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Abstract 

Cerias, appropriately doped with trivalent rare earth ions, have high oxide ion conductivity and are attractive SOFC 

(solid oxide fuel cell) electrolytes. Here, seven compositions of Ce0.8SmxGdyNdzO1.9 (where x, y and z = 0.2, 0.1, 0.0667 

or 0 and x + y + z = 0.2) are synthesised using a low temperature method in order to determine the effect of multiple 

doping on microstructure and conductivity.  Analysis using scanning and transmission electron microscopy, inductively 

coupled plasma mass spectrometry, X-ray diffraction and impedance spectroscopy is carried out. Crystallite sizes are 

determined in the powders and relative densities and grain size distributions were obtained in sintered pellets. Total, 

bulk and grain boundary conductivities are obtained using impedance spectroscopy and corresponding activation 

energies and enthalpies of ion migration and defect association are calculated. The highest total conductivity observed 

at 600 °C is 1.80 Sm-1 for Ce0.8Sm0.1Gd0.1O1.9 and an enhancement effect on conductivity for this combination of co-

dopants between 300 °C and 700 °C relative to the singly doped compounds - Ce0.8Sm0.2O1.9 and Ce0.8Gd0.2O1.9 - is seen. 

This has interesting implications for application as SOFC electrolytes, especially at intermediate temperatures. 
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1. Introduction 

The clean and efficient generation of electricity is a pressing global challenge. Fuel cells convert chemical energy from 

a gaseous fuel and oxidant directly into electrical work and SOFCs in particular exhibit high efficiencies, low pollutant 

emissions, fuel flexibility and suitability for Combined Heat and Power applications.[1] Therefore, SOFCs are likely to 

play an important part in energy conversion in the near future and are being developed for commercial applications 

ranging from domestic units to small power stations.[2],[3],[4] So far, widespread use of SOFCs has been inhibited by 

their high operating temperatures of typically 800 to 1000 °C.[5] A move to Intermediate temperature (IT)-SOFCs, 

which operate between 500 and 750 °C – is desirable in order to widen the range of structural and functional materials 

that can be used, and reduce energy usage, electrode sintering, interfacial diffusion between electrolyte and 

electrodes and thermal stress.[6],[7] However, the lower ionic conductivity of the electrolyte at these lower 

temperatures can limit the performance of IT-SOFCs. Therefore, optimising electrolyte design to increase conductivity 

to acceptable levels at these temperatures becomes central. 

Electrolytes based on ceria demonstrate higher oxide ion conductivity at IT than YSZ (yttria-stabilised zirconia), the 

most commonly used electrolyte in SOFCs. A structure containing a large number of interconnected, equivalent and 

partially occupied sites for the oxide ion is required for high intrinsic (or ‘bulk’) ionic conductivity. This is achieved by 

aliovalent doping of the material - the partial substitution of Ce4+ ions by  tri- or divalent cations in order to create 

oxygen vacancies to maintain charge neutrality.[8] The relatively facile migration of these vacancies in the cubic 

anionic sublattice at elevated temperatures then gives rise to fast ionic transport through the electrolyte.[9] 

Reports have shown that ceria doped with certain trivalent rare earth ions gives higher bulk ionic conductivity than 

those doped with other elements.[10] The concept of matching the size of the trivalent dopant ion to that of Ce4+ (0.97 

Å) in order to minimise both strain and activation energy for oxygen vacancy diffusion, Ea, is an important 

consideration.[11],[12],[13] In this approach, to optimise bulk ionic conductivity, the repulsive elastic (related to 

dopant radius) and attractive electronic components of the interaction between vacancies and dopant ions should 

balance. According to research by Andersson et al using ab initio methods, this is the case for a hypothetical atomic 

number between 61 (Pm) and 62 (Sm). Pm is radioactive, so a combination of alternative lanthanide dopant ions with 
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an average atomic number between 61 and 62 was proposed to optimise bulk ionic conductivity in electrolytes based 

on ceria.[14] This hypothesis was investigated experimentally in work by Omar et al in which Sm3+ and Nd3+ were 

selected to form electrolytes of composition, Smx/2Ndx/2Ce1-xO2-δ (with x=0.01 - 0.2), in which the average atomic 

number of the dopants was therefore 61. The authors interpreted the adherence of this compositional series to a 

linear relationship between x and unit cell parameter, a (Vegard’s law) as an indication that less short-range ordering 

of oxygen vacancies and dopant cations occurred in these materials than in singly-doped materials, such as the series, 

NdxCe1-xO2-δ, reported by Stephens and Kilner which displayed a second-order dependence.[15] This lack of defect 

ordering was proposed to result from a similarity in energy of the sites available to host oxygen ion vacancies which 

was given in turn as the reason for improved ionic conductivity. At 550 °C, Sm0.05Nd0.05Ce0.10O2-δ was found to have a 

higher bulk ionic conductivity than the widely used, analogous composition, Gd0.10Ce0.90O2-δ, so supporting the 

hypothesis of Andersson described above.[16] 

The ideal average atomic number between 61 and 62 also corresponds to a critical dopant ionic radius (rC). Omar et al 

ensured that the average dopant ionic radius of the synthesised LuxNdyCe1-x-yO2-y matched rC for all compositions in 

order to investigate the effect of elastic strain in the lattice on bulk ionic conductivity.[17] It was found that the elastic 

strain in the doubly doped system was negligible compared to the parent singly doped systems and that the bulk ionic 

conductivity was higher for the doubly doped system than for the corresponding singly doped systems. Therefore, it 

was concluded that co-doping based on rC can lead to increased conductivity for ceria electrolytes. In a later paper, 

however, the same authors concluded that rC alone was insufficient to fully explain the conductivity of doped cerias.[18]  

Wang and co-workers observed a higher total conductivity for Ce0.85Gd0.15-ySmyO1.925 (0.05 ≤ y ≤ 0.1) than for 

Ce0.85Gd0.15O1.925 or Ce0.85Sm0.15O1.925 between 500 and 700 °C .[19] This was attributed to suppression of the ordering 

of oxygen vacancies and hence a lower activation energy for the co-doped ceria than for the singly doped ceria. 

