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Abstract 
 

In this paper we demonstrate how stateful Byzantine 

Fault Tolerant services may be hosted on a Chord 

ring. The strategy presented is fourfold: firstly a 

replication scheme that dissociates the maintenance of 

replicated service state from ring recovery is 

developed. Secondly, clients of the ring based services 

are made replication aware. Thirdly, a consensus 

protocol is introduced that supports the serialization of 

updates. Finally Byzantine fault tolerant replication 

protocols are developed that ensure the integrity of 

service data hosted on the ring. 

 

1. Introduction 

In this paper we demonstrate how stateful 

Byzantine Fault Tolerant (BFT) [1] services may be 

provided on a Chord ring.  

The approach is to implement a service as a number 

of service components, each of which is hosted on a 

node of the Chord network. A mapping is established 

between the entities over which the service operates 

and the key space of the peer-to-peer overlay. A 

service component is responsible for the entities whose 

keys route to the overlay host. Thus the ability to map 

from service parameters to a key and hence to a ring 

node hosting a service component responsible for that 

key is a requirement of this technique.  

Service components are discovered using standard 

key based routing protocols and, once discovered, 

clients interact directly with the service components to 

obtain the desired service. 

This paper makes several contributions. Firstly, we 

demonstrate the problems that arise when the strategies 

used to maintain Chord ring integrity are applied to the 

service components hosted on the ring infrastructure. 

We present an alternative strategy which may be used 

to provide Byzantine Fault Tolerant services on a 

Chord ring. We illustrate this by demonstrating how a 

BFT distributed hash table (DHT) with update may be 

provided on a standard non-BFT Chord infrastructure. 

Our approach is fourfold: firstly a replication 

scheme that dissociates the maintenance of replicated 

service state from ring recovery is developed. 

Secondly, clients of the ring based services are made 

replication aware. Thirdly, a consensus protocol is 

introduced that supports the serialization of updates. 

Finally Byzantine fault tolerant replication protocols 

are developed that ensure the integrity of the service 

data hosted on the ring. 

 

2. Background 

A number of P2P overlay protocols have been 

proposed that support the Key-based Routing (KBR) 

abstraction [2-5]. Under a KBR scheme each 

addressable application level entity has an associated 

key value and each key value maps to a unique live 

node in the overlay network. Upcalls from the routing 

layer inform the application layers of changes to the 

keyspace, thus allowing an application to become 

aware of changes to the set of keys that map to the 

local node. 

Each scheme provides an overlay structure that 

links a participating node to a small number of peer 

nodes with which it can communicate. Each of these 

systems provides routing mechanisms enabling nodes 

to be addressed using a key value in log n time, where 

n is the number of nodes. The P2P architectures are all 

self-repairing in the face of host or network failures1. 

The different overlay mechanisms differ considerably 

in the way in which the routing algorithms are 

implemented. However, the different systems may be 

usefully be classified as being in one of three families: 

Chord-like systems [2]; Plaxton-like systems [3]; and 

CAN-like systems [4]. These systems offer a variety of 

abstractions [10] built on or related to the KBR 

                                                           
1 Up to some limit governed by the frequency of failures and the 

amount of state maintained by the nodes. 



abstraction. Those most closely related to this work are 

the Distributed Object Location and Routing (DOLR) 

[6], and group anycast/multicast (CAST) abstractions. 

The DOLR abstraction is concerned with the 

implementation of a decentralised discovery service in 

which applications may place objects on arbitrary 

nodes within an overlay and announce their existence 

using a key. It exports two operations: publish and 

sendToObject. The former is used to publish the 

association of an object with some key. The 

sendToObject operation causes a message to be sent to 

a number of copies of the object(s) with a specified 

key. The CAST abstraction is used to implement 

multicast groups. In its simplest form, it exports two 

operations join and cast. The join operation permits a 

node to join a multicast group specified by a key as a 

parameter. This causes a message to be routed to the 

node responsible for that key. Whenever a node is 

encountered that is already a member of the group, the 

node is added as a child of that node. Thus a multicast 

tree is formed, rooted at the node responsible for the 

specified group key. When a cast call is made, a 

message is sent to the root for the key. The root 

instructs its children to send the message to the nodes 

in their dissemination tree. This process repeats 

recursively until all the nodes in the group have been 

sent the message. 

