 6. The impact of feature size on axial and lateral resolution. Strain elastograms of
phantoms with feature cross-sections of 250 pumx250 pm, 500 pumx 500 pm
and 1000 pum x 1000 pm are presented for (a)—(c) simulation and (d)—(f) experiment. In (g)
and (h), the axial and lateral feature resolution (mean + standard deviation) measured through
the center of each feature, denoted by the vertical and horizontal dotted blue lines,
respectively, is overlaid on curves obtained from simulation. Scale bars represent 500 pum.

As the feature size increases, a greater proportion of the soft bulk is adhered to the stiff
feature, restricting deformation to a greater degree. This increases the gradient in axial strain
at the feature boundaries, degrading axial and lateral feature resolution. This is consistent
with the scale invariant nature of deformation [44], where we can expect the gradient in axial
strain to be linear with feature size. The exception is the axial direction, where the proximity
of the feature to the imaging window is not changing. The lateral deformation of the bulk
above the feature is restricted by friction at the imaging window. As the feature size is
increased, the lateral deformation of the bulk between the feature and the imaging window
will become increasingly restricted. This increases the apparent stiffness in the bulk in that
region, limiting deformation and, in turn, limiting the gradient in axial strain. This effect can
be seen by the bend in the axial feature resolution curve in Fig. 6(g). Unlike in the axial case,
the lateral edges of the feature are far from the imaging window and lateral boundaries of the
phantom, resulting in lateral feature resolution degrading in a linear fashion, shown
in Fig. 6(h).
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4.3 Effect of feature mechanical contrast

In Fig. 7, we demonstrate the impact of varying the mechanical contrast on feature resolution.
Strain elastograms of phantoms with feature-to-background mechanical contrast ratios of 1.5,
10 and 30 are presented in Figs. 7(a)-7(c) from simulation, and Figs. 7(d)-7(f) from
experiment. The feature cross-section was maintained at 500 um x 500 pum and the axial and
lateral feature resolution was measured in line with the central axes of the inclusion as
denoted by the vertical and horizontal dotted blue lines, respectively. In simulation, the
contrast ratio was varied in increments of 1, and the corresponding values of axial and lateral
feature resolution are shown as the solid black curves in Figs. 7(g) and 7(h), respectively. In
experiment, six strain elastograms were generated for each feature size, obtained from six
independent regions along the inclusion strip in the out-of-plane (y) dimension. The axial and
lateral feature resolution (mean + standard deviation) are presented in Figs. 7(g) and 7(h)
respectively, overlaid on the curves obtained from simulation.

The values of feature resolution between simulation and experiment are in close
agreement. Figure 7 shows that, for this feature geometry, relative to the impact of varying
size, varying mechanical contrast has a relatively minor impact on feature resolution, with the
axial and lateral feature resolution varying from 130 pm to 150 um and from to 250 um to
210 pm, respectively.
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Fig. 7. The impact of mechanical contrast on axial and lateral feature resolution. Strain
elastograms of phantoms with feature-to-background mechanical contrast ratios of 1.5, 10 and
30 are presented for (a)—(c) simulation and (d)—(f) experiment. In (g) and (h), the axial and
lateral feature resolution (mean =+ standard deviation) measured through the center of each
feature, denoted by the vertical and horizontal dotted blue lines, respectively, is overlaid on
curves obtained from simulation. Scale bars represent 500 pm.

As the stiffness of the feature increases, the deformation of the soft bulk is restricted to a
greater extent. This increases the gradient in axial strain in the bulk at the axial feature
boundaries and degrades axial feature resolution. Similar to the impact of increasing feature
size, as the feature stiffness is increased in close proximity to the imaging window, the lateral
deformation of the bulk between the inclusion and the imaging window will become
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increasingly restricted. As described in Section 4.2, this will limit the gradient in axial strain.
However, for contrast ratios between 10 and 30, the extent of the axial deformation does not
appear to vary significantly. These effects can be observed in the shape of the axial feature
resolution curve in Fig. 7(g). There are two main factors affecting lateral feature resolution as
the feature stiffness increases. First, the axial deformation of the bulk will become restricted
to a greater extent, increasing the gradient in axial strain in the bulk near the lateral
boundaries of the inclusion, degrading lateral feature resolution. Second, as the stiffness of
the inclusion increases, the deformation of the feature itself will decrease. This will decrease
the lateral gradient in axial strain occurring within the feature, improving lateral feature
resolution. The latter effect appears to be the dominant contribution to lateral feature
resolution for this feature geometry, shown by the improvement in lateral feature resolution
with increasing mechanical contrast in Fig. 7(h).

