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Summary: There has been a huge amount of work put into identifying and characterising effectors 15 

from plant-parasitic nematodes in recent years. Although this work has provided insights into the 16 

mechanisms by which nematodes can infect plants, the potential translational outputs of much of 17 

this research are not always clear. This short article will summarise how developments in effector 18 

biology have allowed, or will allow, new control strategies to be developed, drawing on examples 19 

from nematology and from other pathosystems. 20 
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Biotrophic parasitism of plants is a strategy used by a wide taxonomic range of organisms, 25 

including nematodes, insects, fungi, oomycetes and bacteria, and there are considerable parallels 26 

between many aspects of the life cycles of these organisms. Each needs to overcome the physical 27 

and chemical barriers that plants use to protect themselves and many will need to overcome or 28 

suppress induced plant defence responses. All will need to extract the nutrients required for 29 

development from their chosen hosts and many, in doing so, will induce cellular or physiological 30 

modifications that improve the nutritional qualities of the host. For example, cyst nematodes exploit 31 

plant sugars as a food source (Danchin et al., 2016) and sucrose transporters are upregulated during 32 

the early stages of the interaction between cyst nematodes and their hosts, allowing food to be 33 

transported into the developing syncytium (Hoffman et al., 2007). Similarly, several SWEET genes 34 

encoding putative sugar transporters are induced in rice in response to the pathogenic bacteria 35 

Xanthomonas oryzae pv. oryzae, that can support bacterial development (Streubel et al., 2013). A 36 

more direct example of a pathogen modifying the host comes from the fungal pathogen Ustilago 37 

mays, which introduces a chorismate mutase into the cells of its host during infection that adjusts 38 

the metabolic status of the host through metabolic priming (Djamei et al., 2011). 39 

At a molecular level, the interactions of plant pathogens with their hosts are mediated largely 40 

by effectors. There are many different definitions of “effectors” used in different branches of plant 41 

pathology. For the purposes of this article we use the relatively broad definition suggested by Bird et 42 

al., (2014): “Any pathogen molecule that suppresses host defences or manipulates the host to allow 43 

provision of food to the pathogen”. Effectors are secreted from the pathogen into their hosts and in 44 

plant-parasitic nematodes they arise mainly from the subventral and dorsal pharyngeal gland cells, 45 

from where they are secreted into the host through the stylet. Effectors may also originate from 46 

other tissues and it has recently been shown that some effectors are secreted from the amphids into 47 

the apoplast surrounding the feeding nematode (Eves van den Akker et al., 2014a). Changes in the 48 

morphology of the pharyngeal gland cells during development of cyst and root-knot nematodes 49 

suggest that the products of the subventral gland cells (which are large and active in the invasive 50 

second stage juvenile) are likely to be important at the early stages of the host-parasite interaction 51 

while those of the dorsal gland cell (which grows and becomes more active during the parasitic 52 

stages) are likely to be more important during the parasitic process (Hussey & Mimms, 1990). 53 

Effectors play a central role in the biology of plant-parasitic nematodes and consequently a 54 

great deal of effort has been put into identifying the genes encoding these proteins. Several detailed 55 

reviews on this topic have been published recently (e.g. Goverse & Smant, 2014; Mitchum et al., 56 

2013; Haegeman et al., 2012); here we provide only the briefest of outlines and recommend these 57 
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reviews for further details. The most productive strategy for identification of effectors has been 58 

analysis of transcriptome (or Expressed Sequence Tag – EST) sequences, either from whole 59 

nematodes or from aspirated gland cell contents (Noon et al., 2015; Maier et al., 2013; Gao et al., 60 

2003; Huang et al., 2003). This analysis has been used for identification of effectors from sedentary 61 

endoparasites including cyst and root-knot nematodes (e.g. Jones et al., 2009; Petitot et al., 2016), 62 

Nacobbus aberrans (Eves van den Akker et al., 2014b) and Rotylenchulus reniformis (Wubben et al., 63 

2010), as well as for a variety of migratory endoparasites (Kikuchi et al., 2007; Haegeman et al., 64 

2009; Haegeman et al., 2011). More recently, genome sequences of plant parasitic nematodes have 65 

become available and are now being analysed for the presence of effectors (Danchin et al., 2013; 66 