 

2.1 Chord 

In this paper we focus on one particular peer-to-peer 

routing protocol – Chord. Chord is a ring based 

protocol that supports KBR. At its most basic level, 

Chord only requires each node to maintain a pointer to 

its immediate successor in the ring. Each node N is 

assigned a unique m-bit identifier key KN and the ring 

is arranged in key order where keys are ordered on an 

identifier circle modulo 2
m
. Every key value maps to a 

unique live node in the overlay network.  

The Chord protocol supports a lookup operation 

which takes a key value and returns the network 

address of the Chord node in the overlay network to 

which the key value maps. Each node N is responsible 

for the region [Kpred(N), KN) where KN is the node’s key 

and Kpred(N) that of its predecessor. Thus, a lookup on 

key k will yield the address of the node N whose key 

KN is the first key in the ring that is equal to or greater 

than k in the keyspace (modulo keyspace). In this way, 

the Chord protocol provides a lookup service mapping 

keys to overlay nodes. We call the Chord node N that 

is returned by Chord’s lookup method when called 

with key k the primary node for k.  

In order to guarantee correct lookups each node 

need only know its correct successor and as such the 

lookup request can be passed around the ring until the 

appropriate node is found. With such a simple scheme 

lookup times vary linearly with the number of nodes in 

the ring. To improve lookup times each node maintains 

additional routing state called the finger table which 

contains up to m entries. From [2]: 

“The i
th

 entry in the table at node N 

contains the identity of the first node S 

that succeeds N by at least 2
i-1

 on the 

identifier circle,…” 

The finger table is consulted during the iterative 

lookup process in which, at each stage, the node 

referenced from the current node and with the closest 

preceding key to the desired key is chosen to be used in 

the next stage of the iteration. This reduces lookup 

time to O(log X) where X is the number of nodes in the 

ring. To support self-repair of the ring, each node also 

maintains a successor list of k nodes which 

immediately follow the node in the ring order.  

The successor list permits a node to find its new 

correct successor should its successor fail. For a 

successor list of size k the system is resilient to up to 

k-1 successive nodes failing within a given interval. 

This provides resiliency of the ring and the look-up 

protocol, but does not ensure the integrity of the data 

structures hosted by ring nodes. We will return to this 

issue momentarily. 

Figure 1 shows a simple Chord ring. Each node 

contains references to its successor (single filled arrow 

head) and its predecessor (dashed line and open 

arrowhead). Node 1 has been elaborated to show its 

successor list (double headed arrows) and its fingers 

(bold chords across ring).  
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Figure 1 

2.2 Providing Services on Chord 

In this paper we demonstrate how a distributed 

service may be implemented on a Chord ring. To 

illustrate our approach, we focus on an updatable 

distributed hash table (DHT) service mapping keys to 

values. This simple service has sufficient attributes to 



illustrate the more general approach. In particular, it 

requires serialization of updates. 

The approach is to co-locate the service component 

responsible for some key range on the primary node 

responsible for that range. In order to make the global 

service resilient to failure, it is necessary to replicate 

the state of the service components that implement it. 

The obvious approach is to co-locate the replicas on 

the successors of the primary. However, this simple 

approach of conflating the resilience of service 

components hosted on the ring with the resilience of 

the ring itself can be dangerous. 

To understand why this is so, some examination of 

the Chord protocol is necessary. Using Chord, each 

node N is responsible for the region of keyspace 

[Kpred(N), KN), that is the keyspace up to its own key and 

following the key of its predecessor. Consider a lookup 

starting at Node N1 of key k where K5 < k < K6. In this 

case, as described in [2], the lookup algorithm visits 

the following nodes: N3, N4, N5 and returns N6. Note 

that although node N1 has a finger table entry referring 

to the hosting node, N6, it cannot be used since the K6 

is not less than the key being searched for and to use it 

would (always) risk overshooting the target. Due to 

this and in general, all Chord lookup operations are 

always routed via the predecessor of the node 

responsible a given key.  

In the event of a failure of node N1 in Figure 1, the 

ring will self repair using the Chord repair protocols 

and node N2 will become the successor of node N9. 

