

A Framework for Constraint-Based Deployment and Autonomic

Management of Distributed Applications

Alan Dearle, Graham Kirby and Andrew McCarthy

School of Computer Science, University of St Andrews, St Andrews, Fife KY16 9SS, Scotland

{al, graham, ajm}@dcs.st-and.ac.uk

Abstract

We propose a framework for deployment and sub-

sequent autonomic management of component-based

distributed applications. An initial deployment goal is

specified using a declarative constraint language, ex-

pressing constraints over aspects such as component-

host mappings and component interconnection topol-

ogy. A constraint solver is used to find a configuration

that satisfies the goal, and the configuration is de-

ployed automatically. The deployed application is in-

strumented to allow subsequent autonomic manage-

ment. If, during execution, the manager detects that the

original goal is no longer being met, the satisfy/deploy

process can be repeated automatically in order to gen-

erate a revised deployment that does meet the goal.

1. Introduction

In [1], Kephart & Chess describe an autonomic sys-

tem as possessing the following aspects of self-

management:

 self-configuration

 self-optimization

 self-healing

 self-protection

This is illustrated in Figure 1, which shows a man-

aged element and its autonomic lifecycle. The element

is associated with an autonomic manager that attempts

to maintain some high-level objective for the element.

The behaviour of the element is continually monitored

and analysed. When this deviates sufficiently from the

objective, the manager plans and executes a change to

the element in order to restore the desired behaviour.

In this paper we describe a framework for auto-

nomic management of deployment and configuration

of distributed applications. The managed elements are

collections of components making up a distributed

application. We assume that the component granularity

is relatively large and that components are not nested.

Figure 1. A managed element (from [1])

We identify two separate but closely related prob-

lems: the initial deployment of an application, and its

subsequent evolution in the face of host failures and

other perturbations. Both are too complex in large ap-

plications to be handled by a human operator. In our

framework both are controlled automatically, driven by

a high-level configuration goal specified by the admin-

istrator at the outset. We thus address specifically the

first and third of Kephart & Chess’ issues: self-

configuration and self-healing. Although not addressed

in this paper, we believe that self-optimization and

self-protection can be also be accommodated within

this framework.

It is our thesis that to implement such an autonomic

deployment and configuration cycle, we require:

1. a mechanism for deploying components

2. a language to describe how the application is in-

tended to be structured

3. an autonomic management engine capable of

 identifying a valid configuration of the ap-

plication

 deploying the configuration into a distrib-

uted environment

 modifying the deployed application to main-

tain the specified intended structure in the

face of changing circumstances

Some mechanism is required for deploying and re-

deploying components in possibly remote locations.

We advocate the use of bundles, which were developed

by us in the project Computation in Geographically

Appropriate Locations (Cingal) [2, 3]. Bundles permit

XML-encoded closures of code and data to be pushed

and executed in remote locations. Cingal-enabled hosts

provide a light-weight runtime and security infrastruc-

ture, written in pure Java, necessary to support the exe-

cution of bundles.

In order to describe how an application is intended

to be structured, we propose a domain-specific con-

straint-based language. This describes configuration

goals in terms of resources including software compo-

nents and physical hosts, relationships between hosts

and components, and constraints over these. From such

a configuration goal it is possible to:

 deploy components using the available physical

resources

 configure monitoring software to assess

whether the executing application continues to

obey the constraints specified in the description

 configure software for automatically evolving

the application in response to constraint viola-

tions arising from changes in the environment

There are several levels at which a deployed appli-

cation may be evolved. The simplest, on which we

concentrate here, involves evolution of the configura-

tion in order to maintain a previously specified goal.

Thus the configuration evolves whilst the high-level

configuration goal remains the same. We term this

autonomic evolution, and consider it to be fundamental

to the autonomic management of distributed applica-

tions. Our aim is for this style of evolution to take

place automatically whenever required.

