
A Middleware Framework for Constraint-Based

Deployment and Autonomic Management of

Distributed Applications

Alan Dearle, Graham Kirby and Andrew McCarthy

School of Computer Science, University of St Andrews,

St Andrews, Fife KY16 9SS, Scotland

{al, graham, ajm}@dcs.st-and.ac.uk

Abstract

We propose a middleware framework for deployment and subsequent autonomic

management of component-based applications. An initial deployment goal is specified

using a declarative constraint language, expressing constraints over aspects such as

component-host mappings and component interconnection topology. A constraint

solver is used to find a configuration that satisfies the goal, and the configuration is

deployed automatically. The deployed application is instrumented to allow subse-

quent autonomic management. If, during execution, the manager detects that the

original goal is no longer being met, the satisfy/deploy process can be repeated

automatically in order to generate a revised deployment that does meet the goal.

Keywords: component, deployment, autonomic

1 Introduction

In [1], IBM identifies the growing problem of complexity in IT systems, predicting

that demand for skilled workers will double in the next six years, and will soon be

impossible to satisfy: “The increasing system complexity is reaching a level beyond

human ability to manage and secure.”

The approach of autonomic computing is to automate the management of

computing systems themselves, in the same way that existing business activities have

been automated in the past. An autonomic system needs to be self-managing in the

following aspects, among others: self-configuration, self-optimization, self-healing

and self-protection [2]. The general concept of autonomic computing can be applied

to any application domain; we propose to apply it to the specific problem of middle-

ware to support deployment and evolution of distributed applications.

We envisage a middleware framework supporting applications defined in terms of

a conventional component model. Components are encapsulated, of relatively large

granularity, with clearly defined interfaces (termed ports). Deploying and maintaining

a distributed application involves at least the following activities:

 selecting or implementing appropriate components

 defining an inter-connection topology specifying how components communicate

with one another

 defining a mapping of components to physical nodes

 deploying the individual components to the chosen nodes

 repeating any or all of the above when evolution of the application becomes nec-

essary due to failures or other changes in its environment

Our proposed middleware aims to largely automate all but the first of these, driven

by programmer-specified high-level goals regarding connection topology and physi-

cal placement. The motivation is to improve application reliability and performance,

and to reduce the costs involved in human-managed system maintenance.

The general structure of an autonomic system is illustrated in Fig 1, which shows a

managed element and its autonomic lifecycle. The element is associated with an auto-

nomic manager that attempts to maintain some high-level objective for the element.

The behaviour of the element is continually monitored and analysed. When this devi-

ates sufficiently from the objective, the manager plans and executes a change to the

element in order to restore the desired behaviour. In our middleware the managed

elements are collections of components making up a distributed application.

Fig 1: A managed element (from [2])

The research issues involved in developing such a middleware framework include:

 how to express the high-level goals defining connection and placement policy

 how to automatically identify a configuration conforming to these goals

 how to automatically deploy such a configuration

 how to automatically evolve the deployed configuration when necessary due to

changing circumstances

o how to monitor the deployed application

o how to detect when the high-level goals are no longer being met

 how to orchestrate all these activities in a distributed environment

In order to describe how an application is intended to be structured, we propose a

domain-specific constraint-based language. This describes configuration goals in

terms of resources including software components and physical hosts, relationships

between hosts and components, and constraints over these. From such configuration

goals it is possible to:

 deploy components using the available physical resources

 configure monitoring software to assess whether the executing application contin-

ues to obey the constraints specified in the description

 configure software for automatically evolving the application in response to con-

straint violations arising from changes in the environment

Some mechanism is required for deploying and redeploying components in possi-

bly remote locations. We advocate the use of bundles, which were developed by us in

the Cingal project (Computation in Geographically Appropriate Locations) [3, 4].

Bundles permit XML-encoded closures of code and data to be pushed and executed in

remote locations. Cingal-enabled hosts provide a lightweight runtime and security

infrastructure, written in pure Java, necessary to support the execution of bundles.

There are several levels at which a deployed application may be evolved. The sim-

plest, on which we concentrate here, involves evolution of the configuration in order

to maintain a previously specified goal. Thus the configuration evolves whilst the

high-level configuration goal remains the same. We term this autonomic evolution,

and consider it to be fundamental to the autonomic management of distributed appli-

cations. Our aim is for this style of evolution to take place automatically whenever

required.

