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Abstract 

The BaCe0.7Zr0.1Y0.2-xZnxO3- (x = 0.05, 0.10, 0.15, 0.20) has been synthesized by the conventional 

solid state reaction method for application in protonic solid oxide fuel cell. The phase purity and 

lattice parameters of the materials have been studied by the room temperature X-ray diffraction 

(XRD). Scanning electron microscopy (SEM) has been done for check the morphology and grain 

growth of the samples. The chemical and mechanical stabilities have been done using 

thermogravimetric analysis (TGA) in pure CO2 environment and thermomechanical analysis 
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(TMA) in Argon atmosphere. The XRD of the materials show the orthorhombic crystal symmetry 

with Pbnm space group. The SEM images of the pellets show that the samples sintered at 1200
o
C 

are highly dense. The XRD after TGA in CO2 and thermal expansion measurements confirm the 

stability. The particles of the samples are in micrometer ranges and increasing Zn content decreases 

the size. The conductivity measurements have been done in 5% H2 with Ar in dry and wet 

atmospheres. All the materials show high proton conductivity in the intermediate temperature range 

(400-700 
o
C). The maximum proton conductivity was found to be 1.0  10

-2
 S cm

-1
 at 700

o
C in wet 

atmosphere for x = 0.10. From our study, 10 wt % of Zn seems to be optimum at the B-site of the 

perovskite structure. All the properties studied here suggest it can be a promising candidate of 

electrolyte for IT-SOFCs.   

 

Keywords: Perovskite; Proton conductor; Rietveld refinement; Electrolyte; Chemical stability; 

Impedance analysis.   

 

1. Introduction 

Fuel cells have very good impact to resolve the present energy demands in the world. Solid oxide 

fuel cells (SOFCs) operate at intermediate temperature have attracted much interest worldwide 

because of their affordability, prospective long term stability and wide range of applications 

(including accommodation and transports) [1]–[3]. In the modern ages, the proton conducting 

electrolytes get a great enhancement in SOFCs technologies operating in intermediate temperatures. 

For an extensive range of technological applications such as batteries, gas and humidity sensors, 

separators, supercapacitors, fuel cells, hydrogenation or dehydrogenation of hydrocarbon 

electrolysers, there are increasing interests in proton-conducting electrolytes for SOFCs [1]–[7].  

At a temperature below 600°C, doped ceria based materials potentially meet the utmost necessities 

for fuel-cell operation, appears to be the best available electrolyte materials [4], [8]–[9]. Though, 



comprising the protonic conductivity and indeterminate perfunctory of reliability below the fuel-

cell working conditions some significant issues are still remain challenges. The electrolyte operates 

at low temperature show very potential candidate because of their low activation energy (AE) of 

protons conduction. Many perovskite-type oxides show elevated proton conductivity in reducing 

atmosphere [10]–[13] but the compromise between conductivity and chemical stability is the most 

substantial challenges for those type of materials [14]–[16].     

The barium cerates (BaCeO3) based materials exhibit mixed ionic (protons and oxide ions) 

conduction [17], [18] as electrolytes. These materials show good sintering behavior and elevated 

ionic (proton) conductivity [11], [19] however they are unstable under steam and CO2 conditions 

lead to destroying the perovskite structure [20], [21]. On the other hand the zirconates (BaZrO3) do 

not sinter easily, and the maximum conductivities are only found when sintering occurs at or 

approaching 1700 °C [22]. Even after sintering at very high temperatures, the very poor grain-

boundary conductivity of these materials is a main problem; these materials do not provide 

appropriate performance for practical application. Although, the crystal component is difficult to 

resolve in polycrystalline samples, it does seem that this is only improved when heated at very high 

temperatures, above of 1600 °C. This appears to indicate that reaching of the utmost conductivities 

is influenced by some form of phase transformation or segregation or, as suggested by Snijkers et 

al. [23] by a slow kinetic process of water absorption.  

The formation of solid solutions between BaCeO3 and BaZrO3 are comparably easily occurring. It 

is also possible to form a solid solution by replacing a desired fraction of Ce in BaCeO3 with Zr and 

other element that exhibit both sufficient proton conductivity as well as adequate chemical and 

thermal stability over a wider variety of conditions appropriate to fuel cell operation [10], [16], 

[21], [24]–[28]. It was found that doped zirconates gives improved chemical stability but reduced 

protonic conductivity compared to the doped cerates. To accomplish elevated ionic conductivity as 

well as sufficient chemical and thermal stability, the stability of doped barium cerates can be 



improved by doping of Zr at the B-site. But still it is difficult to develop the electrolyte material 

with low sintering temperature and high density which is very essential in SOFCs operation. The 

effect of Ba non-stoichiometry and Cr deposition, poisoning were studied on the Zr, Y co-doped 

BaCeO3 based proton conductors and showed that the Ba non-stoichiometry influenced the 

electrical conductivity, especially with respect to grain boundary resistance and the Cr poisoning 

effect of the electrochemical performance of BZCY electrolyte  [29], [30].  

