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Abstract 
 

We propose a framework for deployment and sub-

sequent autonomic management of component-based 

distributed applications. An initial deployment goal is 

specified using a declarative constraint language, ex-

pressing constraints over aspects such as component-

host mappings and component interconnection topol-

ogy. A constraint solver is used to find a configuration 

that satisfies the goal, and the configuration is de-

ployed automatically. The deployed application is in-

strumented to allow subsequent autonomic manage-

ment. If, during execution, the manager detects that the 

original goal is no longer being met, the satisfy/deploy 

process can be repeated automatically in order to gen-

erate a revised deployment that does meet the goal. 

 

1. Introduction 
 

In [1], Kephart & Chess describe an autonomic sys-

tem as possessing the following aspects of self-

management: 
 

 self-configuration 

 self-optimization 

 self-healing 

 self-protection 
 

This is illustrated in Figure 1, which shows a man-

aged element and its autonomic lifecycle. The element 

is associated with an autonomic manager that attempts 

to maintain some high-level objective for the element. 

The behaviour of the element is continually monitored 

and analysed. When this deviates sufficiently from the 

objective, the manager plans and executes a change to 

the element in order to restore the desired behaviour. 

In this paper we describe a framework for auto-

nomic management of deployment and configuration 

of distributed applications. The managed elements are 

collections of components making up a distributed 

application. We assume that the component granularity 

is relatively large and that components are not nested. 

 

 
Figure 1. A managed element (from [1]) 

 

We identify two separate but closely related prob-

lems: the initial deployment of an application, and its 

subsequent evolution in the face of host failures and 

other perturbations. Both are too complex in large ap-

plications to be handled by a human operator. In our 

framework both are controlled automatically, driven by 

a high-level configuration goal specified by the admin-

istrator at the outset. We thus address specifically the 

first and third of Kephart & Chess’ issues: self-

configuration and self-healing. Although not addressed 

in this paper, we believe that self-optimization and 

self-protection can be also be accommodated within 

this framework. 

It is our thesis that to implement such an autonomic 

deployment and configuration cycle, we require: 
 

1. a mechanism for deploying components 

2. a language to describe how the application is in-

tended to be structured 

3. an autonomic management engine capable of 

 identifying a valid configuration of the ap-

plication 

 deploying the configuration into a distrib-

uted environment 

 modifying the deployed application to main-

tain the specified intended structure in the 

face of changing circumstances 

Some mechanism is required for deploying and re-

deploying components in possibly remote locations. 

We advocate the use of bundles, which were developed 

by us in the project Computation in Geographically 



 

Appropriate Locations (Cingal) [2, 3]. Bundles permit 

XML-encoded closures of code and data to be pushed 

and executed in remote locations. Cingal-enabled hosts 

provide a light-weight runtime and security infrastruc-

ture, written in pure Java, necessary to support the exe-

cution of bundles. 

In order to describe how an application is intended 

to be structured, we propose a domain-specific con-

straint-based language. This describes configuration 

goals in terms of resources including software compo-

nents and physical hosts, relationships between hosts 

and components, and constraints over these. From such 

a configuration goal it is possible to: 
 

 deploy components using the available physical 

resources 

 configure monitoring software to assess 

whether the executing application continues to 

obey the constraints specified in the description 

 configure software for automatically evolving 

the application in response to constraint viola-

tions arising from changes in the environment 
 

There are several levels at which a deployed appli-

cation may be evolved. The simplest, on which we 

concentrate here, involves evolution of the configura-

tion in order to maintain a previously specified goal. 

Thus the configuration evolves whilst the high-level 

configuration goal remains the same. We term this 

autonomic evolution, and consider it to be fundamental 

to the autonomic management of distributed applica-

tions. Our aim is for this style of evolution to take 

place automatically whenever required. 

A second level of evolution is needed when the 

high-level goal itself changes, due to a change in appli-

cation requirements. Our framework handles both lev-

els of evolution in the same way, treating the first as a 

special case of the second in which the goal remains 

fixed. In both cases an ongoing autonomic cycle, as 

shown in Figure 1, repeatedly attempts to solve the 

current constraint problem, deploys the resulting con-

figuration, and monitors the deployment to determine 

when to repeat the sequence. 