A second level of evolution is needed when the high-level goal itself changes, due

to a change in application requirements. Our framework handles both levels of evolu-

tion in the same way, treating the first as a special case of the second in which the

goal remains fixed. In both cases an ongoing autonomic cycle, as shown in Fig 1,

repeatedly attempts to solve the current constraint problem, deploys the resulting

configuration, and monitors the deployment to determine when to repeat the se-

quence.

2 Related Work

The framework described here involves description of application structure in terms

of high-level goals, automatic discovery of appropriate corresponding configurations,

and automatic deployment of those configurations. It relates to several research areas:

the use of models or architectures to describe the intended structure of an application;

constraint programming; and techniques for deploying and evolving component-based

software.

2.1 Architecture Description

A number of software architecture description languages (ADLs) have been devel-

oped, including Acme [5]. Aesop [6], ArchWare [7], Darwin [8], Rapide [9], SADL

[10], Unicon [11], and Wright [12]. Acme, for example, is intended to fulfil three

roles: to provide an architectural interchange format for design tools, to provide a

foundation for the design of new tools and to support architectural modelling. In

common with many ADLs, Acme supports the description of components joined via

connectors, which provide a variety of communication styles. Components and con-

nectors may be annotated with properties that specify attributes such as source files,

degrees of concurrency, etc.

As well as providing a basis for reasoning about software structure via explicit rep-

resentations of that structure, a number of systems support the specification of in-

tended properties, using architectural styles. A style defines certain structural or be-

havioural properties that are desired for an application. It is possible to check auto-

matically whether a given application instance conforms to a style, and in some cases

to generate conforming instances automatically. ADLs supporting styles include

Acme, ArchWare, Darwin, Rapide and Wright. A high-level configuration goal as

outlined in the introduction may be thought of as a specialised architectural style, in

that it corresponds to a set of possible configurations that meet the goal.

Styles are typically defined in a declarative manner in the form of constraints.

Other work involving the use of constraints to describe software configuration and

evolution includes [13-17]. Our work shares the motivation to use a simple declara-

tive notation to define high-level goals regarding intended application structure, but

differs from the systems mentioned here in several respects:

 We wish to allow the human administrator to control the deployment of compo-

nents onto physical nodes, in terms of the physical and logical properties of the re-

sources available on those nodes. It may be appropriate for physical placement

policy to be influenced by various considerations related to cost, performance, re-

silience, political issues and so on.

 We intend to manage autonomic evolution, necessary when a deployed application

deviates from its original constraints, solely from those constraints. This contrasts

with [14, 16, 17], in which repair strategies are expressed separately from the con-

straints in an imperative style.

The Active Pipes approach [18] encompasses the notions of machines and proc-

esses which transform data in an active network. The idea is to map a high level pipe-

line of software components onto physical network resources. As the authors state in

their paper, “it is necessary to have a general scheme of specifying application re-

quirements that is expressive enough to describe typical application scenarios while

simple enough to be used effectively”. In our framework we aim to combine this

approach with the notion of an ADL to encompass hardware and software compo-

nents.

2.2 Constraint Programming

Constraint programming models problems by declaring a set of variables with finite

domains and constraints between values of these variables. Instead of writing an im-

perative program to provide a result, the user invokes a search algorithm to find a

solution that satisfies the constraints specified by the user. A number of constraint

programming and solving systems exist. We believe that the lack of domain-specific

syntax in such systems makes them unsuitable for specifying the high-level configura-

tion goal in an autonomic application. However, they are applicable as constraint

solvers when used in conjunction with a domain-specific language.

For example, ECLiPSe [19] is a constraint logic programming system with syntax

similar to Prolog, supplied with a number of constraint solvers and libraries. JSolver

[20] is a commercial Java library which provides constraint satisfaction functionality,

while Cream [21] is a simpler open-source library. Any such systems could be em-

ployed in our framework.

In Section 4 we describe a new domain-specific constraint language, Deladas (DE-

clarative LAnguage for Describing Autonomic Systems), which is suitable for speci-

fying autonomic systems and may be used to drive the deployment and evolution

process. Currently we are developing a prototype implementation in which Deladas

programs are compiled into low-level constraint satisfaction problems, which are then

solved using Cream.