A second level of evolution is needed when the

high-level goal itself changes, due to a change in appli-

cation requirements. Our framework handles both lev-

els of evolution in the same way, treating the first as a

special case of the second in which the goal remains

fixed. In both cases an ongoing autonomic cycle, as

shown in Figure 1, repeatedly attempts to solve the

current constraint problem, deploys the resulting con-

figuration, and monitors the deployment to determine

when to repeat the sequence.

2. Related languages and systems

The Cingal system supports the deployment of dis-

tributed applications in geographically appropriate

locations. It provides mechanisms to execute and in-

stall components, in the form of bundles, on remote

machines. A bundle is the only entity that may be exe-

cuted in Cingal and consists of an XML-encoded clo-

sure of code and data and a set of bindings naming the

data. Cingal-enabled hosts contain appropriate security

mechanisms to ensure malicious parties cannot deploy

and execute harmful agents, and to ensure that de-

ployed components do not interfere with each other

either accidentally or maliciously. Cingal components

may be written using standard programming languages

and programming models. When a bundle is received

by a Cingal-enabled host, provided that the bundle has

passed a number of checks, the bundle is fired, that is,

it is executed in a security domain (called a machine)

within a new operating system process. Unlike proc-

esses running on traditional operating systems, bundles

have a limited interface to their local environment. The

repertoire of interactions with the host environment is

limited to: interactions with a local store, the manipula-

tion of bindings, the firing of other bundles, and inter-

actions with other Cingal processes. The approach de-

scribed in this paper exploits much of the technology

provided by Cingal.

A number of languages have been developed to de-

scribe software architectures, including [4-6]. Typical

of these is Acme [7], which is intended to fulfil three

roles: to provide an architectural interchange format for

design tools, to provide a foundation for the design of

new tools and to support architectural modelling. The

Acme language supports the description of components

joined via connectors which provide a variety of com-

munication styles. Components and connectors may be

annotated with properties that specify attributes such as

source files and degrees of concurrency, etc. Acme

also supports a logical formalism based on relations

and constraints which permits computational or run-

time behaviour to be associated with the description of

architectures. Acme does not however support the de-

ployment of systems from the architectural descrip-

tions, nor does it encompass physical computation re-

sources.

The ArchWare ADL [8] is based on higher-order π-

calculus, and is aimed at specifying active architec-

tures, in which the architectural description of an ap-

plication evolves in lock-step with the application it-

self. The language supports a reversible compose op-

erator that allows components to be assembled from

other components, and later decomposed and recom-

posed to permit evolution. Decomposition operates at a

fine-grain, and it is possible to decompose a compo-

nent into constituent parts without losing encapsulated

state. This is achieved using hyper-code, which pro-

vides a reified form for both code and data. In com-

parison, the evolution in our framework operates at a

coarser grain, and we assume that one component may

be completely replaced by another with no common

state. Further, the ArchWare ADL focuses on software

architecture and does not address physical deployment.

The Active Pipes approach [9] encompasses the no-

tions of machines and processes which transform data

in an active network. The idea is to map a high level

pipeline of software components onto physical network

resources. As the authors state in their paper, “it is nec-

essary to have a general scheme of specifying applica-

tion requirements that is expressive enough to describe

typical application scenarios while simple enough to be

used effectively”. In our framework we aim to combine

this approach with the notion of an ADL to encompass

hardware and software components.

Constraint programming models problems by de-

claring a set of variables with finite domains and con-

straints between values of these variables. Instead of

writing an imperative program to provide a result, the

user invokes a search algorithm to find a solution

which satisfies the constraints specified by the user. A

number of constraint programming and solving sys-

tems exist. We believe that the lack of domain-specific

syntax in such systems makes them unsuitable for

specifying the high-level configuration goal in an auto-

nomic application. However, they are applicable as

constraint solvers when used in conjunction with a

domain-specific language.

For example, ECLiPSe [10] is a constraint logic

programming system with syntax similar to Prolog,

supplied with a number of constraint solvers and librar-

ies. JSolver [11] is a commercial Java library which

provides constraint satisfaction functionality, while

Cream [12] is a simpler open-source library. Any such

systems could be employed in our framework.

