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Abstract 6 

Deflection occurs in predator-prey interactions where prey possess traits that influence the position 7 

of the predator’s initial contact with the prey’s body in a way that enhances the prey’s probability of 8 

survival when attacked. As an anti-predatory defence occurring late in the sequence of an attack, 9 

deflection is an understudied but fascinating strategy involving a range of unusual adaptations in 10 

diverse prey species. Deflective traits have been postulated to be important to the defensive 11 

strategies of a range of organisms, but while evidence for its existence is quite variable among 12 

groups, we argue that previous research neglects some promising taxa. As a defence, deflection will 13 

probably play a crucial role in the behavioural ecology and evolution of both prey species and their 14 

predators; as such it warrants greater interest from zoologists. Here, we first summarise what is 15 

known about deflection from the current literature. We next offer predictions about the co-16 

evolutionary possibilities surrounding deflection, based on the benefits and costs experienced by 17 

prey and their predators.  Finally, we outline the most interesting outstanding avenues for future 18 

research in the field of deflection and make novel suggestions as to how they could be usefully 19 

explored. 20 
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Introduction 25 

Predation is a fundamental influence on the lives of wild animals as it can affect key factors that 26 

contribute to overall fitness such as feeding, breeding, and often direct mortality. Because of this, 27 

predation has served as a significant selection pressure on prey species over the course of 28 

evolutionary time, and the anti-predatory prey defences that have developed in response to such a 29 

pressure are crucial to many aspects of behavioural ecology. Anti-predatory defences can take the 30 

form of morphological, physiological, chemical and behavioural adaptations and, in part due to this 31 

variety and complexity, have been intensively studied. The predation process can often usefully be 32 

broken down into a sequence of stages, beginning with a prey individual and a predator individual 33 

being in proximity, and leading through detection, identification, reducing separation, contacting, 34 

subduing and finally consuming (Endler 1991; Caro 2005). Many studies focus on anti-predatory 35 

defences deployed early on in this predation sequence, such that they help the prey to avoid 36 

detection by the predator; this includes defence strategies such as camouflage. However, very late-37 

acting anti-predatory defences are much more neglected. The predator that manages to make 38 

physical contact with its prey need not inevitably achieve successful predation – many prey possess 39 

traits that make subduing and/or consumption difficult for their predator. One key factor affecting 40 

predator success in these late stages of an attack is where on the prey’s body contact is made. 41 

Fascinatingly, some prey species have evolved traits that influence the position of the initial contact 42 

of a predator with the prey’s body in a way that enhances the likelihood of prey surviving an attack; 43 

these traits are known as ‘deflective traits’. 44 

 45 

As an anti-predatory strategy, deflection may involve biasing the point of attack to parts of the 46 

prey’s body that are difficult to grasp or parts that can be broken off without causing catastrophic 47 

damage to the prey. For chemically-defended prey it may involve biasing the point of attack to allow 48 

the predator to accurately evaluate these defences without damaging the prey. With or without 49 

chemical defence, deflection can involve the employment of specialised behaviours, morphological 50 



4 
 

structures, pigmentation and other appearance traits, or combinations thereof. Within the overall 51 

umbrella of deflection, distractive markings that draw a predator’s attention away from distinctive 52 

features and divertive markings that manipulate where a predator directs its attack are both 53 

suggested to effectively bias predator attacks towards body regions that facilitate prey escape or 54 

reduce prey mortality (Kjernsmo & Merilaita 2013; Stevens et al. 2013; Kjernsmo et al. 2016; 55 

Merilaita et al. 2017). 56 

 57 

Deflection has been postulated to occur in a sparse and eclectic range of organisms, and the 58 

evidence for its existence is quite variable among taxa. The benefit of the deflection strategy to all 59 

types of prey is normally considered to be an increased likelihood of escaping the attack, and so this 60 

main benefit to the prey comes at a cost to the predator. However, for chemically-defended prey, 61 

both predator and prey may benefit if the predator’s point of contact is biased to positions on the 62 

prey’s body that allow the predator to accurately assess these defences, and subsequently abandon 63 

the dangerous attack, without incurring significant damage to the prey. 64 

 65 

Importantly, there are two conceptually-different mechanisms by which a predator’s point of attack 66 

might be influenced by prey appearance: perceptual exploitation and mimicry. In perceptual 67 

exploitation, a predator’s point of attack can be drawn to particular body areas due to them 68 

stimulating its senses more than other areas, through being the most conspicuous or salient parts. In 69 

contrast, the mechanism of mimicry fools the cognitive systems of the predator, drawing its attack 70 

to, for example, a false head structure, due to the predator misidentifying a different part of the 71 

body as the part it intended to attack. However, in situations where deflection by mimicry is 72 

occurring, deflection through perceptual exploitation was a likely precursor to those predator-prey 73 

interactions. Indeed, we feel that perceptual exploitation as a mechanism makes fewer assumptions 74 

about the cognitive complexity in the decision-making processes of the predator and find it the more 75 

parsimonious explanation of observed deflection than specific mimicry, which requires us to assume 76 



5 
 

misidentification on behalf of the predator. Of course, perceptual exploitation and mimicry need not 77 

be viewed as dichotomous, but are best seen as descriptions of ends of a continuum of a cognitive 78 

underpinning of behaviour; Schaefer & Ruxton (2010) discuss these concepts in greater detail.  79 