Despite the fact that the sintering temperature was still very high [31], recently the partial 

substitution of Zr
+4

 cation into Ce
+4

 cation was reported as an electrolyte material and it was found 

the improved chemical stability [32], [33]. It was a great challenge to process electrolyte material at 

low temperature to get desired result such as high conductivity, high density and chemical stability. 

At high temperature sintering with long time heat treatment can be predicted the barium oxide 

evaporation and thereby decrease the conductivity, as has been detected in BaCeO3 [32], . But in 

the solid state synthesis using the barium excess of  10 mol% led to a higher conductivity [34].  

It is found among the perovskite oxides that doped barium cerates exhibit mixed oxide and proton 

ion conductivity [35] upon exposure to stream atmospheres. However, it is difficult to get high 

density of doped barium cerate or zirconate materials at a sintering temperature below 1400 
o
C. 

Getting theoretical density above 90% of the material we need to sinter at high temperature (above 

1400 
o
C) where Ba could evaporate to a certain degree [22], [36]. To decrease the sintering 

temperature of ceramics materials, applying a sintering aid is one of the most effective ways [37]–

[38]. In the previous years, to improve the sinterability of ceramic proton conductors, researchers 

have tried with different additives. The effect of MOx metal oxides (where M = Ti, Fe, Co, Ni, Cu, 

Zn) on the densification behavior found that the addition of small amounts of these metal oxides 

could lower the sintering temperature by 150-250 
o
C [38]. Further studies showed that the Cu and 

Zn containing materials have significantly higher conductivity than the others in both moistened air 

and humidified hydrogen atmospheres. However, adding of CuO led to the formation of a 



Ba2YCu3Ox impurity phase [39]. On the other hand, under a reduced atmosphere the decrease of 

CuO to metallic copper is a large anxiety in practical fuel cell applications. Therefore, as a sintering 

aid ZnO in doped BaCeO3-BaZrO3, is the most encouraging metallic oxide. Formerly, the sintering 

behavior of proton conductors with ZnO as a sintering aid was investigated by many researchers 

[38], [39]–[43]. Most of those researchers usually examined the sintering behavior of thick pellets 

[38], [39], [41]–[43] but applying such electrolytes in real fuel cell fabrication was rare. 

In order to solve the density and high sintering temperature issues, Zn was introduced into Y and Zr 

co-doped BaCeO3 [39]–[41]. In 2005, Balibo and Haile first reported that ZnO is an excellent 

sintering aid for yttrium-doped BaZrO3, lowering the densification temperature from 1700 
o
C to 

1300 
o
C [39]. In 2006, Tao and Irvine found that the introduction of small amount of Zn

2+
 

substituted for Y
3+

 at B site into the perovskite structure allows a reduction in high sintering 

temperatures and a notable progress in the stability, relative density and conductivity [41]. 

Slodczyk and Sharp showed that Zn doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) 

has been offering the benefits of both stability and elevated proton conductivity [18] as potential 

high performance proton conductor. Our group reported [11] by co-doping of Zr, Sc and Zn in the 

lattice displayed the stable proton-conducting electrolyte BaCe0.5Zr0.35Sc0.1Zn0.05O3-δ, sintered at 

lower temperature which was dense and showed the  enhanced chemical stability. Iwahara reported 

that these oxides also exhibit mixed proton and oxide ion conductivity upon exposure to humid 

atmosphere [20]. Proton conductivity can be significantly improved by doping various rare earth 

ions such as Y, Yb, Eu, Gd, Nd, etc. or using Sr [14], [21-26], [44-46] . Recently, we have proved 

that Zn doped Barium Cerium Zirconium Yttrium Oxide (BCZYZn) offers high proton 

conductivity and high stability as being electrolyte for proton conducting SOFCs [47]. As the 

physical and electrochemical property of materials depends on the composition, we worked on 

other compositions with Zn-doping.  



In this report, BaCe0.7Zr0.1Y0.2-xZnxO3- (x = 0.05, 0.10, 0.15 and 0.20), a series of new 

compositions were prepared; where zirconium, yttrium and zinc were substituted with cerium in B 

site at different percentages. The single phase compositions were prepared at a lower temperature 

than other similar materials reported in the literatures and their structural, thermal and 

electrochemical properties were investigated. The oxygen vacancies facilitates the proton 

conductivity, therefore, by acceptor doping, i.e., doping by lower valance cations at the B-site, i.e. 

yttrium and zinc, these vacancies can be significantly increased.   

Different synthesis processes were followed to develop different elements dopants in BaCeO3 

reports [48], [49] and another report [50] showed the influence of ZnO addition on the properties of 

high temperature proton conductor Ba1.03Ce0.5Zr0.4Y0.1O3- synthesized via citrate–nitrate method. 

The series of perovskite type compounds, BaCe0.7Zr0.1Y0.2-xZnxO3- were prepared by solid state 

reaction method and this method was adopted because of its simplicity and low cost. Many 

researchers including us have used the solid state reaction method to developed oxide materials for 

IT-SOFCs [17], [51]. In this study we have varied the weight percent of Zn instead of Y to find the 

optimum percentage of Zn doping and the structural, physical and electrochemical properties were 

investigated to find their potential use in IT-SOFCs.  

