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Abstract Spatio-temporal models have long been used to describe biologi-
cal systems of cancer but it has not been until very recently that increased
attention has been paid to structural dynamics of the interaction between can-
cer populations and the molecular mechanisms associated with local invasion.
One system that is of particular interest is that of the urokinase plasmino-
gen activator (uPA) wherein uPA binds uPA receptors (uPARs) on the cancer
cell surface, allowing plasminogen to be cleaved into plasmin, which degrade
the extra cellular matrix (ECM) and this way leads to enhanced cancer cell
migration.

In this paper we develop a novel numerical approach and associated anal-
ysis for spatio-structuro-temporal modelling of the uPA system for up to two-
spatial and two-structural dimensions. This is accompanied by analytical ex-
ploration of the numerical techniques used in simulating this system, with
special consideration being given to the proof of stability within numerical
regimes encapsulating a central di↵erences approach to approximating nu-
merical gradients. The stability analysis performed here reveals instabilities
induced by the coupling of the structural binding and proliferative processes.
The numerical results expounds how the uPA system aids the tumour in in-
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vading the local stroma, whilst the inhibitor to this system may impede this
behaviour and encourage a more sporadic pattern of invasion.

Keywords Cancer Invasion · Structured Cell Population Dynamics ·
Computational Modelling

Mathematics Subject Classification (2000) AMS Subject Classification:
22E46, 53C35, 57S20

1 Introduction

Over the past three decades or so, the processes involved in cancer growth and
spread received significant mathematical attention through novel and increas-
ingly sophisticated modelling approaches[84,77,79,7,48], leading to a deeper
understanding of key cancer development aspects with potential therapeutical
importance [42,13].

While being sometimes regarded as a paradigm of local tissue remodelling,
cancer invasion is a crucially important process in the overall cancer devel-
opment where complex heterotypic cell population processes combined with a
cascade of molecular signalling mechanisms are leading to the degradation the
healthy tissue and its concomitant repopulation by migratory cancer cells [30,
58]. This attracted a wide range of spatio-temporal modelling at either one
spatial scale[7,50,6,20,21,22] or in a multiscale approach[96,80]. However, it
became increasingly apparent that the context of macro-scale spatio-temporal
modeling was not su�cient to take into account the intricate behaviour of
cancer cell processes. To that end, with insights from important concepts in
structural modelling of biological systems (considering age, size, etc.)[37,66,
78,26,38,10], the various spatio-temporal modelling approaches for cancer in-
vasion have been recently complemented by structural models [24,41], which
enable a more detailed description of the involved biological processes by im-
plicitly accounting for a certain extent of single cell-dynamics.

One biological system, important in cancer invasion, that has received an
increase attention in recent years has been termed the urokinase plasminogen
activator (uPA) system [80,89,82]. The uPA protein has long been noted as a
marker of various cancer types, such as colorectal, gastric, œsophageal, lung,
cervical, ovarian, renal, pancreatic, and hepatocellular, with its greatest prog-
nostic evidence being derived from strains of breast cancer [43]. The reduction
in uPA expression in peritumoural tissue also causes this protein to be of great
clinical significance, such that expression remains localised to the cancerous
tissue [15,70].

Urokinase plasminogen activator receptor (uPAR) is a protein anchored to
the cell surface and, bound with high a�nity to uPA [92], aids the degradation
of the extra cellular matrix (ECM) [65,71]. X-ray analysis of the uPA-uPAR
complex has revealed that uPA binds its receptor on a subsurface encapsulated
by all three of its major interactive domains [60,9]. Neither uPAR nor unbound
uPA are intrinsically active within the human tissue due to their folding being
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unfavourable to binding plasminogen, until formation of the uPA-uPAR com-
plex [46]. However, regardless the biological paradigm, uPA retains its high
specificity for plasminogen [86].

Further to this, the binding structure of these proteins allows the bind-
ing regions of the uPAR protein to become available for plasminogen protein
interactions. Moreover, bound uPA is susceptible to being further bound by
the class of inhibitory proteins referred to as uPA inhibitor-1 (uPAI-1). The
ability of the cell to advantageously manipulate its environment and achieve
local dominance, is further altered by this chemical adaptation. This process
is mediated through changes to cellular capabilities when bound to activated
uPA-uPAR complexes, enabling greater survival, adhesion, and migration [17].
It has been shown that even modest increases in the presence of this surface-
bound complex are su�cient to greatly increase the prolific and proteolytic
activities of invasive tumour cells [91].

The cancer invasive process is further augmented through integrin-mediated
signalling pathways utilised by the uPA-uPAR complex [63]. Perhaps most sig-
nificant is the activation of the protein class known as ↵5�1 integrin, which
actively recruits the epidermal growth factor receptor (EGFR), an upstream
signalling protein whose presence has been an indicator for high levels of extra-
cellular signal-regulated kinases (ERKs) [72]. As an essential upregulator of
mitotic activity in cancerous cells, ERKs enhance the proteolytic dynamics of
the cancer cell population [25].

Furthermore, the complex formed between uPA and uPAR also increases
the avidity of uPAR for vitronectin, an important protein for cell-ECM adhe-
sion [99]. Vitronectin is a protein found primarily within plasma or deposited
within the ECM, where it weakly binds the intra-matrix vitronectin receptor
[100]. The unbound receptor, uPAR, will further selectively bind vitronectin
and increase cellular adhesion to the ECM [98] whereas bound uPAR is an
exceptionally high a�nity receptor for vitronectin [100,98].

Cancer cells migration is enhanced through the downstream synthesis of
matrix metalloproteinases (MMPs), after the activation of conformal pro-
MMP proteins by locally activated plasminogen, which degrade the ECM and
enable local tumour invasion [30]. The growth of the tumour, however, then
activates a negative feedback loop through the downstream upregulation of
PAI-1 synthesis [52,69].

There is significant evidence that proteolytic enzymes (which degrade the
collagen of the ECM) can be activated by an increased presence of activated
plasminogen [75,29]. Primarily, the function of uPA is the conversion of plas-
minogen to plasmin; known to be a key regulator of these proteolytic proteins
[29]. In this context, matrix metalloproteinase 2 (MMP2) is a major target for
plasmin, causing increased degradation of the ECM and incorporation of the
degraded collagen into localised plaques [81,75].

Finally, a specifically prolific feature of the the uPA-uPAR complex (in
relation to with its environment) is that in its active conversion of plasmino-
gen to plasmin it encourages the production of the proenzyme single-chain
urokinase plasminogen activator (scuPA). This scuPA protein is the precursor
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of uPA and therefore closes a positive feedback loop which is integral to the
success of cancer cells in their invasive pursuit [17]. Plasmin is also capable of
activating scuPA by cleaving a bond named Lys158 [86], contributing to the
feedback mechanism. There is mounting evidence that the majority of these
feedback mechanisms are localised to the cancer’s invading edge [99,30].

Based upon the biological evidence discussed so far, it is therefore cru-
cially important to account for the molecular binding of the uPA components
in modelling cancer dynamics. To that end, the general modelling approach
introduced in Domschke et al.[41], where a novel spatio-temporal-structural
model was derived for a general tissue dynamics involving of cells, ECM, and
several accompanying populations of potentially membrane binding molecules,
o↵ers therefore an appropriate framework.

The model proposed by Domschke et al. [41] is a recent advancement
within the well established area of a structured population modelling, uniquely
utilising the structural dynamics to describe spatio-chemical-temporal pro-
cesses in the tumour cell population. With a history stretching over almost
six decades, however, structured-population models address a whole range of
research challenges arising across many bio-medical and ecological areas, in-
cluding epidemiology, collective movement either within cell population (such
as those in cancer invasion or embryogenesis) or within social crowd dynam-
ics. Varying in scope and purpose, these range from temporal-structural ap-
proaches (where space is ignored, and time is coupled for instance with “age”
or “size” structure) [93,94,88,55,37,66,56,57,97,36,38,62,19,87,27,10,24], to
spatio-structural models were (where time is ignored) [53,74,39,49,61,85,67,
68,8,31,4], and finally to more complex approaches that couple time, space,
and structure [35,18,67,47,90,3,28,34,41,95]. Specifically, important exam-
ples of structured approaches in cancer modelling include size-structured mod-
els [54] (which account for cell size in order to understand cell cycle dynamics),
age-structured models [14,44,45] (which account for the age distribution of the
population), as well as more specific models taking into account various other
aspects such as RNA content [64], mutational state [32,73,33], popular altru-
ism [59] and more. For a more extensive introduction to and analysis of these
structured cancer development models, one may refer to the review papers by
Bellomo et al. [12,11] as well as to a number of relevant books on this topic
[1,27,83,76].