 80 

Whichever cognitive mechanisms are involved in its success, it is clear how deflection may offer 81 

great benefits to a prey individual during potentially fatal encounters with predators. In this review, 82 

we first hope to summarise the most interesting findings about deflection that are safe to conclude 83 

from the current literature; we divide this summary into two main sections, looking first at which 84 

taxa utilise deflection as an anti-predatory strategy and by what mechanisms, and then turning to 85 

explore the related costs, benefits, and trade-offs experienced by prey. After this, we make some 86 

predictions about the co-evolutionary possibilities surrounding the development of the deflection 87 

strategy based on the benefits and costs experienced by both prey and their predators.  We then 88 

outline what we believe should be explored next in the field of deflection, for example studies 89 

concerning more promising taxa and deflection in chemically-defended prey, and how scientists may 90 

go about researching these new avenues through the use of new technologies and comparisons 91 

across ontogeny, populations, and species.  92 

 93 

Which taxa deflect their predators’ attacks and by what mechanisms do they achieve deflection? 94 

Deflection has been reported to occur in a range of taxa but, most famously, there is abundant 95 

evidence from laboratory and field studies that behavioural and appearance traits in lizards with tails 96 

that can be broken off (autotomy) have been selected to bias predator strikes towards this tail (see 97 

Bateman & Fleming (2009) for an insightful review of lizard caudal autotomy). While in some 98 

species, such as butterflies (as will be discussed later), deflection is debated, lizard tails that can be 99 

non-fatally detached are an unambiguous case of deflection. Such tails are often conspicuously-100 

coloured relative to the rest of the lizard’s body and typical substrates, and the effect of such 101 

distinctively coloured tails is often enhanced by dramatic tail-waving behaviours that draw further 102 
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attention to them. Cooper, Caffrey & Vitt (1985) and Cooper & Vitt (1991) demonstrated clearly, in 103 

experiments with predatory snakes, that the appearance of tails can have a deflective effect; 104 

increasing the chance of the predator grasping the lizard by the tail and increasing the probability of 105 

the lizard’s escape from the predator’s grasp following autotomy. In the case of these autotomic 106 

lizard tails, the predator retains the nutritionally-valuable tail and so its motivation to pursue the 107 

rest of the lizard may be reduced, enabling the prey to escape alive and relatively unharmed. As a 108 

useful escape strategy, lizards can drop their tails when the risk of predation is much higher than the 109 

cost of fleeing and so allow predators to come closer when tails are intact (Downes & Shine 2001; 110 

Domínguez-López et al. 2015). 111 

 112 

Alongside some lizards, the strategy of deflection has also been suggested to occur in many 113 

invertebrates (in which autotomy is common) and in the morphology of some butterflies, fish, 114 

tadpoles, and even weasels. The potential deflecting effect of eyespots in butterflies and moths is 115 

perhaps the most intensively studied example. Some forms of eyespot patterning on adult 116 

lepidopteran wings seem to have the potential to influence the point of attack by birds (Stevens 117 

2005; Vallin et al. 2011; Kodandaramaiah et al. 2013; Pinheiro et al. 2014). Often eyespots are 118 

present on the periphery of butterfly wings rather than close to the body and it is suggested that 119 

deflecting a predator’s point of attack to the margins of wings in this way could benefit a butterfly if 120 

the edges of its wings could be broken off in an attack without causing it catastrophic damage (Hill & 121 

Vaca 2004; Olofsson et al. 2010, 2013). Ambient light conditions also appear to interact with the 122 

natural appearance of butterflies in a way that impacts the effectiveness of deflection. Olofsson et 123 

al. (2010) suggest that the increased salience of eyespots relative to the rest of woodland brown 124 

butterflies’ bodies (Lapinga achine) mean that the eyespots are preferentially attacked by blue tits 125 

(Cyanistes caeruleus) under low light intensities with accentuated UV levels. Attacks not focussed on 126 

the head often seem directed at peripheral eyespot markings on butterfly wings, and the deflective 127 
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effect of eyespots has been suggested to be effective independent of background (Olofsson et al. 128 

2013). 129 

 130 

Most field studies on lepidopteran deflection hinge on assumptions about the ease with which wing 131 

damage from different sources can be differentiated and that species or morphs with different 132 

eyespots are exposed to the same frequency of predatory attacks. These assumptions are not easy 133 

to investigate. Laboratory studies have begun to investigate the strength required to damage 134 

different areas of some butterfly wings, but while current observations support deflection theory – 135 

as there appears to be less prey investment in wing strength at areas with patterns predicted to be 136 

the targets of attacks (Hill & Vaca 2004) – further studies should evaluate whether this effect is 137 

found consistently across a range of species. A further issue for the case of deflection via eyespots in 138 

lepidopterans is that several studies have found no support for the theory that eyespot patterning 139 

causes predators to misdirect their attacks (Lyytinen et al. 2003, 2004; Vlieger & Brakefield 2007), 140 

and even in some supporting studies the majority of predators are not deceived by eyespots 141 

(Olofsson et al. 2013) or require particular lighting conditions to be deceived (Olofsson et al. 2010). 142 

Because of such complications, it is difficult to conclude that lepidopteran eyespots have an adaptive 143 

deflective defence function against predation. 144 

 145 

Perhaps a more convincing case for deflection in adult lepidopterans lies in the occurrence of traits 146 

strongly suggestive of the ‘false-head’ mechanism in many Lycaenid butterflies (see Stevens 2005 147 

and references therein). Deflection through misleading predators as to the position of an animal’s 148 

head is the most plausible explanation for false-head traits, especially in the case of false antennae. 149 

Several studies support the effectiveness of false head features – including behaviours that 150 

apparently mimic antennal movement (López-Palafox et al. 2015) – at deflecting attacks and 151 

increasing prey escape likelihood (Wourms & Wasserman 1985; Sourakov 2013). A recent study by 152 

Bartos & Minias (2016) provides the first experimental evidence of the effectiveness of false heads in 153 
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moving prey. They examined the reactions of the jumping spider Yllenus arenarius (Araneae, 154 