 

2. Related languages and systems 
 

The Cingal system supports the deployment of dis-

tributed applications in geographically appropriate 

locations. It provides mechanisms to execute and in-

stall components, in the form of bundles, on remote 

machines. A bundle is the only entity that may be exe-

cuted in Cingal and consists of an XML-encoded clo-

sure of code and data and a set of bindings naming the 

data. Cingal-enabled hosts contain appropriate security 

mechanisms to ensure malicious parties cannot deploy 

and execute harmful agents, and to ensure that de-

ployed components do not interfere with each other 

either accidentally or maliciously. Cingal components 

may be written using standard programming languages 

and programming models. When a bundle is received 

by a Cingal-enabled host, provided that the bundle has 

passed a number of checks, the bundle is fired, that is, 

it is executed in a security domain (called a machine) 

within a new operating system process. Unlike proc-

esses running on traditional operating systems, bundles 

have a limited interface to their local environment. The 

repertoire of interactions with the host environment is 

limited to: interactions with a local store, the manipula-

tion of bindings, the firing of other bundles, and inter-

actions with other Cingal processes. The approach de-

scribed in this paper exploits much of the technology 

provided by Cingal. 

A number of languages have been developed to de-

scribe software architectures, including [4-6]. Typical 

of these is Acme [7], which is intended to fulfil three 

roles: to provide an architectural interchange format for 

design tools, to provide a foundation for the design of 

new tools and to support architectural modelling. The 

Acme language supports the description of components 

joined via connectors which provide a variety of com-

munication styles. Components and connectors may be 

annotated with properties that specify attributes such as 

source files and degrees of concurrency, etc. Acme 

also supports a logical formalism based on relations 

and constraints which permits computational or run-

time behaviour to be associated with the description of 

architectures. Acme does not however support the de-

ployment of systems from the architectural descrip-

tions, nor does it encompass physical computation re-

sources. 

The ArchWare ADL [8] is based on higher-order π-

calculus, and is aimed at specifying active architec-

tures, in which the architectural description of an ap-

plication evolves in lock-step with the application it-

self. The language supports a reversible compose op-

erator that allows components to be assembled from 

other components, and later decomposed and recom-

posed to permit evolution. Decomposition operates at a 

fine-grain, and it is possible to decompose a compo-

nent into constituent parts without losing encapsulated 

state. This is achieved using hyper-code, which pro-

vides a reified form for both code and data. In com-

parison, the evolution in our framework operates at a 

coarser grain, and we assume that one component may 

be completely replaced by another with no common 

state. Further, the ArchWare ADL focuses on software 

architecture and does not address physical deployment. 

The Active Pipes approach [9] encompasses the no-

tions of machines and processes which transform data 

in an active network. The idea is to map a high level 



 

pipeline of software components onto physical network 

resources. As the authors state in their paper, “it is nec-

essary to have a general scheme of specifying applica-

tion requirements that is expressive enough to describe 

typical application scenarios while simple enough to be 

used effectively”. In our framework we aim to combine 

this approach with the notion of an ADL to encompass 

hardware and software components. 

Constraint programming models problems by de-

claring a set of variables with finite domains and con-

straints between values of these variables. Instead of 

writing an imperative program to provide a result, the 

user invokes a search algorithm to find a solution 

which satisfies the constraints specified by the user. A 

number of constraint programming and solving sys-

tems exist. We believe that the lack of domain-specific 

syntax in such systems makes them unsuitable for 

specifying the high-level configuration goal in an auto-

nomic application. However, they are applicable as 

constraint solvers when used in conjunction with a 

domain-specific language. 

For example, ECLiPSe [10] is a constraint logic 

programming system with syntax similar to Prolog, 

supplied with a number of constraint solvers and librar-

ies. JSolver [11] is a commercial Java library which 

provides constraint satisfaction functionality, while 

Cream [12] is a simpler open-source library. Any such 

systems could be employed in our framework. 

In Section 4 we describe a new domain-specific 

constraint language, Deladas (DEclarative LAnguage 

for Describing Autonomic Systems), which is suitable 

for specifying autonomic systems and may be used to 

drive the deployment and evolution process. 