Thus, adopting here the notations from Domschke et al.[41], in this paper
we propose appropriate computational approaches and resulting simulation
alongside associated analysis to explore the spatio-temporal-structural mod-
elling of a cancerous tissue consisting of:

– a structured cancer cell density c(t, x, y), with (t, x, y) 2 I ⇥D⇥P, where
I := [0, T ] is a time interval, D 2 Rd, d = 1, 2, is the spatial tumour
domain, and P ⇢ Rp is a cone of appropriate dimension p  2 representing
the set of all admissible membrane-binding structures for the uPA System;

– ECM density v(t, x), with (t, x) 2 I ⇥D;
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– q3 components of the uPA system (uPA, PAI-1, and plasmin), which
are appropriately grouped in binding and unbinding classes of molecular
species represented here by m

b

:= [m
b,1

(t, x), . . . ,m
b,p

(t, x)]T 2 Rp and
m

f

:= [m
f,1

(t, x), . . . ,m
f,q�p

(t, x)]T 2 Rq�p, respectively.

2 Structured Model for Cancer Modeling exploring the uPA
binding dynamics

Using on the theoretical framework derived in Domschke et al.[41], we explore
the dynamics of a cancerous tissue of the resulting spatio-temporal-structural
uPA modelling system, which we briefly describe here as follows. Per unit time,
under the presence of a cell proliferation law, we generally assume that the
spatial dynamics of the cancer cell population is dictated by di↵usion, chemo-
taxis, haptotaxis, and cell-adhesion. The molecular binding and unbinding of
the uPA components (uPA or PAI-1) is accounted for in this framework[41]
in terms of an appropriately derived structural cone P (detailed on specific
cases in the following sections), and the resulting dynamics leads not only to
a spatio-temporal migration but also to a structural movement of the cancer
population c(t, x, y). The influence of cell-adhesion over the spatial dynamics
at x is considered here in non-structured fashion and, similar to other previ-
ous approaches[40,51], this is captured via a non-local term that represents
the cell-cell and cell matrix adhesion interactions within a sensing region of
radius R. This non-local term is of the form

A(t, x, y,u(t, ·)) = 1

R

R

B(0,R)

n(x̃)K(k x̃ k
2

)g(t, y,u(t, x+ x̃))�
D

(x+ x̃) dx̃

(1)
where, for any x̃ 2 B(0, R), n(x̃) represents the unit vector pointing from x to
x+ x̃, K(·) is a smooth spatial kernel, and the adhesion function g(t, y,u(t, x+
x̃)) accounts for the cell-cell and cell-matrix adhesion strengths S

cc

and S

cv

,
respectively, this being given by

g(t, y,u) = [S
cc

(t)
R

P
c dy + S

cv

(t)v] · (1� ⇢(u))+ . (2)

with the convenience vector notation

u(t, x) :=



R

P
c(t, x, y)dy , v(t, x)

�

T

and (·)+ := max{0, ·}. Furthermore, as the ECM density v(t, x) is only de-
graded and remodelled by the cancer cells and that the unbound (free) part
of the considered components of the uPA System that are produced by the
cancer cells are only di↵using in the tumour domain, the structured system



6 Arran Hodgkinson et al.

that is obtained via the general modelling framework from Domschke et al.[41]
is as follows:
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= r
x

· [Dmr
x

m]�
R

P

⇣

b̂(y,m)� d̂(y)
⌘

"c(t, x, y) dy

+ m(u, r)� diag (�m)m .

(3)

where the vector notations are used here to represent

– the molecular population of unbound (free) part of the considered compo-
nents of uPA system via m := [mT

b

,m

T

f

]T ;
– the total molecular population (both bound and unbound part) of the con-

sidered components of uPA system via r :=
h

R

P
y"c(t, x, y) dy, m(t, x)

i

T

,

whereas " stands for the ratio between cell-surface density and cancer cell
density. Furthermore, to simplify the context, the cell cancer proliferation law
�(y, c, v) is chosen here to be of a non-structured logistic form, namely

�(y,u) = µ

c

(1� ⇢(u)) (4)

where ⇢(u) quantifies the space occupied by the ECM and total cancer cell
density

C(t, x) :=

Z

P

c(t, x, y) dy, (5)

and is defined by

⇢(u(t, x)) := v
c

C(t, x) + v
v

v(t, x) (6)

with v
c

and v
v

denoting the volume fraction for c and v at the same spatio-
temporal point (t, x), respectively. Moreover, the ECM remodelling term  

v

(t,u)
assumes here the volume filling form

 

v

(t,u) := µ

v

(1� ⇢(u))+. (7)

Finally, for the uPA binding components given by m

b

:= [m
b,1

, . . . ,m

b,p

]T ,
the cell surface binding and unbinding rates are represented here by b(y,m)
and d(y), respectively. Therefore, since for the free components m

f

we do not
have any binding or unbinding, to unify the notation, we use here the extended
binding and unbinding rates vectors b̂(y,m) and d̂(y) in Rq given by

b̂(y,m) := [(b(y,m))T , 0, . . . , 0]T and d̂(y) := [(d(y))T , 0, . . . , 0]T .

The molecular source  m is assumed to depend here only on u and the total
molecular population r while the constant vector �m 2 Rq represents the
natural degradation rate of m.
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2.1 The dynamics of uPA System with and without PAI-1

Assuming that a total amount M of uPAR receptors is uniformly distributed
on the surface of each cancer cell, in the following we explore the form and
dynamics of the spatio-temporal-structural system (3) when considering uPA
binding and unbinding to uPAR both in the presence and in the absence
of binding PAI-1 inhibitor molecules. These will result in di↵erent structural
dimensionalities that will be addressed below as appropriate.

2.1.1 uPA System in the absence of PAI-1

The first case that we consider here accounts only for the uPA bounding and
unbinding molecules while ignoring the presence of PAI-1. In this context, the
total number of considered uPA System components is q = 2, and consists of

– a binding molecular species (i.e., uPA) represented bym

b

(t, x):= m

b,1

(t, x);
– a free molecular species (i.e., plasmin) represented bym

f

(t, x):= m

f,1

(t, x).

The amount of those uPA molecules among m

b,1

(t, x) that are exercising
binding to the available uPAR receptors is denoted here with y, and rep-
resents the binding structure of the cancer cell population distributed at the
spatio-temporal node (x, t). Thus, under the assumption of a certain level of
membrane-binding saturation, after eventual normalisation, the collection of
all the binding structures P is given here by the interval [0, 1], so the dimen-
sion of P is in this case p = 1. Furthermore, after a brief calculation[41], the
uPA binding rate b(y,m) is given by

b(y,m) = (1� y)m
b,1

, (8)

while the uPA unbinding rate d(y) has a form

d(y) = d

m

b,1 . (9)

Furthermore, assuming that the unbound uPA is produced by the cancer
cells C(t, x) at the rate ↵

m

b,1 and that plasmin is produced only by those cells
which are bound by uPA at a rate ↵

m

f,1 , the molecular source term  m(C, r)
is given here by

 m(C, r) =

2

4

↵

m

b,1C

↵

m

f,1

R

P
y"c(t, x, y) dy

3

5 (10)

2.1.2 uPA System in the presence of PAI-1

Building on the first modelling case assumed in subsection 2.1.1, we consider
now a second situation in which, besides the binding uPA, also the inhibitor
PAI-1 is brought into the picture, this being able to bind to cell surface-bound
uPA molecules, this way inhibiting their action. In this new context, the total
number of the uPA System considered is q = 3, this consisting of
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– two binding molecular species (i.e., uPA and PAI-1) represented bym
b

(t, x) :=
[m

b,1

(t, x),m
b,2

(t, x)]T , with m

b,1

(t, x) standing for the uPA density and
m

b,2

(t, x) denoting the PAI-1 inhibitor density;
– a free molecular species (i.e., plasmin) represented bym

f

(t, x):= m

f,1

(t, x).