A similar approach is taken with Alloy [22], a declarative notation for describing

structural architectural constraints. The language is derived from Z, and is compiled

into lower level SAT constraint problems. However, it does not address the physical

deployment of components.

2.3 Deployment Techniques

The Cingal system [3, 4] supports the deployment of distributed applications in geo-

graphically appropriate locations. It provides mechanisms to execute and install com-

ponents, in the form of bundles, on remote machines. A bundle is the only entity that

may be executed in Cingal and consists of an XML-encoded closure of code and data

and a set of bindings naming the data. Cingal-enabled hosts contain appropriate secu-

rity mechanisms to ensure malicious parties cannot deploy and execute harmful

agents, and to ensure that deployed components do not interfere with each other either

accidentally or maliciously. Cingal components may be written using standard pro-

gramming languages and programming models. When a bundle is received by a Cin-

gal-enabled host, provided that the bundle has passed a number of checks, the bundle

is fired, that is, it is executed in a security domain (called a machine) within a new

operating system process. Unlike processes running on traditional operating systems,

bundles have a limited interface to their local environment. The repertoire of interac-

tions with the host environment is limited to: interactions with a local store, the mani-

pulation of bindings, the firing of other bundles, and interactions with other Cingal

processes. The approach described in this paper exploits much of the technology

provided by Cingal.

The OSGi Service Platform [23] addresses similar issues of remote installation and

management of software components, and (independently) adopts similar terminology

for bundles and wiring. The most significant difference is the lack of high-level de-

clarative architectural descriptions. This arises from it being targeted primarily at

software deployment onto smart and embedded devices, whereas Cingal is aimed

more generally at deployment and evolution of distributed applications on the basis of

explicit architectural descriptions. Another difference is in the wiring model: a given

OSGi bundle can be a producer and/or a consumer, and all its associated wires are

conceptually equivalent. Cingal allows any number of symbolically named ports to be

associated with a bundle, and the programmer may treat these differently. However,

the two schemes have equivalent modelling power. Finally, Cingal is more flexible

with regards to initial provisioning: its ubiquitous fire service allows bundles to be

pushed to a new node from a remote management agent without any intervention

required locally on the node. Initial provisioning in OSGi involves pull from a new

node, which must be initialised somehow with an address from which to pull the

code. The address may be provided by various means such as direct user intervention,

factory installation, reading from a smartcard, etc.

3 Our Approach

Our general approach is shown in Fig 2. The application administrator specifies a

deployment goal in terms of resources available and constraints over their deploy-

ment. The resources include software components and physical hosts on which these

components may be installed and executed. Constraints operate over aspects such as

the mapping of components to hosts and the interconnection topology between com-

ponents.

We assume that the distributed application can be structured as encapsulated com-

ponents, each with its own thread of control. The granularity of components is in-

tended to be large, so that a relatively small number of components execute on each

host. The components must be capable of recovering their own state if necessary, for

example, in the event of a host crash. In our current prototype, components communi-

cate with one another via asynchronous channels, but the approach could be extended

in a straight-forward manner to support other styles such as RPC. We also assume that

the application contains application-level protocols that cope with the disconnection

and reconnection of channels to different platforms and servers. One such technology

is the half session abstraction described by Strom and Yemeni [24].

The cycle shown in Fig 2 is controlled by the Autonomic Deployment and Man-

agement Engine (ADME). In order to produce a concrete deployment of the applica-

tion, the ADME attempts to satisfy the goal, specified by the administrator in the

Deladas language. The engine includes a Deladas parser and constraint solver. The

result of the attempted goal satisfaction is a set of zero or more solutions. Each solu-

tion is in the form of a configuration, which describes a particular mapping of com-

ponents to hosts and interconnection topology that satisfies the constraints. Configura-

tions are encoded in XML documents known as Deployment Description Documents

(DDDs).

Fig 2: Refined autonomic cycle

If a configuration can be found1, it is enacted by ADME to produce a running de-

ployment of the application. This is facilitated using Cingal, and the Cingal infrastruc-

ture must already be installed on each of the hosts involved. From a configuration

expressed as a DDD, ADME generates a collection of bundles that perform installa-

tion, instantiation and wiring of the components. Once these bundles have been fired

on the appropriate hosts, the application is fully deployed in its initial configuration.