Anirban and co-workers observed that ceria co-doped with Gd3+ and Nd3+ exhibited a slight increase in bulk 

conductivity and a more significant increase in grain boundary conductivity compared to the singly doped specimens 

with the same dopant concentration with the effect of co-doping increasing at 600 °C and above.[20] Liu and co-

workers found that, of all the Sm3+ and Nd3+ co-doped and singly doped compositions investigated, the highest total 

ionic conductivity was observed for Ce0.8Sm0.1Nd0.1O1.9.[21] These studies show that co-doping can have beneficial 

effects on the conductivity of ceria-based electrolytes. However, computational work by Burbano and co-workers 
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predicted that the bulk ionic conductivity of co-doped systems lies within the range spanned by the singly doped 

materials between 600 and 1000 °C.[22] Whether the co-doping of ceria has a synergistic, detrimental or averaging 

effect on ionic conductivity will determine which compositions emerge as the most promising ceria-based electrolytes 

and whether these can be successfully applied in IT-SOFCs. 

There is no overall consensus on the best dopant or combination of dopants for ceria-based electrolytes. Therefore, 

in this work, seven nanopowders with the composition Ce0.8SmxGdyNdzO1.9 where x, y and z = 0.2, 0.1, 0.667 or 0 and 

x + y + z = 0.2 were synthesised. The chemical composition, powder nanostructure and crystal phase of these products 

were studied as were the microstructure and total, bulk and grain boundary ionic conductivities of the dense 

electrolyte pellets prepared from these powders. The results and analyses were cross-compared to gain insight into 

the parameters determining favourable performance in these materials. 

 

2. Experimental 

Seven compositions of Ce0.8SmxGdyNdzO1.9 were prepared where x, y and z = 0.2, 0.1, 0.667 or 0 and x + y + z = 0.2 (see 

Table 1). 0.1 mol dm-3 solutions were made by dissolving stoichiometric amounts of metal nitrate hexahydrates, 

Ce(NO3)3.6H2O (Acros Organics, 99.5 %), Sm(NO3)3.6H2O (Acros Organics, 99.9 %), Gd(NO3)3.6H2O (Acros Ogranics, 

99.9 %) and Nd(NO3)3.6H2O (Aldrich, 99.9%) separately in deionised water. They were stirred for 3 h to homogenise 

before being combined. A 0.2 mol dm-3 citric acid solution was made by dissolving anhydrous citric acid (Alfa Aesar, 

99.5 %) in deionised water and stirring for 3 h to homogenise prior to being added to the metal cation solution in the 

ratio of one mole of total metal cations to two moles of citrate. The resulting solution was stirred for 12 h to achieve 

homogenisation, heated to 80 °C and maintained under stirring for 24 h. Evolution of steam and gas resulted in a gel 

and finally a solid yellow foam. Thermal decomposition of the foam was carried out in a muffle furnace at 250 °C for 2 

h and the resulting powder was calcined in a muffle furnace at 500 °C for 2 h. Heating and cooling rates were 2.5 °C 

min-1 and 5 °C min-1 respectively. The powders were dry ground for 1 h at 400 rpm in a planetary ball mill (Fritsch 

Pulverisette 7)[23] using Nylon jars and 10 mm diameter zirconia balls as the grinding medium and a powder to ball 

weight ratio of 1:10. It was necessary to suspend the ball milling process every 15 minutes in order to displace the 

powder from the walls of the jar. The seven resulting nanopowder compositions underwent detailed characterisation. 
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To make sintered electrolyte pellets, the powders were uniaxially pressed at 200 MPa in a 25 mm (for impedance 

spectroscopy) or 10 mm (for examination using SEM, scanning electron microsopy) diameter, cylindrical stainless steel 

dye. The pellets were sintered at 1450 °C for 4 h with a heating rate of 2 °C min-1 and a cooling rate of 4 °C min-1 in 

accordance with the method used previously for the synthesis of samarium doped ceria (SDC).[24] The sintered pellets 

were polished using 600 and 1200 grade silicon carbide paper and 6 µm diamond paste (and 3 µm diamond paste for 

the SEM pellets) resulting in a mirror finish. 

XRD (X-ray diffraction) analysis of the samples was carried out using a PANalytical Empyrean diffractometer with Cu 

Kα1 monochromatic radiation. The external standard used was high-grade silicon powder which allowed correction for 

instrumental broadening. Data were acquired at room temperature by scanning 2θ from 10° to 100° with a step size 

of 0.017 ° and a step time of 0.95 s. The XRD patterns were fitted using Rietveld operations in the High Score Plus 

programme. 

The nanopowders were dissolved in concentrated nitric acid in Teflon-lined autoclaves at 160 °C for 8 h for analysis by 

ICP-MS (inductively coupled plasma- mass spectrometry) using an Agilent 7500ce with Ar gas flows of 0.82 L min-1 

(carrier) and 0.2 L min-1 (makeup). Sample solutions were taken into the nebuliser at a rate of approximately 1.0 mL 

min-1. Three runs for each sample were carried out and each mass was analysed in fully quantitative mode (three 

points per unit mass). 140Ce, 157Gd, 146Nd and 147Sm were analysed in no gas mode. Calibration standards were prepared 

 

Figure 1. XRD patterns for powder samples of Ce0.8SmxGdyNdzO1.9 for all compositions. *Small peak 

at about 45° is due to the sample holder (main peak of Fe). 
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using single element 1000 mg L-1 stock solutions for Ce, Gd, Nd and Sm (Qmx), diluted with 2% HNO3 v/v (Aristar grade, 

Merck).  

SEM images of the pellets were obtained using a JEOL JSM-6700F instrument equipped with a field emission gun at 

5.0 kV and were used to carry out statistical grain area analyses on each sample where the areas of many grains (> 

400) were measured using ImageJ software. For SEM polished pellets were thermally etched at 1400 °C, employing a 

dwell time of 1 min. and identical ramp rates to those used in the sintering process. Samples were gold-coated to 

reduce charging. A JEOL JEM-2011 instrument was used to acquire TEM (transmission electron microscope) images for 

crystallite size analysis. Samples were prepared by submerging 3 mm holey carbon Cu grids in an ultrasonicated 

dispersion of the powder in acetone. The Cu grids were dried overnight. 

The dimensions and masses of the sintered pellets were used to calculate their densities. Relative density values were 

obtained by dividing these density values by the corresponding theoretical density, ρXRD, calculated using Equation 1 

from the crystallographic information obtained by XRD, where Mi is the atomic mass of element i; x, y and z = 0.2, 0.1, 

0.667 or 0 (and x + y + z = 0.2)  and u is the atomic mass unit and V is the unit cell volume.  

