
Hosting Byzantine Fault Tolerant

Services on a Chord Ring

Alan Dearle, Graham NC Kirby, Stuart J Norcross

School of Computer Science

University of St Andrews

St Andrews

Fife

Scotland

al@cs.st-and.ac.uk, graham@cs.st-and.ac.uk, stuart@cs.st-and.ac.uk

Abstract

In this paper we demonstrate how stateful Byzantine

Fault Tolerant services may be hosted on a Chord

ring. The strategy presented is fourfold: firstly a

replication scheme that dissociates the maintenance of

replicated service state from ring recovery is

developed. Secondly, clients of the ring based services

are made replication aware. Thirdly, a consensus

protocol is introduced that supports the serialization of

updates. Finally Byzantine fault tolerant replication

protocols are developed that ensure the integrity of

service data hosted on the ring.

1. Introduction

In this paper we demonstrate how stateful

Byzantine Fault Tolerant (BFT) [1] services may be

provided on a Chord ring.

The approach is to implement a service as a number

of service components, each of which is hosted on a

node of the Chord network. A mapping is established

between the entities over which the service operates

and the key space of the peer-to-peer overlay. A

service component is responsible for the entities whose

keys route to the overlay host. Thus the ability to map

from service parameters to a key and hence to a ring

node hosting a service component responsible for that

key is a requirement of this technique.

Service components are discovered using standard

key based routing protocols and, once discovered,

clients interact directly with the service components to

obtain the desired service.

This paper makes several contributions. Firstly, we

demonstrate the problems that arise when the strategies

used to maintain Chord ring integrity are applied to the

service components hosted on the ring infrastructure.

We present an alternative strategy which may be used

to provide Byzantine Fault Tolerant services on a

Chord ring. We illustrate this by demonstrating how a

BFT distributed hash table (DHT) with update may be

provided on a standard non-BFT Chord infrastructure.

Our approach is fourfold: firstly a replication

scheme that dissociates the maintenance of replicated

service state from ring recovery is developed.

Secondly, clients of the ring based services are made

replication aware. Thirdly, a consensus protocol is

introduced that supports the serialization of updates.

Finally Byzantine fault tolerant replication protocols

are developed that ensure the integrity of the service

data hosted on the ring.

2. Background

A number of P2P overlay protocols have been

proposed that support the Key-based Routing (KBR)

abstraction [2-5]. Under a KBR scheme each

addressable application level entity has an associated

key value and each key value maps to a unique live

node in the overlay network. Upcalls from the routing

layer inform the application layers of changes to the

keyspace, thus allowing an application to become

aware of changes to the set of keys that map to the

local node.

Each scheme provides an overlay structure that

links a participating node to a small number of peer

nodes with which it can communicate. Each of these

systems provides routing mechanisms enabling nodes

to be addressed using a key value in log n time, where

n is the number of nodes. The P2P architectures are all

self-repairing in the face of host or network failures1.

The different overlay mechanisms differ considerably

in the way in which the routing algorithms are

implemented. However, the different systems may be

usefully be classified as being in one of three families:

Chord-like systems [2]; Plaxton-like systems [3]; and

CAN-like systems [4]. These systems offer a variety of

abstractions [10] built on or related to the KBR

1 Up to some limit governed by the frequency of failures and the

amount of state maintained by the nodes.

abstraction. Those most closely related to this work are

the Distributed Object Location and Routing (DOLR)

[6], and group anycast/multicast (CAST) abstractions.

The DOLR abstraction is concerned with the

implementation of a decentralised discovery service in

which applications may place objects on arbitrary

nodes within an overlay and announce their existence

using a key. It exports two operations: publish and

sendToObject. The former is used to publish the

association of an object with some key. The

sendToObject operation causes a message to be sent to

a number of copies of the object(s) with a specified

key. The CAST abstraction is used to implement

multicast groups. In its simplest form, it exports two

operations join and cast. The join operation permits a

node to join a multicast group specified by a key as a

parameter. This causes a message to be routed to the

node responsible for that key. Whenever a node is

encountered that is already a member of the group, the

node is added as a child of that node. Thus a multicast

tree is formed, rooted at the node responsible for the

specified group key. When a cast call is made, a

message is sent to the root for the key. The root

instructs its children to send the message to the nodes

in their dissemination tree. This process repeats

recursively until all the nodes in the group have been

sent the message.

2.1 Chord

In this paper we focus on one particular peer-to-peer

routing protocol – Chord. Chord is a ring based

protocol that supports KBR. At its most basic level,

Chord only requires each node to maintain a pointer to

its immediate successor in the ring. Each node N is

assigned a unique m-bit identifier key KN and the ring

is arranged in key order where keys are ordered on an

identifier circle modulo 2
m
. Every key value maps to a

unique live node in the overlay network.

