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Abstract: Optical coherence elastography (OCE) is emerging as a method to image the 
mechanical properties of tissue on the microscale. However, the spatial resolution, a main 
advantage of OCE, has not been investigated and is not trivial to evaluate. To address this, we 
present a framework to analyze resolution in phase-sensitive compression OCE that 
incorporates the three main determinants of resolution: mechanical deformation of the 
sample, detection of this deformation using optical coherence tomography (OCT), and signal 
processing to estimate local axial strain. We demonstrate for the first time, through close 
correspondence between experiment and simulation of structured phantoms, that resolution in 
compression OCE is both spatially varying and sample dependent, which we link to the 
discrepancies between the model of elasticity and the mechanical deformation of the sample. 
We demonstrate that resolution is dependent on factors such as feature size and mechanical 
contrast. We believe that the analysis of image formation provided by our framework can 
expedite the development of compression OCE.  

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence elastography (OCE) is emerging as a higher resolution alternative to both 
ultrasound elastography and magnetic resonance elastography in a range of applications 
including in oncology [1–3], cardiology [4,5], ophthalmology [6,7], and dermatology [8,9]. 
Although the higher spatial resolution of OCE has been purported to be a main advantage 
over the more established elastography techniques, it has yet to be clearly defined or 
measured. As a result, it is challenging to evaluate and compare the performance of OCE 
systems, and to identify the most suitable applications or, indeed, which variant to use in a 
given application. 

In medical imaging more generally, spatial resolution is often defined as the smallest 
distance that two objects can be brought together and still be distinguishable as separate 
objects, and is an important metric to assess image quality. In optical coherence tomography 
(OCT) and other optical microscopy techniques, resolution is treated as a system parameter, 
i.e., independent of the sample, and can be estimated from the point-spread function (PSF) of 
the imaging system [10,11]. Following the precedent set by OCT, until now, OCE resolution 
has been loosely defined as a combination of system parameters, namely, the resolution of the 
underlying OCT system, and the signal processing used to map displacement or velocity to a 
mechanical property, such as elasticity [12–15]. However, in OCE, the resolution of 
mechanical properties is intrinsically linked to the mechanical deformation of the sample. 
Whilst this has been suggested in the literature, it has yet to be investigated or demonstrated. 
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Importantly, the mechanical properties of the sample cannot be measured directly, instead, 
the sample deformation induced by mechanical loading is measured. The observed 
deformation is then used to infer the distribution of mechanical properties in the sample using 
a mechanical model. A range of loading mechanisms can be used, e.g., compression and shear 
wave [16,17], resulting in a specific form of sample deformation and, in turn, requiring a 
specific mechanical model. The majority of mechanical models assume homogeneity, 
linearity and isotropy to readily generate elastograms. For example, in compression OCE, a 
quasi-static, uniaxial compression is typically applied to the entire sample surface, where 
stress is assumed to be uniform and uniaxial, such that the local elasticity (Young’s modulus) 
is inversely proportional to the experimentally measured local axial strain [12–15]. This 
approach provides a practical means to generate elastograms, and facilitates the rapid 
generation of elastograms over large tissue volumes: a requirement for clinical applications, 
such as breast tumor margin assessment [1,2,18]. In many instances, however, these 
assumptions result in deviations between the measured and true mechanical properties of the 
sample that degrade, in a sample-dependent manner, the spatial resolution of elastograms. An 
approach to reduce the need for such simplifying assumptions is to localize the mechanical 
loading to a single point in the sample. This is a motivation of techniques such as magneto-
motive OCE [19,20], nanobomb OCE [21] and photonic-force OCE [22]. Whilst these 
techniques show promise, the localization of loading can be challenging to achieve in practice 
and to deploy in clinical applications. Current approaches provide a limited imaging field-of-
view and have an elastogram acquisition rate that is considerably slower than compression 
and shear wave approaches, making it difficult to achieve two-dimensional (2D) and three-
dimensional (3D) imaging. 