 

2. Experimental 

2.1 .  Synthesis of the  materials 

The BaCe0.7Zr0.1Y0.2-xZnxO3- samples (x = 0.05, 0.10, 0.15 and 0.20, named as BCZYZ 1, BCZYZ 

2, BCZYZ 3 and BCZYZ 4, respectively) were prepared by  the conventional solid state reaction 

method. The highest sintering temperature was done at 1200 °C in air for 12 hours inside a muffle 

furnace. The powder chemicals of BaCO3, CeO2, ZrO2, Y2O3 and ZnO (purity were stated as more 

than 99.95%) as initial ingredients were used in exact stoichiometric amounts, supplied from the 



company Sigma Aldrich. The ingredients were preheated at 200 
o
C for 2 hours and quickly after 

that weighed individually to avoid re-carbonation, using a precise digital micro balance and then 

thoroughly mixed in an agate mortar for one hour of each with small amount of ethanol. The 

samples were then milled intimately using a ball-mill machine for about 4 hours of each with 

suitable quantity of deionized water and then heated on a magnetic heater until dry. The samples 

were then grinded and heated inside a muffle furnace at 900 °C for 12 hours with heating and 

cooling rate of 5 °C/min for calcination. The calcined samples were reground and remixed in a 

mortar pestle for one hour of each and then pellets of 13 mm dia (about 2 gm/each) were pressed 

under the hydraulic press with 3-4 ton pressure and heated at 1050 
o
C for 10 hours. The XRD scans 

were done on the samples to check the reaction and phase purity after heated at 1050 
o
C. The 

grinding and pelleting of the samples were repeated again and finally sintered at 1200 °C for 12 

hours inside the furnace in air atmosphere with the same heating and cooling rate (5 °C/min).   

2.2 .  Characterizations of the materials 

The D8 Advanced Bruker XRD system was used for X-ray diffraction experiments on the samples 

using with CuKα1 radiation (wavelength, λ = 1.5406 Å) in angular range of 2θ = 20
o
 to 80

o 
with a 

step size of 0.02
o
 at room temperature. For indexing the samples, the TREOR90 [52] and Checkcell 

[53] programs were used. For the Rietveld refinement of the XRD data, XRD were done for the 

angular range of 2θ = 10
o
 to 90

o
 with step size of 0.01 and the FullProf [54] software was used for 

this refinement. 

For microstructural studies, the powders were pressed into pellets by uniaxial press, sintered and 

investigated under the SEM instruments of JEOL 5600 and JSM-7610F. The Horiba Particle Size 

Distribution Analyzer LA-920 and Horiba Reservoir Unit LY-201 in wet mode were used to 

measure the size of the particles and their distribution in the materials.   

The ionic conductivities of the samples were measured using a Solartron impedance and frequency 

response analyzer. For the measurements of EIS of the materials, the pellets of BCZYZ were well 



sintered and polished and then the surfaces of the pellets were made conducting by dispersed with 

platinum (Pt) ions in sputtering device of Quorom Q150RS before painting with Pt paste (as current 

collector) of about 5.2 mm in the central part of the surfaces on both sides of each pellet. The 

diameter of each pellet was around 13 mm and heated at 1000 
o
C for 40 min after the Pt painting. 

An amplitude of 50 mA was applied and the impedance were measured from 200 to 1000 
o
C with 

the interval of 50 
o
C, with the heating rate of 3 

o
C/min in 5% H2 (with 95% Ar) at dry and  wet 

atmospheres in the frequency range of 1 MHz–10mHz. The 5% H2 gas was passed through two 

beds of P2O5 desiccant before entering the conductivity cell and is called the „dry H2‟. The wet H2 

atmosphere was prepared by flowing 5% H2/Ar gas through water at room temperature (22 
o
C). To 

ensure the equilibrium before spectra was recorded, sufficient time was allocated at each 

temperature for each atmosphere. The least squares refinement program Z-View (Scribner 

Associates Inc.) was used to fit the obtained impedance data. To represent the electrical response of 

the samples the brick-layer model was employed. Each arc from the experimental spectroscopy 

data was analyzed by a parallel arrangement of a resistance (R), an inductance (I) and a constant-

phase element (CPE). The resistance could not be removed reliably at temperature below 600
o
 C 

due to high impedance. No correction for sample porosity was applied for the conductivity 

measurements.  

Thermogravimetric analysis (TGA) was performed to study the chemical stability of the materials. 

The TGA data were collected for the powder samples in pure CO2 environment with a heating rate 

of 5 °C/min from 30 to 1000 °C. The samples were kept isothermally for 30 min at the final 

temperature and then cooled down to 50 °C at the same rate with the CO2 flow rate of 50 ml/min 

for both the carrier and protection. The XRD scans were done on the TGA samples to check any 

phase change after the TGA experiments. The thermal expansion coefficients of the materials were 

investigated by using temperature programmed SETARAM Instrumentation-SETSYS Evolution 

TMA S60 under the argon gas environment.  



3. Results and discussion 

3.1 . The phase analysis 

Fig. 1 shows the Rietveld refinement of the room temperature XRD patterns of BCZYZ samples 

after sintered at 1200 
o
C. The X-ray diffraction patterns confirm the single phase perovskite 

structure for all the four samples after Rietveld analysis and the peaks positions are matching with 

the BCZYZ in the literature [47].  