Thorpe et al., 2014, Eves van den Akker et al., 2016). In all cases, effectors are first identified by a 67 

combination of bioinformatic analyses. These candidate genes are validated by functional assays 68 

such as (i) confirmation that the genes are expressed in secretory organs (most often the gland cells) 69 

from which they can be delivered into the host and (ii) evaluation of their contribution to fitness of 70 

the pathogen by silencing in the nematode. High-throughput and relatively low cost sequencing 71 

approaches mean that these types of approaches are now being applied to a far wider range of 72 

nematodes than was previously feasible; this is clearly illustrated by the development of the 959 73 

nematode genomes initiative project (Kumar et al., 2012; 74 

http://www.nematodes.org/nematodegenomes). Furthermore, new tools are being developed that 75 

allow more focused sequencing targeted specifically at effectors that will make effector 76 

identification even more accessible. For example, a method for isolation of gland cells and 77 

sequencing of amplified RNA has been described that has been used for identification of effectors in 78 

three plant-parasitic nematodes (Maier et al., 2013). In addition, capture array protocols have been 79 

described that allow specific subclasses of genes to be enriched from a genome prior to sequencing, 80 

allowing sequence depth to be focused on genes of interest while ignoring other parts of the 81 

genome. This approach has allowed, for example, sequencing of the full resistance gene 82 

complement of potato, tomato and wheat (Jupe et al., 2013; Andolfo et al., 2014; Steuernagel et al., 83 

2016) and is currently being applied to capture and sequencing of effectors. This approach is likely to 84 

be of particular value for comparative analysis of relatively closely related populations of a 85 

nematode species for which the effector complement is known, as design of the probes for the 86 

capture array requires prior knowledge of the sequence types that are being sought. 87 

The outputs of these projects have led to the identification of a wide range of effectors from a 88 

variety of economically important plant-parasitic nematode species. This has enabled elegant 89 

functional studies that have demonstrated the importance of effectors in several aspects of the 90 

biology of plant-parasitic nematodes. For example, effectors have been identified that suppress host 91 

http://www.nematodes.org/nematodegenomes
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defence responses (Jaouannet et al., 2012; Postma et al., 2012; Lozano-Torres et al., 2014; Niu et al., 92 

2016) while others have been shown to interact with auxin transporter proteins (Lee et al., 2011) or 93 

exhibit transcriptional activation activity in their host (Zhang et al., 2015) and these may therefore 94 

have an important role in development of the feeding site. 95 

It is clear that functional studies of effectors provide valuable information about the molecular 96 

mechanisms by which nematodes infect plants. However, the practical outputs that are emerging 97 

from effector biology are not always understood and may not be emphasised by the authors of such 98 

work. However, the underpinning rationale for work on effectors is to provide new methods for 99 

controlling pathogens. Here we describe some of the translational outputs of effector research. 100 

 101 

NATURAL RESISTANCE 102 

The function and evolution of induced plant defences has been described by the zigzag model 103 

(Jones & Dangl, 2006) and is summarised in Figure 1 in the context of plant-nematode interactions. 104 

Plants are under constant attack from a wide range of potential pathogens. The majority of these 105 

pathogens are successfully repelled following detection of essential, conserved pathogen molecules 106 

(Pathogen-Associated Molecular Patterns – PAMPs) which activate the first layer of host defences – 107 

PAMP-triggered immunity (PTI) - following perception by pattern-recognition receptors (PRRs). PTI 108 

may also be induced upon detection of the breakdown products of the plant cell wall, which are 109 

termed damage-associated molecular patterns (DAMPs). Successful biotrophic pathogens deliver 110 

effectors that suppress PTI and thus induce effector-triggered susceptibility (ETS). In order to 111 

counter this, a second layer of immune receptors is present encoded by resistance (R) genes. 112 

Resistance proteins detect the presence of effectors and activate effector-triggered immunity (ETI). 113 

ETI is frequently accompanied by a strong, localised cell death, termed the hypersensitive reaction 114 

(HR). Effectors that are recognised by resistance proteins are termed avirulence (Avr) factors. 115 