3. Our Approach 
 

Our general approach is shown in Figure 2. The ap-

plication administrator specifies a deployment goal in 

terms of resources available and constraints over their 

deployment. The resources include software compo-

nents and physical hosts on which these components 

may be installed and executed. Constraints operate 

over aspects such as the mapping of components to 

hosts and the interconnection topology between com-

ponents. 

We assume that the distributed application can be 

structured as encapsulated components, each with its 

own thread of control. The granularity of components 

is intended to be large, so that a relatively small num-

ber of components execute on each host. The compo-

nents must be capable of recovering their own state if 

necessary, for example, in the event of a host crash. In 

our current prototype, components communicate with 

one another via asynchronous channels, but the ap-

proach could be extended in a straight-forward manner 

to support other styles such as RPC. We also assume 

that the application contains application-level protocols 

that cope with the disconnection and reconnection of 

channels to different platforms and servers. One such 

technology is the half session abstraction described by 

Strom and Yemeni [13]. 

The cycle shown in Figure 2 is controlled by the 

Autonomic Deployment and Management Engine 

(ADME). In order to produce a concrete deployment of 

the application, the ADME attempts to satisfy the goal, 

specified by the administrator in the Deladas language. 

The engine includes a Deladas parser and constraint 

solver. The result of the attempted goal satisfaction is a 

set of zero or more solutions. Each solution is in the 

form of a configuration, which describes a particular 

mapping of components to hosts and interconnection 

topology that satisfies the constraints. Configurations 

are encoded in XML documents known as Deployment 

Description Documents (DDDs). 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2. Refined autonomic cycle 
 

If a configuration can be found
1
, it is enacted by ADME to produce a running deployment of the appli-

                                                                                          
1 The ADME may be configured to use the first configuration 

found, or to allow the administrator to choose among multiple con-
figurations. 



 

cation. This is facilitated using Cingal, and the Cingal 

infrastructure must already be installed on each of the 

hosts involved. From a configuration expressed as a 

DDD, ADME generates a collection of bundles which 

perform installation, instantiation and wiring of the 

components. Once these bundles have been fired on the 

appropriate hosts, the application is fully deployed in 

its initial configuration. This process is described in 

detail in [14]. 

The autonomic aspect of this approach is that the 

deployed application is instrumented with probes to 

monitor its execution. Events generated by the probes 

are sent to the ADME, which may decide that the de-

ployment no longer satisfies the original goal, for ex-

ample if a component or host fails. In this case the 

ADME evolves the goal to take account of changed 

resource availability—for example, removing failed 

hosts and perhaps adding new hosts that may now be 

available—and initiates the satisfy/enact cycle again. 

This attempts to find a new solution of the constraints 

that combines existing and new components, and to 

enact this in an efficient manner. Assuming that such a 

new configuration can be found and deployed, the sys-

tem has reacted automatically and appropriately to a 

change in the application’s environment. The cycle 

may continue indefinitely. This process is described in 

more detail in Section 5. 

The nature of the probes required to monitor the ap-

plication depends on the constraints specified in the 

goal. At the simplest level the constraints operate over 

just the component/host topology, and for this, simple 

probes are sufficient. Where more complex probes are 

required, this can be deduced by ADME from the 

specified constraints. For example, constraints can op-

erate over the latency or bandwidth of a channel, the 

degree of replication of a component, or the mean 

availability of a host. Each of these dynamic aspects 

requires a specialised probe. We view Deladas as a 

core language that may be extended to incorporate new 

constraint types and associated probes. 

This style of autonomic application evolution can be 

achieved without human intervention. The framework 

described above also accommodates the need for more 

wide-ranging evolution. For example, in addition to 

changes in the application’s environment, changes may 

occur in the enterprise that the application supports; 

examples include changes in legal or financial regula-

tions, or mergers of organisations. These may require 

manual revision of the deployment goal, including 

changes to the constraints. 

 

4. Initial Deployment 
 

In this section we explore, using an example, the 

use of Deladas to describe the resources and con-

straints described in the last section. The language be-

longs to the family of architectural description lan-

guages (ADLs). Unlike some ADLs, Deladas does not 

contain any computational constructs, and programs 

that perform computation cannot be written in it; it is 

purely declarative and descriptive. 