        

Fig. 1. Rietveld refinement patterns of XRD data of as-prepared BaCe0.7Zr0.1Y0.1Zn0.1O3- (BCZYZ 

2) at room temperature. The XRD patterns for all the four samples are inserted in the top right and 

schematic 3D ball and stick diagram of BCZYZ 2 is inserted in the bottom left. 

 

All samples exhibit the orthorhombic symmetry with the Pbnm space group. For creating the 

diffraction outlines in the data refinement process this space group has finally been used after 

vindicated with several additional crystals symmetries and space groups.      



In Table 1, the refinement parameters are listed. It is found in the Rietveld refinements results that 

the cell parameters of the crystal decrease with the increasing of zinc content which is due to the 

doping of smaller ionic radius of Zn (radius of Zn
2+

 = 0.74 Å, coordination number (CN) = 6) than 

yttrium (radius of Y
3+ 

= 0.90 Å, CN = 6).   

 

Table 1. Cell parameters, atomic positions, oxygen occupancy, R-factors and densities of 

BCZYZ from the Rietveld analysis of the XRD data.  

Quantity Results 

Unit cell parameters (Å) BCZYZ 1: a = 6.0981(9), b = 6.102(7), c = 8.666(3) and α = β = γ = 90
o
 

BCZYZ 2: a = 5.9656(4), b = 6.058(5), c = 8.606(6) and α = β = γ = 90
o
 

BCZYZ 3: a = 5.9018(7), b = 5.992(9), c = 8.547(4) and α = β = γ = 90
o
 

BCZYZ 4: a = 5.8543(6), b = 5.948(2), c = 8.504(5) and α = β = γ = 90
o
 

Space group Pbnm 

Atomic fractional 

coordinates (BCZYZ 2) 

Ba (0.511,0.0120,0.250); Ce/Zr/Y/Zn (0,0,0); O1 (0.155,0.156,0.250) and O2 

(0.582,0.081,0.0004) 

Oxygen occupancy 97  98%  

R-factors (%) BCZYZ 1: Rp: 8.40, Rwp: 11.11, Rexp: 8.64, 
2
:  2.45 

BCZYZ 2: Rp: 10.62, Rwp: 8.43, Rexp: 9.77, 
2
:  2.33 

BCZYZ 3: Rp: 11.40, Rwp: 16.1, Rexp: 7.64, 
2
:  4.45 

BCZYZ 4: Rp: 9.28, Rwp: 12.41, Rexp: 9.17, 
2
:  2.03 

Theoretical density (g/cm
3
) BCZYZ 1 = 6.307, BCZYZ 2 = 6.325, BCZYZ 3 =  6.354, BCZYZ 4 = 6.373 

Measured density (g/cm
3
) BCZYZ 1 = 6.103, BCZYZ 2 = 6.165, BCZYZ 3 =  6.253, BCZYZ 4 = 6.318 

Relative density (%) BCZYZ 1 =  96.76, BCZYZ 2 =  97.47, BCZYZ 3 =  98.41, BCZYZ 4 =  99.14 

 

The theoretical densities from the Rietveld refinement of BCZYZ 1  BCZYZ 4 were measured to 

be 6.307 g/cm
3
, 6.325 g/cm

3
, 6.354 g/cm

3 
and 6.373 g/cm

3
,
 
respectively and the empirical density 

measured by the Archimedes‟ principle were 6.103 g/cm
3
, 6.165 g/cm

3
, 6.253 g/cm

3 
and 6.318 

 

g/cm
3
, respectively. The percentage of relative density of BCZYZ samples were 96.76% to 99.14%; 



and the relative density increased by increasing the Zn concentration. These relative densities are 

higher than that of the samples BCZYZ in the literature [47]. It was found that increasing in Zn 

content reduce the sintering temperature but increase the density of the materials.     

3.2. SEM analysis 

Fig. 2 (a) to (d) shows the SEM images of BCZYZ 1 to BCZYZ 4, respectively and the SEM 

morphologies of the reporting samples show highly dense features. No pores and cracks were found 

in the images which were sintered at 1200 
o
C.  The surface of the sample BCZYZ 2 (x = 0.10) is 

very smoother and free of cracks. The samples are found highly dense which show non porous 

density features, and at all the investigated samples show very compact in natures which is one of 

the main requirements of electrolyte materials.  

 

 



Fig. 2. SEM micrographs of as prepared (a) BCZYZ 1, (b) BCZYZ 2, (c) BCZYZ 3 and (d) 

BCZYZ 4; respectively.  

 

As shown in images of 2 (a-d), it is observed that the reporting BCZYZ samples show the zinc 

replacement make the materials highly dense and the density of the materials increases with 

increasing the Zn. In the SEM morphology, the bigger grain offers less overall grain boundary 

resistance and was found that Zn can be added to the structure by doping or can be used as sintering 

additives [43]. In this reporting composition, Zn has lower melting temperature (419 
o
C) than Ba 

(727 
o
C), Ce (795 

o
C), Zr (1855 

o
C) and Y (1526 

o
C) which facilitates to decrease the sintering 

temperature of pure phase formation. For ionic conduction, the large grain size offers less grain 

boundary resistance that is quite good and Pergolesi et al. prepared grain boundary free materials 

too with high proton conduction [55]. It can be perceived that increasing the amount of zinc instead 

of yttrium leads to the rising the relative densities. 