 

V
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Two-electrode impedance spectroscopy was performed on the electrolyte pellets using a Solartron 1260 FRA 

instrument. Electrodes were deposited by screen-printing Pt ink (inorganic-free, Engelhardt) on each side of the pellets 

and firing at 1000 °C for 1 h with heating and cooling rates of 2 °C min-1. The resulting cells were placed in a tube 

furnace and impedance measurements were carried out under flowing pre-dried, synthetic air (50 ml min-1) at intervals 

of 50 °C between 150 - 900 °C, during both heating and cooling ramps. An A.C. voltage of 100 mV (250 °C – 900 °C) or 

500 mV (150 °C – 200 °C) was applied and the frequency was swept from 10 MHz to 1 Hz.  At each measurement 

temperature, multiple spectra were recorded until there were no variations between them. ZView software (Scribner 

Associates, Inc.) was used to analyse the impedance spectra. 

 

3. Results and Discussion 
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3.1. Powder Characterisation 

After calcination, the products consisted of voluminous fragile, papery structures which yielded very, pale yellow 

nanopowders after milling. XRD patterns of the seven Ce0.8SmxGdyNdzO1.9 nanopowders are given in Figure 1. All peaks 

could be assigned to the cubic fluorite Fm-3m crystal structure. There was no evidence of any other phases indicating 

that the powders were homogeneous and that the dopants were soluble in the cerium oxide lattice. Figure 2 presents 

lattice parameter, crystallite size and relative density as a function of average cation ionic radius. The lattice parameter 

(a, determined by Rietveld refinement of the XRD data) increased from 5.4244 Å (Ce0.8Gd0.2O1.9) to 5.4446 Å 

(Ce0.8Nd0.2O1.9). This showed a strong linear dependence when plotted against the average ionic radii of the trivalent 

dopant ions for each composition (Figure 2a) indicating that Vegard’s Law was obeyed in these materials, in spite of 

the presence of different cation combinations.[25] Table 1 summarises the lattice parameters and the average 

crystallite diameters (DXRD) of the seven powders obtained from the XRD data. Crystallite diameter was calculated from 

the extent of line broadening of the principal (111) diffraction peak using the Scherrer equation.[26] It decreased as 

the average ionic radius of the dopants increased, from 93 Å for Ce0.8Gd0.2O1.9 to 55 Å for Ce0.8Nd0.2O1.9 (Figure 2b).  

These values are comparable to those from previous work using the same synthesis method.[24] TEM images of each 

of the seven samples were used to calculate the average diameter of the individual crystallites, DTEM, (see Table 1, 

Figure 2b and Figure S1 in Electronic Supplementary Information (ESI)). This showed a similar trend to DXRD, although 

at higher values. This difference  between the DXRD and the DTEM values is attributed to the difficulty of reliably 

identifying very small nanocrystals in the TEM, especially since the crystallites were arranged in loosely agglomerated 

clusters – and therefore overlapping in the images - for all compositions. Individual particles were seen by high 

resolution TEM to have excellent crystallinity with no evidence of crystallites containing multiple nanodomains. The 

decreasing trend in crystallite size with increasing average ionic radius may be related to decreasing ionic diffusion 

rates as cation size increased. 
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ICP-MS was used for elemental analysis and the values are reported in Table 2 as cation % with associated errors (one 

standard deviation). No major impurities were identified in any of the compositions. However, there are discrepancies 

between the nominal stoichiometries and the ICP-MS results. Although the dopant concentrations are slightly higher 

than expected, the total dopant concentration is close to constant for all samples meaning the oxygen vacancy 

concentration (which is directly determined by the dopant concentration) is expected to be near-identical in each case. 

Therefore, comparisons between samples can be made based on the different individual dopant concentrations and 

identities. Unexpected Sm, Gd or Nd in a sample is likely to have been introduced from the starting nitrates (which 

were also analysed using ICP-MS). In the most important case, the remaining 0.5 % in the 99.5 % pure cerium nitrate 

hexahydrate was found to primarily consist of a gadolinium compound. This led to the slight excesses seen for this 

particular dopant. 

 

 

Figure 2. Dependence on average ionic radius of dopant ions in Ce0.8SmxGdyNdzO1.9 of a) lattice 

parameter obtained from powder XRD; b) average crystallite size calculated from powder XRD data 

and TEM images; c) relative density of pellets sintered at 1450°C for 4h. The best fit lines are added 

as guides to the eye. 
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3.2 Pellet Characterisation 

Pellets were sintered at 1450 °C for 4 h because this is close to the regime found to give maximum conductivity in SDC 

in previous work by Kosinski and Baker which also used the citrate-nitrate synthesis method.[24] The relative densities 

ranged from 89.8 % for Ce0.8Sm0.1Nd0.1O1.9 to 94.3 % for Ce0.8Gd0.2O1.9. There is a general decrease in relative density 

with increasing average ionic radius of the dopant lanthanides comprising the sample (Figure 2c). The rate of cation 

diffusion at the high temperatures of synthesis and sintering is likely to decrease as average cation size increases. This 

may explain the similar decreasing trend in crystallite size (see above). Both these trends - of decreasing crystallite size 

and decreasing cation diffusion rate with increasing cation size – may contribute to limit the degree of sintering and 

cause the corresponding decrease in relative density.. 

Figure 3 shows SEM images of the fired samples after polishing and thermal etching. Interlocking grains of typical, 

approximately hexagonal shape were observed. Grain areas are presented as normalised distribution histograms next 

to the corresponding images in Figure 3. These exhibit an approximately log-normal distribution of grain sizes with 

similar modal grain areas for each sample showing that grain growth was normal for all samples.[24] Average grain 

sizes were not found to correlate with crystallite size, relative density nor the average ionic radius of the trivalent 

dopants (Figure 4) and grain areas ranged from 0.249 µm2 for Ce0.8Gd0.2O1.9 to 0.414 µm2 for Ce0.8Sm0.1Gd0.1O1.9. This 

contrasts with the trends in powder crystallite diameter and relative density of the sintered pellet, both of which 

showed a general decrease with increasing average ionic radius of the dopants. In the SEM images all samples show a 

small amount of porosity, accounting for the lower than expected relative density of all samples. Grain growth could 

have been limited by these pores pinning the grain boundaries. This differs from the results of Kosinski and Baker 

where sintering conditions of 1450 °C for 4 h produced samples with lower porosity and larger grains.[24] There is a 

small possibility that the higher porosity than expected for these samples is due to oversintering. This phenomenon 

was reported by Liu et al[21] for the composition Ce0.8Sm0.1Nd0.1O1.9 when sintered for 5 h at 1500°C and (more 

markedly) 1600°C and proposed by Kosinski and Baker[24] for sintering conditions of 1450 °C for 6 h. However, it 

should be noted that the grains were larger in these studies than in the present contribution. 
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Figure 3. SEM images at intermediate and high magnification alongside log histograms showing 

the grain area distributions for samples sintered at 1450°C for 4h: a) SDC, b) GDC, c) NDC, d), SG, 

e) SN, f) GN and g) SGN. 
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3.3 Electrical Properties 

Electronic conductivity was considered to be negligible under the oxidising conditions used in this work. Even at the 

highest temperature of 900 °C used to measure impedance where the reduction of ceria is most prevalent, the 

contribution to the total conductivity due to electronic conductivity is less than 1 %.[27],[28],[29],[30]  

Impedance spectra are presented as Nyquist plots in Figure 5 for all seven compositions. At low temperatures (150 – 

400 °C) two arcs are visible in the spectra. The higher frequency arc was assigned to bulk (intra-granular) ionic 

conduction and the smaller arc at lower frequency to ionic conduction across the grain boundaries (inter-granular). 