Salticidae) to various virtual prey varying in: the number of head-indicating details, the position of 155 

these details in relation to the direction of motion, the local motion of legs, and the presence of 156 

horizontal motion. The findings suggest that the spiders used both the direction of the prey's motion 157 

and the complexity of head-indicating details when making decisions regarding the direction of their 158 

predatory strikes. In stationary prey simple head-indicating patterns efficiently redirected attacks 159 

and, interestingly, when the pattern and motion cues provided contradictory information about true 160 

head position the spiders attacked prey’s trailing end more often the more details were placed 161 

there, visually inspecting both body ends of their prey before attacking. Cordero (2001) suggests that 162 

false heads may offer anti-predatory defence through fooling predators that attempt surprise 163 

attacks by approaching from the rear such that prey can escape before contact. However, this lack of 164 

contact defies our definition of deflection, and we are more inclined to trust in Robbins' (1981) 165 

hypothesis that butterflies can break free and escape after being grabbed in the false head region, as 166 

this is what Sourakov (2013) suggests from his staged attacks by a spider and in observations of 167 

damage to the wings of wild-caught individuals. However, despite the potential deflective advantage 168 

of false heads, few lepidopteran species exhibit these features. 169 

 170 

Fascinatingly, yellow-lipped sea krait (Laticauda colubrine) snakes may also use a combined 171 

behavioural and morphological variation on the ‘false-head’ deflection strategy. Rasmussen & 172 

Elmberg (2009) report that when these sea snakes are foraging they twist their tail so as to 173 

apparently mimic their head; the movement and posture of the tail here, alongside the head-174 

reminiscent patterning and colouration lead the authors to hypothesise that this is a “concerted 175 

behavioural–morphological adaptation”. We would be interested in any future studies exploring 176 

how effective the apparent false-head behaviour in sea snakes is in deflecting the attacks of 177 

predators. 178 

 179 
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Eyespot, or ‘ocelli’, dark spot patterns on the posterior end of many tropical fish have also been 180 

proposed to serve a deflective function. However, direct evidence for this is limited, with a couple of 181 

supporting studies, relying on artificial eyespot patterning, failing to provide detailed methods or 182 

results (McPhail 1977; Dale & Pappantoniou 1986). Considering what little empirical field work 183 

exists, Winemiller's (1990) two-species comparison of sympatric cichlids varying in patterning and 184 

apparent fin damage does not actually shed light on the potential deflective function of eyespots 185 

due to the considerable differences in these species’ behaviour and ecology, and Gagliano's (2008) 186 

study found no differential survivorship on the basis of natural variation in size of the eyespot on 187 

juveniles of the coral reef fish Pomacentrus amboinsis. As in butterflies, deflection is less clearly 188 

utilised as an anti-predatory defence; potential issues for evidencing deflection in these taxa are 189 

discussed further in our section concerning outstanding questions. More recently, however, 190 

Kjernsmo & Merilaita (2013) found that with artificial prey and predator-naive three-spined 191 

sticklebacks (Gasterosteus aculeatus), prey eyespots smaller than the predator fish’s own eye very 192 

effectively deflected the attacks of sticklebacks. These same authors have since found that mimicry 193 

of predators’ eyes through eyespot patterning can be key in evoking hesitation in attacks, as well as 194 

deflecting them, because predators associate those eyelike displays with their own enemies 195 

(Kjernsmo & Merilaita 2017). Marks of different shapes – including eyespots and eye stripes – seem 196 

to differ in their effectiveness at deflecting predators (Kjernsmo et al. 2016), and undoubtedly we 197 

will learn more about the anti-predatory influence of fish patterning in future studies. 198 

 199 

Perhaps more convincingly, for now, tadpoles often have patterning on their tail that has long been 200 

suggested to have a deflective function. Touchon & Warkentin (2008) reared tadpoles of the 201 

neotropical treefrog Dendropsophus ebraccatus subject to cues from either predatory fish, from 202 

predatory dragonfly nymphs, or under control conditions. They found that tadpoles reared with 203 

dragonfly nymph cues developed larger and redder tails than controls, while those reared with fish 204 

cues had shallower achromatic tails compared to controls. These cue-dependent developmental 205 
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differences are probably adaptive because while fish are long-range cruising predators, against 206 

which crypsis is the best defence, dragonfly larvae are ambush predators, for which deflection may 207 

be more effective. Deflection is probably a more effective defence against dragonfly larvae because 208 

(unlike fish) the dragonfly has little ability to pursue the tadpole through open water after a failed 209 

attack. When exposing tadpole models to a live predatory dragonfly larvae, Van Buskirk et al. (2004) 210 

found that models with bold and dark colouration on the tail were struck significantly more often on 211 

the tail than on the head or body than models with less patterning on the tail. Previously, Van 212 

Buskirk et al. (2003) demonstrated that live Rana temporaria tadpoles were around three times 213 

more likely to survive attacks to the tail by dragonfly larvae compared to attacks directed to the 214 

body. When viewed collectively, these studies considerably strengthen the evidence for deflection of 215 

predatory attacks by tadpole tail traits. 216 

 217 

Considering mammals, little work has investigated the possibility of deflection as an anti-predatory 218 

defence, perhaps due to the relative lack of distinct, conspicuous regions of patterning in this taxa. 219 

However, one intriguing suggestion concerns the black tips of some weasels’ tails. Powell (1982) 220 

hypothesised that the black tip on the tail of a stoat (Mustela erminea) acted to draw attacks from 221 

potential avian predators towards the tail, which is a smaller target than the stoat’s body and more 222 

easily missed by the predator. He further hypothesised that least weasels (Mustela nivalis), being 223 

smaller than stoats and having shorter tails, do not have a black tip to their tail because this would 224 

be too close to the body to provide any deflective advantage. These hypotheses were tested using 225 

captive hawks attacking target models of similar sizes to stoats and least weasels with either: 226 

entirely white colouration, white with a black tip to the tail, or white with a black band pattern on 227 

the body. Of the larger, more stoat-like, long-tailed targets, hawks were much more likely to miss 228 

the model with the black tail tip than the ones with no black tip or a black band on the body. 229 