Li et al. showed the micrographs of the fracture surfaces of BCZYZ pellets after sintering at 1320 

o
C [56] which showed high density without obvious pores and cracks. In our study, we have 

observed similar density at 1200 
o
C without pores and cracks. The reported grain sizes of 

BaZr0.1Ce0.7Y0.1M0.1O3-δ (M = Fe, Ni, Co and Yb) were quite good but were sintered at 1250 °C for 

24 h, 1350 °C for 24 h and 1550 °C for 12 h, respectively, [57]; are higher than our sintering 

temperature (1200 
o
C). Bi et al. showed the grain sizes of 2–8 μm for BaCe0.5Zr0.3Y0.2O3−δ which 

was sintered at 1600 °C for 8 h [58]. The observed grain sizes for BZCY and BZCYYb (5 μm and 3 

μm after heating at 1400 °C for 6 h, respectively) [32], [59], [60], of BaZr0.7Pr0.1Y0.2O3- (BZPY) 

(reported 1.7 μm, sintered at 1600 °C for 8 h), BZCYYb (1.0 μm,  sintered at 1400 °C for 5 h) [60], 

[61] or, BCZYZ (about 1 μm, sintered at 1400
o
 C for 22 h) [47] were very good too; but the 

sintering temperatures were higher than our reporting temperature. It is found in our reporting 



compositions that the doping of zinc is helpful not only for good densification but also for lowering 

the sintering temperature.  

Table 2 shows the elemental distribution from energy dispersive X-ray analysis (EDX) of BCZYZ 

materials which are very close to the calculated value from the chemical formula (%F).  

  

Table 2. Elemental distribution of BCZYZ 1 and BCZYZ 3 by formula and EDX analysis. 

Sample 

 

 

BCZYZ 1 BCZYZ 3 

Formula EDX Formula EDX 

Element 

Symbol  

Weight 

 % 

Atomic 

 % 

Weight  

% 

Atomic 

 % 

Weight 

% 

Atomic 

% 

Weight % Atomic 

% 

Ba 52.59 50.0 51.95 49.68 53.07 50.0 52.87 50.12 

Ce 37.56 35.0 37.85 35.14 37.90 35.0 37.96 34.76 

Zr 3.49 5.0 3.63 5.09 3.53 5.0 3.59 5.07 

Y 5.11 7.5 5.19 7.56 1.72 2.5 1.67 2.52 

Zn 1.25 2.5 1.38 2.53 3.79 7.5 3.91 7.53 

 

It is observed from the EDX analysis that the reporting BCZYZ materials have close ratio of 

elements to the calculated values with the chemical formula; i.e., the elemental distribution of 

BCZYZ by formula and EDX analysis show the same values (both in weight and atomic 

compositions). Any impurity phase (unreacted materials of ingredients chemicals) was not 

observed from EDX studies or it must be below the detection limit of our instrument. As no extra 

phase were found in EDX analysis, it can be mentioned that there are no unreacted particles in the 

materials after solid state reaction sintered at 1200 
o
C which was confirmed from the Rietveld 

refinement of the XRD data (section 3.1, the phase analysis). 

3.3. Distribution of particle size  



The particle size distribution of BCZYZ was investigated in powder form after final sintering at 

1200 
o
C. To obtain proper distribution of particles each composition of the powders were sonicated 

for 3 h at 70 
o
C.  

 

 

Fig. 3. The particle size distribution on quantity and diameter of the BCZYZ samples over the 

metal oxides. 

 

In Fig. 3 it is found that the sizes of the particles decrease with Zn concentration indicating that the 

particle size of the material depends on the diameter of the particle as well as unit cell volume.  The 

diameter range of BCZYZ particles remain within 0  2.3 m. The metallic oxide particles addition 

not only raises the diffusion of water into the growing material due to its advanced hydrophilic 

property but also affects the interaction between the material particles and solvent molecules by the 

hindrance effect of the particles. 

3.4. Electrochemical impedance spectroscopy (EIS)  

Figures 4 (a) to (d) shows the EIS studies of the materials BCZYZ 3 and BCZYZ 4 in the 

temperature range 600-1000 ºC in 5% H2 with Ar in dry and wet atmospheres, respectively. The 



equivalent circuits of the fitted impedance data were attained for BCZYZ oxides within the 

temperature range of 600 °C to 1000 °C and are inserted in the figures. The impedance curves of 

the BCZYZ materials are analyzed by the form of two or one semicircle and those semicircles 

indicate the polarization resistance of the materials as grain boundaries for all the recorded 

temperature range of 200-1000 
o
C in 5% H2/Ar at dry and wet conditions. The range of 10

−2
–10

−3
 S 

cm
−1

 at 600 °C temperature, an ionic conductivity is considered suitable for practical applications 

of proton conducting oxides. In order to disseminate between different responses (grain/grain 

boundary), ac impedance technique was employed to measure the ionic conductivities of BCZYZ 

in dry and wet H2 atmospheres, respectively.        

