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Abstract 

Anatase TiO2 spheres with exposed dominant {001} facets were doped with interstitial 

boron to have a concentration gradient with the maximum concentration at the surface. 

They were then further doped with substitutional nitrogen by heating in an ammonia 

atmosphere at temperatures from 440 to 560 °C to give surface N concentrations 

ranging from 7.03 to 15.47 at%. The optical absorption, atomic and electronic structures 

and visible-light photoelectrochemical water oxidation activity of these materials were 

investigated. The maximum activity of the doped TiO2 was achieved at a nitrogen 

doping temperature of 520 oC that gave a high absorbance over the whole visible light 

region but with no defect-related background absorption. 
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Introduction 

Solar energy is the most abundant renewable energy source for mankind and is 

considered to play a very important role in constructing environmentally-friendly 

energy supply systems. Among the various modern technologies for using solar energy, 

photocatalysis represents an amazing route of simultaneously converting and storing 

solar energy in the form of chemical energy by inducing targeted redox reactions such 

as water-splitting to release hydrogen and reduce carbon dioxide to produce high-value 

chemicals on the photocatalyst surface. Since the pioneering work on 

photoelectrochemical water splitting using a rutile TiO2 single crystal as photoanode,[1] 

intensive studies over 40 years, particularly in the last decade, have achieved substantial 

developments in photocatalysis.[2-9] Specifically, overall water-splitting on the basis 

of a solid-state Z-scheme system of La/Rh codoped SrTiO3/Au/Mo doped BiVO4 sheets 

doped with both La and Rh gave a solar-to-hydrogen energy conversion efficiency of 

over 1%.[10] In addition, photocatalytic water-splitting under irradiation with 600 nm 

visible light was achieved on a complex metal oxynitride photocatalyst, although its 

quantum efficiency was still low.[11] The impressive progress strongly demonstrates 

the great promise of solar-driven photocatalysis in converting solar energy into storable 

chemical energy. 

Compared to the rapid development of complex metal oxide photocatalysts,[5, 12] 

making the simple binary photocatalyst TiO2 active so that it can fully harvest visible 

light is a challenge.[13-22] TiO2 is easily available and low-cost, but has no visible light 

absorption due to its large bandgap of around 3 eV. Introducing suitable heteroatoms to 
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replace Ti and/or O atoms in it has shown the feasibility of increasing visible light 

absorption. Among many possible doping strategies, substitutional N-doping (N atom 

substituting lattice O atom) has been supposed to be able to lift the valence band 

maximum of TiO2 due to the higher orbital energy levels of N-2p than those of O-2p. 

Unfortunately, N-doping is highly limited as a result of low solubility and 

inhomogeneous distribution in most metal oxides with strong metal-oxygen bonds. [23-

25]. In the case of TiO2, this can only introduce some localized states of dopants in the 

band gap and give rise to a low absorbance of the extended visible light absorption band. 

Our previous study[25] showed that interstitial boron in anatase TiO2 can greatly 

weaken the strong Ti-O bonds to facilitate the replacement of oxygen with nitrogen. In 

the subsequent nitrogenation process, the boron concentration gradient in the TiO2 

resulted in a nitrogen concentration gradient in a red B/N doped anatase TiO2 

photocatalyst with a strong absorption band in the spectrum of visible light. Moreover, 

charge compensation between the boron and nitrogen dopants suppresses the formation 

of deleterious recombination centers of charge carriers. In contrast to this red TiO2 with 

a high concentration of nitrogen dopant, regular nitrogen-doped TiO2 showed a 

photocatalytic activity decrease with an increase of nitrogen dopant.[26] Research on 

the dependence of the photocatalytic activity of red TiO2 on the concentration of 

nitrogen dopant and its mechanism at the electronic level should provide useful 

guidelines to the development of both red TiO2 and other binary metal oxide 

photocatalysts. 

In this study, the concentration of nitrogen dopant in red TiO2 photocatalysts was 
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increased by increasing the nitrogenation temperature from 440 oC to 560 oC and its 

effect on photoelectrochemical water oxidation activity was studied. Several 

characterization methods were used to understand why there was a maximum activity 

at an optimum surface nitrogen concentration.  