The HR arising from the recognition of an Avr gene product by its cognate R protein can be 116 

readily visualised as a patch of cell death in some plants (Figure 2). This can be achieved either by 117 

transiently expressing the Avr gene alone in a plant carrying the appropriate R gene (Figure 2A) or by 118 

transiently expressing both the Avr effector and the R genes in a plant (Figure 2B & 2E). Knowledge 119 

of an Avr effector therefore offers several potential practical benefits. Perhaps most importantly an 120 

Avr gene can be used as a tool to assist in the identification of the corresponding R gene, by acting as 121 

a probe that reveals the presence of the R gene in a given sample. The use of effectors in these 122 

resistance screening approaches has recently been reviewed (Du & Vleeshouwers, 2014), and 123 



6 
 

includes several examples of identification of R genes against the late blight pathogen Phytophthora 124 

infestans. For example, knowledge of the R3a/Avr3a matching pair enabled the subsequent 125 

identification of the closely linked, but functionally distinct, R3b resistance gene and its cognate Avr 126 

gene Avr3b (Li et al., 2011). Similarly, effectors can also be used as tools to identify novel resistance 127 

sources. Vleeshouwers et al. (2008) screened a range of wild Solanaceous species with 54 predicted 128 

P. infestans effectors and were able to identify orthologues of Rpi-blb-1 resistance gene from 129 

Solanum stoloniferum and S. papita. Similarly, Van Weymers et al. (2016) screened 126 wild diploid 130 

Solanum accessions with P. infestans isolates and subsequently identified functional Rpi-vnt1.1 131 

homologs in S. okadae amongst other R genes by screening 82 conserved effectors. Knowledge of an 132 

Avr gene can also be used for tracking the presence of an R gene in a population of plants used in a 133 

breeding programme by transient expression in leaves. The utility of integrating effector screening in 134 

a breeding program and in R gene cloning has been illustrated recently by the characterisation of an 135 

R2 homolog from the Swedish potato breeding clone SW93-1015 that confers efficient broad 136 

spectrum resistance to P. infestans under field conditions (Lenman et al., 2016). This approach offers 137 

the prospect of substantial savings of time and resource, compared to screening segregating 138 

populations with nematodes. 139 

Knowledge of effectors/Avr genes can also be used to predict the durability of an R gene in a 140 

field situation. An Avr gene that accumulates mutations in response to selection pressure from the 141 

host may no longer be recognised by its cognate R protein, although there may also be constraints 142 

on the level of changes that can be accommodated while retaining function. It therefore follows that 143 

an Avr gene that is relatively invariant at a population level is likely to be recognised by an R gene 144 

product that is durable. Conversely, extensive variation in an effector sequence is likely to be 145 

characteristic of an Avr gene that evades recognition by what is probably a less durable R gene. This 146 

property can be readily observed in the one Avr gene (AvrGpa2 otherwise known as Gp-RBP-1) that 147 

has been identified from plant-parasitic nematodes to date (Sacco et al., 2009). The potato Gpa2 148 

resistance has been overcome by populations of G. pallida present in Europe and this is reflected by 149 

the presence in G. pallida populations of multiple alleles of the Avr gene that contain a point 150 

mutation in the site which determines recognition. Indeed, strong selection pressure on this amino 151 

acid residue, and on several others, has been demonstrated (Carpentier et al., 2012). Similar 152 

analyses with P. infestans have shown that polymorphisms in a range of Avr genes partly explain the 153 

emergence of a virulent and aggressive strain of this pathogen in Europe (Cooke et al., 2012). An 154 

understanding of effector biology can therefore inform resistance deployment and breeding 155 

strategies. 156 
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In the longer term, and given the appropriate public acceptance, knowledge of the recognition 157 

specificities of an R/Avr gene combination can be used to expand recognition in generating a 158 

modified version of the R gene that recognises forms of the Avr gene that would normally evade 159 

detection. Two forms of the Avr3a gene are present in P. infestans populations; Avr3aKI is recognised 160 

by R3a whereas Avr3aEM, which has polymorphisms present at two positions in the Avr3a protein, 161 

evades recognition. Two studies have shown that introducing amino acid changes in R3a by point 162 

mutation or gene shuffling can generate forms of the protein that recognise both Avr3aKI and 163 

