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Abstract: We demonstrate a new approach to integrate single layer MoSe2 and WSe2 flakes 
into monolithic all-dielectric planar high-quality micro-cavities. These distributed-Bragg-
reflector (DBR) cavities may, e.g., be tuned to match the exciton resonance of the 2D-
materials. They are highly robust and compatible with cryogenic and room-temperature 
operation. The integration is achieved by a customized ion-assisted physical vapor deposition 
technique, which does not degrade the optical properties of the 2D-materials. The monolithic 
2D-resonator is shown to have a high Q-factor in excess of 4500. We use photoluminescence 
(PL) experiments to demonstrate that the coating procedure with a SiO2 coating on a prepared 
surface does not significantly alter the electrooptical properties of the 2D-materials. 
Moreover, we observe a resonance induced modification of the PL-spectrum for the DBR 
embedded flake. Our system thus represents a versatile platform to resonantly enhance and 
tailor light-matter-interaction in 2D-materials. The gentle processing conditions would also 
allow the integration of other sensitive materials into these highly resonant structures. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The discovery of graphene, with its unique characteristics, inspired a plethora of research 
activities in the field of monolayer materials[1,2]. Atomically thin 2D-monolayers, in strong 
dissimilarity to their bulk counterparts[3], can provide extraordinary characteristics, such as 
superconductivity [4], better absorbance or higher transmission of light, altered bandgaps [1] 
or extreme hardness [5] to name a few. 

Transition metal dichalcogenides (TMDCs) are semiconducting 2D-materials with direct 
bandgaps in the visible range from 1.0 to 2.5 eV. These consist of a layer of transition metals 
such as W or Mo sandwiched between two chalcogen layers, i.e. S, Se, or Te layers. 
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Monolayer TMDCs exhibit peculiar optical effects, which are related to the confinement 
of electronic motion in a 2D plane and the absence of dielectric screening, as well as to their 
crystal symmetry. The absorption of photons with energy above the bandgap in TMDCs 
causes the generation of hot electrons [6], which swiftly form bound electron-hole pairs, 
termed excitons. Excitons in TMDCs are highly stable with binding energies in the range of 
hundreds of meV [7]. Both the linear and nonlinear electronic [8, 9] and optical [10, 11] 
properties of TMDCs are strongly affected by these excitons. Due to their stability and 
robustness [12, 13], TMDCs are ideal candidates for exciton experiments. They exhibit non-
linear properties [10, 14], making them interesting for experiments such as sum-frequency 
generation [15-17], but also for the generation of entangled photon pairs [18]. 

However, due to their single-layer nature, they are also highly susceptible to 
environmental parameters [19], process conditions [20], properties of the substrate material 
[1, 21], and substrate geometry [22]. This makes experiments difficult to reproduce and 
highly dependent on laboratory conditions, which may be hard to control. The integration of 
TMDC layers in well-defined optical coatings and materials, such as glasses, would eliminate 
some of these issues and help establish TMDCs as a reproducible experimental platform. 

Moreover, TMDCs are also interesting for the functionalization of classical optical 
materials. TMDC-loaded dielectrics may enable new classes of optical coatings. They may 
also operate as light emitters [23, 24]. The generated light has coherence properties which 
may be interpreted as lasing [25, 26]. Naturally occurring [11, 27, 28] or mechanically 
induced [29, 30] defect states can support the emission of single photons. 

An application with highly challenging requirements for the integration of 2D-materials in 
optical systems comes in the form of strong coupling experiments [31-33]. Strong coupling 
refers to an exciton being coupled resonantly to an optical cavity of high quality and small 
modal volume. These excitons hybridize with the cavity mode and form so-called exciton-
polaritons, the branches of which are separated by Rabi-splitting. Strong coupling can be 
observed if the dipole coupling strength, i.e. the product of the dipole moment d  of the 
exciton and the electric field E  at the position of the exciton, exceeds radiative and 
dissipative losses, e.g. photon leakage out of the cavity, represented by the cavities’ quality 
factor (q-factor), and/or emitter dephasing [34]. The q-factor is typically measured from 
spectral data as the ratio of the resonance wavelength and the line width of the cavity. As 
strong-coupling has already been demonstrated, is well understood and yet technically highly 
challenging, we find it to be a superb test-case to demonstrate the capability of our method to 
fabricate systems with a bandwidth and q-factor that is unpreceded for monolithic cavities. 