Conversely, for the smaller, more weasel-like, short-tailed models, hawks were much more likely to 230 

miss the entirely white model than either of the other two. This is an interesting potential case of 231 
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deflection in the mammals and, while very different from the false head and false eye structures 232 

suggested in many insects and fish, Powell proposes that the contrasting colour of tail tips may be 233 

enough of a mimic to achieve the same results as an accurate false eye. 234 

 235 

Despite the eclectic group of taxa deflection has been proposed to occur in, it certainly appears to 236 

be much less commonly observed than other anti-predatory traits such as crypsis or mimicry, 237 

although no data explicitly confirm this yet. We suspect that this apparent paucity of natural 238 

deflection examples is not due to neglect or oversight by researchers but, instead, a genuine 239 

reflection of its rarity. As a defensive strategy, deflection will most obviously be successful in mobile 240 

prey that have the ability to escape their predator (or prey that can otherwise mount an effective 241 

defence, or is taste-rejected by predators), even after contact between the two has been initiated, 242 

and that feature at least some body parts that are highly resistant to – or tolerant of – damage 243 

inflected by contact with a predator. We suspect that taxa that meet both these requirements will 244 

be relatively uncommon. Future observations of deflection in new taxa may strengthen this 245 

prediction and, equally, this prediction may explain why deflection is proving difficult to 246 

unambiguously identify in butterflies and fish; this is discussed in more detail later. 247 

 248 

What are the costs, benefits, and trade-offs of deflection to prey? 249 

Considering first the deflective use of autotomic tails in lizards, despite the obvious defensive 250 

benefit, the resulting escape unavoidably comes at a cost. In many lizards, the tail acts as a fat store 251 

and so the loss of this fat store may make an individual more at risk from starvation (McConnachie & 252 

Whiting 2003; Gillis & Higham 2016). However, the distribution of energy reserves in species 253 

showing autotomy may mean that caudal fat storage does not always come into conflict with tail 254 

loss (Chapple & Swain 2002). A lizard’s tail also has other functions, such as balance (Ballinger 1973; 255 

Gillis et al. 2009; Libby et al. 2012; Gillis & Higham 2016) and thermoregulation (Martin & Salvador 256 

1993), and so tail loss  comes with a number of costs alongside loss of fat store and a predator 257 
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avoidance mechanism. Fundamentally, caudal autotomy may alter an animal’s morphology such that 258 

its mass and mass distribution are affected, influencing locomotor activities often critical for survival 259 

and reproduction (see Bateman & Fleming (2009) and Gillis & Higham 2016 and references therein). 260 

However, costs to autotomy vary with species and context and some lizards do not appear to 261 

experience certain costs (e.g. some species do not appear to experience a trade-off between tail 262 

autotomy and thermoregulation; e.g. Herczeg et al. 2004; Bateman & Fleming 2009; Zamora-263 

Camacho et al. 2015). Several studies appear to show that energetic and locomotor costs of 264 

autotomy are not necessarily high in several reptile species (Guohua et al. 2012), but some suggest 265 

that more proximal autotomy occurring in the wild is likely to have greater associated costs (Lin et al. 266 

2006; Sun et al. 2009). 267 

 268 

Forfeiture of the tail can also negatively affect future foraging, as autotomized salamanders have 269 

been found to have a significantly greater latency to strike at prey and to make fewer predatory 270 

strikes than intact salamanders (Gildemeister et al. 2017). The Chinese skink Eumeces chinensis, as 271 

an example, also seems to experience reduced sprint speed following experimental tail removal (Lin 272 

et al. 2006). Interestingly, sprint speed may be affected by tail autotomy differentially between the 273 

sexes of some species, as Anderson et al. (2012) found that tailless males in the lizard Uta 274 

stansburiana appear to maintain high speeds compared to females. Anderson et al. suggest that this 275 

is possibly due to males’ greater conspicuousness, ascribable to sexual dimorphism and behaviour, 276 

as well as their need to retain their territories from rivals.  277 

 278 

After autotomy, a lizard must invest in re-growing the tail, and until regrowth is complete this anti-279 

predator technique is unavailable to the individual concerned. Autotomy of the whole tail has been 280 

shown in some species to affect microhabitat selection, with tailless lizards favouring more closed 281 

habitats where predator avoidance is expected to be more efficient (Bateman & Fleming 2009; 282 

García-Muñoz et al. 2011). In salamanders that strategically lose their tails, however, tail loss has 283 
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recently been found to have little effect on jump characteristics, suggesting that preservation of 284 

jumping as an escape tactic following forfeiture of the tail may reduce the cost of losing a predator 285 

avoidance mechanism (Hessel et al. 2017). Salamanders and lizards surviving an attack have, though, 286 

been found to experience altered exploratory movements, escape distance, and temperature 287 

preferences (Bateman & Fleming 2009; Bliss & Cecala 2017). A preference for warmer 288 

microenvironments might accelerate tail regeneration (Bliss & Cecala 2017). Although it is well 289 

known that lizards can regrow their tails, the structure of the regrown tail is characteristically 290 

different from the original and it is possible that this structural change has a long-term effect on the 291 

vulnerability of the lizard to predators – or some other cost –  even after the tail has regrown (Foster 292 

et al. 2015; Gillis & Higham 2016). During tail regeneration, digestive performance can also be 293 

affected, as protein income needs to be maximised (Sagonas et al. 2017). However, despite initial 294 

costs of reduced survival rate associated with autotomy, tailless lizards’ mortality risk does return to 295 

baseline following tail regrowth (Lin et al. 2017). Apparent changes in feeding rate and digestive 296 

efficiency are again, though, inconsistent costs across autotomotizable reptiles and can depend 297 

somewhat on associated behavioural responses (Bateman & Fleming 2009). Experimental removal of 298 

tails in the many-lined sun skink (Mabuya multifasciata) did not cause greater food intake, apparent 299 

digestive coefficient or assimilation efficiency compared to tailed controls in Sun et al.'s (2009) 300 

study; however, as touched upon earlier, skinks collected in the field were found to experience tail 301 

breaks more frequently in the proximal portion of the tail, suggesting to the authors that caudal 302 

autotomy occurring in nature may more often incur substantial energetic and locomotor costs.  303 