 

Results 

The morphology and microstructure of representative B/N doped anatase TiO2 

microspheres were studied by scanning (SEM) and transmission electron microscopy 

(TEM), as shown in Figure 1. The microsphere surface consists of dominant square 

{001} facets with an edge size of tens of nanometers and minor {101} facets. The 

obtuse angle between {001} and {101} facets measured in Fig. 1c is around 111.7o, 

which is a good match with the ideal crystallographic value.[28] Additional N-doping 

did not change the basic shape of the microspheres. However, compared to the sharp 

edges of the square {001} facets of the pristine boron-doped TiO2 microspheres (Fig. 

S5 of reference 27), the edges those further doped with N were less defined as a result 

of the nitrogen diffusion from the surface to the bulk. A high resolution TEM image 

(Fig. 1d) shows lattice fringes of (001) planes with a spacing of 2.4 Å. Unclear fringes 

also suggest some disruption of the local atomic structure as a result of the introduction 

of a high concentration of nitrogen. 

The chemical states and concentrations of nitrogen and boron dopants in different 

boron/nitrogen doped TiO2 samples prepared at the different nitrogenation temperatures 

were investigated by X-ray photoelectron spectroscopy (XPS), and the results are given 
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in Figure 2. The pristine boron-doped TiO2 has interstitial boron with a B 1s core 

electron binding energy of 192.2 eV indicating the presence of B-O bonds. With the 

introduction of nitrogen dopant, an additional B 1s XPS signal with a binding energy 

around 190.3 eV was formed due to the formation of B-N bonds.[25] The ratio of boron 

in B-N bonds to that in B-O bonds in the sample obtained at a temperature of 440 oC is 

0.52 due to the low concentration of the nitrogen dopant and increases to 1.28 for the 

560 oC sample (determined from the area ratio of XPS B 1s peaks in B-O and B-N 

bonds). This is the result of the increased nitrogen content that is indicated by the 

stronger XPS peak of N 1s core. The oxidation state of the dominant nitrogen species 

(N 1s, binding energy 397.6 eV) in the sample is very close to that in TiN or Ti-N 

bonds,[13] suggesting the substitution of nitrogen for oxygen in the TiO2. The 

unchanged binding energy of the nitrogen species in different samples demonstrates the 

independence of its oxidation state on the nitrogenation temperature. Note that the 

minor fitted peak centered at 399.3 eV is assigned to interstitial nitrogen. It seems that, 

on the basis of the evolution of the peaks of the two different nitrogen species, high 

temperature nitrogenation favors the incorporation of substitutional rather than 

interstitial nitrogen. Moreover, the atomic ratio of nitrogen to titanium increases from 

7.03% at 440 oC to 15.47% at 560 oC (the values for each temperature are given in 

Table S1). It should be pointed out that the nitrogen concentration given here directly 

reflects the situation in several nanometer thick surface layer of the microspheres due 

to surface sensitivity of XPS technique itself. 
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Figure 1 a and b, SEM and TEM images of a representative N/B-doped anatase TiO2 

microsphere with the top surface consisting of {001} facets prepared by heating pristine 

boron-doped anatase microspheres at 520 oC in a gaseous ammonia atmosphere. c and 

d, high resolution TEM images showing the exposed top {001}/{101} facets, recorded 

from the region marked by the red rectangle in Figure 1b. 

 

Figure 2 Representative X-ray photoelectron spectra of B 1s and N 1s core electrons 

recorded from the pristine surface of the B/N doped TiO2 microspheres prepared at the 

different nitrogenation temperatures (440 oC, 480 oC, 520 oC and 560 oC). 
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The close dependence of the optical absorption band of B/N-doped TiO2 on the 

nitrogenation temperature was detected by UV-visible absorption spectroscopy (Figure 

3). Two features are seen in Figure 3a. 1) An additional shoulder-like absorption band 

spanning the whole spectrum of visible light is formed after the incorporation of 

nitrogen at 440 oC. The absorption of this visible light band gradually increases with 

increasing amounts of nitrogen dopant at higher nitrogenation temperatures. 2) No 

obvious background absorption in the wavelength range beyond 700 nm is formed for 

the three samples obtained at temperatures ≤ 520 oC while a strong featureless 

background absorption band beyond 700 nm is formed for the TiO2-560 sample. 