However, consider the case in which node N1 starts to 

operate incorrectly either maliciously or simply 

erroneously. Since no ring failure has occurred, the 

successor and predecessor references will remain as 

shown in Figure 1 and all lookup operations for keys in 

the range [K8, K1) will be routed to N1. Furthermore, 

any attempts to access the successor list of N1 will also 

be routed via N1 since other nodes elsewhere in the 

ring have no knowledge of the node topology or key 

space in the vicinity of node N1. Of course, the 

successors of node N1 are mostly in the successor list 

of N9, however, they are not used for addressing unless 

N1 is known to be faulty which, in general, it cannot be 

assumed to be. Furthermore, a node may operate 

correctly at the P2P level and erroneously at the service 

level. Thus, using standard Chord protocols, a single 

erroneous node in the ring can prevent access to the 

services for which it is responsible both on the primary 

and on its replicas. 

 

3. Dissociating Replicated Service State 

Maintenance from Ring Recovery 

Consider the Chord ring shown in Figure 2. For 

brevity no finger tables, predecessors, successors or 

successor lists have been shown. Node N1 at the top of 

the figure has key K1 and is responsible for the range 

[K15, K1) which is shown by the dark gray segment. 

Our strategy for dissociating the maintenance of 

replicated service state from the ring infrastructure is to 

replicate that state on nodes located around the ring. 

For a replication factor of r, the state associated with 

key k is replicated on r–1 nodes associated with keys k 

+ nKS/r where n ranges from 1 to r–1 and KS is the 

size of the keyspace. For a replication factor of four, 

the regions of keyspace corresponding to the replicas 

of N1’s keyspace are shown in light gray and labeled 

R1, R2 and R3. For a given key k we call the nodes 

responsible for keys {k, k + KS/r, k + 2KS/r… } the 

peer set of k.  
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Figure 2 

In Figure 2, it is clear that replica key ranges do not, 

in general, map onto single nodes. For example, replica 

range R1 is part-owned by three nodes, N4, N5 and N6. 

Similarly R3 is part-owned by N11, N12 and N13. Thus 

the replica state of a node is not found in its entirety on 

(r-1) other nodes; instead, it is spread through a 

collection of nodes. However the state corresponding 

to a given key k may be always found on exactly (r-1) 

replica nodes barring failures. Thus, as shown in 

Figure 2, replicas of (part of) the service state hosted 

by node N1 are stored on nodes N4, N5, N6,  N8, N9, N11, 

N12 and N13. We call the key ranges R1, R2 and R3 peer 

key ranges. This does not add complexity to client 

discovery of replicas but does impact on the 

complexity of the fault tolerant protocols that maintain 

the replicated state. The service component hosted by a 

node typically only supports interaction with entities 

whose keys map to that node, e.g. the service 



component on node N1 is associated with entities with 

keys in the range [K15, K1). We refer to such a key as 

the natural key of an entity. Without considering 

replication, keys in this range would not normally be 

stored on the replica nodes. Two different approaches 

may be taken to replicating service component state on 

replica nodes: 

 Associate service component replica state with 

natural keys, and, 

 Associate service component replica state with 

calculated replica keys. 

The first of these approaches means that service 

components are associated with replica nodes with 

keys outwith the key range managed by the replica. For 

example, in Figure 2, replica state corresponding to 

key K1 might be associated with node N6. By contrast, 

using the second scheme, each replica state is 

associated with a key calculated by shifting the original 

key by an appropriate fraction of the keyspace. In 

Figure 2 the replica of the state associated with key K1 

would be associated with key K1 + KS/4 on Node N6 

which is in the normal key range managed by that 

node. In general, the key is calculated by taking the 

natural key of the service and adding nKS/r to it. Using 

the first approach server-side checks need to be relaxed 

to permit state to be stored that corresponds to the peer 

key ranges. By contrast, if the second option is chosen, 

no such relaxation is necessary. In our implementations 

we always associate replica state with a calculated key 

since it makes server code less complex. 

 

4. Making Clients Replication Aware 

Some BFT approaches, notably that of Castro and 

Liskov [7], require a primary to be identified which 

coordinates the protocols. Having a primary makes the 

serialization of operations simpler but adds complexity 

in that election protocols for primaries are required in 

the face of failure. We believe that a symmetric 

scheme is simpler overall by avoiding the need for 

election protocols and does not rely on the immediate 

detection of a Byzantine primary. Our algorithms 

remove the need for a primary by making the client 

replica aware. Using the scheme described in this 

paper, each client needs to be aware of the replication 

factor and needs to be able to independently address 

ring nodes.  