While proceeding as in subsection 2.1.1 and denoting amount of those uPA
molecules among m

b,1

(t, x) that are exercising binding to the available uPAR
receptors is denoted here with y

1

, we denote with y

2

the amount of PAI-
1 receptors that binds to bound uPA, causing the inhibition of these uPA
molecules. Thus, given the binging possibilities for PAI-1 onto receptor-bound
uPA versus the binding possibilities of the free uPA on the uPAR receptors,
it is always the case that y

2

 y

1

, and so after an eventual normalisation
due to reaching saturation levels of cell-surface uPA binding, we obtain that
that maximal set of binding structures P is two-dimensional in this case and
is given by P := {(y

1

, y

2

) 2 R2 | y
1

2 [0, 1] and y

2

2 [0, y
1

]}. Thus, using a
measure theoretical argument[41] for the binding components for the uPA and
PAI-1, the vector of binding rates b(y,m) is given by

b(y,m) =

"

(1� y

1

)�
1

m

b,1

(y
1

� y

2

)�
2

m

b,2

#

(11)

and similarly, we obtain that the vector of unbinding rates d(y) is

d(y) =

"

(y
1

� y

2

)d
y1

y

2

d

y2

#

(12)

Assuming that the uPA density m

b,1

is produced in the presence of cells
expressing uPAR (namely the total cell density C) at a rate ↵

m

b,1 , mb,2

is
produced in the presence of activated plasminogen (namely the plasmin density
m

f,1

) at a rate ↵
m

b,2 , and plasmin density m

f,1

is activated by cells expressing
uPA density m

b,1

but not also inhibitor PAI-1 density m

b,2

at a rate ↵
m

f,1 ,
we obtain that the molecular source term  m is given by

 m(C, r) =

2

6

4

↵

m

b,1C

↵

m

b,2mf,1

↵

m

f,1

R

P
(y

1

� y

2

)"c(t, x, y) dy

3

7

5

. (13)

3 Computational Approach and Analysis of the Discretisation of
the Spatio-Structural-Temporal Tumour Model

Throughout this section, we consider only the case of one dimension both in
space and structure for system (3). Thus, assuming equal spatial and struc-
tural step size �

x

= �

y

and an equal number r 2 N \ {0, 1, 2, 3} of collocation
points in both x and y dimensions, in the following we will proceed to discre-
tise c, v, and m at any given time node n�

t

, with n 2 N. At each discretised
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spatial location in x, let cn
x

denote the vector of the discretisation of the distri-
bution of the cancer cell population over the structural dimension y, explicitly
given by c

n

x

:= [cn
x,y1

, ..., c

n

x,y

r

]T . Likewise, at each discretised structural lo-
cation in y, let c

n

y

denote the vector of the discretisation of the distribution
of the cancer cell population over the spatial dimension x, explicitly given
by c

n

y

:= [cn
x1,y

, ..., c

n

x

r

,y

]T . In a similar way, the spatial discretisation of the
ECM concentration is denoted by v

n := [vn
x1
, . . . , v

n

x

r

]T . Further, to simplify
the notation for the components of m, in this section we will drop the indices

b

and
f

and orderly relabel the involved molecular species simply upon their
position in the vector m, namely as m = [m

1

, . . . ,m

q

]T . In this context, the
discretisation of m is simply denoted by mn := [(mn

1

)T , . . . , (mn

q

)T ]T 2 Rqr,
with m

n

i

:= [mn

i,x1
, . . . ,m

n

i,x

r

]T , 8 i 2 {1, . . . , q}.
Finally, for appropriately designed r⇥r diagonal matrices � (aimed to serve

for approximating expectations of the various structurally distributed variables
that are involved in system (3)), let us denote Cn(� ) := [Cn

x1
(� ), ..., Cr

x

r

(� )]T 2
Rr, with each component defined by

C

n

x

i

(� ) := �

y

2

[cn
x

i

]T� [1, 2, 2, ..., 2, 2, 1]T , (14)

and note that for instance the total cell density is given by C(I
r

), where I

r

is
the r ⇥ r identity matrix.

3.1 Discretisation of the 1D-Spatial 1D-Structural uPA Model

The iterative time step for the cancer population equation in (3) is then given
by

c

n+1 = c

n + �

n

c

with �

n

c

= (A
x

c

n

x

+ (A
y

+A

�

) cn
y

) · �
t

(15)

where

A

x

= 1

4�

2
x

J

2 + 1

2�

x

Jf̃

f̃ := diag([f
1

, ..., f

r

]),
(16)

with J

r

being the r ⇥ r central di↵erence derivative matrix given by

J

r

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�2 2 0 . . . 0 0 0

�1 0 1 . . . 0 0 0

0 �1 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . 0 1 0

0 0 0 . . . �1 0 1

0 0 0 . . . 0 �2 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (17)
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and the components of f̃ being given by

f

i

:= f

i

(cn
x

i

, v

n

x

i

,mn

x

i

) =
�

1� ⇢(cn
x

i

, v

n

x

i

�

✓

P

k

⇠

k

row
i

(J2

r

)mn

k,x

i

+ ⇠

v

row
i

(J2

r

)vn
x

i

◆

,

(18)
where row

i

(J2

r

) indicates the i

th row of the matrix given by J

2

r

, for all i 2
{1, ..., r}. Furthermore, we have that

A

y

= � 1

2�

y

J

r

g̃

g̃ := diag([(b
1

� d

1

), ..., (b
r

� d

r

)]),
(19)

where b

i

:= b(mn

, y

i

) and d

i

:= d(y
i

), 8i 2 {1, ..., r} stands for the discretised
binding and unbinding rates, and

A

�

= A

�

y

+A

�2y (20)

with

A

�

y

= ��̃
y

A

�2y
= 2P+1

Î

T

�̃

2y

Î

�̃

y

= diag([�
1

, ...,�

r

]) �̃

2y

=
r

P

i=1

�

2i

E

i,2i

Î =

✓

I

r

;
r

◆

,

(21)

where ;
r

is the r ⇥ r zero matrix, E
i,2i

is the standard elementary matrix;
�

i

:= �(y
i

, c

n

y

i

, v

n) and �
2i

:= �(2y
i

, c

n

2y

i

, v

n), 8i 2{1, ..., r}.

Similarly iterative time step for the ECM equation in (3) is given by

v

n+1 = v

n + �

n

v

with �

n

v

= (B
x

v

n +  ̃

v

) · �
t

,

(22)

where

B

x

= ��
v,c

"diag(Cn(ỹ))�
q

P

i=1

�

v,m

i

diag(mn

i

) , (23)

with ỹ := diag([y
1

, . . . , y

r

]), the ECM degradation rates vector �
v

organised as
�

v

:= [�
v,c

, �

v,m1 , . . . , �v,mq

]T . Furthermore,  ̃
v

denotes here the remodelling
vector given by

 ̃

v

:= [ 
v,1

, ..., 

v,r

]T ,

(24)

where we use the reduced notation  
v,i

:=  

v

(cn
i

, v

n

i

), 8i 2 {1, ..., r}.
Finally, the iterative time step for uPA components equation in (3) is given

by
mn+1 = mn + �

n

m with �

n

m = (D
x

(mn) +D

�

) · �
t

, (25)

where we used the operator notationD

x

(mn) :=[(D
m1J

2

r

m

n

1

)T, . . . , (D
m

q

J

2

r

m

n

q

)T ]T ,
and

D

�

i

:=  

m

i

� "C

n(g̃)� �

m

i

m

n

i (26)

where  
m

i

:= [ 
m

i

(Cn

x1
(I

r

), Cn

x1
(ỹ)), . . . , 

m

i

(Cn

x

r

(I
r

), Cn

x

r

(ỹ))]T , 8i 2 {1, . . . , q},
where we used the operator notation D

�

(mn) :=[DT

�1
, . . . , D

T

�

q

]T .
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Therefore, the first iteration of the resulting discrete global operator for
an arbitrary discrete spatio-structural points (x, y), and time node n = 0,
which appears when computing given by (c1, v1,m1)T , leads to the following
relations:

�

0

c

=
⇣

1

4�

2
x

J

2

r

c

0

y

+ 1

2�

x

J

r

f̃ c

0

y

� 1

2�

y

J

r

g̃c

0

x

+
⇣

2P+1

Î

T

�̃

2y

Î � �̃

y

⌘

c

0

y

⌘

�

t

�

0

v

=

✓

��
v,c

"diag(Cn(ỹ))v0 �
q

P

k=1

�

v,m

k

diag(mn

k

)v0 +  ̃

v

◆

�

t

�

0

m

k

=
�

D

m

k

J

2

r

m

n

k

+  

m

k

� "C

0(g̃)� �

m

k

m

n

k

�

�

t

.

(27)

The stability of the primary term in these discrete time di↵erences is de-
pendent upon the operator J

r

whose analysis will be the focus of the following
subsection.

3.2 Stability analysis considerations on the central di↵erence operator J
r

In order to assess the stability of the di↵erence operator J

r

involved in (43),
in the following we will prove a series of technical results that will ultimately
completely characterise the eigenvalues of J

r

.

Lemma 1 Let Q be the following set of polynomials with real coe�cients

Q :=

8

<

:

P

k

(x) = a

k

x

k + · · ·+ a

1

x+ a

0

�

�

�

�

�

�

k � 4,

a

k�1�2i

= 0, 8i 2 0, . . . ,



k�1

2

�

9

=

;

(28)
where by [·] we understand the usual integer part. Further, let P

N�2

, P

N�1

2 Q
be polynomials of degree N�2 and N�1 respectively, then the iterative relation

P

N

= P

N�2

� xP

N�1

gives rise to a polynomial of degree N with P

N

2 Q.

Proof If one writes the considered polynomials as

P

N�2

: a
N�2

x

N�2 + a

N�4

x

N�4 + ...+ max
i2{0,...,[ k�1

2 ]}
a

N�i�3

x

N�i�3 = 0

P

N�1

: a
N�1

x

N�1 + a

N�3

x

N�3 + ...+ max
i2{0,...,[ k�1

2 ]}
a

N�i�2

x

N�i�2 = 0,

(29)
then the proof is trivial.

Theorem 1 Considering the set of polynomials Q defined in (28), for any

natural N � 6, let P
N

2 Q be a polynomial of degree N such that the poly-

nomials P

N�2

, P

N�1

2 Q that give P

N

via the recurrence relation P

N

=
P

N�2

� xP

N�1

satisfy the following properties:
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1) denote {u
1

, u

2

, ..., u

N�2

} and {v
1

, v

2

, ..., v

N�1

} the ordered set of roots of

the polynomials P

N�2

and P

N�1

, respectively

2) the roots of these two polynomials are only imaginary, namely:

Re(u
i

) = 0 8i 2 {1, . . . , N � 2}
Re(v

j

) = 0 8j 2 {1, . . . , N � 1}

3) finally, the roots of these two polynomials satisfy the additional relations:

v

2

N�1

� u

2

N�2

and

u

2

i

� v

2

i

� u

2

i�2

� v

2

i�2

, 8i 2 {i = 2j | j 2 {1, . . . ,
⇥

N�2

2

⇤

}} ,

where for any i 2 {i = 2j | j 2 {1, . . . ,
⇥

N�2

2

⇤

}} we have that u

j�1

:= ū

j

and v

j�1

:= v̄

j

.

Then, if we let {w
1

, w

2

, ..., w

N

} denote the ordered set of roots for P

N

, we have

that

i) all the roots of P

N

are imaginary, i.e.,

Re(w
i

) = 0, 8i 2 {1..N},

ii) the roots of P

N

and P

N�1

satisfy the relations:

w

2

N�1

� v

2

N�2

and

v

2

i

� w

2

i

� v

2

i�2

� w

2

i�2

, 8i 2 {i = 2j | j 2 {1, . . . ,
⇥

N�1

2

⇤

}} ,

where for any i 2 {i = 2j | j 2 {1, . . . ,
⇥

N�1

2

⇤

}} we have that w

j�1

:= w̄

j

.

Proof First, we notice that there are 2 di↵erent cases:

(1) N is even or
(2) N is odd.

Take case (1) and let N = 2n, n 2 N. We can use the conjugate root theorem
to write the polynomials as

P

N�2

(x) = (x2 � u

2

2

)(x2 � u

2

4

)...(x2 � u

2

N�2

)

P

N�1

(x) = �x(x2 � v

2

2

)(x2 � v

2

4

)...(x2 � v

2

N�2

) ,
(30)

where u

2i�1

= u

2i

, u

2

2i

= u

2i�1

· u
2i

and v

2i�1

= v

2i

, v

2

2i

= �|Im(v
2i

)2|. We
then have that P

N

can be written as

P

N

(x) = (x2�u

2

2

)(x2�u

2

4

)...(x2�u

2

N�2

)+x

2(x2�v

2

2

)(x2�v

2

4

)...(x2�v

2

N�2

) .
(31)

Now, by Descartes’ rule of signs and Lemma 1, we can say that none of the
roots of P

N

are positive and that at most N of these roots are negative.
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Use the substitution z = x

2, the initial polynomial P
N

induces

P̄

N

(z) = (z � u

2

2

)(z � u

2

4

)...(z � u

2

N�2

) + z(z � v

2

2

)(z � v

2

4

)...(z � v

2

N�2

) .
(32)

Evaluating P̄

N

(z) at ±1 and at a selection roots of P
N�1

(x) given by

S

a

:= {v2
2j

| j = 1, n� 1},

we have two di↵erent cases:

(1a) n� 1 is odd or
(1b) n� 1 is even.

In case (1a), we have that

lim
z!±1

P̄

N

(z) = +1.

Further, as the elements of S
a

are solutions of P
N�1

, using their properties
that u2

2j

� v

2

2j

, j = 1, n, we obtain

P̄

N

(v2
2j

) = (�1)j |v2
i

� u

2

2

||v2
i

� u

2

4

|...|v2
i

� u

N�2

|, j = 1, n� 1, (33)

and so
sign(P̄

N

(v2
2j

)) = (�1)j , j = 1, n� 1

Therefore, denoting S

0
a

:= {�1} [ S

a

[ {+1}, we have

sign(P̄
N

(S0
a

)) = {+,�,+,�, ...,�,+}, (34)

which yields n intervals where the values of polynomial changes, and so by
Intermediate Value Theorem we must have n real non-positive roots for P̄

N

(z).
Thus, reversing now the change of variable z = x

2, we obtain that the initial
polynomial P

N

(x) has only imaginary roots with

Re(w
i

) = 0 with w

i

� v

i

, i = 1, N

For case (1b), we have that

lim
z!±1

P̄

N

(z) = ±1

Further, denoting by with S

b

the following set of squares of the roots of
P

N�2

(x), namely
S

b

:= {u2

2j

| j = 1, n� 1},

sign(P̄
N

(u2

2j

)) = (�1)n�j

, j = 1, n� 1

Therefore, denoting S

0
b

:= {�1} [ S

b

[ {+1}, we have

sign(P̄
N

(S0
b

)) = {�,+,�,+, ...,�,+}, (35)

and by the Intermediate Value Theorem, we again get Re(w
i

) = 0 with
w

i

� v

i

.
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For case (2), we consider odd values of N and let N = 2n+ 1, n 2 N such
that we again use the conjugate root theorem to write

P

N�2

(x)=�x(x2 � v

2

2

)(x2 � v

2

4

)...(x2 � v

2

N�2

)

P

N�1

(x)=(x2 � u

2

2

)(x2 � u

2

4

)...(x2 � u

2

N

)

P

N

(x)=�x(x2�u

2

2

)(x2�u

2

4

)...(x2�u

2

n�2

)� x(x2�v

2

2

)(x2�v

2

4

)...(x2�v

2

N

).
(36)

Further, factoring out the common multiple �x and using the substitution
z = x

2 to augment the remainder of the polynomial, we can now test the
polynomial with the set, S0, in the same way as in case (1).