In Section 4 we describe a new domain-specific

constraint language, Deladas (DEclarative LAnguage

for Describing Autonomic Systems), which is suitable

for specifying autonomic systems and may be used to

drive the deployment and evolution process.

3. Our Approach

Our general approach is shown in Figure 2. The ap-

plication administrator specifies a deployment goal in

terms of resources available and constraints over their

deployment. The resources include software compo-

nents and physical hosts on which these components

may be installed and executed. Constraints operate

over aspects such as the mapping of components to

hosts and the interconnection topology between com-

ponents.

We assume that the distributed application can be

structured as encapsulated components, each with its

own thread of control. The granularity of components

is intended to be large, so that a relatively small num-

ber of components execute on each host. The compo-

nents must be capable of recovering their own state if

necessary, for example, in the event of a host crash. In

our current prototype, components communicate with

one another via asynchronous channels, but the ap-

proach could be extended in a straight-forward manner

to support other styles such as RPC. We also assume

that the application contains application-level protocols

that cope with the disconnection and reconnection of

channels to different platforms and servers. One such

technology is the half session abstraction described by

Strom and Yemeni [13].

The cycle shown in Figure 2 is controlled by the

Autonomic Deployment and Management Engine

(ADME). In order to produce a concrete deployment of

the application, the ADME attempts to satisfy the goal,

specified by the administrator in the Deladas language.

The engine includes a Deladas parser and constraint

solver. The result of the attempted goal satisfaction is a

set of zero or more solutions. Each solution is in the

form of a configuration, which describes a particular

mapping of components to hosts and interconnection

topology that satisfies the constraints. Configurations

are encoded in XML documents known as Deployment

Description Documents (DDDs).

Figure 2. Refined autonomic cycle

If a configuration can be found
1
, it is enacted by ADME to produce a running deployment of the appli-

1 The ADME may be configured to use the first configuration

found, or to allow the administrator to choose among multiple con-
figurations.

cation. This is facilitated using Cingal, and the Cingal

infrastructure must already be installed on each of the

hosts involved. From a configuration expressed as a

DDD, ADME generates a collection of bundles which

perform installation, instantiation and wiring of the

components. Once these bundles have been fired on the

appropriate hosts, the application is fully deployed in

its initial configuration. This process is described in

detail in [14].

The autonomic aspect of this approach is that the

deployed application is instrumented with probes to

monitor its execution. Events generated by the probes

are sent to the ADME, which may decide that the de-

ployment no longer satisfies the original goal, for ex-

ample if a component or host fails. In this case the

ADME evolves the goal to take account of changed

resource availability—for example, removing failed

hosts and perhaps adding new hosts that may now be

available—and initiates the satisfy/enact cycle again.

This attempts to find a new solution of the constraints

that combines existing and new components, and to

enact this in an efficient manner. Assuming that such a

new configuration can be found and deployed, the sys-

tem has reacted automatically and appropriately to a

change in the application’s environment. The cycle

may continue indefinitely. This process is described in

more detail in Section 5.

The nature of the probes required to monitor the ap-

plication depends on the constraints specified in the

goal. At the simplest level the constraints operate over

just the component/host topology, and for this, simple

probes are sufficient. Where more complex probes are

required, this can be deduced by ADME from the

specified constraints. For example, constraints can op-

erate over the latency or bandwidth of a channel, the

degree of replication of a component, or the mean

availability of a host. Each of these dynamic aspects

requires a specialised probe. We view Deladas as a

core language that may be extended to incorporate new

constraint types and associated probes.

This style of autonomic application evolution can be

achieved without human intervention. The framework

described above also accommodates the need for more

wide-ranging evolution. For example, in addition to

changes in the application’s environment, changes may

occur in the enterprise that the application supports;

examples include changes in legal or financial regula-

tions, or mergers of organisations. These may require

manual revision of the deployment goal, including

changes to the constraints.

4. Initial Deployment

In this section we explore, using an example, the

use of Deladas to describe the resources and con-

straints described in the last section. The language be-

longs to the family of architectural description lan-

guages (ADLs). Unlike some ADLs, Deladas does not

contain any computational constructs, and programs

that perform computation cannot be written in it; it is

purely declarative and descriptive.