 304 

Alongside costs relating to tail loss, there is also probably to be a cost in increased conspicuousness 305 

to predators associated with bright tail colouration (see Husak et al. (2006) for empirical support). 306 

Probably due to this, not all lizard species show autotomy and associated coloration and tail-waving 307 

behaviours that probably cause predators to deflect their point of attack towards the tail. 308 

Additionally, in those species that do show brightly coloured detachable tails, this colouration is 309 
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commonly lost over ontogeny (see Bateman & Fleming (2009) and references therein); older, larger 310 

individuals probably possess a greater ability to outrun or outfight predators, thus shifting the trade-311 

off in the costs and benefits of alternative strategies away from autotomy. The work of Telemeco, 312 

Baird & Shine (2011) supports this idea of a trade-off between strategies, as they found that skink 313 

hatchlings with less ability to run fast when exposed to a predatory threat were more likely to use 314 

tail-waving behaviours. In a 2017 study, Starostová, Gvoždík & Kratochvíl found that in juvenile 315 

males of the Madagascar ground gecko (Paroedura picta) tail regeneration had a negligible influence 316 

on metabolic rate; this suggests to the authors that fast-growing juveniles with unrestricted food can 317 

largely compensate for costs of tail loss and regeneration in their somatic growth, without significant 318 

metabolic costs.  319 

 320 

Juvenile lizards may also depend more on deflection than adults due to their differing foraging 321 

styles; juveniles may be more commonly active foragers while larger adults switch to a more sit-and-322 

wait foraging style, for which cryptic colouration may be more effective than conspicuous deflective 323 

colouration. The effectiveness of cryptic colouration is often compromised by movement and as 324 

conspicuous colouration is lost over ontogeny, so too are any associated waving or eye-catching 325 

behaviours (Hawlena 2009). This again suggests that colouration and behaviour work synergistically 326 

in deflective defence, but that the costs of such traits begin to outweigh the benefits as individuals 327 

develop. There are also probably costs associated with autotomy that are paid even when the ability 328 

is not used, such that the physiological and behavioural traits are selected against where predation is 329 

reduced (Cooper & Peréz-Mellado 2004). However, this suggestion warrants further investigation 330 

with useful quantification of predation pressures and, indeed, other factors such as intraspecific 331 

competition (Itescu et al. 2017) and predator diversity may impose differing selection on autotomy. 332 

 333 

An obvious potential drawback to brightly-coloured deflective signals is increased detection by 334 

predators. However, Cooper & Vitt's (1991) model exploring this possibility suggested that, actually, 335 
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even if deflective markings cause an increase in the rate at which their bearer is attacked, this does 336 

not necessarily mean that such markings will not be selected for overall. Deflective signals can still 337 

be selected for, providing their enhancement of probability of escape from an attack is sufficient to 338 

compensate for the potential cost of increased detection.  339 

 340 

Beyond lizards alone, in all taxa that utilise deflection as an anti-predatory defence, one would 341 

expect that related morphologies carry associated costs. However, currently we know of no 342 

empirical demonstration of this. Further, this does not always seem to be the case: as in Vallin et 343 

al.'s study (2011) involving blue tits attacking artificial prey, birds took longer to attack prey when 344 

the background closely matched the colour of the prey than when a contrasting background was 345 

used, regardless of the presence or size of eyespots; here, deflective traits appear not to impose a 346 

cost on prey that are also selected to be cryptic for defence. In some species there may also be 347 

significant production costs associated with deflective traits. Although Gagliano (2008) found no 348 

evidence for an anti-predatory function of eyespots in Pomacentrus ambionensis fish, she found that 349 

laboratory-reared individuals developed smaller eyespots compared to their wild counterparts. From 350 

this, she speculated that the difference was not due to dietary differences but, instead, that there 351 

was a cost to eyespot production that juveniles should be selected to avoid in the absence of 352 

potential agonists through reduced investment in eyespot production. In this vein, Touchon & 353 

Warkentin (2008) found that tadpoles exposed to cues from dragonfly larvae predators developed 354 

larger, more colourful tails, but that these changes came at a cost of reduced body size. 355 

 356 

An interesting avenue of study that may uncover more about the costs and benefits of deflection in 357 

different situations would be how ecology may affect the effectiveness of deflective traits; few 358 

studies have explored this to our knowledge. Since deflection relies on the predator’s visual 359 

representation of the prey, Olofsson et al. (2010) usefully explored the effect of ambient light levels 360 

on deflection induced by butterfly wing patterning. They found that the deflective function of 361 
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eyespots was highly dependent on the light environment, functioning most effectively under low 362 

light intensities with UV wavelengths. The benefit deflection offers to prey individuals and the costs 363 

of conspicuous patterning could therefore depend on the time of day; the deflective traits are likely 364 

adaptive to the time of day butterflies experience greater predation. Additionally, it has recently 365 

been reported that the shades of blue colour in the tails of juvenile Plestiodon latiscutatus lizards 366 

vary across island populations with different predator assemblages (Kuriyama et al. 2016). Kuriyama 367 

et al. (2016) found that tail colouration varied with the colour vision of specific predators. Vivid blue 368 

reflectance occurred in communities with either weasel or snake predators (both groups of which 369 

can detect blue wavelengths), while UV reflectance was much higher in populations with only snake 370 

predators (snakes can detect UV, but weasels cannot). Cryptic brown lizard tails occurred 371 

independently on islands where birds were the primary predators, probably because birds have keen 372 

visual acuity and so a cryptic phenotype may be more advantageous. This adaptation of different 373 

levels of tail conspicuousness indicates a deflective function of the tails against specific predators. 374 