For MoSe2 it was shown [35] that monolithic distributed-Bragg-reflector-cavities (DBR-
cavities) exhibit strict distinguishability [36] of the Rabi-peaks for both cryogenic and room-
temperature operation if a q-factor of 1300q  [35] can be achieved. Although strong 

coupling was observed for lower q-factors [37], we use the predictions from [35] as a 
benchmark as it guarantees the strict distinguishability of the Rabi-peaks. It also opens a new 
path to high-quality, room-temperature polaritonic device architectures. Moreover, ion 
assisted PVD (IAD), employed here, generally imposes lower thermal loads than plasma-
enhanced CVD (PECVD) [37], thus maximizing the selection of embeddable materials. IAD 
also has a larger set of materials to choose from, which can, for example, be used to 
implement higher refractive index contrasts. This also leads to a higher degree of flexibility 
and a broader range of applications for our method. 

Recent results [38] underline the capabilities of PVD-techniques to fabricate systems for 
fundamental investigations in many-body polaritonics, which are only accessible to platforms 
with increased q-factors. Although the authors demonstrate a q-factor of 600q = , several 

questions remain open. These may be answered in systems with further increased q-factors; in 
accordance with the distinguishability-related benchmark 1300q  derived above. Such 

systems can be attained with the IAD technique presented here. 
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Beyond strong coupling experiments, resonant structures have been utilized to modify the 
properties of spontaneous [18, 25] and stimulated emission [11, 25] in TMDCs. These 
experiments utilized open external cavities [39, 40], metal-based cavities [41] or nano 
resonators [42], all of which exhibit limited optical q-factors and/or large modal volumes. 
Other experiments that used photonic crystal resonators [25, 43, 44] exhibited a higher q-
factor, but the 2D-material cannot be placed at the position of the peak field enhancement, 
thus the high q-factor cannot be exploited to the fullest. 

In this work, we report on an ion-assisted physical vapor deposition process (IAD) with a 
temperature below 350 K used to embed TMDCs into a planar Fabry-Perot microcavity based 
on SiO2/TiO2 layerstacks (see Fig. 1). By using TiO2 as a high refractive material and a high 
number of high-index-low-index-pairs (HL-pairs), we achieve access to increased q-factors 
and larger bandwidths. The process allows us to integrate exfoliated MoSe2 and WSe2 flakes 
with high-quality optical materials into monolithic, solid state layer systems with a high level 
of control on the material composition and thickness. 

 

Fig. 1. Conceptual image of the embedded TMDC in planar Fabry-Perot microcavity. 

2. Methods 

First, we determined the maximal q-factor of an unloaded Bragg cavity that can be achieved 
in our process. It is limited by the absorbance and the scattering of the coatings produced in 
the IAD process and by the maximal thickness of the layer stack, which can be fabricated 
without delamination. Both absorptive and scattering losses have been characterized for the 
IAD in prior works [45, 46]. The real wavelength dependent material parameters have been 
used for analytical calculation via OptiLayer, which we used to predict and optimize our 
structures [47]. 

The q-factor of the cavity depends on the transition bandwidth at the resonance position 
and hence increases with the number of high-index-low-index-layer-pairs used for both 
mirrors [48, 49]. This can be seen in Fig. 2. Numerical calculations show that a q-factor of 

1300q >  can be achieved with 7 HL-pairs on both sides of the cavity. For later ease of 

observation of strong coupling, we thus chose to pursue a design with 8 HL-pairs in the top 
mirror and 10 HL-pairs below. The number of HL-pairs at the bottom was increased to 
facilitate the emission of photoluminescence towards the top. Typically, layerstacks with a 
much larger thickness also tend to fail mechanically under thermal loading. 