Avr3aEM (Chapman et al., 2014; Segretin et al., 2014). Although there may be issues in converting this 164 

recognition into resistance in plants, this technology offers the clear potential to manipulate R genes 165 

into a more durable form where knowledge of the corresponding effector is available. 166 

 167 

EFFECTORS AS TARGETS FOR GM APPROACHES 168 

Functional studies on effectors that have been identified from plant-parasitic nematodes 169 

frequently include an analysis of the importance of the effector by knocking down expression using 170 

RNA interference (RNAi). Nematode effectors can be targeted using RNAi by inducing uptake of 171 

double stranded RNA (dsRNA) by second stage juveniles (e.g Chen et al., 2005; Bakhetia et al., 2008) 172 

or by producing genetically modified plants that express a dsRNA hairpin from an appropriate 173 

construct (e.g Eves van den Akker et al., 2014a). The aim of such studies is generally to demonstrate 174 

the importance of an effector in the pathogenic process or, given sufficiently detailed phenotyping, 175 

to understand the function of the effector in the nematode life cycle. Such studies also allow 176 

effectors to be identified that might represent good targets for the development of future control 177 

methods by generating plants that express dsRNA targeting the effector sequence. In line with this 178 

idea, mining the genomes of root-knot nematodes through an evolutionary and comparative 179 

genomics approach identified 15,952 genes, including 993 effector-like proteins, that are conserved 180 

in genomes of plant-parasitic species but absent from non-target genomes of chordates, plants, 181 

annelids, insect pollinators and molluscs (Danchin et al., 2013). Sixteen of these were tested in 182 

infestation assays on tomato, using siRNA-treated M. incognita, and 12 showed significant and 183 

reproducible reduction of nematode parasitism. Host-mediated silencing is an appealing strategy for 184 

nematode control, partly due to the exquisite specificity of the RNAi process itself, in which only 185 

genes that are very similar in sequence to the silencing dsRNA will be targeted, but also because 186 

effectors in particular are often highly restricted to specific pathogen groups, as illustrated by the 187 

fact that very little overlap is present between the effector complement of G. pallida and that of 188 
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root-knot nematodes (Cotton et al., 2014). This suggests that an RNAi strategy targeting effector(s) 189 

has the potential to be highly specific and thus may allow off-target effects to be minimised.  190 

The most complete example of the use of this strategy to date concerns the 16D10 effector of 191 

the root-knot nematode M. incognita. This effector targets a SCARECROW transcription factor in 192 

plants (Huang et al., 2006a) and subsequent work showed that knocking out expression of the 193 

16D10 effector by RNAi in vitro leads to a failure of parasitism (Huang et al., 2006b). In addition, 194 

Arabidopsis expressing dsRNA hairpins targeting 16D10 were resistant to M. incognita and to closely 195 

related Meloidogyne species (Huang et al., 2006b). Likewise, host-mediated RNAi silencing targeting 196 

the M. incognita 16D10 in transgenic grapevine hairy roots efficiently decreased nematode 197 

reproduction (Yang et al., 2013). A similar approach has shown that targeting the Meloidogyne 198 

chitwoodi homologue of 16D10 also gives resistance in Arabidopsis and in potato (Dinh et al., 2014). 199 

This demonstrated that RNAi of an effector can be used in a crop plant as well as in a model system. 200 

A similar strategy has been used to analyse the function of the M. incognita 8D05 effector gene, 201 

which is known to interact with a host protein likely to be involved in water and solute transport. 202 

Generation of transgenic Arabidopsis expressing a dsRNA targeting the 8D05 effector gene gave over 203 

90% control in vitro, validating this effector as a potential control target (Xue et al., 2013).  204 

Although the studies described above provide, at first sight, compelling evidence that RNAi 205 

targeting effectors (or indeed any other important nematode gene) represents a promising control 206 

strategy, the sustainability of such resistance has not yet been demonstrated and a note of caution is 207 

required. The first description of RNAi in nematodes was made almost 20 years ago (Fire et al., 1998) 208 

and the first publication demonstrating the applicability of this technique to plant-parasitic 209 

nematodes appeared more than 10 years ago (Urwin et al., 2002). Various proof-of-concept studies, 210 

such as those described above, have subsequently appeared but there are no cultivars available that 211 

use RNAi to control nematodes. It has recently been shown that constructs generating dsRNA 212 

targeting nematode genes can become silenced in transgenic plants due to methylation of the 213 

promoter region and that this effect may become more pronounced in successive generations 214 