This paper presents the first investigation of spatial resolution in compression OCE. We 
demonstrate, in both simulation and experiment, the spatially varying and sample dependent 
nature of resolution, and detail the relationship between the OCE system resolution (the 
combination of the OCT and signal processing), and the measured resolution of features in 
the elastogram, which we term feature resolution. To achieve this, we present a framework 
for assessing resolution in phase-sensitive compression OCE that combines a model of 
mechanical deformation using finite-element analysis (FEA) with models of the OCT system 
and signal processing based on linear systems theory. We measure the feature resolution at 
each stage of this framework to estimate the relative contribution from each of the three 
processes. Using this approach, we analyze spatial resolution in a number of scenarios, which 
are experimentally validated using tissue-mimicking silicone phantoms containing stiff 
inclusions, following the precedent of ultrasound elastography [23,24]. These inclusions 
provide a step response in elasticity in both axial and lateral directions, and we demonstrate 
that feature resolution in compression OCE varies along boundaries and is directly related to 
feature size and mechanical contrast. For instance, for a phantom containing a rectangular 
prism inclusion that has a  1  mm  ×  1 mm cross section, we show that the axial and lateral 
feature resolution varies from 100 μm to 200 μm and from 100 μm to 380 μm, respectively. 

The results presented in this paper demonstrate that in compression OCE, mechanical 
deformation can impact feature resolution on length scales greater than that of the system 
resolution. The framework may be extended to investigate other imaging parameters, such as 
sensitivity and contrast, and could be adapted to other forms of OCE, such as shear wave 
OCE, or indeed to ultrasound elastography and magnetic resonance elastography. 
Importantly, our framework could be used to assess which form of mechanical loading is 
optimal in a given sample and can quantify the improvement in resolution brought about by 
using high resolution OCT systems [25–27], improved signal processing [28] and solutions to 
the inverse elasticity problem [29]. 
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2. Background 

OCE elastogram generation can be described in three stages; the deformation of the sample 
under mechanical loading, the measurement of this deformation using OCT, and the signal 
processing used to relate measured deformation to elasticity. In this section, we describe each 
of these stages in the context of phase-sensitive compression OCE. 

2.1 The contribution of mechanical deformation to resolution 

Typically, the goal of elastography is to recover the mechanical properties of the sample by 
applying mechanical loading and observing the resulting deformation. In compression OCE, 
the sample is placed under a static preload (referred to as the unloaded state) and a microscale 
compressive load is then applied (referred to as the loaded state). The change in position of 
each point in the sample is described by the displacement field, u. The sample in both the 
unloaded and loaded states is taken to be in a state of static equilibrium and, additionally, the 
deformation between the two states is assumed to be much smaller than the size of 
the  sample  [30]. As a result, the equations of equilibrium reduce to: 

 0,∇ ⋅ =σ  (1) 

where σ is the infinitesimal Cauchy stress tensor field, which describes the internal stress field 
present in the sample [31]. The resulting deformation is described by the corresponding 
infinitesimal strain tensor, ε, whose components, εij, are derived from the partial derivatives of 
u [32]: 
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Commonly, the sample is assumed to be a linear elastic solid [33], whose mechanical 
properties are represented by a fourth-order elasticity tensor, C, that relates the stress and 
strain tensors: 

 { }, for , , , , , .ij ijkl klk l
C i j k l x y zσ ε= ∈   (3) 

Equation (3) is termed the constitutive equation for the sample, and produces 6 independent 
equations with 36 material coefficients. To further simplify the analysis, the sample’s 
mechanical properties are typically assumed to be isotropic, which reduces Eq. (3) to: 

 { }2 , for , , , , ,ij k ij ijk
i j k x y zσ λ ε δ με= + ∈  (4) 

where μ and λ are the Lamé parameters and δij is the Kronecker delta, which is equivalent to 1 
if i = j and 0 otherwise. 