This process is described in detail in [25].

The autonomic aspect of this approach is that the deployed application is instru-

mented with probes to monitor its execution. Events generated by the probes are sent

to the ADME, which may decide that the deployment no longer satisfies the original

goal, for example if a component or host fails. In this case the ADME evolves the

goal to take account of changed resource availability—for example, removing failed

hosts and perhaps adding new hosts that may now be available—and initiates the

satisfy/enact cycle again. This attempts to find a new solution of the constraints that

combines existing and new components, and to enact this in an efficient manner.

Assuming that such a new configuration can be found and deployed, the system has

reacted automatically and appropriately to a change in the application’s environment.

The cycle may continue indefinitely. This process is described in more detail in Sec-

tion 5.

The nature of the probes required to monitor the application depends on the con-

straints specified in the goal. At the simplest level the constraints operate over just the

component/host topology, and for this, simple probes are sufficient. Where more

complex probes are required, this can be deduced by ADME from the specified con-

straints. For example, constraints can operate over the latency or bandwidth of a

channel, the degree of replication of a component, or the mean availability of a host.

Each of these dynamic aspects requires a specialised probe. We view Deladas as a

core language that may be extended to incorporate new constraint types and associ-

ated probes.

This style of autonomic application evolution can be achieved without human in-

tervention. The framework described above also accommodates the need for more

1 The ADME may be configured to use the first configuration found, or to allow the administrator to

choose among multiple configurations.

wide-ranging evolution. For example, in addition to changes in the application’s envi-

ronment, changes may occur in the enterprise that the application supports; examples

include changes in legal or financial regulations, or mergers of organisations. These

may require manual revision of the deployment goal, including changes to the con-

straints.

4 Initial Deployment

In this section we explore, using an example, the use of Deladas to describe the re-

sources and constraints described in the last section. The language belongs to the

family of architectural description languages (ADLs). Unlike some ADLs, Deladas

does not contain any computational constructs, and programs that perform computa-

tion cannot be written in it; it is purely declarative and descriptive.

We believe that Deladas’ constraint style of deployment specification gives it a

relative simplicity compared with more explicit styles, making it suitable for the

specification of relatively large application deployments. This is especially important

when the deployment is to be recomputed repeatedly in an autonomic cycle.

Deladas is used to define systems and constraints over them. The types supported

are: component, host and constraintset. The type component is used to describe soft-

ware components at a high level. Components, like many of the types in Acme, have

associated attributes. The mandatory attributes for components are bundles and ports.

Bundles are used to define the code and static data of the components. Ports are used

to define communication channels between components. The type host is used to

describe a resource on which components can be deployed. Attributes of hosts include

IP-address, ownership, platform type, etc.

The type constraintset is a high level constraint-based specification of the invari-

ants that pertain to a system. A constraintset constrains the way in which the system

is realised, for example how processes are placed on machines and how the processes

are wired up. These are used to yield an initial configuration that might be deployed,

and also to constrain deployments in the face of change. In the future we envisage

extending the constraintsets described here to include other aspects such as bandwidth

and geopolitical constraints.

To illustrate the use of constraintsets, we use an example drawn from the peer-to-

peer domain, in which clients connect to routers. Fig 3 shows one particular configu-

ration that satisfies the deployment goal, expressed as a Deladas constraintset, shown

in Fig 4. In the configuration shown in Fig 3, the six hosts, labelled h1 to h6, each

contain a single component, labelled C for client and R for router. The components

are connected via uni-directional channels, which are attached to particular ports on

each component.

Fig 3: Example configuration

We now describe in more detail the Deladas constraintset shown in Fig 4. Given a set

of resources specified in Deladas and comprising components and hosts, the con-

straintset might describe none, one or many possible configurations. It is easily possi-

ble to write Deladas constraintsets that are internally inconsistent and therefore spec-

ify no valid configurations, irrespective of resources. The writing of appropriate con-

straintset definitions is likely to remain difficult, and we envisage that constraintsets

for common architectural patterns might be available off the shelf, presenting the

opportunity for high level architectural reuse and specialisation.