The Chord protocol supports a lookup operation

which takes a key value and returns the network

address of the Chord node in the overlay network to

which the key value maps. Each node N is responsible

for the region [Kpred(N), KN) where KN is the node’s key

and Kpred(N) that of its predecessor. Thus, a lookup on

key k will yield the address of the node N whose key

KN is the first key in the ring that is equal to or greater

than k in the keyspace (modulo keyspace). In this way,

the Chord protocol provides a lookup service mapping

keys to overlay nodes. We call the Chord node N that

is returned by Chord’s lookup method when called

with key k the primary node for k.

In order to guarantee correct lookups each node

need only know its correct successor and as such the

lookup request can be passed around the ring until the

appropriate node is found. With such a simple scheme

lookup times vary linearly with the number of nodes in

the ring. To improve lookup times each node maintains

additional routing state called the finger table which

contains up to m entries. From [2]:

“The i
th

 entry in the table at node N

contains the identity of the first node S

that succeeds N by at least 2
i-1

 on the

identifier circle,…”

The finger table is consulted during the iterative

lookup process in which, at each stage, the node

referenced from the current node and with the closest

preceding key to the desired key is chosen to be used in

the next stage of the iteration. This reduces lookup

time to O(log X) where X is the number of nodes in the

ring. To support self-repair of the ring, each node also

maintains a successor list of k nodes which

immediately follow the node in the ring order.

The successor list permits a node to find its new

correct successor should its successor fail. For a

successor list of size k the system is resilient to up to

k-1 successive nodes failing within a given interval.

This provides resiliency of the ring and the look-up

protocol, but does not ensure the integrity of the data

structures hosted by ring nodes. We will return to this

issue momentarily.

Figure 1 shows a simple Chord ring. Each node

contains references to its successor (single filled arrow

head) and its predecessor (dashed line and open

arrowhead). Node 1 has been elaborated to show its

successor list (double headed arrows) and its fingers

(bold chords across ring).

N9

N1

N2

N3

N8

N4

N5N6

N7

Figure 1

2.2 Providing Services on Chord

In this paper we demonstrate how a distributed

service may be implemented on a Chord ring. To

illustrate our approach, we focus on an updatable

distributed hash table (DHT) service mapping keys to

values. This simple service has sufficient attributes to

illustrate the more general approach. In particular, it

requires serialization of updates.

The approach is to co-locate the service component

responsible for some key range on the primary node

responsible for that range. In order to make the global

service resilient to failure, it is necessary to replicate

the state of the service components that implement it.

The obvious approach is to co-locate the replicas on

the successors of the primary. However, this simple

approach of conflating the resilience of service

components hosted on the ring with the resilience of

the ring itself can be dangerous.

To understand why this is so, some examination of

the Chord protocol is necessary. Using Chord, each

node N is responsible for the region of keyspace

[Kpred(N), KN), that is the keyspace up to its own key and

following the key of its predecessor. Consider a lookup

starting at Node N1 of key k where K5 < k < K6. In this

case, as described in [2], the lookup algorithm visits

the following nodes: N3, N4, N5 and returns N6. Note

that although node N1 has a finger table entry referring

to the hosting node, N6, it cannot be used since the K6

is not less than the key being searched for and to use it

would (always) risk overshooting the target. Due to

this and in general, all Chord lookup operations are

always routed via the predecessor of the node

responsible a given key.

In the event of a failure of node N1 in Figure 1, the

ring will self repair using the Chord repair protocols

and node N2 will become the successor of node N9.

However, consider the case in which node N1 starts to

operate incorrectly either maliciously or simply

erroneously. Since no ring failure has occurred, the

successor and predecessor references will remain as

shown in Figure 1 and all lookup operations for keys in

the range [K8, K1) will be routed to N1. Furthermore,

any attempts to access the successor list of N1 will also

be routed via N1 since other nodes elsewhere in the

ring have no knowledge of the node topology or key

space in the vicinity of node N1. Of course, the

successors of node N1 are mostly in the successor list

of N9, however, they are not used for addressing unless

N1 is known to be faulty which, in general, it cannot be

assumed to be. Furthermore, a node may operate

correctly at the P2P level and erroneously at the service

level. Thus, using standard Chord protocols, a single

erroneous node in the ring can prevent access to the

services for which it is responsible both on the primary

and on its replicas.