We believe that Deladas’ constraint style of de-

ployment specification gives it a relative simplicity 

compared with more explicit styles, making it suitable 

for the specification of relatively large application de-

ployments. This is especially important when the de-

ployment is to be recomputed repeatedly in an auto-

nomic cycle. 

Deladas is used to define systems and constraints 

over them. The types supported are: component, host 

and constraintset. The type component is used to de-

scribe software components at a high level. Compo-

nents, like many of the types in Acme, have associated 

attributes. The mandatory attributes for components are 

bundles and ports. Bundles are used to define the code 

and static data of the components. Ports are used to 

define communication channels between components. 

The type host is used to describe a resource on which 

components can be deployed. Attributes of hosts in-

clude IP-address, ownership, platform type, etc.  

The type constraintset is a high level constraint-

based specification of the invariants that pertain to a 

system. A constraintset constrains the way in which 

the system is realised, for example how processes are 

placed on machines and how the processes are wired 

up. Constraintsets are used to yield an initial configu-

ration that might be deployed, and also to constrain 

deployments in the face of change. In the future we 

envisage extending the constraintsets described here to 

include other aspects such as bandwidth and geopoliti-

cal constraints. 

To illustrate the use of constraintsets, we use an ex-

ample drawn from the peer-to-peer domain, in which 

clients connect to routers. Figure 3 shows one particu-

lar configuration that satisfies the deployment goal, 

expressed as a Deladas constraintset, shown in Figure 

4. In the configuration shown in Figure 3, the six hosts, 

labelled h1 to h6, each contain a single component, 

labelled C for client and R for router. The components 

are connected via uni-directional channels, which are 

attached to particular ports on each component. 

 



 

 
Figure 3. Example configuration 

 

We now describe in more detail the Deladas con-

straintset shown in Figure 4. Given a set of resources 

specified in Deladas and comprising components and 

hosts, the constraintset might describe none, one or 

many possible configurations. It is easily possible to 

write Deladas constraintsets that are internally incon-

sistent and therefore specify no valid configurations, 

irrespective of resources. The writing of appropriate 

constraintset definitions is likely to remain difficult, 

and we envisage that constraintsets for common archi-

tectural patterns might be available off the shelf, pre-

senting the opportunity for high level architectural re-

use and specialisation. 

In this example, the constraintset contains five con-

straint clauses. These clauses operate over two types of 

component named Router and Client. It is not neces-

sary to specify the concrete types of these components 

but it is possible to infer that, in order to satisfy the 

constraints, the component Router must have ports 

named rin, rout, cin and cout. The constraints are writ-

ten in first-order logic and specify (in sequence) that: 

 

 hosts run an instance of a router and/or a client 

 every client connects to at least one router via the 

out and in ports on the client and the cin and cout 

ports on the router 

 there are at most two clients for every router 

 every router is connected to at least one other 

router via their rin and rout ports 

 routers are strongly connected 

 

Note that if two clients are connected to a router, 

routers require a separate cin and cout port per client. 
 

constraintset randc = constraintset { 

 

 // 1 router or client per host 

 forall host h in deployment ( 

  card(instancesof Router in h) = 1 or 

  card(instancesof Client in h) = 1 

 ) 

 

 // every client connects to at 

 // least 1 router 

 forall Client c in deployment ( 

  exists Router r in deployment ( 

   c.out connectsto r.cin 

   c.in connectsto r.cout 

  ) 

 ) 

 

 // every router connects to at 

 // most 2 clients 

 forall Router r in deployment ( 

  card(Client c connectedto r) <= 2 

 ) 

 

 // every router connects to at 

 // least 1 other router 

 forall Router r1 in deployment ( 

  exists Router r2 in deployment ( 

   r1.rout connectsto r2.rin 

   r1.rin connectsto r2.rout 

   r1 != r2 

  ) 

 ) 

 

 // routers are reachable from each other 

 forall Router r1,r2 in deployment ( 

  reachable(r1, r2) 

 ) 