4.4 Effect of system resolution

In Fig. 8, we illustrate the relationship between system and feature resolution for the case of
axial resolution. We analyze Phantoms 1, 4 and 5, where for each feature size, we vary the
axial system resolution and measure the corresponding change in axial feature resolution. The
OCT axial and lateral resolutions were held constant at 4.8 um and 7.2 pm, respectively. The
axial system resolution was varied from 5 pm to 142 pm for Phantom 1, and from 5 um to
178 um for Phantoms 4 and 5, by changing the value of Az used in least-squares regression
from 50 pm to 250 pm. It is important to note that if Az is larger than the feature size, least-
squares regression will smooth the feature and background to an extent that reduces the
accuracy of the approach used to measure feature resolution described in Section 3.4.
Accordingly, for Phantom 1, with a feature cross-section of 250 um x 250 pm, Az was only
varied from 50 pm to 200 pm. For the larger feature sizes in Phantoms 4 and 5, Az was
varied from 50 um to 250 pm. For each phantom, and for each system resolution, six strain
elastograms were generated, obtained from six independent regions along the inclusion strip
in the out of plane (y) dimension. The values of axial feature resolution measured in line with
the central axis of the feature are shown in Figs. 8(a)-8(c). The axial feature
resolution (mean + standard deviation) obtained for each experiment is overlaid on the
curves obtained from simulation. In addition, the axial feature resolution for each feature size
calculated from FEA alone is plotted as the dashed horizontal lines in Figs. 8(a)-8(c) which
represent the limit to feature resolution imposed by deformation: 84 pm, 148 um and 180 pm
for Phantoms 1, 4 and 5, respectively.
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Fig. 8. Resulting axial feature resolution with varying axial system resolution for
(a) 250 pm x 250 pm, (b) 500 umx 500 pm and (c) 1000 um x 1000 um feature cross-
sections. In (a), the axial system resolution was varied from 5 pm to 142 pm in simulation, and
measurements were taken in experiment with system resolutions of 36 pm, 71 pm, 107 um and
142 pm. In (b) and (c), the axial system resolution was varied from 5 pm to 178 pm in
simulation, and measurements were taken in experiment with system resolutions
of 36 pm, 71 um, 107 pum, 142 pm and 178 um. The solid black curve in each figure is
obtained from simulation, and experimental measurements (mean + standard deviation) are
overlaid for each of system resolution used in experiment. The dashed lines show the
respective values of axial feature resolution measured from FEA alone.
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In Fig. 8, as the axial system resolution is improved, the feature resolution approaches the
limit imposed by mechanical deformation. For Phantom 1, the feature resolution was reached
to within 10% of the deformation limit with a system resolution of 36 um (Az = 50 um). For
Phantoms 4 and 5, the feature resolution was reached to within 10% of the deformation limit
with a system resolution of 107 um (Az = 150 pm). This result demonstrates that prior
knowledge, or reasonable assumptions about the sample geometry, can enable the optimal
system resolution to be designed for a given application.

5. Discussion

We have presented the first study of resolution in OCE, by combining a finite-element model
of mechanical deformation, with a model of the OCT system and a model of the signal
processing, both based on linear systems theory, validated by close correspondence with
experiment. This study illustrates the limitations imposed on resolution by sample mechanics
and the elastogram formation process. Previously, Kennedy ef al. analyzed the impact of
mechanical deformation on contrast in OCE, and showed that sample-specific factors such as
geometry and mechanical contrast limit elastogram accuracy and sensitivity [45]. Their study
employed FEA to model deformation of elastic features in the absence of system noise to
investigate the theoretical limits of elastogram contrast. Separately, Chin ef al. combined FEA
with a linear systems model of OCT to demonstrate that, in addition to the commonly
considered effects of optical noise, the coupling between mechanical deformation and its
optical detection impacts the precision of phase-sensitive compression OCE [46]. A
promising avenue for future work is to integrate these previous studies into a similar
framework presented in this study to develop a more complete model of image formation in
OCE.

The results presented in Section 4 demonstrate that due to the limit imposed by
mechanical deformation, feature resolution in compression OCE varies along feature
boundaries and is dependent on feature size and mechanical contrast. Improving the OCT and
signal processing resolution beyond this deformation limited state will not improve the
feature resolution, but will instead unnecessarily trade off other image quality metrics such as
contrast, sensitivity, imaging depth and field-of-view. The proportionality between feature
resolution and size is predominately due to the scale invariant nature of deformation [44] and
the incompressibility of the sample, leading to non-uniform stress that is not accounted for in
the mechanical model. Similarly, the dependence of feature resolution on mechanical contrast
is also attributed to incompressibility. Due to the assumption of uniform stress and the
incompressibility of many soft tissues [43], similar results could be expected in tissue.

A square inclusion geometry was used in this study to readily measure a step response in
both axial and lateral directions. From the theory presented in Section 2 and the results
presented in Section 4, a different feature shape, e.g., a cylindrical or spherical inclusion, will
likely exhibit a different intra-sample resolution distribution. As shown in Section 4.1, the
incompressibility of the sample and adhesion of the soft bulk to the stiff inclusion leads to
gradients in axial strain at the inclusion boundaries, degrading feature resolution. At the
corners of the rectangular inclusions, the deformation of the bulk is less restricted, effectively
improving axial and lateral resolution in these locations. In the case of cylindrical or spherical
inclusions, which effectively have a circular cross-sectional geometry, the axial deformation
of the bulk at the inclusion boundaries will be restricted in a different way, likely resulting in
a different distribution of feature resolution. The focus of this study was to demonstrate that
the sample has a pronounced effect on the resolution of OCE, and to establish a framework
that incorporates the deformation of the sample with that of the OCT and signal processing to
analyze resolution in compression OCE; however, an analysis of the effect of feature shape
on resolution represents an avenue for future research.