3. Dissociating Replicated Service State

Maintenance from Ring Recovery

Consider the Chord ring shown in Figure 2. For

brevity no finger tables, predecessors, successors or

successor lists have been shown. Node N1 at the top of

the figure has key K1 and is responsible for the range

[K15, K1) which is shown by the dark gray segment.

Our strategy for dissociating the maintenance of

replicated service state from the ring infrastructure is to

replicate that state on nodes located around the ring.

For a replication factor of r, the state associated with

key k is replicated on r–1 nodes associated with keys k

+ nKS/r where n ranges from 1 to r–1 and KS is the

size of the keyspace. For a replication factor of four,

the regions of keyspace corresponding to the replicas

of N1’s keyspace are shown in light gray and labeled

R1, R2 and R3. For a given key k we call the nodes

responsible for keys {k, k + KS/r, k + 2KS/r… } the

peer set of k.

12.5%

Keyspace

managed

by N1

12.5%

R1

R3

12.5% R2

12.5%

N2

N1

N2

N3

N4

N5

N6

N8N10

N9

N11

N7

N12

N13

N14

N15

K1

K1+KS/2

K1+KS/4 K1+3KS/4

K15

K15+KS/4

K15+KS/2

K15+3KS/4

Figure 2

In Figure 2, it is clear that replica key ranges do not,

in general, map onto single nodes. For example, replica

range R1 is part-owned by three nodes, N4, N5 and N6.

Similarly R3 is part-owned by N11, N12 and N13. Thus

the replica state of a node is not found in its entirety on

(r-1) other nodes; instead, it is spread through a

collection of nodes. However the state corresponding

to a given key k may be always found on exactly (r-1)

replica nodes barring failures. Thus, as shown in

Figure 2, replicas of (part of) the service state hosted

by node N1 are stored on nodes N4, N5, N6, N8, N9, N11,

N12 and N13. We call the key ranges R1, R2 and R3 peer

key ranges. This does not add complexity to client

discovery of replicas but does impact on the

complexity of the fault tolerant protocols that maintain

the replicated state. The service component hosted by a

node typically only supports interaction with entities

whose keys map to that node, e.g. the service

component on node N1 is associated with entities with

keys in the range [K15, K1). We refer to such a key as

the natural key of an entity. Without considering

replication, keys in this range would not normally be

stored on the replica nodes. Two different approaches

may be taken to replicating service component state on

replica nodes:

 Associate service component replica state with

natural keys, and,

 Associate service component replica state with

calculated replica keys.

The first of these approaches means that service

components are associated with replica nodes with

keys outwith the key range managed by the replica. For

example, in Figure 2, replica state corresponding to

key K1 might be associated with node N6. By contrast,

using the second scheme, each replica state is

associated with a key calculated by shifting the original

key by an appropriate fraction of the keyspace. In

Figure 2 the replica of the state associated with key K1

would be associated with key K1 + KS/4 on Node N6

which is in the normal key range managed by that

node. In general, the key is calculated by taking the

natural key of the service and adding nKS/r to it. Using

the first approach server-side checks need to be relaxed

to permit state to be stored that corresponds to the peer

key ranges. By contrast, if the second option is chosen,

no such relaxation is necessary. In our implementations

we always associate replica state with a calculated key

since it makes server code less complex.

4. Making Clients Replication Aware

Some BFT approaches, notably that of Castro and

Liskov [7], require a primary to be identified which

coordinates the protocols. Having a primary makes the

serialization of operations simpler but adds complexity

in that election protocols for primaries are required in

the face of failure. We believe that a symmetric

scheme is simpler overall by avoiding the need for

election protocols and does not rely on the immediate

detection of a Byzantine primary. Our algorithms

remove the need for a primary by making the client

replica aware. Using the scheme described in this

paper, each client needs to be aware of the replication

factor and needs to be able to independently address

ring nodes.

We sketch the algorithms used for the two primary

DHT operations – put and get. As is traditional a

put(key, value) will update the value associated with

some key and a get(key) will return that value. As

described in [1], we require at least 3f+1 replicas to

provide BFT in which up to f replicas are faulty (since

it must be possible to complete operations after

communicating with n–f replicas). In this paper, to

simplify explanation, we assume the simplest case of at

most 1 faulty node and thus a system with four copies

of service component state. In our implementations we

follow a generative approach permitting a (statically

determined) arbitrary number of faulty nodes to be

tolerated.