The first feature can be understood as follows. The origin of the visible light 

absorption band is the newly formed N 2p states with a higher energy level than the 

pristine O 2p dominated valence band edge of TiO2. The dispersion width of N 2p states 

increases with both the concentration and spatial distribution of substitutional nitrogen 

in TiO2 as illustrated in Figure 4. A low concentration of nitrogen located in the thin 

surface layer only contributes to some localized N 2p states in the bandgap that are 

responsible for the small shoulder-like absorption band, as in sample TiO2-440 (Figure 

4a).[26] A medium concentration in the relatively thick surface layer induces the 

formation of an isolated narrow band of main N 2p states above the pristine valence 

band that is responsible for a large shoulder-like absorption band seen in e.g. TiO2-480 

(Figure 4b). A high N concentration in a sufficiently thick layer results in real bandgap 

narrowing by mixing the N 2p states with the pristine valence band to elevate the band 

edge for the desired band-to-band redshift of the absorption edge, probably as in sample 
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TiO2-560 (Figure 4c).[23, 24] In contrast, the intrinsic bandgap remains basically 

unchanged in these two conditions (Figure 4a and b). The plots of the transformed 

Kubelka–Munk function against the light energy for different samples in Figure 3b 

further support the above analysis. The extrapolated edge of the visible light absorption 

band of sample TiO2-520 is 1.90 eV. The second feature is actually controlled by the 

formation of Ti3+ defects from the charge imbalance between O2- and N3-, which is 

normally observed in common N-doped TiO2.[26] The presence of the interstitial boron 

with additional donor electrons suppresses the formation of Ti3+ by forming B-N bonds 

(Figure 2). However, the very high concentration of nitrogen introduced in sample 

TiO2-560 exceeds the capability of the boron in maintaining the charge balance so that 

some defect states below the TiO2 conduction band are formed. 

 

Figure 3 a, UV-visible absorption spectra of the samples of B/N-doped TiO2 

microspheres prepared at different nitrogenation temperatures (440 oC, 480 oC, 520 oC 

and 560 oC) compared to the pristine TiO2 sample. d, corresponding plots of the 

transformed Kubelka–Munk function against light energy for the different samples. 
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Figure 4 Schematic of the band structures of substitutional nitrogen-doped TiO2 

(containing interstitial boron) with different concentrations of nitrogen dopant: a, the 

formation of localized N 2p states at a low concentration of nitrogen dopant in a thin 

layer; b, the formation of an isolated narrow N 2p band at a medium concentration of 

nitrogen dopant in a relatively thick layer; c, bandgap narrowing at a high enough 

concentration of nitrogen dopant in a thick layer. CB: conduction band; VB: valence 

band. The pristine conduction and valence bands are dominated by Ti 3d and O 2p states, 

respectively.  

 

Comparison of the absorption spectra of B/N doped TiO2 with that of layer-structure 

Cs0.68Ti1.83O4 homogeneously doped with nitrogen (Figure 1B of reference 29) where 

the N/Ti atomic ratio ranges from 1.09% to 16.94%),[29] reveals distinctly different 

changes in the additional visible light absorption band caused by nitrogen doping. The 

B/N doping results in a nearly identical light absorption onset at around 750 nm but 

gradually increased absorbance with an increase in nitrogen content. In contrast, 

homogeneous N doping in Cs0.68Ti1.83O4 results in almost the same absorbance but a 

gradual band-to-band redshift of the light absorption onset in samples with increasing 

nitrogen dopant. Moreover, the nature of such a band-to-band redshift is independent 
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of N concentration in the case of homogeneous N doping. The distinct optical 

absorption modes caused by nitrogen doping can be understood in terms of the different 

spatial distributions and concentrations of nitrogen dopant in the TiO2 and Cs0.68Ti1.83O4. 