In this example, the constraintset contains five constraint clauses. These clauses

operate over two types of component named Router and Client. It is not necessary to

specify the concrete types of these components but it is possible to infer that, in order

to satisfy the constraints, the component Router must have ports named rin, rout, cin

and cout. The constraints are written in first-order logic and specify (in sequence)

that:

 hosts run an instance of a router and/or a client

 every client connects to at least one router via the out and in ports on the client

and the cin and cout ports on the router

 there are at most two clients for every router

 every router is connected to at least one other router via their rin and rout ports

 routers are strongly connected

Note that if two clients are connected to a router, routers require a separate cin and

cout port per client.

constraintset randc = constraintset {

 // 1 router or client per host

 forall host h in deployment (

 card(instancesof Router in h) = 1 or

 card(instancesof Client in h) = 1

)

 // every client connects to at

 // least 1 router

 forall Client c in deployment (

 exists Router r in deployment (

 c.ports.out connectsto r.ports.cin

 c.ports.in connectsto r.ports.cout

)

)

 // every router connects to at

 // most 2 clients

 forall Router r in deployment (

 card(Client c connectedto r) <= 2

)

 // every router connects to at

 // least 1 other router

 forall Router r1 in deployment (

 exists Router r2 in deployment (

 r1.ports.rout connectsto r2.ports.rin

 r1.ports.rin connectsto r2.ports.rout

 r1 != r2

)

)

 // routers are reachable from each other

 forall Router r1,r2 in deployment (

 reachable(r1, r2)

)

}

Fig 4: Example Deladas constraintset

Fig 5 shows an example Deladas specification of resources that might be given to the

solver in order to obtain a deployment. This specification defines the components

Client and Router. The specification of Client includes the bundle containing code

and static data, and defines two ports named in and out. The port definition of Router

states that routers may have a multiplicity of connections, designated by the bracket

notation. This variadicity is missing in many ADLs, preventing the specification and

generation of architectures like this example.

component Client(

 code = "file:///D:ClientBundle.xml",

 ports = {in, out}

)

component Router(

 code = "http://deladas.org/RBundle.xml",

 ports = {cin[], cout[], rin[], rout[]}

)

host h1 = host(ipaddress = "192.168.0.1")

...

host h6 = host(ipaddress = "192.168.0.6")

Fig 5: Example Deladas resources

5 An Autonomic Cycle

Here we describe in more detail the autonomic cycle first described in Section 3. We

assume that the clients and routers described in Figs 4 and 5 have been deployed in

the topology shown in Fig 3, which is compliant with the Deladas constraints. Fig 6

shows part of this deployment in more detail. Each component executes within a

Cingal-supported machine as a separate operating system level process. For each host

running a component, the system deploys another component called the Autonomic

Management Process (AMP). This task is responsible for monitoring the health of

each of the deployed components running on that host. The overall orchestration of

the deployed system is the responsibility of an instance of the ADME. It is unimpor-

tant whether this is the same instance that caused the original deployment of the archi-

tecture, or not. To avoid ambiguity we will call the instance of the ADME performing

the orchestration the Monitoring ADME (MADME). The MADME holds the knowl-

edge required for the autonomic cycle in the form of the resources (components and

hosts) and the constraints over those resources.

Fig 6: Components for autonomic management

It is now possible to see how the autonomic cycle shown in Fig 2 is implemented. An

instance of the ADME solves the constraints and the resulting architecture is enacted

by ADME to produce a running deployment. This deployment may include a new

MADME process, or the ADME instance may become the MADME for the deploy-

ment. When events are received by the MADME that indicate invalidation of the

constraints, the MADME attempts to find a new solution to the constraints. We have

glossed over two details—how the changes are detected and how stability of the sys-

tem is maintained.

When a system is deployed, in addition to the resources and constraints specified in

Deladas, the MADME has knowledge of the identity of the Cingal machines execut-

ing the components, and of the AMP processes. Each Cingal machine running a com-

ponent knows of its local AMP process, which is configured with knowledge of the

MADME. To illustrate how the autonomic cycle is initiated we will consider two

possible failures: the failure of the router process running on host h3, and the failure

of the entire node h3.

In the event of the router process running on h3 failing (say due to a heap over-

flow), various different entities can potentially observe the failure: the connected

clients running on hosts h1 and h5, the connected router running on host h4, the

MADME, or the collocated AMP. The failures can be detected either by the loss of a

connection to other processes or by using heartbeats between the components. The

entities observing the failure are commonly known as failure suspectors and the ap-

proach to recovery advocated here is perhaps first due to Birman [26].