 



 

 



           

Fig. 4. Nyquist plots of (a-b) BCZYZ 3 and (c-d) BCZYZ 4, in 5% H2 with Ar in dry and wet 

atmospheres, respectively at 600°C to 1000°C temperatures; right hand side figures are the 

magnified views for the specific temperatures. The respective equivalent circuits are shown in the 

insert in the figures.   

 

The Nyquist plots of BCZYZ 3 and BCZYZ 4 is dry and wet 5% H2 show different patterns 

especially in the low frequency region. In case of BCZYZ 3, we observed Warburg impedance 

which is a straight line with a slope of 45
o
 at lower frequencies. Warburg impedance arises from the 

mass-transfer diffusion process. The most significant compositional difference between BCZYZ 3 

and BCZYZ 4 is yttrium (Y); in BCZYZ 3 there is 15% Zn (x = 0.15) at the B-site of the perovskite 

structure whereas in BCZYZ 4 there is 20% Zn (x = 0.20), but not any yttrium. The surface and 

elemental properties of these two compositions are different which makes different types of 

diffusion mechanism.  

The Arrhenius plots of total conductivity for all the four samples are shown in Fig. 5 (a-b) under 

5% H2 in dry and wet atmospheres, respectively. The EIS measurements of BCZYZ were done at 

200-1000 
o
C at an interval of 50 

o
C. The conductivity of any material can be observed by 

impedance which is equivalent to resistivity i.e., for the electrolyte material small impedance value 



is preferred to achieve high conductivity. Due to high impedance of our studied materials of 

BCZYZ at low temperature, e.g. T  600 
o
C the resistance could not be extracted reliably; 

therefore, only total conductivity at the temperature of 600 
o
C and higher were calculated and 

displayed in the Fig. 5. It was problematic to separate the bulk from the grain boundary 

conductivities below the temperature of 600 
o
C, although typically 3 RC (resistance in combination 

with parallel to CPE) equivalent circuits in series (shown in Fig. 4 insert) is used, especially in 

temperature region below 200 
o
C an additional RC element gives better fit for the complex 

electrode responses. We have also perceived a significant better fit with addition of inductance, 

especially in higher temperature ranges (above 600 
o
C) contributions. For BCZYZ samples the total 

conductivities rise with the rise of temperature mutually in dry and wet conditions. The valence 

state of Zn is +2. Doping with cations with valence state +4 and +3, we can make more oxygen 

vacancies. In oxide proton conductors, oxygen vacancies play an important role to enhance 

conductivity. For the compositions of BCZYZ we also found high conductivity even with dry H2 

because of proton conduction. In proton conductors, ionic conductivity is done by proton (H
+
). So, 

even for the dry H2 protonic conductivity is good. 

The conductivities in wet condition are greater than dry condition which confirms the proton 

conductivity in the sample at the intermediate temperature (600-700 
o
C). At the temperatures above 

800 
o
C (higher temperature), the conductivities are higher which may be due to the oxygen plus 

protonic effect which are not the requirement of intermediate temperature electrolyte materials. In 

wet hydrogen atmospheres the total conductivities of BCZYZ 2 are about 8.6  10
-3 

S cm
-1

 and 1.0 

 10
-2 

S cm
-1

 at 600 
o
C and 700 

o
C, respectively which are very good values in comparison to other 

studied proton conductors until now. The conductivities at intermediate temperature of 600 to 700 

o
C, for samples BCZYZ 1, BCZYZ 3 and BCZYZ 4 are also higher and the minimum value found 

to be 3.84  10
-3 

for BCZYZ 4 in the dry and wet H2 atmospheres. It is seen from the EIS curves 

that BCZYZ 1 to BCZYZ 3 show different impedance patterns in dry H2 and wet H2 atmospheres, 



but not for the BCZYZ 4. This is due to the optimum doping percentage of Zn (the optimum doping 

of Zn is around 10 wt %) in BaCeO3-BaZrO3 based materials.  

In Fig. 5 (a) and (b), the Arrhenius plots of the total ionic conductivity of the materials are shown in 

dry and wet hydrogen atmospheres in the temperature range of 600-1000 
o
C. It is found that with 

the increasing temperature cause thermally vibrated particles or the atoms and passage the ions 

easily as the conductivity increases. About 3% of water molecule flow with H2 in wet hydrogen 

atmosphere that enhance the conductivity by ion transport mechanism. This atmosphere increases 

the conductivity compared to dry atmosphere.   

              (a) 

 

              (b) 

 



Fig. 5. Arrhenius plots of the total conductivity measured in 5% H2/Ar (a) dry and (b) wet 

atmospheres, in the temperature range of 600 °C – 1000 °C. 

 

Table 3 shows the conductivity and activation energy for the compositions of BCZYZ. As in 5% 

wet H2 the conductivity is higher than that of dry, activation energy of 5% wet H2 material is lesser 

than that of dry H2 owing to the atoms in composites accomplish their ability to conduct ion 

demanding fewer activation energy to support. The activation energy of these BCZYZ are lower 

than BaCe0.8Y0.2O3- (AE = 0.39 eV) and BaZr0.8Y0.2O3- (AE = 0.61 eV) [19]. 