Greater costs would be experienced when facing the ‘wrong’ predators, but the benefits of 375 

deflection against the ‘correct’ predators make the specialisation worthwhile in environments where 376 

the ‘correct’ predators are the primary ones. No doubt ecology will influence the costs and benefits 377 

of deflective traits in other ways, which should be explored in further research, but in turn deflective 378 

traits have probably influenced the development and evolution of predator traits and behaviours 379 

too, and we now turn to consider possible co-evolutionary influences of deflection as an anti-380 

predatory strategy. 381 

 382 

Co-evolutionary predictions 383 

Given that deflective traits induce predators to attack specific parts of a prey individual’s body in a 384 

way that reduces the probability of successful capture, it seems important to consider why predators 385 

‘allow’ themselves to be deflected when it costs them prey items. Firstly, it is important to consider 386 

whether deflection is always truly costly to the predator. In the case of chemically-defended prey, 387 
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touched upon earlier, it may be that deflection to areas of prey body that enhance the ease of taste 388 

rejection will benefit the predator as well as the prey. This is a speculative idea without solid 389 

empirical underpinning, though, and in most cases deflection should be costly to predators and 390 

therefore selected against. However, predators of reptiles with autotomizable tails do not 391 

necessarily experience strong selection against being deflected as they do end up with a substantial 392 

and often very nutritional meal from the tail, particularly as tails are often used as fat stores. To us, it 393 

seems possible that where deflection is linked with autotomy, prey may experience selection to 394 

make the ‘consolation prize’ of the autotomized body part sufficiently valuable to prevent predators 395 

being selected to stop responding to deflective traits. From this ‘consolation-prize’ hypothesis, we 396 

might speculate that sometimes autotomy would occur nearer to the prey’s body than the 397 

predator’s point of contact with the tail in order to offer a higher reward to predators for allowing 398 

prey escape; this is yet to be empirically explored. 399 

 400 

Where prey are not chemically-defended or able to autotomize body parts, we expect that 401 

deflection is costly to predators and should be subject to counter-selection to ignore the deflective 402 

traits. The continued application of deflection as an anti-predatory defence in wild situations 403 

suggests that the deflected predator has not experienced this strong counter-selection; from this, 404 

we predict that deflection occurs because of a lack of co-evolution with the prey type. Therefore, 405 

specialist predators should be less easily fooled by deflective markings, whereas generalist predators 406 

will experience costs of “falling for the trick” of deflection as a by-product of having evolved to be 407 

able to handle diverse prey types. Given sufficient practice, predators may be able to learn to ignore 408 

deflective traits, and thus deflective traits may be less common in species that have life-history traits 409 

that would allow predators repeated experience of being deflected within a concentrated time 410 

interval, such as aggregating in groups. This suggestion is based on the assumption that predators 411 

habituate, such that with increased exposure to deflective markings their probability of being fooled 412 

declines. This habituation has been demonstrated repeatedly for startle signals (Vaughan 1983; 413 
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Schlenoff 1985; Bates & Fenton 1990; Ingalls 1993; Dookie et al. 2017),  where an undefended prey 414 

individual stimulates the sensory system of its predator such that the predator breaks off or delays 415 

its attack in some way, but has not yet been explored for deflective signals.  However, we can 416 

imagine how false heads have the potential to offer continued benefits against even specialist 417 

predators. If the prey is fleet and the predator must strike at any discovered individual quickly, then 418 

the time may not be available for even experienced specialist predators to reliably differentiate 419 

between the real and false heads.  420 

 421 

The evolutionary or behavioural restriction of some predators’ ability to counteract deflective traits 422 

may have an important impact on aspects of both deflective traits and the life-history of prey. For 423 

example, a generalist predator may find deflective marking difficult to combat in one infrequently-424 

encountered species if similar visual cues are useful when attacking a different frequently-425 

encountered species. This argument may provide a theoretical framework for exploring why some 426 

styles of signal will be more effective at deflecting than others. It also raises the testable hypothesis 427 

that prey that use deflective signals will generally not be the main prey of predatory species that 428 

they successfully deflect, and that the success of deflection will be affected by predator exposure to 429 

other prey types. We consider deflection to involve some sensory and/or cognitive traits in the 430 

predator that are retained despite the costs to the predator associated with deflection. These 431 

sensory and/or cognitive traits may be retained either because they exploit some constraint of the 432 

sensory system, or because there is counter-selection because changes that reduce the risk of 433 

deflection in this context have a greater cost to the predator than the benefit of reduced deflection. 434 