In practice, being able to determine which component has failed in the face of un-

reliability is notoriously difficult, and there exists a large body of work on unreliable

failure suspectors, e.g. [27, 28]. For the purposes of this paper we assume that we can

reliably determine which hosts and/or components have failed, and that the failures

will be reported to the MADME.

If a failure has been reported by the collocated AMP, the MADME can trivially de-

termine that it is the process hosting the router and not the host that has failed. In this

case the MADME can instantiate a new router instance on node h3 using a subset of

the functionality used to initially create it. If the entire h3 node fails, the MADME is

required to find a new solution to the constraints. However, before examining how

this is performed, the issue of stability of constraint solutions must be addressed.

The solution to the placement of clients and routers shown in Fig 3 is one of many

possible solutions to the constraints given in the Deladas specification. Other solu-

tions may be trivially found by hosting the routers on hosts h1 and h2 for example.

When the MADME is required to find a new solution to the specified constraints, it is

desirable to minimise the redeployment of processes between hosts. Before attempt-

ing to find a new solution to the general problem, as it did when the initial deploy-

ment was determined, the MADME therefore attempts to solve a more constrained

problem. In this case, the problem is formed from the original constraints and re-

sources, and the bindings surviving from the original deployment, comprising R to h4,

C to h1, C to h2, C to h5 and C to h6. If no solution can be found to this problem, the

extant bindings are progressively removed from the description until a solution can be

found.

Like the original attempt to find a solution, there is always the possibility that no

solution may be found. If no solution can be found, a constraint error is issued by the

MADME. This can be delivered via a variety of mechanisms.

In the situation where the host h3 fails completely, the MADME might find the so-

lution shown in Fig 7.

Fig 7: Evolved configuration

Thus far, the autonomic processes described have not included any human interven-

tion. However, as discussed earlier, changes may occur in the enterprise that the ap-

plication supports, requiring manual revision of the deployment goal, including

changes to the constraints. In order to accommodate such changes, mechanisms are

required whereby the resources and constraints may be changed by human agents.

This may be achieved via direct interaction with the MADME.

The situations where resources are changed are similar to that where evolution is

forced due to some failure. Changes initiated by a human are richer than those that are

machine-initiated since resources can be added as well as removed. However, the

changing of constraints cannot occur without human intervention. To accommodate

these changes, the MADME presents five methods (as Web services) to the outside

world, shown in Fig 8.

String getResources();

String getConstraints();

String getConfig();

String[] satisfy(String config,

 String resources,

 String constraints);

void enact(String config);

Fig 8: MADME external interface

The first three methods are selectors enabling the Deladas resources and constraints

and the DDD describing the deployment to be obtained. The satisfy method allows

new constraints, resources and existing deployed components to be specified in order

to accommodate some enterprise-level change. The config parameter may be null,

corresponding to the initial deployment problem. The satisfy method returns a collec-

tion of DDDs compliant with the specified constraints. The enact method performs

enactment as described earlier. This may require extant processes to be terminated

and redeployed elsewhere.

6 Status and Further Work

The main constituents of the framework described in this paper are:

 the Deladas language;

 the constraint solver;

 the component deployment mechanism;

 the monitoring infrastructure; and

 the ADME autonomic manager

We have implemented a prototype compiler for the Deladas language. This trans-

lates the high-level constraints into several separate sub-problems: the number of

components to be instantiated; the inter-connection topology between components;

and the mapping of components to physical nodes. Each problem is specified in terms

of constraints over sets of integer variables. For example, the inter-connection topol-

ogy problem is encoded using a binary variable for each possible connection between

two components.

We are experimenting with the Cream constraint library [21] to find valid solutions

to each of the sub-problems. We have implemented a translator that takes the output

from Cream and generates an XML description of the required application configura-

tion.

The component deployment mechanism is also fully implemented, based on the

Cingal system [4]. It takes an XML description and deploys it on a set of Cingal-

enabled hosts.

The monitoring infrastructure and autonomic manager will be developed once the

initial satisfy/enact functionality is operational. We would hope to have a full pro-

totoype implementation completed by the time of the conference.