In principle, narrowing the bandgap of a semiconductor by doping requires the 

involvement of introduced heteroatoms in the strong uniform interaction field of long-

range ordered intrinsic lattice atoms. For the homogeneous doping, the uniform 

distribution of N dopant throughout the whole particles, which is kinetically controlled 

by the layered structure of Cs0.68Ti1.83O4, can meet this requirement for bandgap 

narrowing. The concentration of N, which is thermodynamically controlled by the 

nitrogenation temperature, determines the extent of the bandgap narrowing and thus the 

absorption onset by changing the dispersion width of N 2p states. For a doping gradient, 

the gradual decrease of N dopant concentration from the top surface to zero in the bulk 

leads to an inhomogeneous atomic interaction along the direction of the concentration 

gradient. The features of the interstitial boron-assisted substitutional nitrogen doping 

process in terms of both the concentration and spatial distribution of nitrogen dopant 

are thermodynamically controlled by the nitrogenation temperature. Low-temperature 

nitrogenation results in a higher concentration of nitrogen in boron-doped TiO2 for a 

maximum absorption onset compared to that in layered Cs0.68Ti1.83O4 (for example, 

N/Ti 7.03% in TiO2 at 440 oC vs 1.09% in Cs0.68Ti1.83O4 at 500 oC). However, the 

diffusion length in non-layered TiO2 at low nitrogenation temperatures is limited so that 

the involvement of nitrogen in the strong long-range interaction of intrinsic lattice 

atoms is not enough to induce bandgap narrowing. A higher nitrogenation temperature 
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favors both substitutional nitrogen doping and diffusion of nitrogen from surface to 

bulk for the desired bandgap narrowing. 

In addition to the substantial changes in the optical absorption band caused by 

nitrogen doping in boron-doped TiO2, the local atomic structure was also modulated as 

revealed in Raman and Fourier transform infrared (FTIR) spectra. Anatase TiO2 has six 

Raman active modes, 3Eg + 2B1g + A1g,[30] where one of the two B1g modes is hard to 

distinguish from the A1g mode at around 515 cm-1 (Fig. 5). Compared to the pristine 

boron-doped TiO2, further nitrogen doping conducted at different temperatures shows 

the unchanged Raman shifts of B1g, Eg(2) and Eg(3). However, the Eg(1) mode seen in 

TiO2-520 and TiO2-560 shows an upshift in wavenumber from 144 to 146 cm-1. 

Moreover, the doublet of the B1g + A1g modes at around 515 cm-1 is split into two 

separate modes centered at 514 cm-1 and 494 cm-1. The splitting of such a doublet can 

be observed at low temperature.[31] In the current case, the incorporation of a high 

concentration of nitrogen heteroatom into the framework of TiO2 changes the force 

constants of Ti-O bonds to induce the splitting of the doublet. In contrast, most nitrogen 

doped TiO2 did not show such splitting probably because the low concentration of 

nitrogen dopant and also surface distribution of nitrogen dopant. The shift by around 

20 cm-1 of the fingerprint region of TiO2 below 1000 cm-1 towards a low wavenumber 

in the FTIR spectra at the high concentration of nitrogen doping in Figure S2 supports 

the local structure modulation caused by nitrogen doping. Note that the signal with the 

peak at 3446 cm-1 assigned to surface hydroxyl groups and adsorbed water molecules 

[32, 33] shows a negligible intensity change, suggesting good retention of the surface 
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hydrophilicity of TiO2 upon nitrogen doping. 

 

Figure 5 Raman spectra of B/N-doped TiO2 microspheres prepared at different 

nitrogenation temperatures (440 oC, 480 oC, 520 oC and 560 oC) compared to the 

pristine boron-doped TiO2 sample. The wavelength of the excitation light is 633 nm. 

 

The dependence of the concentration of nitrogen dopant on the photocatalytic activity 

of the B/N-doped TiO2 obtained above was studied by recording the 

photoelectrochemical water oxidation behavior of the TiO2 based photoanodes under 

visible light irradiation (> 420 nm). Nitrogen doping greatly increases the photocurrent 

of the doped TiO2 photoanodes as a result of visible light absorption. The photocurrent 

density increases monotonically with increased nitrogenation temperature up to 520 oC 

but decreases at a nitrogenation temperature of 560 oC (Figure 6a). This trend can be 

understood from the balance between the enhanced favorable visible light absorption 

and a simultaneous increase in the number of recombination centers of photogenerated 

charge carriers with a larger amount of nitrogen dopant. The Ti3+ defects generated by 

a high concentration of nitrogen dopant achieved at 560 oC, as illustrated in Figure 3, 
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act as recombination centers to impair the photoelectrochemical activity. 