We believe that Deladas’ constraint style of de-

ployment specification gives it a relative simplicity

compared with more explicit styles, making it suitable

for the specification of relatively large application de-

ployments. This is especially important when the de-

ployment is to be recomputed repeatedly in an auto-

nomic cycle.

Deladas is used to define systems and constraints

over them. The types supported are: component, host

and constraintset. The type component is used to de-

scribe software components at a high level. Compo-

nents, like many of the types in Acme, have associated

attributes. The mandatory attributes for components are

bundles and ports. Bundles are used to define the code

and static data of the components. Ports are used to

define communication channels between components.

The type host is used to describe a resource on which

components can be deployed. Attributes of hosts in-

clude IP-address, ownership, platform type, etc.

The type constraintset is a high level constraint-

based specification of the invariants that pertain to a

system. A constraintset constrains the way in which

the system is realised, for example how processes are

placed on machines and how the processes are wired

up. Constraintsets are used to yield an initial configu-

ration that might be deployed, and also to constrain

deployments in the face of change. In the future we

envisage extending the constraintsets described here to

include other aspects such as bandwidth and geopoliti-

cal constraints.

To illustrate the use of constraintsets, we use an ex-

ample drawn from the peer-to-peer domain, in which

clients connect to routers. Figure 3 shows one particu-

lar configuration that satisfies the deployment goal,

expressed as a Deladas constraintset, shown in Figure

4. In the configuration shown in Figure 3, the six hosts,

labelled h1 to h6, each contain a single component,

labelled C for client and R for router. The components

are connected via uni-directional channels, which are

attached to particular ports on each component.

Figure 3. Example configuration

We now describe in more detail the Deladas con-

straintset shown in Figure 4. Given a set of resources

specified in Deladas and comprising components and

hosts, the constraintset might describe none, one or

many possible configurations. It is easily possible to

write Deladas constraintsets that are internally incon-

sistent and therefore specify no valid configurations,

irrespective of resources. The writing of appropriate

constraintset definitions is likely to remain difficult,

and we envisage that constraintsets for common archi-

tectural patterns might be available off the shelf, pre-

senting the opportunity for high level architectural re-

use and specialisation.

In this example, the constraintset contains five con-

straint clauses. These clauses operate over two types of

component named Router and Client. It is not neces-

sary to specify the concrete types of these components

but it is possible to infer that, in order to satisfy the

constraints, the component Router must have ports

named rin, rout, cin and cout. The constraints are writ-

ten in first-order logic and specify (in sequence) that:

 hosts run an instance of a router and/or a client

 every client connects to at least one router via the

out and in ports on the client and the cin and cout

ports on the router

 there are at most two clients for every router

 every router is connected to at least one other

router via their rin and rout ports

 routers are strongly connected

Note that if two clients are connected to a router,

routers require a separate cin and cout port per client.

constraintset randc = constraintset {

 // 1 router or client per host

 forall host h in deployment (

 card(instancesof Router in h) = 1 or

 card(instancesof Client in h) = 1

)

 // every client connects to at

 // least 1 router

 forall Client c in deployment (

 exists Router r in deployment (

 c.out connectsto r.cin

 c.in connectsto r.cout

)

)

 // every router connects to at

 // most 2 clients

 forall Router r in deployment (

 card(Client c connectedto r) <= 2

)

 // every router connects to at

 // least 1 other router

 forall Router r1 in deployment (

 exists Router r2 in deployment (

 r1.rout connectsto r2.rin

 r1.rin connectsto r2.rout

 r1 != r2

)

)

 // routers are reachable from each other

 forall Router r1,r2 in deployment (

 reachable(r1, r2)

)

}

Figure 4. Example Deladas constraintset

Figure 5 shows an example Deladas specification of

resources that might be given to the solver in order to

obtain a deployment. This specification defines the

components Client and Router. The specification of

Client includes the bundle containing code and static

data, and defines two ports named in and out. The port

definition of Router states that routers may have a mul-

tiplicity of connections, designated by the bracket nota-

tion. This variadicity is missing in many ADLs, pre-

venting the specification and generation of architec-

tures like the example architecture used in this paper.