Theorem 2 Assuming that N is the number of discretisation points and N �
6, the characteristic polynomials P

N

(�) of the central di↵erences matrices J

N

satisfy the following recurrence relation

P

N

(�) = P

N�2

(�)� �P

N�1

(�).

Proof Let’s denote P

N

is the characteristic polynomial of the N ⇥N dimen-
sional central di↵erences matrix, J

N

, we observe first that desired the recur-
rence relation P

N

= P

N�2

� �P

N�1

is trivially satisfied by the characteristic
polynomials of J

4

, J
5

, and J

6

, which are given by

P

4

= �

4 + �

2

P

5

= ��5 � 2�3

P

6

= �

6 + 3�4 + �

2

.

(37)

To prove that this relation is satisfied in general for any natural number N � 6,
we proceed as follows. First, 8l 2 N \ {0, 1, 2, 3}, for the matrix Ĵ

l

:= J

l

� �I

l

,
and let us denote by A

o

l

and A

0
l

the following determinants of the (l�1)⇥(l�1)

submatrices of Ĵ
l

, namely

A

o

l�1

=

�

�

�

�

�

�

�

�

�

�

�

Ĵ

2,2

Ĵ

2,3

Ĵ

2,4

. . . Ĵ

2,l

Ĵ

3,2

Ĵ

3,3

Ĵ

3,4

. . . Ĵ

3,l

Ĵ

4,2

Ĵ

4,3

Ĵ

4,4

. . . Ĵ

4,l

...
...

... . . .

...
Ĵ

l,2

Ĵ

l,3

Ĵ

l,4

. . . Ĵ

l,l

�

�

�

�

�

�

�

�

�

�

�

,

A

0
l�1

=

�

�

�

�

�

�

�

�

�

�

�

Ĵ

2,1

Ĵ

2,3

Ĵ

2,4

. . . Ĵ

2,l

Ĵ

3,1

Ĵ

3,3

Ĵ

3,4

. . . Ĵ

3,l

Ĵ

4,1

Ĵ

4,3

Ĵ

4,4

. . . Ĵ

4,l

...
...

... . . .

...
Ĵ

l,1

Ĵ

l,3

Ĵ

l,4

. . . Ĵ

l,l

�

�

�

�

�

�

�

�

�

�

�

,

(38)
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and let’s observe that these have the properties that

A

o

l�1

= ��Ao

l�2

�A

0
l�2

A

0
i�1

= �A

o

l�2

(39)

Then, using (39) we have that

|Ĵ
N�2

| = (�2� �)Ao

N�3

� 2A0
N�3

(40a)

|Ĵ
N�1

| = (�2� �)Ao

N�2

� 2A0
N�2

= (�2� �)(��Ao

N�3

�A

0
N�3

)� 2(�A

o

N�3

)

= (�2� �)(��)Ao

N�3

+ (2 + �)A0
N�3

+ 2Ao

N�3

= ((�2� �)(��) + 2)Ao

N�3

+ (2 + �)A0
N�3

(40b)

|Ĵ
N

| = (�2� �)Ao

N�1

� 2A0
N�1

= (�2� �)(��Ao

N�2

�A

0
N�2

)� 2(�A

o

N�2

)

= (�2� �)(��(��Ao

N�3

�A

0
N�3

)� (�A

o

N�3

)) + 2Ao

N�2

= (�2� �)(��(��Ao

N�3

�A

0
N�3

)� (�A

o

N�3

)) + 2(��Ao

N�3

�A

0
N�3

)

= (�2� �)(��)2Ao

N�3

+ (�2� �)(��)A0
N�3

+ (�2� �)Ao

N�3

� 2�Ao

N�3

� 2A0
N�3

= ((�2� �)(��)2 + (�2� �)� 2�)Ao

N�3

+ ((�2� �)(��)� 2)A0
N�3

(40c)

From (40a)-(40c) we obtain immediately by direct calculation that

|Ĵ
N

| = |Ĵ
N�2

|� �|Ĵ
N�1

| (41)

which can finally be equivalently expressed as

P

N

(�) = P

N�2

(�)� �P

N�1

(�). (42)

Therefore, we finally obtain the following central result for our analysis.

Theorem 3 The eigenvalues of the central di↵erences matrix J

r

are either 0

or imaginary.

Proof Using Theorem 2 we have that the characteristic polynomial of J
r

is
given by P

r

(�) and that u

2

i

� v

2

i

� u

2

i�2

� v

2

i�2

for all i 2 {i = 2j | j 2
{1, . . . ,

⇥

r�2

2

⇤

}}. Then, by invoking Theorem 1, we immediately obtain by in-
duction that the roots, denoted w

i

, of characteristic polynomial of J

r

are
imaginary with Re(w

k

) = 0, 8k 2 {1, ..., r}.
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3.3 Stability analysis of the global numerical scheme

Returning now to the stability analysis of the global numerical scheme asso-
ciated to 1D-spatio 1D-structural case of (3), we will focus now only those
operators occurring in (43) that have eigenvalues Re(�) > 0. Therefore, as J

r

was proved to be stable, of interest for the stability analysis remains the be-
haviour of the following remainders of the operators from (43) without those
terms involving J

r

that we indicate with¯, namely:

�̄

0

c

=
⇣

2P+1

Î

T

�̃

2y

Î � �̃

y

⌘

c

0

y

�

t

�̄

0

v

=
⇣

� �

v,c

"diag(Cn(ỹ))v0 �
q

P

k=1

�

v,m

k

diag(mn

k

)v0 +  ̃

v

⌘

�

t

�̄

0

m

k

=
⇣

 

m

k

� "C

0(g̃)� �

m

k

m

n

k

⌘

�

t

.

(43)

We begin by assessing the stability of the structural dimension by considering
the mitotic operator for the 2nd and 3rd such iterations on c, wherein we have:

�̄

1

c

= (A
�

y

+A

�2y
)c0

y

�

t

+ (A
�

y

+A

�2y
)2c0

y

�

2

t

, (44)

�̄

2

c

= (A
�

y

+A

�2y
)c0

y

�

t

+ (A
�

y

+A

�2y
)2c0

y

�

2

t

+(A
�

y

+A

�2y
)3c0

y

�

3

t

,

(45)

such that the nth iteration is given by

�̄

n

c

=
n+1

P

i=1

(A
�

y

+A

�2y
)i�i

t

c

0

y

.

(46)

The basic criterion for stability is that a small perturbation in the solution
will decrease or remain constant in value through time, t ! 1. Now, since in
the above sum, the order of the terms (with respect to �

t

) increases with i, we
can form a preliminary estimate of the perturbation’s growth using only the
first i = 1 terms, namely

c

1

x

i

,y

j

= c

0

x

i

,y

j

+
⇣

��
y

j

c

0

x

i

,y

j

+ 2P+1

�

2y

j

c

0

x

i

,2y

j

⌘

· �
t

(47)

and so we get the following condition for stability

�

y

j

c

n

x

i

,y

j

� 2P+1

�

2y

j

c

n

x

i

,2y

j

. (48)

Given that 0  �  1, we have that for stability

lim
�

y

j

!0

lim
y

j

!0

c

n

x

i

,y

j

= 1, 8n 2 [0, N),

lim
�

y

j

!0

lim
y

j

!1
c

n

x

i

,y

j

= 0, 8n 2 [0, N).
(49)

Further, concerning the structural dynamics, denoting now by ¯̄
�

n

c;x

i

,y

j

the
change in the cancer cell distribution c due to the y-flux of the system at a
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given spatio-structural position (x
i

, y

j

) during a time interval [n�
t

, (n+ 1)�
t

],
we have that

¯̄
�

0

c;x

i

,y

j

:= A

y

c

0

y

· �
t

=
⇣

1

2�

y

(b
y

j�1 � d

y

j�1)c
0

x

i

,y

j�1
� 1

2�

y

(b
y

j+1 � d

y

j+1)c
0

x

i

,y

j+1

⌘

· �
t

.