Total, bulk and grain boundary conductivities were calculated from the resistances acquired from the impedance 

spectra, the area of the Pt electrodes and the thickness of the electrolyte pellets.  At intermediate (450 – 550 °C) and 

high (600 – 900 °C) temperatures, the bulk arc was progressively obscured by the inductance of the apparatus and 

shifted above the operating frequency window of the spectrometer. Therefore, separate bulk and grain boundary 

conductivities were obtained from the spectra only for the lower temperatures, while total conductivities (bulk plus 

grain boundary) are given for all temperatures, since these could be obtained from the intercept with the Z’ axis in the 

absence of the bulk arc. Values of capacitance were extracted from the fits to the Nqiust plots. At 300 °C values were 

very similar - at 0.95-1.1 x 10-10 F – for the bulk arc and 2.1 – 4.9 x 10-9 F for the grain boundary arc.  Capacitances of 

around 10-6 F extracted from the main arc observed at high temperatures are characteristic of charge transfer 

 

Figure 4. Average grain diameter (calculated from grain areas with the assumption that grain cross-

sections are circular) as a function of average ionic radius of dopant ions for Ce0.8SmxGdyNdzO1.9 samples 

sintered at 1450°C for 4 h.  
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processes at the electrode-electrolyte interface.[31] The smaller, low frequency arc at 750 °C can be assigned to 

electrode processes. 

3.3.1 Conductivities 

Figure 6 displays Arrhenius-type plots of the total, bulk and grain boundary conductivities for the SG sample, by way 

of example (plots for all seven samples are available as Figure S2 in the ESI). Grain boundary conductivity was much 

higher (by at least a factor of 4.5) than bulk conductivity for all of the compositions studied. Because of this, total 

conductivity was determined essentially by the bulk conductivity. This indicates that the materials synthesised in this 

work had low levels of impurities since these tend to accumulate at grain boundaries and have a particularly strong 

negative effect on grain boundary conductivity. Indeed, Si – the most problematic impurity in SOFC electrolyte 

materials – was found to be below the detection limits of 25 ppm in ICP-MS in the materials used in this study and 

below 10 ppm in XPS for multiply-doped cerias prepared in the same way (T. Sherwood, R.T. Baker, unpublished work). 

 

Figure 5. Nyquist plots for SDC, GDC, NDC, SG, SN, GN and SGN at a) 250°C, b) 500°C and c) 750°C. 

Different symbols represent the change in frequency decade, the key for which is inset in panel (c). 
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In the log plots presented in Figure 7 it is possible to compare the total, bulk and grain boundary conductivities for all 

samples over a wide range of temperatures. Variations in total conductivity are the most significant. Grain boundary 

conductivity is generally very high – attributed to the high purity of these materials – and this leads to the close 

dependence seen of total conductivity on bulk conductivity. In all plots, a trough in conductivity occurs for the two 

samples containing both Gd and Nd dopants, SGN and GN. It may be significant that these dopants occupy the two 

extremes of ionic radius of the dopants studied here. In Figure 7(b), the bulk conductivity of SG overtakes that of SDC, 

to become the most conductive, as temperature increases. In Figure 7(a), this trend continues for total conductivity 

until SDC becomes dominant again at 800°C. 

In order to study more closely the differences between compositions, normalised bulk (σb) and grain boundary (σgb) 

conductivities are plotted against temperature for all samples in Figure 8(a) and (b) and normalised total conductivity 

(σt) is plotted in the same way in Figure 8(c). The normalisations were carried out by dividing each conductivity value 

by the corresponding value for the SDC sample at the same measurement temperature. 

Bulk conductivity was highest for SDC between 150 °C and 250 °C and for SG from 300 °C to 400 °C and was lowest for 

GDC at 150 °C and for GN between 200 °C and 400 °C. The presence of Gd appears to cause normalised σb to increase 

with temperature with respect to SDC, while Nd results in a decrease and where both are present the plot is roughly 

flat. 

 

Figure 6. Arrhenius plots of total (♦), bulk (●) and grain boundary (▲) conductivity for SG. 
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In Figure 8(b), grain boundary conductivity was highest for SN at all temperatures for which σgb could be calculated, 

from 150 °C to 400 °C. It was lowest for GDC at 150 °C and SGN from 200 °C to 400 °C. The different sample 

compositions were in a very similar order to that seen for bulk conductivity. This suggests that intrinsic (bulk) 

conductivity is an important factor in σgb. The main differences were that SN rose up the order, and SDC and SGN fell.  

These changes cannot be simply accounted for by considering the grain size and density of the samples. The relatively 

small size of the grain boundary arcs (and so the errors in fitting them) and the small variations seen in relative density 

and in grain diameter across the sample series make it difficult to interpret the differences in σgb values in terms of 

microstructural parameters. Also, the different chemical compositions are likely to have some direct effect on the 

properties of the grain boundaries. 

The total conductivity of 1.67 S m-1 for SDC at 600 °C is very similar to the 1.81 S m-1 obtained by Kosinski and Baker 

for Ce0.8Sm0.2O1.9 at the same temperature although in this case a sintering time of 6 h was used.[24] However, it was 

higher than those of Balazs and co-workers of 1.2 S m-1 at 600 °C for Ce0.2Sm0.8O1.9 and of Zhan and co-workers for the 

same composition synthesised via traditional ceramic routes.[32],[33] These lower conductivities are mostly due to 

 

Figure 7. Log plots of (a) total, (b) bulk and (c) grain boundary conductivity as a function of average ionic radius for 

all samples. 
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lower grain boundary conductivities and these are linked to variations in preparation method and thus very probably 

to higher impurity levels, especially of Si, in the cited studies. Van Herle and co-workers obtained total ionic 

conductivity values of 5 – 7 S m-1 at 750 °C in air for Ce0.2M0.8O1.9 (M=Gd, Sm or Y) electrolytes prepared by a co-

precipitation method.[34] This is comparable to the values of 6.58 S m-1 (SDC) and 6.29 S m-1 (SG) obtained here at the 

same temperature although the value for GDC (4.42 S m-1) lies slightly below this range. The authors attributed their 

excellent ionic conductivity values to their high relative densities of around 97 %. 