component Client(

 code = "file:///D:ClientBundle.xml",

 ports = {in, out}

)

component Router(

 code = "http://deladas.org/RBundle.xml",

 ports = {cin[], cout[], rin[], rout[]}

)

host h1 = host(ipaddress = "192.168.0.1")

...

host h6 = host(ipaddress = "192.168.0.6")

Figure 5. Example Deladas resources

5. Autonomic Cycle

Here we describe in more detail the autonomic cy-

cle first described in Section 3. We assume that the

clients and routers described in Figures 4 and 5 have

been deployed in the topology shown in Figure 3,

which is compliant with the Deladas constraints. Fig-

ure 6 shows part of this deployment in more detail.

Each component executes within a Cingal-supported

machine as a separate operating system level process.

For each host running a component, the system de-

ploys another component called the Autonomic Man-

agement Process (AMP). This task is responsible for

monitoring the health of each of the deployed compo-

nents running on that host. The overall orchestration of

the deployed system is the responsibility of an instance

of the ADME. It is unimportant whether this is the

same instance that caused the original deployment of

the architecture, or not. To avoid ambiguity we will

call the instance of the ADME performing the orches-

tration the Monitoring ADME (MADME). The

MADME holds the knowledge required for the auto-

nomic cycle in the form of the resources (components

and hosts) and the constraints over those resources.

Figure 6. Components for
autonomic management

It is now possible to see how the autonomic cycle

shown in Figure 2 is implemented. An instance of the

ADME solves the constraints and the resulting archi-

tecture is enacted by ADME to produce a running de-

ployment. This deployment may include a new

MADME process, or the ADME instance may become

the MADME for the deployment. When events are

received by the MADME that indicate invalidation of

the constraints, the MADME attempts to find a new

solution to the constraints. We have glossed over two

details—how the changes are detected and how stabil-

ity of the system is maintained.

When a system is deployed, in addition to the re-

sources and constraints specified in Deladas, the

MADME has knowledge of the identity of the Cingal

machines executing the components, and of the AMP

processes. Each Cingal machine running a component

knows of its local AMP process, which is configured

with knowledge of the MADME. To illustrate how the

autonomic cycle is initiated we will consider two pos-

sible failures: the failure of the router process running

on host h3, and the failure of the entire node h3.

In the event of the router process running on h3 fail-

ing (say due to a heap overflow), various different enti-

ties can potentially observe the failure: the connected

clients running on hosts h1 and h5, the connected

router running on host h4, the MADME, or the collo-

cated AMP. The failures can be detected either by the

loss of a connection to other processes or by using

heartbeats between the components. The entities ob-

serving the failure are commonly known as failure

suspectors and the approach to recovery advocated

here is perhaps first due to Birman [15].

In practice, being able to determine which compo-

nent has failed in the face of unreliability is notoriously

difficult, and there exists a large body of work on unre-

liable failure suspectors, e.g. [16, 17]. For the purposes

of this paper we assume that we can reliably determine

which hosts and/or components have failed, and that

the failures will be reported to the MADME.

If a failure has been reported by the collocated

AMP, the MADME can trivially determine that it is the

process hosting the router and not the host that has

failed. In this case the MADME can instantiate a new

router instance on node h3 using a subset of the func-

tionality used to initially create it. If the entire h3 node

fails, the MADME is required to find a new solution to

the constraints. However, before examining how this is

performed, the issue of stability of constraint solutions

must be addressed.

The solution to the placement of clients and routers

shown in Figure 3 is one of many possible solutions to

the constraints given in the Deladas specification.

Other solutions may be trivially found by hosting the

routers on hosts h1 and h2 for example. When the

MADME is required to find a new solution to the

specified constraints, it is desirable to minimise the

redeployment of processes between hosts. Before at-

tempting to find a new solution to the general problem,

as it did when the initial deployment was determined,

the MADME therefore attempts to solve a more con-

strained problem. In this case, the problem is formed

from the original constraints and resources, and the

bindings surviving from the original deployment, com-

prising R to h4, C to h1, C to h2, C to h5 and C to h6.