(50)
Therefore, if we have that b, d are proportional to y, then we can extract the
modified binding and unbinding rates b̆ and d̆ as

b

n

y

j

(y
j

,mn) = b̆(mn) · y
j

and d

y

j

(y) = d̆ · y
j

, (51)

and so we can then write

¯̄
�

0

c;x

i

,y

j

=
⇣

y

j�1

c

0

x

i

,y

j�1
� y

j+1

c

0

x

i

,y

j+1

⌘

· 1

2�

y

(b̆0 � d̆

0) · �
t

, (52)

whose stability is ensured by having either

b̆  d̆,

(53a)

or

c

0

x

i

,y

j�1


y

y

j+1

y

y

j�1

c

0

x

i

,y

j+1
, 8x

i

, y

j

. (53b)

Thinking biologically about the ramifications of the former constraint, (53a),
this would mean that the unbinding of the molecular species involved was more
frequent than the binding of these species which would imply a relationship
of a�nity that approaches 0. Although these exist biologically, the considered
system is one in which the binding of molecular species plays a major role in
the metabolic processes of the cell and one can thusly disregard (53a) from
consideration as trivial. Therefore, we consider here only (53b) as viable.

From (48), (49), and (53b), however, we have a contradiction and there-
fore, the system must be unstable with neither an absolute nor a convective
instability. The instability present is absolute in its source but convective in
its requirement and behaviour.

For the stability of the equation in v of the discretised 1D-spatio 1D-
structular system (3), from (43) we observe first that 0  c

n

x

i

,y

j

 1 and
0  m

n

k;x

i

,y

j

, 8k 2 {1, ..., q}. It is then trivial to show the following eigenvalues
relations

�

diag(c

n

x

i

,y

j

)

= c

n

x

i

,y

j

� 0,

�

diag(m

n

k;x
i

)

= m

n

k;x

i

� 0, 8k 2 {1, ..., q},

�

B

x

 0

(54)

where �
diag(c

n

x

i

,y

j

)

denote the eigenvalues of diag(cn
x

i

,y

j

), �
diag(m

n

k;x
i

)

are the

eigenvalues of diag(mn

k;x

i

), and �
B

x

represent the eigenvalues of B
x

. Therefore,
using a similar notation, since for the eigenvalues of B

�

, we have that �
B

�

� 0,
given smooth solutions for cn

x

and m

n

x

, we finally obtain that the solutions for
v

n

x

will remain smooth and stable.
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Finally, using the similar eigenvalue notation, for the stability in the equa-
tions for m, we obtain that the eigenvalues for C

n(g̃), �
m

and  ̃

m

have the
properties

�

C

n

(g̃)

� 0,
�

�m = �m,

�

˜

 m
� 0.

(55)

Moreover, we can also observe that eigenvalues of D
�

have the property that

�

D

�

 0 i↵ �

˜

 m
 �m + "�

C

n

(g̃)

. (56)

where for convenience we used the vector convention in writing the above
inequality, which simply means that the inequality is respected per each com-
ponent. Thus, we have that either (1)  ̃m is proportional to "Cn(g̃) or (2)  ̃m

is proportional to C

n(I
r

). For case (1), if we let k

 ,1

be the proportionality
constant within the relation  m, then we can write that there must exist some
values for Cn

x

(g̃) at which

k

 ,1

"�

C

n

(g̃)

 �m + "�

C

n

(g̃)

(k
 ,1

� 1)"�
C

n

(g̃)

 �m

(k
 ,1

� 1)"Cn(g̃)  �m ,

(57)

where we used the same vector convention as in (56). Thus, using integration
by parts, we can write

(k
 ,1

� 1)"
⇣

g̃C

n(I)� (b̆� d̆)y
r

C

n(I
r

)
⌘

 �m. (58)

For case (2), if we let k
 ,2

be the proportionality constant within the relation
 m then we can write that there must exist some values for Cn(I

r

) at which
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(59)

where g̃ � (b̆� d̆)y
r

. Therefore, given su�ciently large values for Cn(I
r

), given
by

C

n(I
r

)  �m

k

 ,2

� "

⇣

g̃ � (b̆� d̆)y
r

⌘

, (60)

the solutions for mn

i

will be unstable with

lim
n!1

m

n

i

= 1 8i where  
m

i

=  

m

i

(cn
x

, ·) . (61)

For su�ciently low values of Cn(I
r

), given by the contrary argument to (60),
the solutions for mn

i

will be stable with m

n

i

= 0.
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4 Numerical Results and Simulations in 1D-Spatial Case

The parameters considered throughout this work are chosen to be consistent
with those set out in Domschke et al. [41], and other previous models [51], and
are detailed in Appendix A.

Numerical results generated by running the test case, and finite di↵erence
scheme for the system, through MATLAB are given below (Fig. 1-9). Several
di↵erent cases are simulated in order to numerically verify the validity of pro-
posed changes to the system and in order to perform analyses of the system
using numerically generated graphic results:

For the 1D-spatial, 1D-structural case the associated model (3), was ex-
plored numerically in the presence of initial conditions for c(t, x, y) for t = 0,
given by

c

0

(x, y) := c(0, x, y) = exp
⇥

�100
�

x

2 + 4(y � 1

4

)2
�⇤

, (62)

and the homogeneous ECM conditions

v

0

(x) := v(0, x) = 1�
R

P
c(0, x, y) dy . (63)

4.1 uPA in the absence of PAI-1: 1D-Spatial 1D-Structural Results

One characteristic of the numerical solution, which has not previously been
observed, is that of the partial travelling wave translation in the structural
dimension (Fig. 1). That is to say that the proliferative terms lead to the
travelling wave being depleted and replaced, to a greater extent at a lower value
for y. These features shall be henceforth referred to as structural “y-waves”
and is an essential feature in understanding the dynamics of such systems,
given their recurrence in all domains. There is not su�cient evidence in the
biological literature to verify that this is the case or to contradict this result.

The hyper-a�nity binding also results in the behaviour of “replicative y-
trapping” (referring to the behaviour of c collection at the upper y boundary
as y-trapping and the proliferative duplication at 1

2

y as replicative of this y-
trapping) behaviour producing a discontinuity that fails to allow the system
to continue the migration of c through P and raises significant questions of the
biological e�cacy of this system when coupled to assumptions of equal mitosis.
Again, this results from the binding a production of these species occurring at
far higher rates than the unbinding or degradation of these species.

The y-waves actually caused a resultant x-resolved profile, C(t, x), which
was itself not smooth (Fig. 1); this is a ramification of the proliferative con-
tribution to the replication of steep gradient profiles. One must observe that,
within the discrete space, the proliferative term necessarily means that any
gradient is replicated with a proliferative constant, µ

c

.
Further, one observes an sharp spiking behaviour that occurs only at the

boundary, which can be directly observed for t = 50 (Fig. 1c). The source of
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(a) t=10 (b) t=20 (c) t=40

(d) t=60 (e) t=80 (f) t=100

(g) t=120 (h) t=140 (i) t=160

Fig. 1: Numerical 1D-spatial 1D-structural results generated from simulation of the system (3),

with c plotted in the x- and y-dimension (top), with values for C (black), v (blue), m

b,1 (green

dashed), and m

f,1 (red dashed) plotted spatially (bottom).

this spiking is not clear, since it occurs to a lesser extent for other values of
(t, x), but could be due to the gradient-guided dissipation occurring only one
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side of the spike. In other words, the accuracy of the estimate of the double
derivative is lessened by the fact that the peak occurs on the boundary and one
can obtain information about the local features on only one side of the peak.
It is also possible that this results from the contribution of the chemotaxis to
the molecular species, on the bulk of the population, and the haptotaxis, on
the exterior of the population.