(Kyndt et al., 2013). There may therefore be significant technical hurdles to be overcome before 215 

RNAi can be deployed as a tool against nematodes.  216 

LONGER TERM OUTPUTS (1): TARGETING THE HOST TARGETS OF EFFECTORS 217 

One of the ways that the function of a novel effector can be probed is to screen a yeast two-218 

hybrid library with the effector in order to identify host proteins that interact with, and may 219 

therefore be targeted by, the effector. This approach has been used widely and has shown that a 220 
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variety of host proteins and pathways are targeted by nematode effectors. These include 221 

transcription factors (Huang et al., 2006a), auxin transporters (Lee et al., 2011), proteins involved in 222 

cell wall remodelling (Hewezi et al., 2008) and putative R genes (Rehman et al., 2009). This 223 

knowledge offers a further opportunity for new control strategies as it may be feasible to identify, or 224 

to generate, variants of the host proteins (also referred as susceptibility genes) that are still 225 

functional but that are no longer amenable to manipulation by the effector (van Schie & Takken, 226 

2014). Structural information about how the interaction between the effector and its target can help 227 

in this regard and a similar approach has been used to demonstrate how changes in an effector 228 

sequence affect its ability to interact with a host target (King et al., 2014). Once a target has been 229 

identified and the region that is important for interaction with the effector determined, variants of 230 

the target can be sought, or induced, that do not interact with the effector. The development of 231 

TILLING (Targeting Induced Local Lesions In Genomes) based approaches offer the hope that 232 

progress can be made in this area (McCallum et al., 2000). TILLING is a method in which mutagenesis 233 

is coupled with extremely high-throughput screening techniques that identify the sites of the 234 

induced mutations. The use of TILLING as a tool for improvement of crops has recently been 235 

reviewed (Chen et al., 2014). In an alternative approach – EcoTILLING – natural variants of the host 236 

species are sought that show a desired trait and the same high-throughput techniques are 237 

subsequently used to identify variation that is associated with the trait. This tool has been used, for 238 

example, to identify variants in R genes against powdery mildew and to seek new resistance sources 239 

against viruses (Ibiza et al., 2010; Mejlhede et al., 2006). Looking further ahead, new genome editing 240 

tools such as CRISPRs and TALENs (reviewed by Mahfouz et al., 2014) may offer an alternative route 241 

to modifying host sequences to the disadvantage of pathogens. These approaches may not just be 242 

limited to modifying the protein targets of pathogen effectors. Some effectors may exert their 243 

activity by binding to DNA in order to modify host gene expression; the bacterial TAL effectors 244 

providing the best studied examples of these (e.g. Kay et al., 2007). Modifying the region of the host 245 

genomic DNA that effectors need to bind to may therefore offer an alternative route to control 246 

(Wulff et al., 2011). 247 

 248 

LONGER TERM OUTPUTS (2): NON-HOST RESISTANCE 249 

Non-host resistance (NHR) is the term used to describe the phenomenon that most plants are 250 

resistant to most pathogens. The corollary of this is that most pathogens have a very limited host 251 

range, although there are clear exceptions to this rule including some root-knot nematode species. 252 

Understanding the mechanisms underlying NHR offers the prospect of identifying resistance that is, 253 
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by definition, broad-spectrum and durable. The potential applications of NHR in crop improvement 254 

have recently been reviewed (Lee et al., 2016). NHR is often multi-tiered (Thordal-Christensen, 2003; 255 

Gill et al., 2015) but although structural and chemical barriers play a role in some cases of NHR, it is 256 

thought that effectors are central in the majority of cases. It has been argued (Schulze-Lefert & 257 