The general approach followed is that clients send

requests to all peers in the peer set. Each of the replica

peers is discovered by routing to the node responsible

for the corresponding replica key; such routing may be

made via an arbitrary ring node. This obviates the

possibility that one faulty node may prevent the

discovery of replica nodes and hence the operation

from being carried out. The client waits for replies

from the replica nodes and when an appropriate

number of consistent replies are received the operation

is considered to be complete. It is sufficient for the

client to receive f+1 consistent replies since at most f

nodes may be faulty.

The algorithms for put and get are similar in nature.

For brevity we only show the pseudo code for put in

Figure 3. The client calculates the set of keys to which

data must be written and attempts to store the data on

the appropriate nodes. Routing to nodes may fail as

may individual nodes and so the process is repeated

until an appropriate number of puts have been made on

the replica nodes according to BFT assumptions. From

the client perspective, it appears that no server

coordination is being performed. However, as

discussed in the next section, this is not always the

case.

UID ClientPut(Data data) throws Exception {

 int MAX_FAULTY = floor((REP_FACTOR - 1)/3)

 UID uid= hash(data)

 Set<Key> keys_not_stored =

 calculateKeys(uid)

 while size(keys_not_stored)>MAX_FAULTY {

 parforeach Key k in keys_not_stored {

 try {

 Server node = routeTo(k)

 node.put(data)

 remove k from keys_not_stored

 }

 catch(TimeoutException,CommsException) {

 // try again – up to policy limit

 }

 }

 return uid

}

Figure 3

5. BFT Consensus Protocol

Since the algorithms do not have a primary node, a

consensus protocol is needed in cases where a serial

ordering of operations is important. This is the case

with the put operation which is an update operation and

subject to race conditions. To satisfy this requirement,

we have developed a consensus protocol which is

essentially a counting algorithm. Space prohibits the

algorithm from being described in full and we will

sketch out the mechanisms here; further details may be

found at [8].

In the algorithm sketched below, each server

interacts with the other servers in its peer set that are

responsible for a specified unique id uid. The peer set

members are calculated using the address arithmetic

described in Section 2. The underlying routing

protocols provided by Chord are used for discovering

these nodes.

At a high level, a two-phase algorithm is executed

on each server. The phases involve counting both votes

and commits for an update request. Each phase

completes when the BFT message thresholds2 have

been received. The first phase is initiated by the receipt

of a put message on a server. However, this phase is

only entered into if the server is not already engaged in

an update of the specified uid. If it is, the request is

queued until the previous update has been completed

successfully or otherwise. Each server maintains a per

uid state machine which records the following

information: if a put has been received, a count of

votes received, whether a vote has been sent, a count of

commits received, whether a commit has been sent,

whether the node is already engaged in a put, and,

whether the server has chosen the update to which the

state machine pertains.

The state machine is relatively complex with 33

states necessary to capture the asynchrony in the four

way replication scheme shown in Figure 2. However

the algorithm is conceptually simple: each node

communicates with its peer set sending vote messages

in response to the receipt of a put from a client. When

the BFT threshold of votes has been received by a

server, a commit message is sent to its peer set. When

enough commit messages have been received from

other peers, the transaction is made and the client is

notified.

Consistent serialization is achieved by allowing an

update voted for by a sufficiently high number of other

servers to proceed ahead of a previous locally selected

update. Since there is no guarantee that any one of a set

of concurrent updates will gain enough votes to reach

this threshold, the algorithm may deadlock. This may

be handled by a timeout/retry mechanism with a

randomized backoff.

2 The BFT thresholds are in fact different for vote and commit

messages – we require 2f+1 vote messages and f+1 commit
messages.

6. BFT Node Recovery

The final mechanism needed to provide BFT is a

recovery mechanism to ensure the integrity of service

component state when the underlying ring changes.

There are two categories of change that must be

accommodated: (a) nodes joining and (b) nodes leaving

the ring; the latter may be orderly or due to failure.

When a new node is added to a ring, the effect is to

reduce the keyspace of the new node’s successor.

Conversely, a node leaving a ring causes the keyspace

of the leaving node’s successor to be increased. When

the topology changes, the standard Chord protocol

provides upcalls from the P2P routing layer to notify

the software hosted on nodes of a change of ring

topology. In both cases (a) and (b) above, the upcall

mechanism provides the service layer with the old and

new key ranges for which the node is responsible and

initiates the algorithms that repair the services hosted

on the ring. In practice it is useful to separate the

upcalls, and in our implementations two different

upcalls are used to start the repair process:

release(old_range) and takeOver(extra_range).