We sketch the algorithms used for the two primary 

DHT operations – put and get. As is traditional a 

put(key, value) will update the value associated with 

some key and a get(key) will return that value. As 

described in [1], we require at least 3f+1 replicas to 

provide BFT in which up to f replicas are faulty (since 

it must be possible to complete operations after 

communicating with n–f replicas). In this paper, to 

simplify explanation, we assume the simplest case of at 

most 1 faulty node and thus a system with four copies 

of service component state. In our implementations we 

follow a generative approach permitting a (statically 

determined) arbitrary number of faulty nodes to be 

tolerated. 

The general approach followed is that clients send 

requests to all peers in the peer set. Each of the replica 

peers is discovered by routing to the node responsible 

for the corresponding replica key; such routing may be 

made via an arbitrary ring node. This obviates the 

possibility that one faulty node may prevent the 

discovery of replica nodes and hence the operation 

from being carried out. The client waits for replies 

from the replica nodes and when an appropriate 

number of consistent replies are received the operation 

is considered to be complete. It is sufficient for the 

client to receive f+1 consistent replies since at most f 

nodes may be faulty. 

The algorithms for put and get are similar in nature. 

For brevity we only show the pseudo code for put in 

Figure 3. The client calculates the set of keys to which 

data must be written and attempts to store the data on 

the appropriate nodes. Routing to nodes may fail as 

may individual nodes and so the process is repeated 

until an appropriate number of puts have been made on 

the replica nodes according to BFT assumptions. From 

the client perspective, it appears that no server 

coordination is being performed. However, as 

discussed in the next section, this is not always the 

case. 

 
UID ClientPut(Data data) throws Exception { 

 int MAX_FAULTY = floor((REP_FACTOR - 1)/3) 

 UID uid= hash(data) 

 Set<Key> keys_not_stored = 

   calculateKeys(uid) 

 while size(keys_not_stored)>MAX_FAULTY { 

  parforeach Key k in keys_not_stored { 

  try { 

   Server node = routeTo(k) 

   node.put(data) 

   remove k from keys_not_stored 

  } 

  catch(TimeoutException,CommsException) { 

   // try again – up to policy limit 

  } 

 } 

 return uid 

} 

Figure 3 
 

5. BFT Consensus Protocol 

Since the algorithms do not have a primary node, a 

consensus protocol is needed in cases where a serial 

ordering of operations is important. This is the case 



with the put operation which is an update operation and 

subject to race conditions. To satisfy this requirement, 

we have developed a consensus protocol which is 

essentially a counting algorithm. Space prohibits the 

algorithm from being described in full and we will 

sketch out the mechanisms here; further details may be 

found at [8]. 

In the algorithm sketched below, each server 

interacts with the other servers in its peer set that are 

responsible for a specified unique id uid. The peer set 

members are calculated using the address arithmetic 

described in Section 2. The underlying routing 

protocols provided by Chord are used for discovering 

these nodes.  

At a high level, a two-phase algorithm is executed 

on each server. The phases involve counting both votes 

and commits for an update request. Each phase 

completes when the BFT message thresholds2 have 

been received. The first phase is initiated by the receipt 

of a put message on a server. However, this phase is 

only entered into if the server is not already engaged in 

an update of the specified uid. If it is, the request is 

queued until the previous update has been completed 

successfully or otherwise. Each server maintains a per 

uid state machine which records the following 

information: if a put has been received, a count of 

votes received, whether a vote has been sent, a count of 

commits received, whether a commit has been sent, 

whether the node is already engaged in a put, and, 

whether the server has chosen the update to which the 

state machine pertains. 

The state machine is relatively complex with 33 

states necessary to capture the asynchrony in the four 

way replication scheme shown in Figure 2. However 

the algorithm is conceptually simple: each node 

communicates with its peer set sending vote messages 

in response to the receipt of a put from a client. When 

the BFT threshold of votes has been received by a 

server, a commit message is sent to its peer set. When 

enough commit messages have been received from 

other peers, the transaction is made and the client is 

notified. 

Consistent serialization is achieved by allowing an 

update voted for by a sufficiently high number of other 

servers to proceed ahead of a previous locally selected 

update. Since there is no guarantee that any one of a set 

of concurrent updates will gain enough votes to reach 

this threshold, the algorithm may deadlock. This may 

be handled by a timeout/retry mechanism with a 

randomized backoff. 

 

                                                           
2 The BFT thresholds are in fact different for vote and commit 

messages – we require 2f+1 vote messages and f+1 commit 
messages. 