Panstruga, 2011) that NHR in plants distantly related to the host of a pathogen occurs as a result of a 258 

failure to suppress PTI, and that the NHR response in such species occurs as a result of PTI responses 259 

mediated by the plasma membrane localized PAMP receptors. This may occur due to co-evolution 260 

between host and pathogen leading to highly adapted effectors that are unable to interact with their 261 

targets in non-host species. NHR may be engineered by transferring PRR, that are otherwise absent, 262 

into host plants to create defence responses that pathogens are unable to circumvent due to a lack 263 

of adapted effector(s). The ground-breaking demonstration that broad-spectrum defence against 264 

bacterial pathogens can be acquired by heterologous expression of a PRR was reported by Lacombe 265 

et al. in 2010, where the elongation factor Tu receptor (EFR) from Arabidopsis was transferred into 266 

two Solanaceous plants, tomato and Nicotiana benthamiana. Further demonstration of the 267 

efficiency of this approach has been provided in two recent studies (Schoonbek et al., 2015; 268 

Schwessinger et al., 2015), showing that transfer of EFR in wheat and rice can also enhance bacterial 269 

disease resistance in cereals. This also suggests that both dicot and monocot plants contain all 270 

necessary components for EFR signalling, further revealing that immune signalling pathways may be 271 

conserved across distant phyla and that transfer of PRR across plant families may also prove to be 272 

less problematic than inter-family R gene transfer. In non-host species that are more closely related 273 

to the host species, NHR may occur as a result of ETI, implying the existence of highly durable R 274 

genes that recognise the pathogen and whose action cannot be circumvented by the pathogen 275 

(Schulze-Lefert & Panstruga, 2011). Knowledge of pathogen effectors offers the potential to identify 276 

the R genes that underlie NHR in non-host species. As a first step in this process one effector 277 

(HopQ1-1) has been identified from the tomato bacterial speck agent Pseudomonas syringae pv. 278 

tomato as the sole avirulence determinant responsible for the failure of the model strain DC3000 to 279 

cause disease in N. benthamiana (Wei et al., 2007; Figure 2C). Conversely, heterologous expression 280 

of hopQ1-1 in the tobacco wildfire pathogen P. syringae pv. tabaci 11528 rendered this strain 281 

avirulent in its susceptible host N. benthamiana. However, the hopQ1-1 deletion did not extend the 282 

host range of DC3000 to tobacco Nicotiana tabacum, indicating that the mutation does not confer 283 

some general virulence benefit to DC3000. Effector-mediated recognition in non-host plants can also 284 

trigger cell death, as seen in R/Avr-mediated resistance (Figure 2D and 2E). As an example, 285 

Phytophthora capsici effector PcAvr3a1 provokes a cell death response upon transient expression in 286 

(non-host) N. tabacum and other related non-host species (Vega-Arreguin et al., 2014). Furthermore, 287 
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host-mediated silencing of PcAvr3a1 in the pathogen allowed infection of resistant tobacco, 288 

confirming the importance of effector recognition in NHR. 289 

 290 

CONCLUDING REMARKS 291 

Effector biology is currently a highly topical issue, with developments in genomics and 292 

functional genomics enabling beautifully detailed studies of these proteins. As well as revealing the 293 

tools used by pathogens to manipulate their hosts, each effector acts as a probe for the plant 294 

immune system allowing us to develop a better understanding of both sides of the host-parasite 295 

interaction (Lee et al., 2013). The interactions of effectors with R proteins, and indispensable roles 296 

that they play in pathogen biology, mean that they also offer the prospect of significant practical 297 

gains. Effectors already form an integral part of the breeding process for resistance against the late 298 

blight pathogen P. infestans (Du & Vleeshouwers, 2014). We consider it likely that this will soon be 299 

the case for other plant pathogens, including nematodes, as information on the effector 300 

complement of various economically important pathogens is established. 301 
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Figure legends 562 

Figure 1: The zigzag model in context of plant-nematode interactions. In 2006 Jones & Dangl 563 

established the zigzag model to illustrate the quantitative output of the plant immune system in 564 

response to microbes but the concept has proven to be more broadly applicable to pests and 565 

pathogens. Components of the zigzag model that have been identified in plant-nematode 566 

interactions are shown in bold red type. The conceptual arms-race between host and pathogens can 567 

be depicted in four major phases. In phase I, conserved pathogen-associated molecular patterns 568 