In phase-sensitive compression OCE, only the axial component of the displacement field, 
uz, is measured [34]. Given an observed uz, to solve for the mechanical properties at each 
point in the sample, one would need to solve for σ. However, this requires challenging 
numerical methods, thus, simpler models of σ are typically employed, i.e., that σ is uniaxial 
and uniform throughout the sample [12–15]. Under these assumptions, elasticity is specified 
by Young’s modulus (E), as a combination of the Lamé parameters, or the ratio of uniaxial 
stress, σzz, over uniaxial strain, εzz, 

 
(3 2 )

.zz

zz

E
σμ λ μ

λ μ ε
+= =

+
 (5) 

That is, the elastogram of uniaxial strain is assumed to be inversely proportional to elasticity 
[12–15]. These assumptions have enabled elastography to be relatively easily and robustly 
performed with straightforward mechanical loading. However, sample characteristics such as 
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2.2 The contribution of OCT to resolution 

In our implementation of compression OCE, axial displacement is measured using phase-
sensitive OCT. OCT images of the sample are modeled as a convolution of the sample 
scatterers with the complex OCT PSF [10]. The OCT resolution, and hence the resolution of 
the displacement measurement, are defined by the width of the PSF envelope. For this study, 
we consider 2D elastograms presented in the x-z plane where the envelope of the OCT PSF is 
defined as [11]: 

 
2 2

OCT 0 2 2

2 2
PSF ( , )  | ( , ) | exp exp ,

x z

x z
x z I x z I

w w

   
= = − −   

  
 (6) 

where wz and wx are the 1/e2 radii of the OCT intensity in z and x respectively; and I0 is a 
scaling factor. By convention, OCT resolution is typically given in terms of the full-width-at-

half-maximum (FWHM) of the intensity PSF where the axial and lateral resolution is 2 ln 2
times wz and wx, respectively. 

2.3 The contribution of least-squares regression to resolution 

For the elastograms presented in this study, least-squares linear regression (LSR) is used to 
estimate the axial strain as the gradient of axial displacement with depth, over a sliding 
window of length Δz, typically 15 μm – 100 μm [12–14] to alleviate the impact of system 
noise [34]. As all measurements of axial displacement are acquired with equal spacing, 
ordinary least-squares linear regression is equivalent to convolution with a Savitzky-Golay 
(SG) kernel [35]. A 2n + 1 point, first order, SG differentiation kernel is given by [35]: 

 2
, for

( )
0,             otherwise

z
nh z nh

SG z h

β − ≤ ≤= 


 (7) 

where β = 3/n(n + 1)(2n + 1) is the smoothing coefficient corresponding to fitting a first 
degree polynomial (i.e., a line) [36] and h is the spacing of the voxels in the axial dimension. 
Convolution of SG(z) with a unit step displacement, a(z), gives the PSF corresponding to 
LSR: 

 

2
2

2
LSR

, for
PSF ( ) ( ) ( )

0,                           otherwise

z
n nh z nh

z SG z a z h h

β  
− − ≤ ≤  = ⊗ =   




 (8) 

For a fit length given by Δz = h(2n + 1), the FWHM of the PSF for LSR is: 

 
LSRPSFFWHM

2

zΔ=  (9) 

In this study, the system resolution in compression OCE is modeled by the FWHM of the 
result of convolving PSFOCT(x,z), Eq. (6), with PSFLSR(z), Eq. (8). Feature resolution is 
modeled as the convolution of the system resolution with the effective local PSF from 
mechanical deformation determined from FEA, as detailed in Section 3.4. 