In Figure 8(c), normalised total conductivity, σt, is plotted over the whole range of measurement temperature, from 

150 to 900 °C. At both 150 and 400 °C, the samples are arranged in the same order of increasing normalised σt as they 

were for σb in Figure 8(a). This again indicates the relatively small effect of σgb on σt and therefore that σt is determined 

essentially by σb. GDC had the lowest total conductivity at 150 °C, whereas GN was the lowest between 200 °C and 

700 °C and between 800 °C and 900 °C and NDC was lowest at 750 °C. The highest values of σt were for SN at 150 °C, 

Figure 8. Plots of normalised (with respect to SDC) (a) bulk, (b) grain boundary and (c) total conductivity against 

measurement temperature for all samples. 
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for SDC at 200 °C and 250 °C and between 750 °C and 900 °C and for SG between 300 °C and 700 °C. The fact that SG 

has a higher conductivity than SDC – a widely used SOFC electrolyte composition – over this wide range of 

temperatures is technologically important given the drive to reduce SOFC operating temperatures and to develop IT-

SOFCs for use between 500 and 700 °C. These results imply that SG would be a better electrolyte than SDC (or GDC) 

for such devices. For this reason, the Sm-Gd system is the subject of an ongoing detailed study by the present authors. 

The combination of 10 mol % each of Sm3+ and Gd3+ is optimal for a 20 mol % doped ceria electrolyte at intermediate 

temperatures. This may be due to this specific combination of ionic radii giving increased oxygen ion mobility at these 

temperatures due to an optimal balance between migration and association enthalpies (see later). This could arise 

from the way the equal mix of Sm3+ and Gd3+ dopant ions forms defect clusters and complexes and the kind of 

structures that form. 

The samples containing Nd (including GN) show a peak at very low temperatures in Figure 8(c) while those containing 

Gd (except GN) instead exhibit a sharp increase in normalised σt as temperature increased from its lowest value. This 

is a consequence of the increasing strengths of temperature dependence for Nd- < Sm- < Gd- containing samples which 

are reflected in the activation energies (see next section). 

An important question in the field of SOFC electrolyte materials is whether co-doping results in detrimental, average 

or beneficial changes in conductivity with respect to the singly-doped, ‘parent’ materials. From Figure 8, the 

conductivity of SG is significantly higher than the singly-doped compounds, SDC and GDC, between 300 °C and 700 °C 

(the upper end of which are feasible IT-SOFC working temperatures). The greatest enhancement is observed at 500 °C 

where σt for SG is 15 % higher than that for SDC and 28 % higher than that for GDC. However, at the low and high 

extremes of the temperature scale, at 150 - 250 °C and 750 - 900 °C, σt for SG is intermediate between those of GDC 

and SDC. SN has σt values intermediate between those of SDC and NDC between 200 °C and 900 °C indicating an 

averaging effect. However, normalised σt for SN increases as temperature falls and is higher than for SDC or NDC (or 

any other sample) at 150 °C. Co-doping to form GN has a clearly detrimental effect since σt is lower than either GDC 

or NDC from 200 to 700 °C and only roughly equal to the lower of these at 150 °C (GDC) and 800 to 900 °C (NDC). The 

behaviour of the triply-doped sample (SGN) is similar. Again, its σt is lower than any of the three singly-doped materials 

at 250-500 °C but has similar values to the lowest of the three at 150 °C (GDC) and at 550-900 °C (NDC). Triple doping 

in this case is clearly detrimental. Taken overall, these results suggest that the conductivity of multiply-doped cerias 
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cannot always be interpreted simply as an average of the conductivities of the singly-doped parent materials, as was 

concluded in the computational study of Burbano et al.[22]  

Dikmen and co-workers also reported that co-doping can improve the electrical performance of ceria-based 

electrolytes.[35],[36] The ionic conductivity of Ce0.8Sm0.18Gd0.02O1.9 (2.88 S m-1) was found to be almost twice as high 

as that for singly-doped Ce0.8Gd0.2O1.9 (1.51 S m-1), at 700 °C.[35] In the present study a similar enhancement was seen. 

Total conductivities at the same temperature were 4.40 S m-1 for SG (Ce0.8Sm0.1Gd0.1O1.9) and 3.30 S m-1 for GDC. The 

fact that these values are higher can be attributed to the different synthesis methods (citrate complexation compared 

to hydrothermal) and the different Sm:Gd ratios in the co-doped samples. However, a further study by Dikmen gave a 

maximum conductivity value of 6.50 S m-1 for Ce0.8Sm0.1Gd0.1O1.9 at 700 °C, which is approximately 50 % higher than 

the value obtained here for the same composition and temperature.[36] 

Kahlaoui and co-workers found that the total conductivity of the co-doped material, Ce0.8Sm0.1Nd0.1O1.9, was higher -  

3.29 S m-1 - than that of the singly-doped Ce0.8Sm0.2O1.9  - 2.32 S m-1 – at 700 °C, both samples having been made by 

the citric acid-nitrate process.[37] In the present study, however, SN was found to have a lower total conductivity than 

SDC apart from at low temperatures (see Figure 8), although the absolute values at 700 °C were much higher for SDC 

- 4.39 S m-1 - and slightly higher for SN – 3.73 S m-1 - than those of Kahlaoui et al.[37] Thus, the higher conductivity of 

Ce0.8Sm0.1Nd0.1O1.9 synthesised by Kahlaoui et al compared to SDC may be due to an unusually low value for SDC.[37] 

The highest total conductivity at 550 °C observed by Anirban and co-workers for the series of materials, Ce0.9Gd0.1-

xNdxO1.95 (0 ≤ x ≤ 0.1) prepared by citrate-nitrate auto-ignition, was 6.82 x 10-3 S m-1 when x = 0.075, which is 

significantly lower than the value of 0.635 S m-1 obtained here for the co-doped sample, GN, at the same 

temperature.[20] This is likely to be due to both the difference in dopant ratios (although they also report a value of 

1.96 x 10-3 S m-1 at 550 °C for x = 0.05) and the difference in total dopant concentration: 10 % used by these authors 

and 20 % in the current study.[20] 

 