} 

Figure 4. Example Deladas constraintset 
 

Figure 5 shows an example Deladas specification of 

resources that might be given to the solver in order to 

obtain a deployment. This specification defines the 

components Client and Router. The specification of 

Client includes the bundle containing code and static 

data, and defines two ports named in and out. The port 

definition of Router states that routers may have a mul-

tiplicity of connections, designated by the bracket nota-

tion. This variadicity is missing in many ADLs, pre-

venting the specification and generation of architec-

tures like the example architecture used in this paper. 

 
component Client( 

 code = "file:///D:ClientBundle.xml", 

 ports = {in, out} 

) 

component Router( 

 code = "http://deladas.org/RBundle.xml", 

 ports = {cin[], cout[], rin[], rout[]} 

) 

host h1 = host(ipaddress = "192.168.0.1") 

... 

host h6 = host(ipaddress = "192.168.0.6") 

 

Figure 5. Example Deladas resources 



 

 

5. Autonomic Cycle 
 

Here we describe in more detail the autonomic cy-

cle first described in Section 3. We assume that the 

clients and routers described in Figures 4 and 5 have 

been deployed in the topology shown in Figure 3, 

which is compliant with the Deladas constraints. Fig-

ure 6 shows part of this deployment in more detail. 

Each component executes within a Cingal-supported 

machine as a separate operating system level process. 

For each host running a component, the system de-

ploys another component called the Autonomic Man-

agement Process (AMP). This task is responsible for 

monitoring the health of each of the deployed compo-

nents running on that host. The overall orchestration of 

the deployed system is the responsibility of an instance 

of the ADME. It is unimportant whether this is the 

same instance that caused the original deployment of 

the architecture, or not. To avoid ambiguity we will 

call the instance of the ADME performing the orches-

tration the Monitoring ADME (MADME). The 

MADME holds the knowledge required for the auto-

nomic cycle in the form of the resources (components 

and hosts) and the constraints over those resources. 

 

 
Figure 6. Components for 
autonomic management 

 

It is now possible to see how the autonomic cycle 

shown in Figure 2 is implemented. An instance of the 

ADME solves the constraints and the resulting archi-

tecture is enacted by ADME to produce a running de-

ployment. This deployment may include a new 

MADME process, or the ADME instance may become 

the MADME for the deployment. When events are 

received by the MADME that indicate invalidation of 

the constraints, the MADME attempts to find a new 

solution to the constraints. We have glossed over two 

details—how the changes are detected and how stabil-

ity of the system is maintained. 

When a system is deployed, in addition to the re-

sources and constraints specified in Deladas, the 

MADME has knowledge of the identity of the Cingal 

machines executing the components, and of the AMP 

processes. Each Cingal machine running a component 

knows of its local AMP process, which is configured 

with knowledge of the MADME. To illustrate how the 

autonomic cycle is initiated we will consider two pos-

sible failures: the failure of the router process running 

on host h3, and the failure of the entire node h3. 

In the event of the router process running on h3 fail-

ing (say due to a heap overflow), various different enti-

ties can potentially observe the failure: the connected 

clients running on hosts h1 and h5, the connected 

router running on host h4, the MADME, or the collo-

cated AMP. The failures can be detected either by the 

loss of a connection to other processes or by using 

heartbeats between the components. The entities ob-

serving the failure are commonly known as failure 

suspectors and the approach to recovery advocated 

here is perhaps first due to Birman [15]. 

In practice, being able to determine which compo-

nent has failed in the face of unreliability is notoriously 

difficult, and there exists a large body of work on unre-

liable failure suspectors, e.g. [16, 17]. For the purposes 

of this paper we assume that we can reliably determine 

which hosts and/or components have failed, and that 

the failures will be reported to the MADME. 

If a failure has been reported by the collocated 

AMP, the MADME can trivially determine that it is the 

process hosting the router and not the host that has 

failed. In this case the MADME can instantiate a new 

router instance on node h3 using a subset of the func-

tionality used to initially create it. If the entire h3 node 

fails, the MADME is required to find a new solution to 

the constraints. However, before examining how this is 

performed, the issue of stability of constraint solutions 

must be addressed. 

The solution to the placement of clients and routers 

shown in Figure 3 is one of many possible solutions to 

the constraints given in the Deladas specification. 