3. Methods 

3.1 Simulation 

To simulate OCE, we combine a finite-element model of mechanical deformation using the 
Abaqus simulation software package (Dassault Systèmes, Providence, USA, v6.14), with a 
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mixed into the silicone (refractive index = 1.4) in concentrations of 0.5 mg/ml in the bulk and 
2.5 mg/ml in the inclusions [40]. The mechanical properties were controlled by selecting 
different elastomers and varying the ratio of the catalyst, curing agent, and silicone oil. The 
stress-strain relationship of each silicone was characterized using a custom-built uniaxial 
compression testing apparatus. The 2D plane-strain model used in the simulations effectively 
assumes that the sample is infinitely long in the out-of-plane (y) dimension [39] and to best 
match this assumption, the inclusions were made longer (10 mm long rectangular prisms) in 
the y-dimension, than in the x- and z-dimensions. The inclusions were cut using a custom 
made silicone slicing tool, to improve the accuracy of the cross-section geometry. Each 
phantom was made in four steps to ensure the inclusion was placed 600 μm from the top 
surface. Firstly, a base layer of silicone was poured into a glass petri dish, using real-time 
OCT in the x-z plane to aid in achieving the correct height, which, for each inclusion size, was 
determined as the total phantom height (3 mm) minus the sum of 600 μm and the inclusion 
height. Secondly, once the base had cured, the inclusion was placed on top. Thirdly, silicone 
was poured over the inclusion and base, guided by real-time OCT, to a height of 600 μm 
above the inclusion. Finally, once cured, the phantom was removed from the petri dish using 
a 15 mm diameter biopsy punch. Five different phantoms were made with varying inclusion 
size and mechanical contrast, as shown in Table 1. 

Table 1. Characterization of the silicone phantoms. 

Phantom 
number 

Inclusion dimensions
height × width (μm) 

Young’s modulus 
inclusion / bulk (kPa) 

Modulus
contrast 

1 250 × 250 625 / 21 30 

2 500 × 500 295 / 200 1.5 

3 500 × 500 295 / 21 10 

4 500 × 500 625 / 21 30 

5 1000 × 1000 625 / 21 30 

3.3 Phase-sensitive compression OCE system 

OCE measurements were performed using a fiber-based spectral-domain OCT system 
(Telesto 320, Thorlabs Inc., USA). The light source is a superluminescent diode with a mean 
wavelength of 1300 nm and a spectral bandwidth of 170 nm. The measured OCT axial 
resolution in air is 4.8 μm (FWHM of irradiance). The objective lens (OL in Fig. 3(a)) 
(LSM03, Thorlabs) has a measured lateral resolution in air of 7.2 µm (FWHM of irradiance). 
AK50 silicone oil was applied to lubricate the phantom-imaging window interface. A preload 
of 15% bulk strain was applied to each phantom using a translation stage to ensure uniform 
contact between the rigid plate (RP in Fig. 3(a)), the phantom (P in Fig. 3(a)), and the 
imaging window (IW in Fig. 3(a)). The ring actuator (RA in Fig. 3(a)) (Piezomechanik 
GmbH, Germany) has an aperture of 65 mm and a maximum stroke of 10 µm. A 75 mm 
diameter imaging window (Edmund Optics Inc., USA), fixed to the ring actuator, transfers 
the compressive load from the actuator to the phantom. The system was operated in common-
path where the imaging window itself, a partial reflector, acted as the OCT reference 
reflection. Scans were acquired by taking 2,000 A-scans per B-scan, and 2,000 B-scans 
per  C-scan over a 5 mm ×  5 mm region with a lateral sampling density of 2.5 μm per voxel. 
The ring actuator was driven in a quasi-static regime by a 12.5 Hz square wave, collinearly 
with the imaging beam and synchronized with the acquisition of OCT B-scans, such that 
alternate B-scans are acquired at different compression levels. Local axial displacement, uz, 
in  Fig.  3(b), is calculated from the change in phase, Δφ(z), between B-scans acquired at the 
same lateral location [41]: 
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In Fig. 8, as the axial system resolution is improved, the feature resolution approaches the 
limit imposed by mechanical deformation. For Phantom 1, the feature resolution was reached 
to within 10% of the deformation limit with a system resolution of 36 μm (Δz = 50 μm). For 
Phantoms 4 and 5, the feature resolution was reached to within 10% of the deformation limit 
with a system resolution of 107 μm (Δz = 150 μm). This result demonstrates that prior 
knowledge, or reasonable assumptions about the sample geometry, can enable the optimal 
system resolution to be designed for a given application. 