 

Table 3. List of conductivity and activation energy of BCZYZ under dry and wet H2 environment. 

Material 

Composition 

Conductivity (S cm
-1

) Activation energy (eV) 

600 
o
C 700 

o
C    600 

o
C       700 

o
C 

Dry H2 Wet 5% H2 Dry H2 Wet 5% H2 Dry H2 Wet 5% H2 

BCZYZ 1 6.72  10
-3 

8.55  10
-3

 7.55  10
-3

 9.58  10
-3

 0.3867 0.3346 

BCZYZ 2 6.67  10
-3

 8.59  10
-3

 7.73  10
-3

 9.97  10
-3

 0.3849 0.3311 

BCZYZ 3 4.03  10
-3 

5.69  10
-3

 5.65  10
-3

 6.18  10
-3

 0.4136 0.3427 

BCZYZ 4 3.84  10
-3

 4.24  10
-3

 4.14  10
-3

 4.77  10
-3

 0.4324 0.3948 

 

The protons in proton conducting perovskites, at elevated temperatures are hypothetically follow 

the Grotthuss mechanism [62] and passage in the subsequent steps: i) a proton in connections with 

a permanent oxygen atom; ii) under the effect of the adjacent oxygen atoms the proton oxygen 

bond reorients; and finally iii) the proton starts to vibrate among the two oxygen atoms and 

ultimately migrates to the adjacent oxygen [63], [64]. The binding energy among OH˚ and MB 

fluctuates with the dopant. Results show from the simulation that the binding energies of OH˚  

MB (hydroxyl  dopant pairs at the adjacent sites) for Y, Yb and In were -0.26, -0.35 and -0.58 eV, 



respectively which has worthy settlement with the experimental effects [65]. A higher negative 

value of the binding energies will be observed for a further stable state of hydroxyl  dopant pair.   

The conductivity is higher in wet H2 than in dry indicating proton conduction. In general, the well-

sintered samples of BCZYZ exhibit much higher conductivity than the less dense materials under 

the same conditions. The conductivity of the BaZrO3 based proton conductor stalwartly depends 

upon materials synthesis and the determining environments. High total conductivity is preferred for 

the electrolyte of any real electrochemical cell. From this point of view, BCZYZ 2 displays the 

utmost total proton conductivity amongst the materials studied here.  

The conductivity of the well-sintered sample BCZYZ is much higher and at low temperature, the 

conduction of proton is limited by the grain boundary rather than the bulk. At high temperature in 

the presence of steam, both the bulk and grain boundary conductivities are enhanced. The at high 

temperature grain boundary resistance is insignificant for the well-sintered sample. The total 

conductivity of BCZYZ reaches much higher than 1.0  10
-3

 S cm
-1

 at and above 600 
o
C. 

According to our results listed in Table 3, the conductivities in wet 5% H2 is higher than dry 5% H2 

at 600 and 700 
o
C for all samples. Dry H2 is not 100% dried and H2 itself can convert to proton to 

conduct. In every literatures measuring conductivity in dry H2 or Ar have some conductivity but 

less than wet condition [15]. The optimum highest temperature for protonic conduction is 700 
o
C. 

There can be some protonic conduction at 1000 
o
C which must be negligible. 

After the conductivity analysis it can be observed that Zn doping is very significant for 

densification and lowering the sintering temperature, as well as grain growth but it is very 

important to know the optimum doping percentage. From this study we have found that the 

optimum doping is 10 wt %; after this range for our reporting compositions the grain size and 

densification become higher but conductivity becomes lesser.  

3.5. Thermomechanical analysis 



The thermomechanical properties of BaCe0.7Zr0.1Y0.2-xZnxO3- (x = 0.05, 0.10, 0.15 and 0.20) is 

shown in Fig. 6 and is found that the composition with x = 0.20 has the lowest thermal expansion 

compared to other samples. Fig. 6 reveals that the thermal expansion coefficient (TEC) decreased 

with the increase of zinc content but increase with the temperature. Inversely, decreasing of yttrium 

content in BCZYZ also show the decrease in TEC.   

 

Fig. 6. Thermal expansion curve of BaCe0.7Zr0.1Y0.2-xZnxO3- (x = 0.05, 0.10, 0.15 and 0.20).  

 

The thermomechanical properties were studied on all compositions of BCZYZ in argon 

environment. The results show the TECs values of 9.23  10
-6

/
o
C, 8.81  10

-6
/
o
C, 8.74  10

-6
/
o
C 

and 8.68  10
-6

/
o
C, respectively for x = 0.05, 0.10, 0.15 and 0.20, respectively at 700 

o
C. Above 

700 
o
C, the rate of variation of TEC is different due to the crossing the range of proton conduction. 

The conduction mechanism can differ from proton to oxide ion which might be related to the small 

change in thermal expansion at high temperature (> 750 
o
C). 