We plan to evaluate the basic utility of the framework initially by deploying sev-

eral distributed applications such as a load-balanced web server and a pub-

lish/subscribe network onto a Beowulf cluster, and forcing various types of host and

component failure. Longer term we will investigate the scalability of the framework,

in particular the tractability of the constraint solving part, and experiment with exten-

sibility in terms of the constraints and monitoring infrastructure that can be incorpo-

rated.

7 Conclusions

We believe that autonomic management of distributed application deployment will

become essential as the scale and complexity of applications grow. This paper has

outlined a middleware framework to support the initial deployment and subsequent

autonomic evolution of distributed applications in the face of perturbations such as

host and link failure, temporary bandwidth problems, etc. The knowledge required for

autonomic management is specified in the form of a set of available hardware and

software resources and a set of constraints over their deployment. We postulate that it

is feasible to implement an autonomic manager that will automatically evolve the

deployed application to maintain the constraints while it is in operation. We are cur-

rently working on an implementation to enable us to test this assertion.

8 Acknowledgements

This work is supported by EPSRC Grants GR/M78403 “Supporting Internet Compu-

tation in Arbitrary Geographical Locations”, GR/R51872 “Reflective Application

Framework for Distributed Architectures” and GR/S44501 “Secure Location-

Independent Autonomic Storage Architectures”, and by EC Framework V IST-2001-

32360 “ArchWare: Architecting Evolvable Software”.

We thank Ian Gent and Tom Kelsey of the St Andrews constraint satisfaction

group for helpful discussions on constraint solving, Warwick Harvey for his tutorials

on ECLiPSe, and Ron Morrison and Dharini Balasubramaniam for their insight into

Architecture Description Languages.

This paper is a revised version of one originally submitted to ICAC’04, now avail-

able as a technical report [29]. An extended abstract and poster will appear at

ICAC’04 in May 2004 [30].

9 References

1. IBM. Autonomic Computing: IBM's Perspective on the State of Information Technology.

IBM, 2002. http://www.research.ibm.com/autonomic/

2. Kephart J.O., Chess D.M. The Vision of Autonomic Computing. IEEE Computer 2003;

36,1:41-50

3. Diaz y Carballo J.C., Dearle A., Connor R.C.H. Thin Servers - An Architecture to Sup-

port Arbitrary Placement of Computation in the Internet. In: Proc. 4th International Con-

ference on Enterprise Information Systems (ICEIS 2002), Ciudad Real, Spain, 2002, pp

1080-1085

4. Dearle A., Connor R.C.H., Diaz y Carballo J.C., Neely S. Computation in Geographically

Appropriate Locations (CINGAL). EPSRC, 2002. http://www-systems.dcs.st-

and.ac.uk/cingal/

5. Garlan D., Monroe R., Wile D. ACME: An Architecture Description Interchange Lan-

guage. In: Proc. Conference of the Centre for Advanced Studies on Collaborative Re-

search (CASCON'97), Toronto, Canada, 1997, pp 169-183

6. Garlan D., Allen R., Ockerbloom J. Exploiting Style in Architectural Design Environ-

ments. In: Proc. 2nd ACM SIGSOFT Symposium on Foundations of Software Engineer-

ing, New Orleans, Louisiana, USA, 1994, pp 175-188

7. Morrison R., Kirby G.N.C., Balasubramaniam D., Mickan K., Oquendo F., Cîmpan S.,

Warboys B.C., Snowdon B., Greenwood R.M. Constructing Active Architectures in the

ArchWare ADL. University of St Andrews Report CS/03/3, 2003. http://www.dcs.st-

and.ac.uk/research/publications/MKB+03.shtml

8. Magee J., Dulay N., Eisenbach S., Kramer J. Specifying Distributed Software Architec-

tures. In: W. Schäfer and P. Botella (ed) Lecture Notes in Computer Science 989, Proc.