The photocurrent density (Jphoto) generated by the illuminated photoanode can be 

depicted as follows: 

rectr

tr
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where, q is the unit charge, g is the flux of holes into the surface, ktr is the rate constant 

for hole transfer and krec is the rate constant for electron/hole recombination at the 

surface. ktr is considered to be independent of the potential applied. krec is proportional 

to the electron concentration at the surface (nsurf) that decreases with the increase of 

band bending as follows. 
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where, nb is the electron (majority carrier) concentration in bulk, sc is the band bending 

potential at the surface and increases with the increase of applied potential. Therefore, 

the photocurrent density increases with the increase of potential applied for each sample 

due to the reduction of krec. The increased photocurrent density at the fixed potential 

with the increase of nitrogenation temperature before 520 oC is mainly attributed to the 

improved absorption in visible light region that correspondingly increases the g value. 

Although further increasing nitrogenation temperature beyond 520 oC can increase 

visible light absorption for a larger g value, the krec value is also greatly improved as a 

result of the generation of the Ti3+ defects as deleterious recombination centers. 

 On the other hand, photoanodes of B/N-doped TiO2 with different nitrogen contents 

show distinct photocurrent generation behaviors between the switching on and off of 
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light as highlighted in Fig. 6b. Compared to the flat step-like photocurrent response to 

the switching on and off of light in the photoanode of the pristine boron-doped TiO2, 

the high nitrogen doping causes a striking jump of the photocurrent when the light is 

switched on as a result of the charging process.[34, 35] This striking jump is similar in 

all the different nitrogen-doped TiO2 photoanodes. The stored charges in the TiO2-440 

and TiO2-480 photoanodes are discharged by releasing cathodic current after the light 

irradiation is blocked, while no cathodic current was observed in the TiO2-520, TiO2-

560 and TiO2 photoanodes. This difference could be caused by the different electronic 

structures of doped TiO2. Different from the samples with delocalized N 2p states, the 

localized nature of the N 2p states in the TiO2-440 and TiO2-480 samples limits the 

mobility of photogenerated holes in the material under visible light irradiation so that 

the slow release of the stored charges can contribute to the dark current. 

 

 

Figure 6 a, The applied bias dependent photoelectrochemical water oxidation current 

curve for photoanodes of B/N-doped TiO2 microspheres prepared at different 

nitrogenation temperatures (440 oC, 480 oC, 520 oC and 560 oC) compared with that for 

a pristine TiO2 sample under visible light irradiation (λ > 420 nm). b, the enlarged I-V 
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curve in the bias range -0.18 and -0.05 V showing one light-on and light-off cycle from 

Figure 6a. The scanning direction is from negative to positive bias. 

 

It is useful to compare the dependence of the photoelectrochemical activity of the 

B/N-doped TiO2 on the nitrogen concentration with that of the homogeneous nitrogen-

doped Cs0.68Ti1.83O4 and also nitrogen-doped TiO2. Both the B/N-doped TiO2 and 

homogeneous nitrogen-doped Cs0.68Ti1.83O4 [29] show similar trends in that the activity 

increases with increased nitrogen concentration. In contrast, the activity of nitrogen-

doped TiO2 with a shoulder-like absorption band decreases with increased nitrogen 

concentration. [26] The reason for this trend is that the number of oxygen vacancies, 

which promote the recombination of electrons and holes, increases with the increase of 

nitrogen dopant. In the cases of homogeneous nitrogen-doped Cs0.68Ti1.83O4 and B/N-

doped TiO2, the interstitial boron and cesium ions can compensate for the charge 

imbalance between O2- and N3- to suppress the formation of recombination centers. 

The photoelectrochemical water oxidation activity in Figure 6 achieved with bare 

B/N-doped TiO2 photoanodes is low, though the photocurrent density of the photoanode 

of doped TiO2 with an optimized amount of born and nitrogen is about two times higher 

than that of the photoanode of the red TiO2 with hydrogen filled oxygen vacancies[36]. 

It is anticipated that loading suitable co-catalysts for oxygen evolution reaction on B/N-

doped TiO2 can further improve activity and is to be conducted in future studies. 