3.3.2 Activation Energies 
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In Figures 6 and S2, the plots of total conductivity contain a change in gradient at around 500 °C. This is a general and 

well-known effect for ionically-conducting aliovalently-doped ceramics which was explained by Steele for GDC.[38] At 

low temperatures, below this inflection point, defect clusters of the type 𝑉𝑂
∙∙ − 𝑀𝐶𝑒

′  (and some 𝑀𝐶𝑒
′ − 𝑉𝑂

∙∙ − 𝑀𝐶𝑒
′ ), are 

expected to be common, especially at high dopant concentrations like the 20 mol % value used here. These defect 

clusters dissociate progressively as temperature rises and above the inflection point it is assumed that no defect 

clusters remain, having all been thermally dissociated.. Therefore, at high temperatures, above the inflection point, 

we assume that the defect cluster concentration is insignificant and the gradient here can be equated to the migration 

enthalpy of the oxygen vacancies, ∆𝐻𝑚, alone whilst below the inflection – where defect clusters are common and 

trap oxygen vacancies - it is equal to migration enthalpy plus the defect association enthalpy, ∆𝐻𝑚 + ∆𝐻𝑎. Thus, by 

obtaining gradients above and below the inflection point, values for ∆𝐻𝑚 and ∆𝐻𝑎 can be calculated. Values of ∆𝐻𝑚, 

∆𝐻𝑎, 𝐸𝑡 =  ∆𝐻𝑚 + ∆𝐻𝑎 (from the low temperature section of the σt plot) as well as activation energies for bulk and 

grain boundary conductivity were calculated. These are plotted as a function of average dopant ionic radius in Figure 

9 and compared to literature values in Table 3. Values for the pre-exponential constant were obtained by extrapolating 

the low temperature branch of the Arrhenius plots to the y-axis and these are presented in Figure 10. 

 

Figure 9. Activation energies for bulk and grain boundary processes and total conductivity below 

(∆Hm + ∆Ha) and above (∆Hm) 450 °C and ∆Ha. The best fit lines are added as guides to the eye. See 

text for details. 
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The general trend for the activation energies for the bulk, grain boundary and total (below 500 °C, 𝐸𝑡) conductivities 

is a close-to-linear, gradual decrease with increasing average dopant ionic radius. The pre-exponential constant shows 

a decrease with increasing average ionic radius. The value for SG appears to be slightly higher than this general trend 

(the best-fit line) – which would act to increase conductivity - while the values for SGN and GN are slightly below it. 

Activation energy values for total and bulk conductivity are very similar, while those for grain boundary conductivity 

are considerably higher. The activation energies for SDC are very close to those reported by Konsinski and Baker for 

Ce0.8Sm0.2O1.9 sintered under slightly different regimes.[24] The value of 𝐸𝑡 for SDC (0.91 eV) is close to that reported 

by Balazs (0.85 eV) for the same composition.[32] Omar et al also found Et values decreased in singly doped ceria with 

increasing dopant radius to an approximate minimum for the Nd-doped material.[18] 

The values of ∆𝐻𝑚  and ∆𝐻𝑎  show more scatter than those of 𝐸𝑡  in which they are combined. It is interesting to 

compare these plots with the work of Andersson et al who calculated values of ∆𝐻𝑎 and ∆𝐻𝑚 for ceria doped with 

lanthanides of atomic number, Z=57 (La) to 68 (Er).[14] Values for ∆𝐻𝑎 were obtained for two limiting cases in which 

dopant ions, 𝑀𝐶𝑒
′ , were (i) nearest neighbours (NN) or (ii) distant from each other (i.e. non-interacting). In each case, 

the electrostatic attraction (electronic interaction) and the lattice-mediated repulsion (elastic interaction) between 

the 𝑀𝐶𝑒
′  and 𝑉𝑂

∙∙ species were calculated and summed. This was done for vacancies in NN and next-nearest neighbour 

(NNN) sites, relative to the dopant ions. For both limiting cases, (i) and (ii), the overall interaction energy favoured the 

 

Figure 10. Variation of Pre-exponential constant, σo, with average ionic radius. The best fit line is 

added as a guide to the eye. See text for details. 
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NNN vacancy for lower Z (larger ions) and the NN position for the higher Z (smaller ions) with an energy minimum and 

cross-over between NN and NNN at 61 (Pm) for case (i) and 62 (Sm) for case (ii). The authors calculated a weighted 

average of the two cases corresponding to a dopant concentration of 4.2%, added a constant value for bulk ∆𝐻𝑚 (~0.5 

eV) and obtained a valley-shaped dependence on atomic number with an energy minimum at Z=61/62. The  ∆𝐻𝑎 

values were about 0.18, 0. 16, 0,16 and 0.21 for Nd, Pm (and Nd:Sm in a 1:1 ratio), Sm and Gd doping, respectively. At 

the higher doping level of 20% used in the present work these values would be expected to be higher – because of the 

larger contribution from dopants in the case (ii) configuration - but still be in a similar valley-like relationship. In Figure 

9, the ∆𝐻𝑎 values of the corresponding compositions – GDC, SDC, SN and NDC – do seem to form such a dependence 

(see construction line). However, SG, GN and SGN do not, but have ∆𝐻𝑎 values similar to, or slightly higher than, those 

for GDC. 

Turning now to the migration enthalpy, ∆𝐻𝑚, in the calculations just described, values were broadly similar to those 

found by Omar et al.[18] Andersson et al applied a constant value of ∆𝐻𝑚 which corresponded to vacancy migration 

distant from any dopant vacancies because of the low dopant concentration – 4.6% - that they considered. However, 

for a concentration of 20%, migration will more frequently be close to dopant sites and the influence of these on 

migration enthalpy should be included. Fortunately, these authors considered the energetics of migrations between 

the different oxygen sites in the vicinity of dopant sites. Considering the NN and NNN sites for the vacancy, they again 

found a cross-over in the lowest enthalpy of migration as a function of atomic number at around Z=62. However, this 

time the relationship was a volcano curve with – near the centre - values of ∆𝐻𝑚 of about 0.38, 0.40, 0.39, 0.33 eV for 

doping with Nd, Pm, Sm and Gd, respectively. This should be treated with some caution as it was calculated for the 

dopant ions NN to each other only and also the present authors have not included other vacancy migrations of higher 

energy which are likely also to make some contribution. However, the values of ∆𝐻𝑚 for these same dopants – NDC, 

SDC, SN, GDC – in Figure 9 do show a volcano-type relationship with a maximum around SDC. As was seen for∆𝐻𝑎, 

though, SG, GN and SGN do not fall on this curve (construction line). 