SiO2 (L)

Substrate

TiO2 (H)

bottom DBR 
with 10 HL pairs

TMDC-flake

hBN-flake

top DBR 
with 8 HL pairs

SiO2-embedment
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Fig. 2. Increase of the cavity q-factor of a symmetric cavity in dependency of the number of 
DBR-pairs for each mirror. 

Both mirrors have been optimized for high reflectivity between 630 nm and 850 nm. The 
TiO2 layer had a refractive index of 

2
2.284 TiOn =  at 750 nm. The SiO2 had a refractive index 

of 
2

1.455 SiOn =  at 750 nm. The layers of both materials were tuned to / 4λ -thickness 

resulting in 129.3 nm thick SiO2-layers and 79.3 nm thick TiO2-layers. Note that the design is 
limited to 300 nm for single TiO2 layers to avoid detrimental influences from oversized 
polycrystalline growth, thus retaining smooth surfaces with low scattering, low absorbance, 
and high optical quality [45, 50]. The combined central SiO2-spacer has an optical thickness 
of 375 nm to tune the resonance wavelength to 750 nmλ = , as confirmed by a pronounced 
dip in the reflection spectrum shown in Fig. 3(a). The calculated bandwidth of the resonance 
peak was 0.063 nm (full width at half maximum), equating into a q-factor of 11900q = . 

 

Fig. 3. a) Calculated reflectance curve for the optimized DBR-resonator with 10 HL layers at 
the bottom and 8 HL layer at the top. The resonance wavelength is 750 nm, illuminiation is at 
an angle of 0° from the top of the layer stack. b) Zoom to the resonance peak, marked with the 
blue dashed line in a). 

Figure 4 displays the calculated electric field intensity (|E|2) for the realized 8/10-HL-stack 
design for on-resonance incident light at 750 nmλ =  (see Fig. 4(a)) and off-resonant 
excitation at 752 nmλ =  (see Fig. 4(b)) each at normal incidence. Because of the 8/10-HL-
stack-design, the cavity is not symmetrical to the center. Nevertheless, the antinode position 
of the electromagnetic wave is at the middle of the spacer-area, coinciding with the position 
of the 2D-material, such that we can fully utilize the high q-factor. 
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The fabricated cavities have been subjected to cryostatic conditions and undergone 
multiple cooling-heating cycles between 5 K and 300 K without any signs of delamination or 
damage to the TMDCs. 

3. Results 

First, we verified in two steps if it is possible to coat the TMDCs with SiO2 layers. A prior 
experiment on the adhesion properties was performed. TMDCs placed on the bottom mirror 
and covered with approximately 10 nm thick hBN sheets were treated with Ar-plasma. 
Contact-angle measurements showed sufficient increase of the surface energy providing the 
required precondition for adherent coating on these surfaces without delamination of the 2D-
materials. 

We then focused on the question of whether it is possible to preserve the structural and 
electrooptical properties of the 2D-material. We therefore coated 20 nm SiO2 without plasma 
assistance directly on the 2D-flake. This second experiment was conducted to yield more 
specific information on the influence of embedding the TMDC on its photoluminescence (PL) 
properties. Room-temperature PL experiments were carried out with a 532 nm excitation laser 
providing 400 µW energy. The influence of the SiO2 on the PL of the hBN covered WSe2 -
flakes is shown in Fig. 7(a). The increase of the layer thickness to 120 nm caused no shift of 
the PL peak positioned at 745 nm. A linewidth of roughly 40 meV could be achieved. 

In Fig. 7(b), we present PL measurements of MoSe2 with hBN-cover, both with 20 nm 
and 120 nm SiO2 coating at room temperature and at 5 K. The linewidth is about 40 meV at 
room temperature and about 8 meV for excitonic and trionic resonances at 5 K. These results 
are comparable to former experiments by Lundt et. al. [62]. The prominent splitting in two 
peaks at cryogenic conditions indicates, that both excitonic and trionic oscillations are 
essentially unaffected by the application of the SiO2 coating. 