There exists, however, some biological evidence to corroborate this be-
haviour as a natural process occurring due to the di↵erence between forces
between cell-cell junctions and cell-ECM based motility. For instance, Yam-
aguchi et al. [101] report the phenomenon of di↵erential behaviours between
‘leader’ and ‘follower’ cells during collective cell migration, often resulting in a
clustered cell subpopulation leading the migration of the tumour’s boundary.
Likewise, in vivo experimentation (necessarily invoking the heterogeneity of
the underlying migratory substrate) has demonstrated breakaway clusters of
cells which develop anterior to the invasive front [23].

5 Numerical Results in 2D-Spatial Cases

Proceeding in a similar manner to the 1D-spatial case, also in the 2D-spatial
cases, with the appropriate 1D- or 2D-structural domain P, we we assume
equal spatial and structural step size �

x

i

:= �

y

j

:= �

x

, i, j 2 {1, 2} and an
equal number r 2 N⇤ of collocation points in both spatial and structural
dimensions, and in the following we will proceed to discretise c, v, and m at
any given time node n�

t

, with n 2 N.
For the 2D-spatial 1D-structural model, numerical results have been ob-

tained for the initial condition for c(t, x, y) which are the extension of (62),
and in this case are given by

c

0

(x, y) := c(0, x, y) = exp
⇥

�100
�

kxk2
2
+4(y � 1

4

)2
�⇤

, (64)

Furthermore, for the ECM, we use both the homogeneous initial conditions
given in (63) and a new set of heterogeneous initial conditions given as in [5],
namely:

(x
1

, x

2

) := 1

3

�

x+ 3

2

�

2 [0, 1]2 for x 2 D , ⇣ := 6⇡,

h(x
1

, x

2

) := 1

2

+ 1

2

sin
⇣

⇣x1

x2+1

⌘

sin (⇣x
1

x

2

) sin
⇣

⇣(1�x1)

x2+1

⌘

sin (⇣(x
1

� 1)(x
2

� 1)) ,

v

0

(x) := v(0, x) = min
n

h(x
1

, x

2

), 1�v
c

C(0,x)

v
v

o

.

(65)
Finally, for the 2D-spatial 2D-structural model, numerical results have been

obtained for the appropriate extension of the initial conditions for c(t, x, y)
considered in (62) and (64) which in this case recast as follows:

c

0

(x, y) := c(0, x, y) = exp
⇥

�100
�

kxk2 +4 k (y � [ 1
4

,

1

4

]T ) k2
�⇤

, (66)

as well as the homogeneous and heterogeneous ECM initial conditions given
in (63) and (65).
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5.1 uPA in the absence of PAI-1: 2D-Spatial 1D-Structural Results

Results from the simulations were consistent with the 1D-spatial 1D-structural
case but varied widely due to the e↵ect of the ECM on the cancer species.

Results for the 2D-spatial 1D-structural system for lower binding values are
given (Fig. 2 & 3). For c, the the spatial distribution of the tumour in 2-spatial
dimensions and isosurface figure in a 2D-spatial 1D-structural domain (in the
absence of PAI-1) are displayed to attempt to give the fullest impression of the
progress of the cancer through the spatial and structural domains in time. One
can see, again, the y-wave behaviour in the 2D-spatial system with mushroom-
like forms replicating themselves at progressively lower values for y. A typical
symmetric cancer cluster grows into the spatial domain, giving higher values
for concentration at the upper boundary of P towards the epicentre of the
cancer cluster.

In biological terms, this indicates that the more established, inner, portion
of the tumour will likely have a higher bound population of molecules that
the boundary, outer, portion. This result is counter-intuitive since, given that
these bound species are more e↵ective at degrading the extracellular matrix,
a theoretical postulation might lead one to believe that these species would
exist to a greater extent on the boundary. This is either a flaw within the
application of the model or may provide an interesting observation about the
e�ciency of natural biological cancers.

Biological evidence does exist, on the other hand, to support the claim
that both uPAR, and consequently surface bound uPA, are more highly con-
centrated towards the interior of invasive cell structures. Invading T lyphocytes
have been reported to exhibit such internally high expression levels, with only
individuated exterior cells expressing high levels of uPARs [16]. A biological
spatio-temporal model of tumour invasion reported high levels of uPA of the
tumour’s leading edge but also found extremely high levels on the invading
mass’ interior [2].

The y-waves occur within the 2D-spatial model also (Fig. 2–3), where one
may observe graduated levels of binding for c. One can observe that the largest
concentration of c begins and remains at the epicentre of the population.

All results show a significant correlative relationship between the ECM
levels, v(t, x), and the destructive molecular species, m

f,1

(t, x), and therefore
a wave of ECM destruction follows closely behind the travelling wave of the
cancer cell population. This is an indicator of the indirect relationship between
the cancer growth mechanism and the cancer population itself (i.e. acting
through the intermediate degradative protein species m

f,1

).

Results generated using a heterogeneous initial ECM density (Fig. 4–6)
varied from the previously observed results with similar behaviour, nonethe-
less. One observes the spiking behaviours developing into a particularly defined
wave front for the growing cancer population. Here, the boundary wave-like
solution may be caused by the high a�nity between the cancer cell population
and the ECM.
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mb,1

mf,1

v

C

(a) t=3 (b) t=15

Fig. 2: Numerical 2D-spatial 1D-structural results for (3) for homogeneous ECM, plotted at times

t 2 {3, 15}: m
b,1 (row 1), m

f,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface on

the 2D x-plane.
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v

C

(a) t=35 (b) t=50

Fig. 3: Numerical 2D-spatial 1D-structural results for (3) for homogeneous ECM, plotted at times

t 2 {35, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

Although it is di�cult to depict this behaviour, one again observes y-waves
in the numerics for the behaviour at the interior of the cancer population. This
is masked by the isosurface for the spiking shell of the cancer population. The
y-waves play an important role in determining the initial behaviour of the
cancer population, during growth and establishment of the perimeter. It is
unclear wether these waves contribute to the dramatic change in behaviour
and form t 2 (9, 15).

Just as in the 1D- and 2D-spatial homogeneous-ECM cases, one can ob-
serve the initial spatial splitting of the cancer population. Unlike in the ho-
mogeneous case (Fig. 2–3), however, the heterogeneity appears to mediate the
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mb,1

mf,1

v

C

(a) t=3 (b) t=9

Fig. 4: Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {3, 9}: m
b,1 (row 1), m

f,1 (row 2) v (row 3), C (row 4), and c (row 5) as an isosurface on

the 2D x-plane.
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v

C

(a) t=15 (b) t=20

Fig. 5: Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {15, 20}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

consolidation of the cancer subpopulations (Fig. 4b–5b) into the characteristic
tumour that one associates with the biological paradigm.

Given that a periodic function is used to generate the ECM heterogene-
ity, it is not terribly surprising that the result produced (t  20) resembles
that of a cyclic environment, with 180� turn symmetry. Further results (not
shown) were generated with an asymmetric, or with non radial symmetry with
respect to the initial positioning of the tumour. These results again displayed
an asymmetric splitting of the population (typically into two spatially dis-
tinct subpopulations) with the larger portion of the subpopulation migrating
to those regions with the steepest ECM gradients. Given that all of these



Analysis for a Spatio-Structural-Temporal Invasive Carcinoma Model 27

v

C

(a) t=30 (b) t=50

Fig. 6: Numerical 2D-spatial 1D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {30, 50}: v (row 1), C (row 2), and c (row 3) as an isosurface on the 2D x-plane.

environments were normalised with respect to their overall nutritional capac-
ity, the underlying ECM patterning has no significant bearing on the invasive
success of the tumour.