5. Discussion 

We have presented the first study of resolution in OCE, by combining a finite-element model 
of mechanical deformation, with a model of the OCT system and a model of the signal 
processing, both based on linear systems theory, validated by close correspondence with 
experiment. This study illustrates the limitations imposed on resolution by sample mechanics 
and the elastogram formation process. Previously, Kennedy et al. analyzed the impact of 
mechanical deformation on contrast in OCE, and showed that sample-specific factors such as 
geometry and mechanical contrast limit elastogram accuracy and sensitivity [45]. Their study 
employed FEA to model deformation of elastic features in the absence of system noise to 
investigate the theoretical limits of elastogram contrast. Separately, Chin et al. combined FEA 
with a linear systems model of OCT to demonstrate that, in addition to the commonly 
considered effects of optical noise, the coupling between mechanical deformation and its 
optical detection impacts the precision of phase-sensitive compression OCE [46]. A 
promising avenue for future work is to integrate these previous studies into a similar 
framework presented in this study to develop a more complete model of image formation in 
OCE. 

The results presented in Section 4 demonstrate that due to the limit imposed by 
mechanical deformation, feature resolution in compression OCE varies along feature 
boundaries and is dependent on feature size and mechanical contrast. Improving the OCT and 
signal processing resolution beyond this deformation limited state will not improve the 
feature resolution, but will instead unnecessarily trade off other image quality metrics such as 
contrast, sensitivity, imaging depth and field-of-view. The proportionality between feature 
resolution and size is predominately due to the scale invariant nature of deformation [44] and 
the incompressibility of the sample, leading to non-uniform stress that is not accounted for in 
the mechanical model. Similarly, the dependence of feature resolution on mechanical contrast 
is also attributed to incompressibility. Due to the assumption of uniform stress and the 
incompressibility of many soft tissues [43], similar results could be expected in tissue. 

A square inclusion geometry was used in this study to readily measure a step response in 
both axial and lateral directions. From the theory presented in Section 2 and the results 
presented in Section 4, a different feature shape, e.g., a cylindrical or spherical inclusion, will 
likely exhibit a different intra-sample resolution distribution. As shown in Section 4.1, the 
incompressibility of the sample and adhesion of the soft bulk to the stiff inclusion leads to 
gradients in axial strain at the inclusion boundaries, degrading feature resolution. At the 
corners of the rectangular inclusions, the deformation of the bulk is less restricted, effectively 
improving axial and lateral resolution in these locations. In the case of cylindrical or spherical 
inclusions, which effectively have a circular cross-sectional geometry, the axial deformation 
of the bulk at the inclusion boundaries will be restricted in a different way, likely resulting in 
a different distribution of feature resolution. The focus of this study was to demonstrate that 
the sample has a pronounced effect on the resolution of OCE, and to establish a framework 
that incorporates the deformation of the sample with that of the OCT and signal processing to 
analyze resolution in compression OCE; however, an analysis of the effect of feature shape 
on resolution represents an avenue for future research. 

The assumptions in the mechanical model used to relate deformation to elasticity in OCE 
can directly affect feature resolution, and importantly, suggests that a more complex 
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mechanical model that makes fewer assumptions about sample deformation can improve 
feature resolution. This can be achieved by using numerical solutions to the inverse elasticity 
problem as demonstrated by Dong et al. [29]. Their work employs an iterative approach to 
solving Eqs. (1) and (4) for the mechanical properties of the sample and, importantly, 
removes the assumption of uniform and uniaxial stress. Preliminary results from elastograms 
presented in their study demonstrate a homogenization of resolution across the field-of-view 
that is achieved by reducing the link between feature properties and resolution. However, the 
improvement to feature resolution through this approach is yet to be quantified. Further 
removing assumptions of sample homogeneity, linearity and isotropy can likely lead to 
improved feature resolution in OCE, where our framework could be used to quantify these 
improvements. 