 

Fig. 7. PL intensity of SiO2 covered layers. a) WSe2-PL hBN covered flakes for 20 nm and 120 
nm SiO2 thickness b) MoSe2-PL for 20 nm and 120 nm SiO2 thickness at 300 K and 5 K 

Next, we measured the optical reflectance of the deposited layer stacks using a standard 
UV/VIS spectrometer (Lambda 900 by Perkin Elmer), as well as a UV-NIR Micro-
Spectrometer (USPM by Olympus). The subsequent morphological investigation of the 
encapsulation and the material distribution in the cavity was carried out with an optical stereo 
microscope by Leica systems and with an SEM-system Sigma by Carl Zeiss (Fig. 6(b)). 

Prior to the complete embedding of the TMDC, we analyzed the optical performance on a 
bare DBR-mirror coated on a plane substrate to verify the validity of our DBR coating 
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process. The reflection spectrum of the mirror and calculated design are depicted in Fig. 8(a). 
Both are in accordance, which proves that our coating process is operating as predicted. 

Next, we fabricated a TMDC loaded DBR-cavity as discussed in the methods section. A 
measured reflection spectrum is depicted in Fig. 8(b). A reflectance spectrum of the DBR 
cavity at the resonance frequency is provided in Fig. 8(c). It shows the observed resonance at 

749.3 nmλ = , which is roughly 0.1% off the target value. This is consistent with typical 
variations of the coating process. A resonance bandwidth of Δ 0.16 nmλ =  was determined, 
which equates into a quality factor of 4683q = . This value is lower but quite in the 

magnitude of the design value of 11900. The difference between measurement and 
calculations may be attributed to defect spots in the layers, slight surface roughness and 
inhomogeneity’s of refractive indices. 

 

Fig. 8. a) Reflectance spectra of a bare DBR mirror calculated (red) and measured (blue) b) 
Measured broadband reflectance spectrum of a DBR-resonator cavity without TMDC c) 
Measured narrowband spectrum of reflection intensity around the cavity’s resonance of TMDC 
loaded cavity at 749.3 nm with line width of 0.16 nm. 

Then we verified, that the PL properties of the TMDC are unaffected by the DBR stack 
and will not produce any kind of background fluorescence, which would later negatively 
affect possible experiments at exciton wavelength. 

To perform cross-sectional PL measurements of the DBR stack, a cross-sectional lamella 
was prepared from the cavity by means of Focused Ion Beam (FIB) milling using a FEI 
Helios NanoLab G3 UC. The lamella was attached to a TEM lift-out grid and thinned down 
to a final thickness of 200 nm with 30 kV Ga ions. No further low energy cleaning to remove 
amorphous layers or Ga ion contamination was performed. An SEM image of the lamella is 
depicted in Fig. 9(a). 

Following, the lamella was transferred to a confocal laser-scanning microscope 
(PicoQuant MicroTime200). The microscope was used with a 40x/0.65NA objective 
corresponding to lateral resolution of about 1 µm with an excitation laser working at 532 nm 
with 80 MHz rep. rate and about 100 ps pulse length. The PL light was filtered with a 715 nm 
long pass filter. A measurement area of 40x40 µm was scanned with piezo positioning. The 
data set of the measurement area was integrated along the lateral axis to receive a linescan, 
orientated perpendicular to the cavity system. The ensuing PL signal is superimposed on the 
SEM-image in Fig. 9(a). It shows two fluorescence peaks, one emanating from the expected 
location of the TDMC-flake, the other one from the substrate material at the bottom. 
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and polaritronics, which require both high-quality 2D-materials as well as high-quality, small-
volume resonators. The monolithic cavity could be realized without cracks, without damage 
to the TMDC, and with accurate reproduction of the theoretical layer-design. The ratio of the 
resonance wavelength and the line width of the resonance (Q-factor) of the cavity was higher 
than 4500 at 749.3 nm. 

The presence of TMDC-material in the resonator, as well as its being unaffected by the 
coating process, was proven with photoluminescence measurements. For DBR-cavities, we 
observed photoluminescence from the MoSe2 exciton at its fundamental wavelength and an 
enhancement of the PL emission at the slightly detuned cavity resonance. Our results suggest 
that the process presented in this work provides a viable platform for the study of strong 
coupling, polaritronics, and the enhancement of nonlinear-optical effects in 2D TMDC. 
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