If no solution can be found to this problem, the extant

bindings are progressively removed from the descrip-

tion until a solution can be found.

Like the original attempt to find a solution, there is

always the possibility that no solution may be found. If

no solution can be found, a constraint error is issued by

the MADME. This can be delivered via a variety of

mechanisms.

In the situation where the host h3 fails completely,

the MADME might find the solution shown in Figure

7.

Figure 7. Evolved configuration

Thus far, the autonomic processes described have

not included any human intervention. However, as

discussed earlier, changes may occur in the enterprise

that the application supports, requiring manual revision

of the deployment goal, including changes to the con-

straints. In order to accommodate such changes,

mechanisms are required whereby the resources and

constraints may be changed by human agents. This

may be achieved via direct interaction with the

MADME.

The situations where resources are changed are

similar to that where evolution is forced due to some

failure. Changes initiated by a human are richer than

those that are machine-initiated since resources can be

added as well as removed. However, the changing of

constraints cannot occur without human intervention.

To accommodate these changes, the MADME presents

five methods (as Web services) to the outside world,

shown in Figure 8.

String getResources();

String getConstraints();

String getConfig();

String[] satisfy(String config,

 String resources,

 String constraints);

void enact(String config);

Figure 8. MADME external interface

The first three methods are selectors enabling the

Deladas resources and constraints and the DDD de-

scribing the deployment to be obtained. The satisfy

method allows new constraints, resources and existing

deployed components to be specified in order to ac-

commodate some enterprise-level change. The config

parameter may be null, corresponding to the initial

deployment problem. The satisfy method returns a col-

lection of DDDs compliant with the specified con-

straints. The enact method performs enactment as de-

scribed earlier. This may require extant processes to be

terminated and redeployed elsewhere.

6. Status and further work

The main constituents of the framework described

in this paper are:

 the Deladas language;

 the constraint solver;

 the component deployment mechanism;

 the monitoring infrastructure; and

 the ADME autonomic manager

Of these, the component deployment mechanism is

fully implemented, based on the Cingal system [3]. It

takes an XML description of a configuration and de-

ploys it on a set of Cingal-enabled hosts. We have im-

plemented the Deladas language, and are investigating

several constraint programming tools including

ECLiPSe [10], JSolver [11] and Cream [12]. The

monitoring infrastructure and autonomic manager will

be developed once the initial satisfy/enact functionality

is operational. We would hope to have a full pro-

totoype implementation completed by the time of the

conference.

We plan to evaluate the basic utility of the frame-

work initially by deploying several distributed applica-

tions such as a load-balanced web server and a pub-

lish/subscribe network onto a Beowulf cluster, and

forcing various types of host and component failure.

Longer term we will investigate the scalability of the

framework, in particular the tractability of the con-

straint solving part, and experiment with extensibility

in terms of the constraints and monitoring infrastruc-

ture that can be incorporated.

7. Conclusions

We believe that autonomic management of distrib-

uted application deployment will become essential as

the scale and complexity of applications grow. This

paper has outlined a framework to support the initial

deployment and subsequent autonomic evolution of

distributed applications in the face of perturbations

such as host and link failure, temporary bandwidth

problems, etc. The knowledge required for autonomic

management is specified in the form of a set of avail-

able hardware and software resources and a set of con-

straints over their deployment. We postulate that it is

feasible to implement an autonomic manager that will

automatically evolve the deployed application to main-

tain the constraints while it is in operation. We are cur-

rently working on an implementation to enable us to

test this assertion.

Acknowledgements

This work is supported by EPSRC Grants

GR/M78403 “Supporting Internet Computation in Ar-

bitrary Geographical Locations”, GR/R51872 “Reflec-

tive Application Framework for Distributed Architec-

tures” and GR/S44501 “Secure Location-Independent

Autonomic Storage Architectures”, and by EC Frame-

work V IST-2001-32360 “ArchWare: Architecting

Evolvable Software”.

