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Abstract—This paper experimentally evaluates the effects of
applying autonomic management to the scheduling of main-
tenance operations in a deployed Chord network, for various
membership churn and workload patterns. Two versions of an
autonomic management policy were compared with a static
configuration. The autonomic policies varied with respect to the
aggressiveness with which they responded to peer access error
rates and to wasted maintenance operations. In most experi-
ments, significant improvements due to autonomic management
were observed in the performance of routing operations and
the quantity of data transmitted between network members. Of
the autonomic policies, the more aggressive version gave slightly
better results.

I. INTRODUCTION

Various peer-to-peer (P2P) overlay networks, such as
Tapestry [1], CAN [2], Pastry [3] and Chord [4], support the
key-based routing (KBR) abstraction [5]. This allows any given
key value to be mapped to a live node in the network, in the
presence of dynamic change in the network membership. Each
node maintains knowledge of the addresses of some subset of
network nodes, its peer-set. These links may be categorized
as follows:

1) those that are needed for correct routing
2) those that are useful for efficient routing
3) those that may be needed to repair network topology
For example, a node’s peer-set in Chord includes its suc-

cessor (category 1 and category 3), predecessor (category 3),
successor list (category 3) and fingers (category 2).

Links in categories 1 and 2 are used during routing to locate
the target node for a given key in a series of hops. As network
membership changes, various links may come to refer to failed
nodes, or they may become incorrect with respect to correct
routing (category 1), efficient routing (category 2), or possible
later overlay repair needs (category 3).

To maintain routing correctness and efficiency in the pres-
ence of membership churn, errors must be detected and recti-
fied. A node may discover an error during a routing operation,
be notified of it by another node, or discover it through a
periodic checking process. Once an error is discovered, a new
target is established and the referring link updated.

Here we focus on the scheduling of periodic checking pro-
cesses, that is, controlling the rate at which checks are made.
Each check requires one or more (attempted) inter-node inter-
actions. The optimal scheduling of such maintenance opera-

tions depends on dynamic factors, including the workload—
the pattern of routing calls applied to the network—and the
churn in network membership. Optimality of scheduling may
be considered with respect to various properties of the overlay
network, including user-perceived routing performance, and
resource consumption.

Resource consumption can be optimized in isolation by
setting the frequency of maintenance operations to zero. With
respect to performance, the ideal rate depends on the current
workload and churn rate. If the maintenance rate is too high
then performance suffers due to wasted CPU and network
resource; if it is too low then performance is also reduced,
due to higher routing cost. This increase in routing cost
arises due to communication errors resulting from attempts
to follow broken links, leading to retries, and due to the use
of functioning but non-optimal links.

The maintenance rate giving the best trade-off between re-
source consumption and performance depends on the prevail-
ing conditions. For example, if no routing calls are made, or
the network membership is completely static, then the optimal
behavior is to perform no maintenance, since it represents pure
overhead. Conversely, under a heavy or varying workload,
or rapid network churn, it may be beneficial for nodes to
expend significant maintenance effort in order to sustain high
performance for routing operations.

In most P2P protocols, maintenance operations are sched-
uled at a statically configured fixed rate. Even when the
workload and churn remain relatively constant throughout the
lifetime of a network, a statically configured rate is unlikely
to be optimal for that particular combination of workload and
churn. Furthermore, workload and churn may vary dynam-
ically. Even if the statically configured rate happens to be
appropriate for the initial circumstances, it may become less
suitable as conditions vary.

We investigated the use of autonomic management [6]
to control maintenance scheduling in response to dynami-
cally changing conditions. We hypothesized that under non-
changing conditions this would allow the system to converge
on a configuration that was more suitable than any that could
be set a priori. Furthermore, the system would be able to
react to changes in conditions by dynamically adopting more
appropriate configurations.
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We designed a range of scheduling management policies for
Chord, and evaluated them on a small experimental test-bed,
in comparison to a fixed maintenance schedule. We decided to
focus on network usage as the resource consumption measure
most likely to be significantly affected. The effects on elapsed
routing time and bandwidth consumption between peers were
measured for various workloads and churn patterns.

The best autonomic management policy led to an im-
provement in both performance and resource consumption for
75% of the workload/churn combinations tested. For 25% of
combinations the policy led to an improvement in one metric
and worsening in the other; in none of the combinations did
it lead to worsening in both metrics.

The paper is structured as follows: related work is discussed
in section II. The details of our autonomic manager for Chord
are given in section III. Section IV outlines the design of the
experiments, while the experimental results are presented in
section V.

II. RELATED WORK

A. Dynamic Adaptation of Maintenance Scheduling

The most closely related work is based on Pastry [7] and
describes the optimization of resource consumption for a given
acceptable message loss rate. This is a form of performance
metric. Each node dynamically estimates the overall node
failure rate and the size of the overlay, and uses an analytical
model to deduce an appropriate maintenance rate that should
yield the target loss rate. Our approach is simpler in that it
does not require estimation of any global properties, instead
applying simple heuristics based on local observations.

In contrast to our approach, [7] does not take user workload
into account. Furthermore, it imposes a lower bound on
resource consumption, since the maintenance rate is not further
reduced once the acceptable loss rate is achieved, even in
situations where resource consumption could be lowered while
still meeting the target loss rate.

B. Other Approaches to Optimizing Performance and Re-
source Consumption

Binzenhöfer and Leibnitz [8] describe how churn may be
estimated in Chord networks in order to set maintenance rates
appropriately. They do not however perform any adaptation.
Churn is estimated by monitoring changes in a node’s peer-set.
The focus is on limiting the probability of network partition
before the next maintenance operation. This approach does not
take user workload into account; the churn estimator receives
only information gathered during maintenance operations.
Consequently, the algorithm may be slow to react to a sudden
increase in churn occurring during a low-churn period with
low maintenance rates.