Moreover, the cancer, in this 2D-spatial 1D-structural heterogeneous case,
is particularly exploitative of its environment, protruding into areas of low
ECM density before the di↵usion of the molecular species through the more
dense sections of the ECM allows the remainder of the population to follow.
This feature of the cancer behaviour is repeated until total permeation of the
spatial domain occurs. This also leads to the boundary of the cancer population
becoming somewhat amorphous, as one observes with cancer in the natural,
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biological environment of the human tissue. It may be interesting to consider
the case in which molecular species are more free to di↵use into areas of lower
ECM density.

5.2 uPA in the presence of inhibitor PAI-1: 2D-Spatial 2D-Structural Results

Results generated using a heterogeneous initial ECM density were similar to
those generated for the system with 1-structural dimension (in the absence
of PAI-1, Fig. 7–9). One observes again that the spiking behaviours develop-
ing into a particularly defined wave front for the growing cancer population.
Again, this is likely to be due to the attractive forces, leading to haptotaxis,
between the cellular population and the ECM causing cells to chemotactically
self-aggregate on the boundary of the tumour. This is also likely accentuated
by the local inhibition of invasion (through PAI-1 binding), which contrasts
the advancement of the tumour boundary and encourages hyper-localised be-
haviours.

All of those significant features, appearing in the case of 1D-structural di-
mension (in the absence of PAI-1), appear in those for 2-structural dimensions
(in the presence of PAI-1), with the important di↵erence being that the nature
of the tumour in this 2D-structural case develops at a much slower rate. This is
expected behaviour given that the introduction of a 2nd structural dimension,
in this case, corresponds to the introduction of an inhibitor to the degradative
activation protein, uPA. The apparent rate of change in tumour growth can be
approximately given by ↵

m

f,1 � �

m

f,1 such that the rate by which the tumour
is slowed down is equal to the binding ability of the inhibitor. This can be
clearly seen in the di↵erences in morphology at t < 20 (Fig. 7–8).

6 Discussion & Conclusions

In the case where we consider a homogeneous cancer population and ECM
density (Fig. 2-3) one observes a logistic boundary that expands, unimpeded,
to its maximal radius within the given domain. Within this one observes a
lower peak that clearly continues to expand throughout the space with the
y-wave behaviour (which can be observed within the raw data), although at
much lower values for C. This is likely due to the initial conditions remaining
constant with the addition of a spatial dimension, causing values for c to be
distributed and for C to be reduced. Overall, these solution were in line with
the 1D-spatial test-systems but not indicative of natural cancer behaviour.

Once we endow the cancer species with its natural habitat (the heteroge-
neous ECM) one observes behaviours absolutely characteristic of the biological
system. These behaviours included the volume filling properties for the inside
of the tumour; the aggressive behaviour of the cancer’s perimeter; and the
primary invasion into areas of lower tissue density. It is not clear whether or
not the initial splitting of the cancer into two subpopulations is characteristic
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mb,1

mf,1

v

C

(a) t=3 (b) t=9

Fig. 7: Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {3, 9}: m
b,1 (row 1), m

f,1 (row 2), v (row 3), C (row 4),

R
[0,1] c dy2 (row 5) and

R
[0,1] c dy1

(row 6) as isosurfaces on the 2D x-plane.
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v

C

(a) t=12 (b) t=20

Fig. 8: Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {12, 20}: v (row 1), C (row 2),

R
[0,1] c dy2 (row 3) and

R
[0,1] c dy1 (row 4) as isosurfaces on

the 2D x-plane.
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v

C

(a) t=25 (b) t=35

Fig. 9: Numerical 2D-spatial 2D-structural results for (3) for heterogeneous ECM, plotted at times

t 2 {25, 35}: v (row 1), C (row 2),

R
[0,1] c dy2 (row 3) and

R
[0,1] c dy1 (row 4) as isosurfaces on

the 2D x-plane.
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of nature but certainly is of the model, which is again likely a consequence of
the initial conditions.

It can also be directly observed that the numerical solution is stable in
its spatial dynamics but unstable in structural dynamics, which can be seen
from the total permeation of P on the boundary of c whilst the spatially
considered cancer population, C, does not exhibit uncontrolled migration in
D. The areas of higher values for C (Fig. 6) can be attributed to the fact that
y-waves continue to exist within the body of the tumour and behave as in the
1D-spatial model.

The largest errors arise from the structural di↵erentiation in the second
term of the equation for @c

@t

, where we incur second order errors as a result of the
symmetric di↵erence quotient approximation. This method is commonly used
and there are no clear contenders to be used in its place since reaching a higher
order approximation is far more di�cult than incurring computational and
processing penalties as a result of increasing the number of required arithmetic
calculations.

We then have a third order error that results from the trapezoidal ap-
proximation on the local integral. This could, potentially, be improved by, for
example, taking a higher order approximation, such as Simpson’s rule polyno-
mial approximation, but one necessarily has a trade o↵ between accuracy and
computational intensity.

On the whole, these errors tend to be small so long as �
x

and �
y

are kept
su�ciently small, �

x

, �

y

 10�2.

The result of stability analysis was to confirm the conclusions of the nu-
merical simulations that, notwithstanding ones ability to compensate for the
errors produced, the system is unstable in y. Any perturbation induced with
non-zero y-component will result in the exponential growth of the perturbation
through the structure space.

This simply implies that for fine perturbations in x, one must have suf-
ficiently low migration in y so as to allow the profile to remain stable. This
is particularly interesting when taken in combination with the numerical so-
lutions which revealed explosive instabilities upon rapid migration to the y

boundary, or the boundary of P̄, @P̄.
Given that, for stability, one considers the magnitude (or absolute values)

of the parameters involved, one has that m is unstable under all conditions
and for small perturbation around any hypothetical stable solution. We also
find that v is stable at the cancer-ECM equilibrium such that, since we are
interested in the cancer growth and destruction of its local environment, the
system is stable, notwithstanding the instability in m.

Numerical results show interesting behaviours, particularly with the intro-
duction of y-waves, resulting from the structural considerations in c. One sees
the expected characteristics of the aggressive cancer species considered, with
smooth degradation of the ECM and concurrent advancement of the cancer
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species to encroach on the healthy tissue. One shows how various considera-
tions as to how one could amend the system result in more reasonable and
expected behaviours in the cancer species but how, ultimately, the results
that most closely correlate with the biological paradigm require a rethink of
the underlying assumptions for the system, as a whole.

The numerical results for the system may elucidate an interesting propen-
sity of the biological cancer system to utilise unconventional mechanisms of
invasion, under the influence of chemical inhibitors. Inhibiting the uPA system
appears, in some way, to impede the uniform invasion of the stroma by this ag-
gressive cancer species, whilst allowing the ECM to remain intact by reducing
the cancer’s ability to degrade collagen has allowed the cancer to more readily
utilise haptotactic behaviours. Therefore, what one observes in the inhibitor
system, in comparison to its counterpart, is a more sporadic distribution of
cancer cells who invade but do not degrade the ECM (growing in areas where
competition for space is reduced.

This gives rise to important biological decisions about how one treats and
prevents the spread of these cells, since inhibition may cause greater clinical
issues. The inhibitors fail to inhibit the initial devastation of the ECM by uPA
but leave the ECM open to exploitation. This may be a survival mechanism
utilised by cancer and may have been evolutionarily beneficial to it propen-
sity to arise in the human body, rather than acting to the detriment of its
progression.

A Parameter Set

c : Dc = 10

�4 ⇠v = 5⇥ 10

�2 ⇠1 = 1⇥ 10

�3 µc = 0.1

Scc = 10

�4 Scv = 10

�4 vc = 0.524 vv = 0.476

i-state : " = 0.1 � = 0.5 �y = 0

v : �v = 10 µv = 0.05

mb,1 : Dm
b,1 = 10

�3 ↵m
b,1 = 0.1 �m

b,1 = 0.1

mb,1 : Dm
b,1 = 10

�3 ↵m
b,1 = 0.1 �m

b,2 = 0.1

mf,1 : Dm
f,1 = 10

�3 ↵m
f,1 = 0.5 �m

f,1 = 0.1
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