On the failure of Y, X takes over all

keys in the range [lower , upper)

R1

R2

R3

N1

N3

N2

X

R

Y

rangeX

lower+ KS/r

lower

upper

upper+ KS/r

Figure 4

Again, space precludes a full exploration of the

algorithms that are invoked in response to these

upcalls; they will therefore be sketched out here. The

difficult case is when a node fails and we therefore

concentrate on that case. When a takeOver upcall is

received, the algorithm calculates the address ranges of

the (non-failing) nodes in the peer set. Consider the

example shown in Figure 4 in which node Y has failed

and node X has taken over the key range

R=[lower, upper). In order to recover, X needs to

obtain all service component data in range R from the

peerset of the range. This task is slightly more complex

that it might seem since (a) X has no knowledge of

what extant keys lie in this range; and (b), the replica

ranges of R will, with high probability, be split

between multiple replica nodes for each of the regions

{ [lower+ KS/r, upper+ KS/r), [lower+ 2KS/r, upper+

2KS/r)… } as shown in Figure 4 with nodes N1, N2 and

N3 which all manage replica keys in the range [lower+

KS/r, upper+ KS/r). Thus the recovery process is multi-

phased. First a set of the peer servers holding replica

data is constructed by repeatedly routing to the lowest

key in each of the replica key ranges and following

their successor links. Next, each of the peer servers is

requested to return the set of keys they hold. By

counting and matching replies, a list of keys may be

constructed on the node performing the reconstruction.

This set will contain keys in the range R and from the

corresponding peer sets of R. Finally, the data

corresponding to these keys is asynchronously fetched

from enough replica servers to be safe under BFT

assumptions.

Within this algorithm there are many subtleties

which have been glossed over here for brevity. These

include: the policy choice of which servers from which

to fetch data, the exploitation of self-verifying data to

avoid multiple fetches, the avoidance of fetching more

data than is required and dealing with transient failures.

A final complexity is that if the ring is not stable, not

all the nodes that may be requested for data will

actually have it.

7. Summary and Conclusions

The techniques demonstrated in this paper make

several novel contributions. Primarily we demonstrate

that a Chord-like P2P system may be used to host

Byzantine Fault Tolerant services. The techniques

described are applicable in other KBR systems

although the specific problems of primary node failure

are not as critical in other systems, for example, those

based on Plaxton routing. In many ways, the

dissociation of the maintenance of replicated service

state from the underlying KBR mechanism increases

the applicability of the techniques. Making clients

aware of the addressing mechanisms used to address

nodes is a critical element in the establishment of BFT

mechanisms. The consensus protocol used to support

the serialization of updates is an optional part of the

scheme that may be applied when serialization is

required.

The algorithms sketched in this paper have all been

implemented as part of the Autonomic Storage

Architecture (ASA) project. The state machine

corresponding to the consensus protocol described in

Section 5 is dependent on the replication factor used.

We have therefore applied generative techniques to

automatically generate state machines for a given

replication factor.

8. Ongoing work

The algorithms sketched in this paper are being

applied in the ASA project which is constructing a

distributed autonomic file system. In particular, the

BFT protocols are being applied to the management of

data structures that maintain mappings from globally

unique file identifiers to sequences of file versions. We

also currently investigating programming language

constructs which present resilient service abstractions

implemented by the mechanisms described in this

paper.

9. References

[1] L. Lamport, R. Shostak, and M. Pease, "The

Byzantine Generals Problem", ACM Transactions

on Programming Languages and Systems, vol. 4,

pp. 382-401, 1982

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and

H. Balakrishnan, "Chord: A Scalable Peer-To-

Peer Lookup Service for Internet Applications",

presented at ACM SIGCOMM Conference, 2001

[3] A. Rowston and P. Druschel, "Pastry: Scalable,

distributed object location and routing for large-

scale peer-to-peer systems", presented at

Middleware, 2001

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp,

and S. Shenker, "A Scalable Content Addressable

Network", University of Berkeley, CA TR-00-

010, 2000,

[5] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz,

and I. Stoica, "Towards a Common API for

Structured P2P Overlays", presented at 2nd

International Workshop on Peer-to-Peer Systems

(IPTPS'03), Berkeley, CA., 2003

[6] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Y.

Zhao, "Distributed Object Location in a Dynamic

Network", presented at Theory of Computing

Systems 37, 2004

[7] M. Castro and B. Liskov, "Practical Byzantine

Fault Tolerance", presented at Third Symposium

on Operating Systems Design and

Implementation, New Orleans, USA, 1999

[8] A. Dearle, G. Kirby, and S. Norcross, "BFT",

http://asa.cs.st-andrews.ac.uk/BFT/

	OLE_LINK1
	OLE_LINK2
	Server.getOutstandingDataLocations.28.29