These costs might manifest themselves as a reduced ability to capture other prey, or detect other 435 

valuable resources, or detect its own predators. Again, empirical investigation is needed to explore 436 

the fundamental idea that deflection only occurs because a similar response to similar cues benefits 437 

the predator in another context. Identifying all the potentially relevant contexts for any given 438 

predator would certainly be challenging, but this idea is so fundamental to the concept of deflection, 439 
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that we feel deeper exploration is warranted. Much of this argument is analogous to the importance 440 

of frequency-dependence inherent in the success of Batesian mimicry, and consideration of the 441 

extensive empirical literature on that subject (Brower 1960; Huheey 1980; Nonacs 1985; Lindström 442 

et al. 1997, 2004; Pfennig et al. 2001; Edmunds & Reader 2014) may provide a useful guide when 443 

designing studies on deflection.  444 

 445 

Other outstanding questions  446 

One key suggestion we have for the study of deflection is that research should re-focus on more 447 

promising taxa. Deflection is probably rarer than other anti-predatory defences, occurring – by our 448 

definition – only in taxa that are mobile enough to escape their predator even after contact between 449 

the two has been initiated, and feature at least some body parts that are highly resistant to, or 450 

tolerant of, damage inflicted by contact with a predator. The clearest evidence we currently have 451 

regarding deflection comes from the colouration and behaviour of the tails of lizards that can show 452 

autotomy. Autotomy occurs across a wide spectrum of animals: reptiles, salamanders, both 453 

terrestrial and sea slugs, octopuses, crabs, brittle stars, lobsters and spiders (see Fleming, Muller & 454 

Bateman (2007) for distribution among invertebrates). In animals with the ability to break off body 455 

parts, there would be a strong benefit to deflecting attacks towards these regions, hence we would 456 

not be surprised to find that there are further examples of deflective traits associated with 457 

autotomy. However, much historical interest in deflection has focussed on butterflies and fish and, 458 

given that evidence for its importance in these taxa has not strengthened in recent years (see 459 

immediately below for further discussion on this), we feel it may be time for research to shift away 460 

to more promising groups. 461 

 462 

One reason deflection may be less clear in butterfly and fish species is that momentary release by a 463 

predator often cannot be converted into a longer-term escape, as their predators are typically birds 464 

or other fish that are characteristically mobile themselves. Exceptions to this may be where 465 
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freshwater or coral reef fish have access to nearby refuges, or in complex vegetation where 466 

butterflies may be able to escape by dropping to the ground if the vegetative structure makes it 467 

inefficient for a bird to attempt to search for it. Further to the difficulties of proving deflection in 468 

these taxa, though, are phylogenetic studies which fail to support a defensive function to eyespots in 469 

Lepidoptera (Kodandaramaiah 2009; Shirai et al. 2012) or butterflyfish (Kelley et al. 2013); eyespots 470 

have evolved independently multiple times and their number has both increased and decreased in 471 

lineages over time. However, Olofsson et al. (2010) suggest that previous studies may have found 472 

little evidence for a deflective function in butterfly eyespots because the deflective ability is highly 473 

dependent on the ambient light environment. Further research using light more carefully calibrated 474 

to match naturally-occurring light spectra could be valuable for the case of deflection in butterflies, 475 

as would studies resolving previous assumptions.  If it can be demonstrated, for example, that 476 

evidence of failed predatory attack can be reliably obtained from inspection of captured butterflies, 477 

then a capture-mark-recapture experiment may be of value where the size and or number of 478 

contrasting spots on the periphery of wings of a species are manipulated. Such manipulation would 479 

resolve concerns about confounding effects of varying exposure to predation, provided it could be 480 

convincingly argued that the nature of the change in appearance caused by different types of 481 

markings might influence the point of attacks but would not influence the rates at which attacks 482 

occur.  483 

 484 

The strongest wild evidence for deflection comes from autotomic lizards’ tails, and there are 485 

certainly non-trivial ethical and practical challenges in exploring anti-predatory traits manipulatively 486 

in vertebrates. We therefore fully recommend exploiting artificial model prey when studying the 487 

traits that may cause deflection of predators. Currently, though, understanding of deflection is 488 

limited by the fact that empirical research is dominated by laboratory studies; we lack a clear, simple 489 

and effective methodology for detecting deflection occurring with wild-living predators. However, 490 

new technologies offer the potential to evaluate the importance of deflection in the field. Examples 491 
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of this involve miniature cameras on-board predators, and robotic prey that are able to mimic not 492 

just the pigmentation but the movement of prey and log the part of their body that first experiences 493 

contact with predators.  494 

 495 

We also think that the use of deflection in chemically-defended prey should be further explored. In 496 

caterpillars, for example, markings are often considered to have a startling effect (possibly even 497 

involving mimicry of snakes), but Hossie & Sherratt (2012) provide some evidence, from models 498 

exposed to free-living birds, that some spot markings may influence the point of birds’ attacks on a 499 

caterpillar’s body. While, on its own, this sort of deflection is unlikely to increase the likelihood of 500 

the caterpillar’s escape, it may be that this deflection changes the position in which the caterpillar is 501 

taken into the mouth of a bird, influencing the ability of the bird to detect chemical defences 502 

deployed by the caterpillar and, thus, increasing the chance of prey survival through taste rejection 503 

by the predator (an idea first suggested by Blest (1957) in relation to eyespots in Papilionid 504 

caterpillars, possibly directing attacks towards their defensive organ - the osmeterium). 505 

Alternatively, or additionally, deflection may direct the point of attack to areas of the body that are 506 

more resistant to damage incurred prior to taste-rejection or that damage in some areas of the body 507 

can be more easily tolerated than in others. Deflection working to enhance taste-rejection in this 508 

synergistic way may induce a predator to voluntarily release prey and would mean that the predator 509 

has no motivation to repeat any attack. This idea has been the subject of repeated speculation, for 510 

example in relation to the brightly-coloured papillae of some sea slugs (Edmunds 1966, 1974), but 511 

has not been subject to scientific testing. We think that empirical evaluation of the survival and 512 

growth of chemically-defended invertebrates following handling and rejection by predators could be 513 

of great value to the study of both deflection and the evolution of chemical defences and associated 514 

signalling.  515 

 516 
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There seems to be evidence that predators can be deflected to areas of the body where physical 517 

damage caused by contact by the predator is less costly to the prey. It is theoretically possible that 518 

deflection could also benefit the prey if it were directed to parts of the body (e.g. an armoured 519 

carapace) where the predator’s grasp is less likely to cause any damage at all, but this remains a 520 

speculative idea. Similarly, it seems plausible - but has yet to be demonstrated - that predators could 521 

be deflected to body parts that are harder to grasp and make subduing the prey less effective even 522 

in the absence of autotomy.  523 

 524 

For all uses of deflection, the longer-term costs and benefits should be further explored in different 525 

taxa, at different stages of ontogeny, and in the context of different environmental cues. As an 526 

example, tadpole tails present an attractive group for exploring the costs of deflection. Touchon & 527 