6. BFT Node Recovery 

The final mechanism needed to provide BFT is a 

recovery mechanism to ensure the integrity of service 

component state when the underlying ring changes. 

There are two categories of change that must be 

accommodated: (a) nodes joining and (b) nodes leaving 

the ring; the latter may be orderly or due to failure. 

When a new node is added to a ring, the effect is to 

reduce the keyspace of the new node’s successor. 

Conversely, a node leaving a ring causes the keyspace 

of the leaving node’s successor to be increased. When 

the topology changes, the standard Chord protocol 

provides upcalls from the P2P routing layer to notify 

the software hosted on nodes of a change of ring 

topology. In both cases (a) and (b) above, the upcall 

mechanism provides the service layer with the old and 

new key ranges for which the node is responsible and 

initiates the algorithms that repair the services hosted 

on the ring. In practice it is useful to separate the 

upcalls, and in our implementations two different 

upcalls are used to start the repair process: 

release(old_range) and takeOver(extra_range). 

 
On the failure of Y, X takes over all 

keys in the range [lower , upper)
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Figure 4 

 

Again, space precludes a full exploration of the 

algorithms that are invoked in response to these 

upcalls; they will therefore be sketched out here. The 

difficult case is when a node fails and we therefore 

concentrate on that case. When a takeOver upcall is 

received, the algorithm calculates the address ranges of 

the (non-failing) nodes in the peer set. Consider the 

example shown in Figure 4 in which node Y has failed 

and node X has taken over the key range 

R=[lower, upper). In order to recover, X needs to 

obtain all service component data in range R from the 

peerset of the range. This task is slightly more complex 

that it might seem since (a) X has no knowledge of 

what extant keys lie in this range; and (b), the replica 

ranges of R will, with high probability, be split 

between multiple replica nodes for each of the regions 

{ [lower+ KS/r, upper+ KS/r), [lower+ 2KS/r, upper+ 

2KS/r)… } as shown in Figure 4 with nodes N1, N2 and 

N3 which all manage replica keys in the range [lower+ 



KS/r, upper+ KS/r). Thus the recovery process is multi-

phased. First a set of the peer servers holding replica 

data is constructed by repeatedly routing to the lowest 

key in each of the replica key ranges and following 

their successor links. Next, each of the peer servers is 

requested to return the set of keys they hold. By 

counting and matching replies, a list of keys may be 

constructed on the node performing the reconstruction. 

This set will contain keys in the range R and from the 

corresponding peer sets of R. Finally, the data 

corresponding to these keys is asynchronously fetched 

from enough replica servers to be safe under BFT 

assumptions. 

Within this algorithm there are many subtleties 

which have been glossed over here for brevity. These 

include: the policy choice of which servers from which 

to fetch data, the exploitation of self-verifying data to 

avoid multiple fetches, the avoidance of fetching more 

data than is required and dealing with transient failures. 

A final complexity is that if the ring is not stable, not 

all the nodes that may be requested for data will 

actually have it. 

 

7. Summary and Conclusions 

The techniques demonstrated in this paper make 

several novel contributions. Primarily we demonstrate 

that a Chord-like P2P system may be used to host 

Byzantine Fault Tolerant services. The techniques 

described are applicable in other KBR systems 

although the specific problems of primary node failure 

are not as critical in other systems, for example, those 

based on Plaxton routing. In many ways, the 

dissociation of the maintenance of replicated service 

state from the underlying KBR mechanism increases 

the applicability of the techniques. Making clients 

aware of the addressing mechanisms used to address 

nodes is a critical element in the establishment of BFT 

mechanisms. The consensus protocol used to support 

the serialization of updates is an optional part of the 

scheme that may be applied when serialization is 

required.  

The algorithms sketched in this paper have all been 

implemented as part of the Autonomic Storage 

Architecture (ASA) project. The state machine 

corresponding to the consensus protocol described in 

Section 5 is dependent on the replication factor used. 

We have therefore applied generative techniques to 

automatically generate state machines for a given 

replication factor. 

 

8. Ongoing work 

The algorithms sketched in this paper are being 

applied in the ASA project which is constructing a 

distributed autonomic file system. In particular, the 

BFT protocols are being applied to the management of 

data structures that maintain mappings from globally 

unique file identifiers to sequences of file versions. We 

also currently investigating programming language 

constructs which present resilient service abstractions 

implemented by the mechanisms described in this 

paper. 
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