Returning to the behaviour of the multiply doped samples in the present work, ∆𝐻𝑎 and ∆𝐻𝑚 values for GN and SN 

are averages of the values for their respective singly-doped parent compositions. Whereas Andersson et al used single 

(averaged) values of Z and of ionic radius for doubly-doped compositions, the computational work of Minervini et al 

and Burbano et al indicated that different co-dopants tend to retain their local coordination environment in the ceria 
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lattice.[14],[11],[22] Burbano et al presented calculations for double doping in two combinations of a small and a large 

dopant ion,  Sc-La and Sm-Nd. They concluded that these doubly-doped materials had conductivities and activation 

energies that were an average of those of the parent, singly-doped compositions. This may be the case in the present 

work for both ∆𝐻𝑚 and ∆𝐻𝑎 of SN and GN (note that SN fits both the averaging and the Andersson et al model). 

However, where Sm and Gd are present together - in SG and SGN - the activation energies do not fit this model. 

Perhaps two such small dopant ions disrupt each other’s local environment via the host lattice more strongly – 

competing for oxygen vacancies, for example - than a large and a small ion - whose coordination environments may 

be more complementary - especially at the relatively high dopant concentration used here (20%).  

Table 3 compares literature values for ∆𝐻𝑚 and ∆𝐻𝑎 with those obtained here. Omar and co-workers obtained an 

approximately constant value for ∆𝐻𝑎 ~ 0.05 eV for Ce1-xSmx/2Ndx/2O2-δ (x = 0.08 – 0.18) and a ∆𝐻𝑚 of 0.80 eV for x = 

0.18, the highest value of x used, which differ considerably from the respective values obtained here of 0.28 and 0.63 

eV for SN.[16] These differences may have arisen from the different synthesis procedures used: citrate complexation 

vs. conventional solid state.[16] Kilner gave experimental and calculated values for ∆𝐻𝑎of GDC of 0.13  and 0.17 eV, 

respectively.[8] The former agrees with that for GDC given by Steele.[38] These values are lower than those acquired 

here but the calculated value is closest to that for SDC. The computational calculations of Minervini and co-workers 

gave ∆𝐻𝑎for GDC of 0.38 eV (a little higher than the 0.29 eV obtained here).[11] Faber and co-workers obtained ∆𝐻𝑎 

values by extrapolating their data to infinite dopant dilution, with the assumption that ∆𝐻𝑚  was 0.5 eV.[39] The 

average ∆𝐻𝑚 obtained here is 0.60 eV, which is in line with general values given by Kilner and Steele (0.6 eV) and 

Hohnke (0.61 eV). [40][41] For Nd and Gd dopants, this gave ∆𝐻𝑎 values of 0.23 and 0.32 eV, respectively, which 

compare with values of 0.40 and 0.29 eV acquired here for NDC and GDC, respectively, with 20% doping. 

Poorly conducting grain boundaries would strongly affect total conductivity values, causing inaccuracies in the 

migration and association enthalpies acquired from them. However, this is not expected to be the case in this work as 

σgb was much higher than σb . This is the result of using the solution-based nitrate-citrate synthesis method, which aids 

in decreasing impurity levels. This method is also expected to promote atomic mixing of the host (Ce) and dopant (Sm, 

Gd, Nd) cations whereas the ceramic method may lead to the production of nanodomains with different dopant 

concentrations due to its reliance on inter-diffusion of the starting oxides. 

4. Conclusions 
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A citrate complexation process was used to prepare a series of Ce0.8SmxGdyNdzO1.9 (x+y+z=0.2) nanopowders. Three 

singly-doped, Ce0.8M0.2O1.9 (M=Sm, Gd, Nd), three doubly-doped, Ce0.8M0.1M’0.1O1.9 (M ≠ M’=Sm, Gd, Nd), and one 

triply-doped, Ce0.8Sm0.067Gd0.067Nd0.067O1.9, materials were prepared. These – and dense sintered pellets made from 

them - were used in a detailed study of the effect of multiple doping on microstructure and ionic conductivity with the 

central aim to investigate the effect of the chemical composition on electrical properties. 

The nanopowders had crystallite sizes of 55 to 93 Å and were high-purity, single-phase cubic fluorite materials which 

adhered to Vegard’s Law. In the dense pellets, a general decrease in relative density with increasing average ionic 

radius of the dopant ion was observed. Average grain sizes showed no correlation with relative density or the average 

dopant ionic radius. 

Impedance spectroscopy was carried out on the dense pellets. Grain boundary conductivity was much higher than 

bulk conductivity for all samples. This was linked to the low impurity contents achievable using the nitrate-citrate 

preparative method. Total conductivities of the singly-doped samples compared favourably with literature values. 

Multiple doping was found to be detrimental (GN, SGN), averaging (SN) or beneficial (SG) compared to the singly-

doped parent materials, depending on the combination of dopants present. There was some variation in these trends 

with temperature. These variations are attributed to the interplay between the activation energies of defect cluster 

association (∆𝐻𝑎) and oxygen ion migration ((∆𝐻𝑚), and the pre-exponential factor. 

SG had significantly higher total conductivity than GDC, SDC or any other sample at 300-700 °C, having a value of 1.80 

S m-1 at 600 °C. This indicates that SG should be of considerable interest for application as an electrolyte in IT-SOFCs. 

The Sm-Gd system is the subject of an ongoing study. 

Although no conductivity enhancing effect was observed for the triply doped compound (SGN) relative to the three 

singly doped parent compounds, to the best of the authors’ knowledge this is the first time conductivity data for this 

combination of dopants has been reported. 

Arrhenius-type plots of conductivity were used to obtain association and migration enthalpies and these had 

respective values of between 0.18 (SDC) and 0.40 eV (NDC) and between 0.50 (NDC) and 0.73 eV (SDC). The trends in 

these enthalpies were discussed with reference to current models of doped cerias. For both association and migration 

enthalpies, connections to the computational model of Andersson et al is suggested for the singly-doped materials 



23 
 

(and possibly SN), while for GN (and possibly SN) these appeared to be averages of the values for the corresponding 

singly-doped parent materials. This demonstrates the effect of ceria electrolyte chemical composition on electrical 

properties. Lastly, the values for the samples containing Sm and Gd together showed a further behaviour which was 

tentatively related to the small size of both ions and the possibility that they may disrupt each other’s local 

environment in the host lattice more than a combination of a small and a large dopant ion, especially at the relatively 

high dopant concentration (20%) used here. 
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Tables 

Table 1. Lattice parameters, a, unit cell volumes, V and crystallite sizes as calculated by the Scherrer equation from 

powder XRD data, DXRD and as measured from TEM images, DTEM, for Ce0.8SmxGdyNdzO1.9 powders calcined at 500 °C 

for 2 h. 