5th European Software Engineering Conference (ESEC), Sitges, Spain. Springer, 1995,

pp 137-153

9. Luckham D.C., Kenney J.L., Augustin L.M., Vera J., Bryan D., Mann W. Specification

and Analysis of System Architecture Using Rapide. IEEE Transactions on Software En-

gineering 1995; 21,4:336-355

10. Moriconi M., Qian X., Riemenschneider R.A. Correct Architecture Refinement. IEEE

Transactions on Software Engineering 1995; 21,4:356-372

11. Shaw M., DeLine R., Klein D.V., Ross T.L., Young D.M., Zelesnik G. Abstractions for

Software Architecture and Tools to Support Them. IEEE Transactions on Software Engi-

neering 1995; 21,4:314-335

12. Allen R., Garlan D. A Formal Basis for Architectural Connection. ACM Transactions on

Software Engineering and Methodology 1997; 6,3:213-249

13. Minsky N.H., Rozenshtein D. Towards Controlling the Evolution of Large Software

Systems or The DARWIN System. In: Proc. XP7.52 Workshop on Database Theory,

Austin, TX, USA, 1986

14. Coatta T., Neufeld G. Distributed Configuration Management Using Composite Objects

and Constraints. Distributed Systems Engineering 1994; 1,5:294-303

15. Cheng W.-W., Garlan D., Schmerl B.R., Sousa J.P., Spitnagel B., Steenkiste P. Using

Architectural Style as a Basis for System Self-Repair. In: Proc. IEEE/IFIP Conference on

Software Architecture (WICSA3), Montréal, Canada, 2002, pp 45-59

16. Schmerl B.R., Garlan D. Exploiting Architectural Design Knowledge to Support Self-

Repairing Systems. In: Proc. 14th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2002), Ischia, Italy, 2002, pp 241-248

17. Georgiadis I., Magee J., Kramer J. Self-Organising Software Architectures for Distrib-

uted Systems. In: Proc. 1st Workshop on Self-Healing Systems, Charleston, USA, 2002,

pp 33-38

18. Keller R., Ramamirtham J., Wolf T., Plattner B. Active Pipes: Service Composition for

Programmable Networks. In: Proc. IEEE MILCOM 2001, McLean, VA, USA, 2001

19. The ECLiPSe Constraint Logic Programming System. 2003. http://www-

icparc.doc.ic.ac.uk/eclipse/

20. ILOG. ILOG JSolver. 2004. http://www.ilog.com/products/jsolver/

21. Tamura N. Cream: Class Library for Constraint Programming in Java. 2003.

http://bach.istc.kobe-u.ac.jp/cream/

22. Jackson D. Alloy: A Lightweight Object Modelling Notation. MIT, 2001.

23. OSGi Service Platform Release 3. Open Services Gateway Initiative, 2003.

http://www.osgi.org/

24. Strom R., Yemini S. Optimistic Recovery in Distributed Systems. ACM Transactions on

Computer Systems 1985; 3,3:204-226

25. Dearle A., Kirby G.N.C., McCarthy A., Diaz y Carballo J.C. A Flexible and Secure De-

ployment Framework for Distributed Applications. In: Proc. 2nd International Working

Conference on Component Deployment (CD 2004), Edinburgh, Scotland, 2004.

http://www.dcs.st-and.ac.uk/research/publications/DKM+04.php

26. Birman K.P., Cooper R. The ISIS Project: Real Experience with a Fault Tolerant Pro-

gramming System. Operating Systems Review 1991; 25,2:103-107

27. Chandra T., Toueg S. Unreliable Failure Detectors for Reliable Distributed Systems.

Journal of the ACM 1996; 43,1:225-267

28. Aguilera M.K., Chen W., Toueg S. Heartbeat: a Timeout-Free Failure Detector for Qui-

escent Reliable Communication. In: M. Mavronicolas and P. Tsigas (ed) Lecture Notes in

Computer Science 1320, Proc. 11th International Workshop on Distributed Algorithms

(WDAG '97), Saarbrücken, Germany. Springer-Verlag, 1997, pp 126-140

29. Dearle A., Kirby G.N.C., McCarthy A. A Framework for Constraint-Based Deployment

and Autonomic Management of Distributed Applications. University of St Andrews Re-

port CS/04/1, 2004. http://www.dcs.st-and.ac.uk/research/publications/DKM04a.php

30. Dearle A., Kirby G.N.C., McCarthy A. A Framework for Constraint-Based Deployment

and Autonomic Management of Distributed Applications (Extended Abstract). To Ap-

pear: Proc. International Conference on Autonomic Computing (ICAC-04), New York,

USA, 2004. http://www.dcs.st-and.ac.uk/research/publications/DKM04b.php

	OLE_LINK1
	OLE_LINK2