Warkentin (2008) found that tadpoles exposed to cues from dragonfly larvae predators develop a 528 

larger, more colourful tail, but that these changes came at a cost of reduced body size. Quantifying 529 

the costs and benefits more fully could be very useful. It would also be interesting to explore 530 

whether this induced defence affects the timing or size at metamorphosis, and how effective the 531 

induced change is in affecting survival rate in as close to a natural environment as possible. While 532 

tadpoles can survive some attacks by dragonfly larvae especially when grabbed by the tail (Van 533 

Buskirk et al. 2003) and tail-damaged larvae can readily be found (Blair & Wassersug 2000), the 534 

longer-term fortunes of surviving tadpoles remain ripe for exploration. The ecological influence of 535 

predatory threats could also be further explored in tadpoles that experience predation from both 536 

relatively immobile dragonfly larvae and relatively mobile fish; we would welcome systematic 537 

comparison of variation in tail morphology between populations of tadpoles exposed to different 538 

relative threats from these two groups.  539 

 540 

More generally, the use of comparisons across populations, species or ontogeny in the presence or 541 

prominence of putative deflective markings is, at present, greatly hampered by the potential for 542 
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these markings to sometimes fulfil other (perhaps simultaneous) functions. In fish, for example, 543 

alongside anti-predatory deflection eyespots have been suggested to: mislead predators as to the 544 

prey’s direction (Meadows 1993), make fish appear more fearsome by apparently displaying an 545 

animal with a greater distance between its ‘eyes’ (Karplus & Algom 2010), encourage potential prey 546 

to inspect an individual (Paxton et al. 1994), help with species recognition (Uiblein & Nielsen 2005), 547 

or mediate within-species social interactions (Gagliano 2008). Again, tadpoles may be the preferred 548 

taxa in which to separate out some potential functions of markings. Identification of specific features 549 

of such markings that are effective in deflection of predators, probably through laboratory 550 

experiments, would be very beneficial in allowing comparative work to focus particularly on these 551 

features. For example, using models of tadpoles it should be possible to identify the specific traits 552 

that seem effective against ambushing dragonfly larvae through deflection. From this, it should be 553 

possible to test how closely these traits correspond to morphological changes caused by exposure to 554 

cues associated with this particular predator in the laboratory in different species. It should also be 555 

possible to predict, and then test, the relative effectiveness of different morphs, or different species, 556 

of tadpole in terms of these trait values. 557 

 558 

Cross-species comparisons could also develop our understanding of deflection in less-studied taxa. 559 

Following Powell's (1982) suggestion of weasels’ tails serving a deflective defence from avian 560 

predators, we would welcome a cross-species comparison among mammals to explore whether 561 

there were any morphological or ecological variables that could be related to contrastingly-coloured 562 

tail tips. Powell’s hypothesis predicts that contrasting tips would be more prevalent in species with 563 

longer tails and in those facing greatest predation pressure, and this could be relatively simple to 564 

explore. It would also be valuable to expand Olofsson et al.'s (2010) work to explore further how 565 

variation in natural lighting conditions affects deflection in taxa other than butterflies, such as 566 

mammals. Anecdotally, it appears to us that the contrasting tip to the tail of, for example, the red 567 

fox (Vulpes vulpes) is much more salient when the animal is viewed under low-light conditions. 568 
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 569 

Comparisons among species and phylogeny may also expand understanding of the evolution of traits 570 

associated with deflection. In lizards with autotomizable tails, for example, the results of Cooper & 571 

Vitt's (1991) modelling suggests that tail autotomy – and perhaps associated tail-waving behaviours 572 

– probably developed before the conspicuous colouration of these body parts in some species; this 573 

could be explored in a comparative survey across the reptiles. In lizards it has also been suggested 574 

that ‘redirection’ may work in combination with deflective autotomy in lizards, such that 575 

longitudinal-striped patterns on anterior body parts may redirect attacks towards less vulnerable 576 

posterior parts during motion, for example, the autotomous tail (Murali & Kodandaramaiah 2016); 577 

further study separating out functions, probably with models, could shed light on the relative role of 578 

‘redirection’ in body patterns. 579 

 580 

Finally, we feel that it is important not to rule out the role of other senses in deflection’s anti-581 

predatory function. While this review and the currently available literature almost exclusively deal 582 

with situations where it is assumed that the predator’s visual sense is the key sensory system 583 

involved in determining the point of attack, we can think of no physical reason why deflection must 584 

be confined to this modality. A fascinating study on luna moths (Actias luna) has recently shown 585 

that, in predator-prey interactions with big brown bats (Eptesicus fuscus), luna moths generate an 586 

acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their 587 

body and toward these nonessential tail appendages (Barber et al. 2015). Barber et al. (2015) show 588 

that moths with intact hindwing tails experience a survival advantage of ~47% relative to artificially-589 

tailless individuals, demonstrating the effectiveness of this acoustic deflection at enhancing prey 590 

survival. We suspect that many more cases of deflection in modalities other than vision await 591 

discovery, and we look forward to research exploring instances where the sound, smell, or perhaps 592 

even texture of a prey individual advantageously influences the position of the initial contact of a 593 

predator with the prey. 594 
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