 

Formula Notation a/Å V/Å
3 D

XRD
/Å D

TEM
/Å 

Ce
0.8

Sm
0.2

O
1.9
 SDC 5.4323 ± 0.0002 160.31 ± 0.02 67 ± 1.0 75 ± 18 

Ce
0.8

Gd
0.2

O
1.9
 GDC 5.4244 ± 0.0001 159.61 ± 0.01 93 ± 2.0 109 ± 32 

Ce
0.8

Nd
0.2

O
1.9
 NDC 5.4446 ± 0.0004 161.40 ± 0.04 55 ± 0.5 81 ± 37 

Ce
0.8

Sm
0.1

Gd
0.1

O
1.9
 SG 5.4279 ± 0.0002 159.92 ± 0.02 77 ± 1.5 95 ± 25 

Ce
0.8

Sm
0.1

Nd
0.1

O
1.9
 SN 5.4410 ± 0.0006 161.08 ± 0.05 69 ± 1.0 83 ± 8 

Ce
0.8

Gd
0.1

Nd
0.1

O
1.9
 GN 5.4352 ± 0.0003 160.56 ± 0.03 72 ± 1.0 95 ± 23 

Ce
0.8

Sm
0.2/3

Gd
0.2/3

Nd
0.2/3

O
1.9
 SGN 5.4342 ± 0.0003 160.48 ± 0.03 63 ± 1.0 89 ± 21 
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Table 2. Concentrations of cations as determined by ICP-MS for all powder samples. Errors are ± one standard deviation. 

Sample Ce (cation %) Sm (cation %) Gd (cation %) Nd (cation %) 
SDC 78.3 ± 2.0 20.9 ± 0.5 0.70 ± 0.02 0.045 ± 0.001 
GDC 77.1 ± 5.1 0.074 ± 0.005 22.8 ± 1.5 0.0132 ± 0.0009 
NDC 77.7 ± 7.5 0.016 ± 0.002 0.75 ± 0.07 21.6 ± 2.1 
SG 77.8 ± 3.0 10.5 ± 0.4 11.7 ± 0.5 0.027 ± 0.001 
SN 78.3 ± 1.2 10.7 ± 0.2 0.67 ± 0.01 10.3 ± 0.2 
GN 78.6 ± 5.4 0.021 ± 0.001 11.4 ± 0.8 10.0 ± 0.7 

SGN 78.4 ± 1.3 6.9 ± 0.1 7.9 ± 0.1 6.7 ± 0.1 
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Table 3: Comparison of the activation energy and association and migration enthalpy values obtained in this study with 

those reported in the literature for equivalent samples where possible. Where the literature composition is known 

and is different from that of this study, it is indicated. 

Sample 
Activation Energy/eV  Migration 

Enthalpy/

eV 

Migration Enthalpy 

(literature)/eV 
Association 

Enthalpy/eV 
Association Enthalpy 

(literature)/eV Bulk 
Bulk 

(literature) 
Grain 

Boundary 
Grain Boundary 

(literature) 
Total (≤ 450 ° C) Total (literature) 

SDC 0.90 0.85 [42] 0.98 0.94 [43] 0.91 0.85 [32] 0.73 0.69 [44] 0.18 0.26 [42] 

GDC 0.95 0.94 [45] 1.04 - 0.95 0.75 [46] 0.66 - 0.29 

0.17 (calculated) and 0.13 

(experimental) [8], 0.13 

(Ce
0.9

Sm
0.1

O
1.95

) [38], 0.32 

(composition unknown) [39], 0.38 

(composition unknown) [11] 
NDC 0.89 - 0.97 - 0.90 0.78 [32] 0.50 - 0.40 0.23 (composition unknown) [39] 
SG 0.93 - 1.00 - 0.93 0.59 [36] 0.59 - 0.34 - 

SN 0.90 0.93 [37] 1.02 0.90 [37] 0.90 0.92 [37] 0.63 

0.80 

(Ce
0.82

Sm
0.09

Nd
0.09

O
2-

δ
) [16] 

0.28 ~0.05 (Ce
0.82

Sm
0.09

Nd
0.09

O
2-δ

) [16] 

GN 0.92 - 0.98 - 0.92 

0.98 

(Ce
0.9

Gd
0.05

Nd
0.05

O
1.95

) 

[20] 

0.58 - 0.34 - 

SGN 0.91 - 0.98 - 0.92 - 0.55 - 0.37 - 
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Figure Captions 

Figure 1. XRD patterns for powder samples of Ce0.8SmxGdyNdzO1.9 for all compositions. *Small peak at about 45° is due 

to the sample holder (main peak of Fe). 

Figure 2. Dependence on average ionic radius of dopant ions in Ce0.8SmxGdyNdzO1.9 of a) lattice parameter obtained 

from powder XRD; b) average crystallite size calculated from powder XRD data and TEM images; c) relative density of 

pellets sintered at 1450°C for 4h. The best fit lines are added as guides to the eye. 

Figure 3. SEM images at intermediate and high magnification alongside log histograms showing the grain area 

distributions for samples sintered at 1450°C for 4h: a) SDC, b) GDC, c) NDC, d), SG, e) SN, f) GN and g) SGN.. 

Figure 4. Average grain diameter (calculated from grain areas with the assumption that grain cross-sections are circular) 

as a function of average ionic radius of dopant ions for Ce0.8SmxGdyNdzO1.9 samples sintered at 1450°C for 4 h. The best 

fit line is added as a guide to the eye. 

Figure 5. Nyquist plots for SDC, GDC, NDC, SG, SN, GN and SGN at a) 250°C, b) 500°C and c) 750°C. Different symbols 

represent the change in frequency decade, the key for which is inset in panel (c). 

Figure 6. Arrhenius plots of total (♦), bulk (●) and grain boundary (▲) conductivity for SG. 

Figure 7. Log plots of (a) total, (b) bulk and (c) grain boundary conductivity against average ionic radius for all samples. 

Figure 8. Plots of normalised (with respect to SDC) (a) bulk, (b) grain boundary and (c) total conductivity against 

measurement temperature for all samples. 

Figure 9. Activation energies for bulk and grain boundary processes and total conductivity below (∆Hm + ∆Ha) and above 

(∆Hm) 450 °C and ∆Ha. The best fit lines are added as guides to the eye. See text for details. 

Figure 10. Variation of Pre-exponential constant, σo, with average ionic radius. The best fit line is added as a guide to 

the eye. See text for details. 

 