Discussion 

A series of B/N-doped TiO2 materials with different nitrogen concentrations was 
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prepared by annealing interstitial boron-doped TiO2 microspheres with exposed {001} 

facets in gaseous ammonia at different temperatures (440, 480, 520 and 560 oC). The 

ratio of nitrogen dopant to titanium in TiO2 gradually increased from 7.03 at% at 440 

oC to 15.47 at% at 560 oC. An additional absorption band was formed that spanned the 

whole spectrum of visible light, and its absorbance increased with an increased nitrogen 

concentration. Particularly, as a consequence of bandgap narrowing, the sample 

obtained at 520 oC has the highest absorbance in visible light and no background 

absorption associated with defects. The photoelectrochemical water oxidation activity 

under visible light irradiation increases with an increase in the amount of nitrogen 

dopant before the formation of oxygen vacancies. The sample obtained at 520 oC gives 

the highest activity among the series of B/N doped anatase TiO2 photocatalysts. 

Experimental Section 

Sample preparation: Interstitial boron-doped TiO2 microspheres (around 95 wt% 

anatase and 5 wt% rutile) were prepared by the acid hydrolysis of a TiB2 precursor 

according to a reported procedure.[27] Prior to nitrogen doping, they were heated at 

600 oC for 2h in air to form a boron gradient in the outer layer of the microspheres. 

Subsequent heating at different temperatures (440, 480, 520 and 560 oC) in a gaseous 

ammonia atmosphere with a flux of 50 ml min-1 for 2 h was conducted to introduce 

different concentrations of nitrogen dopant. The resultant samples were denoted TiO2-

440, TiO2-480, TiO2-520 and TiO2-560. All samples after further nitrogen doping 

remained the same crystal structure as indicated by X-ray diffraction patterns in Figure 

S1. 
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Characterization: The morphology and microstructures of the obtained TiO2 samples 

were investigated by scanning (Nova NanoSEM 430) and transmission electron 

microscopy (FEI Tecnai-F30). X-ray diffraction patterns of the samples were obtained 

with a Rigaku diffractometer using Cu Kα irradiation (λ = 1.54056 Å). The chemical 

states and compositions of the samples were determined by X-ray photoelectron 

spectroscopy (Thermo Escalab 250, using a monochromatic Al Kα X-ray source). All 

binding energies were referred to the C 1s peak (284.8 eV) that arises from adventitious 

carbon. A UV-visible diffuse reflectance spectrophotometer (JASCO V-550) was used 

to record the optical absorption spectra of the samples in the region of 300 to 800 nm. 

Raman and Fourier transform infrared spectroscopies (Lab-Ram HR 800 & Bruker 

Tensor 27) were used to detect local structural variations in the samples. 

Photoelectrochemical water oxidation measurements: Photoelectrochemical water 

oxidation measurements were conducted in a quartz cell with a conventional three-

electrode system. The working, counter and reference electrodes were respectively a 

deposit of the prepared TiO2, a Pt foil and Ag/AgCl. The electrolyte was a 0.2 M 

Na2SO4 aqueous solution. Light irradiation was under an AM 1.5 G illumination 

(Newport) with a density of 100 mW cm−2. The illuminated area of the photoanode 

surface was 1 cm2, and the scan rate was 10 mV s−1. UV light was removed with a 420 

nm cut-off glass filter. 
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B/N 掺杂富含{001}晶面锐钛矿 TiO2的最佳可见光光电催化水氧化活性研究 

 

 

本文以锐钛矿 TiO2 微米球光催化材料为研究对象，其表面主要由{001}晶面

组成，间隙掺杂硼原子在微米球中呈浓度梯度分布，浓度最高点位于表面。通过

对其在氨气气氛中不同温度下（440-560℃）进行热处理，可实现氮替代晶格氧的

掺杂，氮掺杂原子的浓度随着热处理温度的增加从 7.03at%增加到 15.47at％。随

着掺杂氮浓度的增加，所得掺杂 TiO2 微米球的可见光吸收强度相应提高，进一

步研究了所得掺杂 TiO2 微米球的可见光光吸收、原子和电子结构与可见光光电

催化水氧化活性的关联特性，发现在 520 ℃下所得氮掺杂 TiO2 的可见光光电催

化水氧化活性最大，该样品吸收光谱的显著特征是在可见光区吸光率高，且没有

缺陷相关联背底吸收。  

 

 