A potential application of OCE is in tissue engineering and cell mechanics [47]. 
Contemporary developments in this area seek to mimic the mechanical complexity of the 
extracellular environment, moving towards complex, multi-parameter, 3D biomaterials [48]. 
OCE is well-poised to provide a non-invasive technique that can characterize biomaterials in 
3D. Previous studies have used compression OCE systems with an OCT axial and lateral 
resolution of below 2 μm to study cellular scale structures in animal models and excised 
tissue [25–27]. For example, features with a lateral length of 20 μm in excised mouse aorta 
were observed with a measured equivalent Gaussian FWHM lateral feature resolution of 
approximately 10 μm to 15 μm [27], which is consistent with our framework. However, the 
diameter of many animal cells lies below 10 μm [49], and to study cells with a feature 
resolution below this limit will likely require solving more complex mechanical models, or 
indeed employing techniques that localize deformation [19–22]. The limit on achievable 
resolution may result in compression OCE being most useful in studying the mechanical 
properties over the entirety of the cell and the interactions between the cell and its 
environment over relatively large fields-of-view. Our framework can help to address this 
question. 

In the simulations presented in this study, we consider the OCT and least-squares 
regression resolution independently, however, in experiment, the resolution of the OCT 
system determines speckle size [50]. Due to the impact of speckle on the accuracy of 
displacement measurements [30] and therefore strain accuracy [34], the fit length of axial 
displacement used in least-squares regression is effectively dependent on the OCT resolution. 
This dependence between OCT and least-squares regression resolution was not considered in 
our study, but could be incorporated into our framework by combining previous work by 
Chin et al. [46]. From the results in this study, the degradation to feature resolution from 
least-squares regression was typically much greater than OCT. Our framework suggests that 
improving displacement accuracy in phase-sensitive OCE can lead to significant 
improvements in feature resolution by removing the need for larger fit lengths in least-squares 
regression. 

This study has focused on phase-sensitive compression OCE, however, our framework 
could be extended to other elastography techniques. For example, quantitative micro-
elastography (QME), an extension of compression OCE, uses a compliant silicone layer 
placed between the sample and the imaging window to map the 2D uniaxial stress applied at 
the sample surface [51]. The stress is assumed to be uniform with depth, which, along with 
the volume of local axial strain, provides an estimate of Young’s modulus throughout the 
sample. However, as QME uses the distribution of local axial strain to determine the 
distribution of Young’s modulus, the spatial resolution of QME is tethered to the resolution of 
compression OCE. Consequently, feature resolution in QME will also likely be spatially 
varying and sample dependent where our framework could be applied to assess feature 
resolution. Further, alternative OCE loading methods, such as shear wave and surface 
acoustic wave OCE [6,17,52], typically rely on the same assumption of homogeneity to 
access sample mechanical properties. It is likely that mechanical heterogeneity will lead to 
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similar discrepancies between feature and system resolution. A study comparing all such 
methods with our framework would be informative and the feature resolution could help 
determine the most efficient approach for various applications. Similarly, our framework can 
be extended to quantify improvements in feature resolution brought about by high resolution 
OCT systems [25–27], improved signal processing [28,29] and extended to shear wave OCE 
and surface acoustic wave OCE or indeed to ultrasound elastography [53] and magnetic 
resonance elastography [54]. 

6. Conclusion 

We have presented the first framework to study resolution in phase-sensitive compression 
OCE that incorporates the mechanical deformation of the sample in response to a load, the 
measurement of the resulting displacement in the sample using OCT, and the signal 
processing used to estimate local strain. This framework enables us to analyze the impact of 
these factors on both system and feature resolution. We have demonstrated, through 
simulation and experiment, that mechanical deformation is typically the dominant 
determinant of resolution in compression OCE, and imposes a limit to resolution. Due to this 
limit imposed by mechanical deformation, the ability to resolve features in an underlying 
distribution of mechanical properties varies along feature boundaries and is dependent on 
feature size, mechanical contrast and location. 
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