3.6. Chemical stability 

The cerium based proton conducting electrolyte materials have some challenges in its stability in 

CO2 containing atmosphere [66] because of BaCeO3 reacts with CO2 and forms BaCO3 and CeO2. 



At 1141 °C, this chemical reaction has been reported to occur [11], but our interests for the 

reporting materials to be applied in intermediate temperature, i.e., below the temperature of 1000 

o
C, so all the samples of BCZYZ for comparison were heated up to 1000 °C in pure CO2 at 5 

°C/min from 30 to 1000 °C, held isothermally for 30 min, and then cooled down to 50 °C at the 

same rate, with the flow rate of 50 ml/min for both the carrier and protection gas.  The heat 

treatment in CO2 up 1200 °C or a bit higher has already been reported by numerous researchers in 

the literatures [67], [68].   

Fig. 7 (a) shows the thermogravimetric analysis (TGA) curves for BCZYZ samples. The TGA 

experiment were done for measuring the sample chemical stability and, it was seen that the mass of 

BCZYZ 1 to BCZYZ 4 changed by 0.59%, 1.08%, 1.21% and 2.19%, respectively. Before the 

XRD we have put the TGA samples in CO2 atmosphere for duration of 10 days. 

The samples of higher Zn content (BCZYZ 4) was found relatively more stable than the less Zn 

content and no peaks were observed in XRD in any of the sample after the TGA experiments (as 

shown in Fig. 7 (b)) i.e., the original structures were unaffected by the experiment in CO2 

atmosphere.  

 

 

 

 

 

 

 

                     

 

 



       (a) 

 

       (b) 

 
 

Fig. 7. (a) TGA curves for BCZYZ (names of the samples are inserted to the top right) with the 

flowing of pure CO2 gas at a rate of 50 ml/min for both the carrier and protection; (b) the XRD 

patterns of BCZYZ 2 before and after the TGA experiment. No extra or impurity peaks were 

observed after the TGA.   



There is a small weight gain of  0.6% after stability test as can be seen from curve of Fig. 7 (a) for 

the sample BCZYZ 4 which is much smaller than weight gain of 1.79% for BZ3C5YYb and 2.19% 

for the sample of BCZYZ 1 which is also smaller than that of BZ3C5YYb. The weight gain of 

BCZYZ 4 (0.59%) in comparison to the weight gain for a composition with higher Zr content of 70 

mol% at the B site i.e., BaCe0.2Zr0.7Y0.1O3-δ,  which was about 0.3–0.4%, when heated up to 1250 

°C with a heating/cooling rate of 2 °C/min in pure CO2 [69]. For composition with 30 mol% of Zr 

at the B site i.e., BaC0.6Zr0.3Y0.1O3-δ, the increase in weight was about 2% under the same 

atmospheres up to 1250 °C in pure CO2 as for 70 mol % of zirconia. In case of BZCYYb, when 

heated to 1200 °C in pure CO2 with a heating/cooling rate of 10 °C/min, the increase in weight was 

7.7%. Similarly, for the material of BaCe0.5Zr0.3Y0.2O3-δ, when heated up to 1200 °C with a 

heating/cooling rate of 5 °C/min, the weight gain was more than 9% [41]. TGA curves of our 

materials showed weight increase from 0.59% to 2.19% during the cooling cycle in CO2. Actually 

the small increase in weight does not mean the samples are unstable. So we put the TGA samples in 

CO2 atmosphere for duration of 10 days and repeated the XRD to check the stability. In XRD 

patterns no extra or impurity peak was found after TGA and hence the materials are stable. For 

unstable case, materials will decompose to BaCO3 in CO2 atmosphere and XRD peaks would differ 

(before and after TGA). Actually the smaller weight gain is better but the weight gains in these 

samples are within the limit. 

Since BCZYZ samples have no extra peak, it is highly stable. Below the carbonation, say up to 800 

°C, heating a proton conducting electrolyte material in CO2 is not a good representative for its 

chemical stability testing and that's why several recognized proton conducting electrolyte materials 

like BZCY and BZCYYb were primarily reported to be stable in CO2, but later when tested at 

higher temperatures were found to be unstable [12], [56], [60]. Hence it is vital to test chemical 

stability in CO2 up to 1000 °C for proton conductors.  

 



Conclusions 

The X-ray diffraction patterns of BCZYZ confirm that the samples are in single phase 

orthorhombic perovskite structure with Pbnm space group and high relative density and its sintering 

temperature is lower (1200 
o
C). The SEM images show that the materials are highly dense and 

having larger morphology. The TGA and TMA analyses show that the samples are stable in nature, 

indicate that the samples prepared in the solid state reaction successfully completed at this 

temperature. The particle size distribution shows that the increase in Zn content decreases the size 

of the particle. The Zn addition has a very significant effect for improving the densification, grain 

morphology and lowering the sintering temperature; the optimum percentage of doping was 10 wt 

% and higher addition of Zn decreases the conductivity. In wet hydrogen atmosphere the total 

conductivity of BCZYZ 2 is 8.6  10
-3 

S cm
-1

 at 600 
o
C which is good for applications in IT-

SOFCs. It might be used as promising proton-conducting electrolyte for other electrochemical 

devices as well.  
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