(PAMPs; represented by the letter P in the pink forms) are recognised in plants by cell surface 569 

pattern-recognition receptors (PRRs) leading to induction of PAMP-triggered immunity (PTI). The 570 

only PAMP from plant-parasitic nematode identified to date is a pheromone, the ascaroside 18 571 

(Ascr#18; Manosalva et al., 2015), but its cognate PRR is not yet known. In phase II, adapted 572 

pathogens secrete effectors into the host that interfere with PTI, leading to effector triggered 573 

susceptibility (ETS). Several nematode effectors (represented by the letter E in the blue clouds) have 574 

been characterisd that can supress PTI responses (see review by Mantelin et al., 2015). In phase III,  575 

particular effectors (represented in the blue clouds by the letter A for “Avirulence factors”) are 576 

detected by a second layer of plant resistance receptors (products of the R genes), activating 577 

effector-triggered immunity (ETI) which in most cases leads to the induction of a hypersensitive 578 

plant cell-death reaction (HR). Very few nematode R genes have been cloned (see review by Goverse 579 

& Smant, 2014) and only one avirulence effector has been identified so far, the Globodera pallida 580 

RBP-1 SPRYSEC effector AvrGpa2 (Sacco et al., 2009). In phase IV, as pathogen and host coevolve 581 

new effectors and R genes, susceptibility or resistance predominate in turn. Avirulence factors (A) 582 

maybe lost or modified to avoid recognition by cognate R proteins (as is the case for RBP-1) and 583 

perhaps new effectors are gained (B,C,D) that are able to suppress ETI. Such activity has been 584 

demonstrated for the ubiquitin carboxyl extension protein GrUBCEP12 and many SPRYSEC effectors 585 

(see review by Mantelin et al., 2015). 586 

 587 

Figure 2: Effector-mediated cell death in plants. (A & B) A typical hypersensitive reaction is elicited 588 

by recognition of Globodera pallida effector Gp-RBP-1 (StGpa2-cognate avirulence factor) in 589 

Agrobacterium tumefaciens-based transient expression assay in potato accession Cara containing 590 

the StGpa2 resistance gene (A) or by transient co-expression of both StGpa2 and Gp-RBP-1 in 591 

Nicotiana benthamiana leaf (B). Conversely, eGFP control in potato and either StGpa2 or Gp-RBP-1 592 

expressed alone in N. benthamiana do not induce a response in plants. Transient expressions were 593 

performed with untagged constructs for StGpa2, Gp-RBP-1 (Sacco et al., 2009) and eGFP control as 594 

described in Mei et al. 2015, by infiltration of A. tumefaciens strains at an OD600nm of 0.5. Symptoms 595 
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observed under white light 7 days post infiltration. Infiltrated areas are indicated by dashed circles. 596 

(C-D-E) Effectors also participate in non-host resistance. (C) Wild-type Pseudomonas syringae 597 

pathovar tomato (Pst) strain DC3000 can barely infect Nicotiana benthamiana while Pst mutant 598 

strain CUCPB5460 lacking the type-III effector HopQ1-1 is able to cause disease in the non-host plant 599 

(demonstrated by Wei et al., 2007). Necrotic disease symptoms observed 7 days after bacteria 600 

infiltration at OD600nm of 1.10-4 in 10 mM MgSO4 solution. Infiltrated areas are circled. (D & E) Cell 601 

death is triggered specifically in non-host Nicotiana sylvestris (D) by a Phytophthora infestans RXLR 602 

effector (Pi-A) while transient expression of the same effector in the host plant N. benthamiana (E) 603 

does not induce symptoms in the leaf. Another effector (Pi-B) as well as the Td-Tomato construct 604 

used as control do not induce symptoms. Conversely, a typical hypersensitive reaction is elicited by 605 

recognition of P. infestans effector Pi-Avr3a in the presence of the potato resistance protein StR3a in 606 

N. benthamiana leaf (E). Effectors and controls in binary vector pGRAB were transformed in A. 607 

tumefaciens GV3101 and agro-infiltrated at an OD600nm of 0.1 in Nicotiana leaves (Mantelin and Hein, 608 

personal communication). Symptoms observed under white light 7 days post inoculation. Infiltrated 609 

areas are indicated by dashed circles. 610 
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