We thank Ian Gent and Tom Kelsey of the St An-

drews constraint satisfaction group for helpful discus-

sions on constraint solving, Warwick Harvey for his

tutorials on ECLiPSe, and Ron Morrison and Dharini

Balasubramaniam for their insight into Architecture

Description Languages.

References

[1] J. O. Kephart and D. M. Chess, “The Vision of Auto-

nomic Computing”, IEEE Computer, vol. 36 no. 1, pp. 41-

50, 2003.

[2] J. C. Diaz y Carballo, A. Dearle, and R. C. H. Connor,

“Thin Servers - An Architecture to Support Arbitrary Place-

ment of Computation in the Internet”, Proc. 4th International

Conference on Enterprise Information Systems (ICEIS

2002), Ciudad Real, Spain, 2002.

[3] http://www-systems.dcs.st-and.ac.uk/cingal/

[4] D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting

Style in Architectural Design Environments”, Proc. 2nd

ACM SIGSOFT Symposium on Foundations of Software

Engineering, New Orleans, Louisiana, USA, 1994.

[5] M. Moriconi, X. Qian, and R. A. Riemenschneider, “Cor-

rect Architecture Refinement”, IEEE Transactions on Soft-

ware Engineering, vol. 21 no. 4, pp. 356-372, 1995.

[6] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.

Young, and G. Zelesnik, “Abstractions for Software Archi-

tecture and Tools to Support Them”, IEEE Transactions on

Software Engineering, vol. 21 no. 4, pp. 314-335, 1995.

[7] D. Garlan, R. Monroe, and D. Wile, “ACME: An Archi-

tecture Description Interchange Language”, Proc. Conference

of the Centre for Advanced Studies on Collaborative Re-

search (CASCON’97), Toronto, Canada, 1997.

[8] R. Morrison, G. N. C. Kirby, D. Balasubramaniam, K.

Mickan, F. Oquendo, S. Cîmpan, B. C. Warboys, B. Snow-

don, and R. M. Greenwood, “Constructing Active Architec-

tures in the ArchWare ADL”, University of St Andrews

2003. http://www.dcs.st-and.ac.uk/research/

publications/MKB+03.shtml

[9] R. Keller, J. Ramamirtham, T. Wolf, and B. Plattner,

“Active Pipes: Service Composition for Programmable Net-

works”, Proc. IEEE MILCOM 2001, McLean, VA, USA,

2001.

[10] “The ECLiPSe Constraint Logic Programming System”,

2003 http://www-icparc.doc.ic.ac.uk/eclipse/

[11] ILOG, “ILOG JSolver”, 2004

http://www.ilog.com/products/jsolver/

[12] N. Tamura, “Cream: Class Library for Constraint Pro-

gramming in Java”, 2003 http://bach.istc.kobe-u.ac.jp/cream/

[13] R. Strom and S. Yemini, “Optimistic Recovery in Dis-

tributed Systems”, ACM Transactions on Computer Systems,

vol. 3 no. 3, pp. 204-226, 1985.

[14] A. Dearle, G. N. C. Kirby, A. McCarthy, and J. C. Diaz

y Carballo, “A Flexible and Secure Deployment Framework

for Distributed Applications”, Submitted To 2nd Interna-

tional Working Conference on Component Deployment (CD

2004), 2004.

[15] K. P. Birman and R. Cooper, “The ISIS Project: Real

Experience with a Fault Tolerant Programming System”,

Operating Systems Review, vol. 25 no. 2, pp. 103-107, 1991.

[16] T. Chandra and S. Toueg, “Unreliable Failure Detectors

for Reliable Distributed Systems”, Journal of the ACM, vol.

43 no. 1, pp. 225-267, 1996.

[17] M. K. Aguilera, W. Chen, and S. Toueg, “Heartbeat: a

Timeout-Free Failure Detector for Quiescent Reliable Com-

munication”, in Lecture Notes in Computer Science 1320, M.

Mavronicolas and P. Tsigas, Eds.: Springer-Verlag, 1997, pp.

126-140.

	OLE_LINK1
	OLE_LINK2