Other solutions may be trivially found by hosting the 

routers on hosts h1 and h2 for example. When the 

MADME is required to find a new solution to the 

specified constraints, it is desirable to minimise the 

redeployment of processes between hosts. Before at-

tempting to find a new solution to the general problem, 

as it did when the initial deployment was determined, 

the MADME therefore attempts to solve a more con-

strained problem. In this case, the problem is formed 

from the original constraints and resources, and the 

bindings surviving from the original deployment, com-

prising R to h4, C to h1, C to h2, C to h5 and C to h6. 

If no solution can be found to this problem, the extant 

bindings are progressively removed from the descrip-

tion until a solution can be found. 



 

Like the original attempt to find a solution, there is 

always the possibility that no solution may be found. If 

no solution can be found, a constraint error is issued by 

the MADME. This can be delivered via a variety of 

mechanisms. 

In the situation where the host h3 fails completely, 

the MADME might find the solution shown in Figure 

7. 

 
Figure 7. Evolved configuration 

 

Thus far, the autonomic processes described have 

not included any human intervention. However, as 

discussed earlier, changes may occur in the enterprise 

that the application supports, requiring manual revision 

of the deployment goal, including changes to the con-

straints. In order to accommodate such changes, 

mechanisms are required whereby the resources and 

constraints may be changed by human agents. This 

may be achieved via direct interaction with the 

MADME. 

The situations where resources are changed are 

similar to that where evolution is forced due to some 

failure. Changes initiated by a human are richer than 

those that are machine-initiated since resources can be 

added as well as removed. However, the changing of 

constraints cannot occur without human intervention. 

To accommodate these changes, the MADME presents 

five methods (as Web services) to the outside world, 

shown in Figure 8. 

 
String getResources(); 

String getConstraints(); 

String getConfig(); 

String[] satisfy( String config, 

 String resources, 

 String constraints); 

void enact(String config); 

 

Figure 8. MADME external interface 
 

The first three methods are selectors enabling the 

Deladas resources and constraints and the DDD de-

scribing the deployment to be obtained. The satisfy 

method allows new constraints, resources and existing 

deployed components to be specified in order to ac-

commodate some enterprise-level change. The config 

parameter may be null, corresponding to the initial 

deployment problem. The satisfy method returns a col-

lection of DDDs compliant with the specified con-

straints. The enact method performs enactment as de-

scribed earlier. This may require extant processes to be 

terminated and redeployed elsewhere. 

 

6. Status and further work 
 

The main constituents of the framework described 

in this paper are: 

 

 the Deladas language; 

 the constraint solver; 

 the component deployment mechanism; 

 the monitoring infrastructure; and 

 the ADME autonomic manager 

 

Of these, the component deployment mechanism is 

fully implemented, based on the Cingal system [3]. It 

takes an XML description of a configuration and de-

ploys it on a set of Cingal-enabled hosts. We have im-

plemented the Deladas language, and are investigating 

several constraint programming tools including 

ECLiPSe [10], JSolver [11] and Cream [12]. The 

monitoring infrastructure and autonomic manager will 

be developed once the initial satisfy/enact functionality 

is operational. We would hope to have a full pro-

totoype implementation completed by the time of the 

conference. 

We plan to evaluate the basic utility of the frame-

work initially by deploying several distributed applica-

tions such as a load-balanced web server and a pub-

lish/subscribe network onto a Beowulf cluster, and 

forcing various types of host and component failure. 

Longer term we will investigate the scalability of the 

framework, in particular the tractability of the con-

straint solving part, and experiment with extensibility 

in terms of the constraints and monitoring infrastruc-

ture that can be incorporated. 

 

7. Conclusions 
 

We believe that autonomic management of distrib-

uted application deployment will become essential as 

the scale and complexity of applications grow. This 

paper has outlined a framework to support the initial 

deployment and subsequent autonomic evolution of 



 

distributed applications in the face of perturbations 

such as host and link failure, temporary bandwidth 

problems, etc. The knowledge required for autonomic 

management is specified in the form of a set of avail-

able hardware and software resources and a set of con-

straints over their deployment. We postulate that it is 

feasible to implement an autonomic manager that will 

automatically evolve the deployed application to main-

tain the constraints while it is in operation. We are cur-

rently working on an implementation to enable us to 

test this assertion. 
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