The assumptions in the mechanical model used to relate deformation to elasticity in OCE
can directly affect feature resolution, and importantly, suggests that a more complex
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mechanical model that makes fewer assumptions about sample deformation can improve
feature resolution. This can be achieved by using numerical solutions to the inverse elasticity
problem as demonstrated by Dong et al. [29]. Their work employs an iterative approach to
solving Egs. (1) and (4) for the mechanical properties of the sample and, importantly,
removes the assumption of uniform and uniaxial stress. Preliminary results from elastograms
presented in their study demonstrate a homogenization of resolution across the field-of-view
that is achieved by reducing the link between feature properties and resolution. However, the
improvement to feature resolution through this approach is yet to be quantified. Further
removing assumptions of sample homogeneity, linearity and isotropy can likely lead to
improved feature resolution in OCE, where our framework could be used to quantify these
improvements.

A potential application of OCE is in tissue engineering and cell mechanics [47].
Contemporary developments in this area seek to mimic the mechanical complexity of the
extracellular environment, moving towards complex, multi-parameter, 3D biomaterials [48].
OCE is well-poised to provide a non-invasive technique that can characterize biomaterials in
3D. Previous studies have used compression OCE systems with an OCT axial and lateral
resolution of below 2 pm to study cellular scale structures in animal models and excised
tissue [25-27]. For example, features with a lateral length of 20 um in excised mouse aorta
were observed with a measured equivalent Gaussian FWHM lateral feature resolution of
approximately 10 um to 15 pm [27], which is consistent with our framework. However, the
diameter of many animal cells lies below 10 pm [49], and to study cells with a feature
resolution below this limit will likely require solving more complex mechanical models, or
indeed employing techniques that localize deformation [19-22]. The limit on achievable
resolution may result in compression OCE being most useful in studying the mechanical
properties over the entirety of the cell and the interactions between the cell and its
environment over relatively large fields-of-view. Our framework can help to address this
question.

In the simulations presented in this study, we consider the OCT and least-squares
regression resolution independently, however, in experiment, the resolution of the OCT
system determines speckle size [50]. Due to the impact of speckle on the accuracy of
displacement measurements [30] and therefore strain accuracy [34], the fit length of axial
displacement used in least-squares regression is effectively dependent on the OCT resolution.
This dependence between OCT and least-squares regression resolution was not considered in
our study, but could be incorporated into our framework by combining previous work by
Chin et al. [46]. From the results in this study, the degradation to feature resolution from
least-squares regression was typically much greater than OCT. Our framework suggests that
improving displacement accuracy in phase-sensitive OCE can lead to significant
improvements in feature resolution by removing the need for larger fit lengths in least-squares
regression.

This study has focused on phase-sensitive compression OCE, however, our framework
could be extended to other elastography techniques. For example, quantitative micro-
elastography (QME), an extension of compression OCE, uses a compliant silicone layer
placed between the sample and the imaging window to map the 2D uniaxial stress applied at
the sample surface [51]. The stress is assumed to be uniform with depth, which, along with
the volume of local axial strain, provides an estimate of Young’s modulus throughout the
sample. However, as QME uses the distribution of local axial strain to determine the
distribution of Young’s modulus, the spatial resolution of QME is tethered to the resolution of
compression OCE. Consequently, feature resolution in QME will also likely be spatially
varying and sample dependent where our framework could be applied to assess feature
resolution. Further, alternative OCE loading methods, such as shear wave and surface
acoustic wave OCE [6,17,52], typically rely on the same assumption of homogeneity to
access sample mechanical properties. It is likely that mechanical heterogeneity will lead to
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similar discrepancies between feature and system resolution. A study comparing all such
methods with our framework would be informative and the feature resolution could help
determine the most efficient approach for various applications. Similarly, our framework can
be extended to quantify improvements in feature resolution brought about by high resolution
OCT systems [25-27], improved signal processing [28,29] and extended to shear wave OCE
and surface acoustic wave OCE or indeed to ultrasound elastography [53] and magnetic
resonance elastography [54].

6. Conclusion

We have presented the first framework to study resolution in phase-sensitive compression
OCE that incorporates the mechanical deformation of the sample in response to a load, the
measurement of the resulting displacement in the sample using OCT, and the signal
processing used to estimate local strain. This framework enables us to analyze the impact of
these factors on both system and feature resolution. We have demonstrated, through
simulation and experiment, that mechanical deformation is typically the dominant
determinant of resolution in compression OCE, and imposes a limit to resolution. Due to this
limit imposed by mechanical deformation, the ability to resolve features in an underlying
distribution of mechanical properties varies along feature boundaries and is dependent on
feature size, mechanical contrast and location.
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