[9] proposes modifications to the Kademlia [10] protocol to
propagate information about failed peers and peer-set mem-
bership. This information is propagated at a rate related to
network churn, but the maintenance rate is not controlled
explicitly.

Chord2 [11] aims to reduce maintenance costs by intro-
ducing a two-level structure, with a smaller ring of high
performance super-peers used to manage finger tables. There
is no dynamic control of maintenance intervals.

FS-Chord [12] reduces maintenance work caused by unsta-
ble nodes joining for a short period, by only allowing a node
to become a full member after some fixed interval of reliable
operation. This approach does not, however, enable Chord to
adapt to changes in node behavior after the initial monitoring
period has passed.

In [13] a Chord network model is developed, showing that
increasing the size of the successor list improves stability. This
focuses on network resilience rather than performance. The
paper suggests dynamic adaptation of the successor list length,
but the mechanism is not further specified or evaluated.

[14] suggests “an adaptive mechanism that increases the
stabilization period if the number of known successors shrinks
or if the overlay structure is measured to be more dynamic” for
Chord. Presumably decreasing the stabilization period is in-
tended. No implementation details or experimental evaluation
are given.

In [15] a modified stabilize algorithm that can improve
stability in a Chord network in the presence of high churn
is described. It is suggested that a high maintenance rate is
desirable in networks with high membership churn, and thus
there is a correlation between degree of churn and optimal
maintenance rate. However, the paper does not propose any
dynamic adaptation of the maintenance rate.

In [16] Chord’s maintenance mechanism is analyzed, con-
cluding that the rate is an important configuration factor. The
authors analyze the correlation between maintenance rate and
performance, stress the importance of conservative network
usage, and ask whether an optimum maintenance rate can be
learned.

III. AUTONOMIC MANAGEMENT OF MAINTENANCE
SCHEDULING

A. Overview

We developed an autonomic management mechanism for
dynamically controlling maintenance scheduling in Chord
nodes, in response to conditions experienced. An autonomi-
cally managed system consists of a target system (in this case,
an individual Chord node) to which an autonomic manager
is attached, in order to dynamically control specific system
parameters (in this case, the maintenance rate for that node).

Our manager executes an autonomic control loop [6] which
involves four phases:
• A monitoring phase, during which the manager receives

information about the target system in the form of events.
• An analysis phase, during which events are aggregated

and a representation of the current situation is con-
structed, in the form of abstract metrics.

• A planning phase, during which decisions are made about
how to react to the current situation, driven by policies.

• An execution phase, during which the planned actions are
carried out.



Our manager is intended to detect when maintenance effort
is being wasted and to decrease the current maintenance rate
accordingly. Conversely, it increases the rate in situations when
more vigorous maintenance is appropriate.

The potentially conflicting goals of reducing effort and
increasing performance are managed by two sub-policies.
During the planning phase, each sub-policy makes its own
independent recommendation as to how the current main-
tenance rate should be adjusted. The mean value of these
recommendations is then applied during the execution phase.

The rationale for this structure is that although the sub-
policies will rarely agree, their recommendations will cancel
out in situations where little action is required, whereas in
more extreme situations one will outweigh the other, due to
the magnitude of the recommendations.

During each planning phase, each sub-policy considers
metric values derived from events received during the current
autonomic cycle. These events are based solely on locally
gathered data, thus no additional network traffic is generated
by the autonomic manager.

B. Monitoring

An event is generated whenever:
• a maintenance operation is executed without any effect

on the peer-set
• a failed attempt to access a peer-set element is made,

either during routing or during a maintenance operation

C. Analysis

Two metrics aggregate the events. The Wasted Maintenance
Count (WMC) and Error Count (EC) metrics count the
numbers of each event type during the current autonomic
cycle.
WMC models the amount of effort invested in maintenance

operations without effect. A high value suggests that a lot
of network traffic was unnecessary, since either little churn
occurred, or maintenance was executed frequently enough
to compensate for such changes. Conversely, a small value
implies that the network traffic due to maintenance operations
was effective in correcting errors, and may therefore be
regarded as justifiable.
EC models the accuracy of the peer-set as perceived by

user or maintenance activities attempting to use it. A high
value suggests that a large proportion of the peer-set is not
valid. Conversely, a low value suggests either a high degree
of accuracy in the peer-set, due to frequent maintenance or
low churn, or low user demand due to a light workload.

D. Planning

Each of the sub-policies is driven by one of the metrics. The
sub-policy concerned with reducing effort considers WMC,
while the sub-policy concerned with improving performance
considers EC. The rationale for the former is straightforward;
for the latter, the point is that user-level routing operations
will retry when errors are encountered, thus a high error rate
leads directly to poorer performance.

As with any negative feedback approach, each sub-policy
recommends a change to the current maintenance rate, of a
magnitude related to the difference between the current value
of the relevant metric and some ideal value for that metric.
The further that the metric diverges from the ideal, the more
aggressive the response that is recommended.

Since both metrics count undesirable events, the ideal value
for both metrics is zero. Whenever WMC is non-zero the
sub-policy concerned with reducing effort recommends a re-
duction in the maintenance rate, while whenever EC is non-
zero the sub-policy concerned with improving performance
recommends an increase in the maintenance rate.

For ease of integration with Chord, in practice each sub-
policy recommends a new interval between maintenance op-
erations, rather than a rate. It calculates the proportion P by
which the current interval should be changed. The new interval
is then calculated, for the sub-policy using WMC, as:

new interval = current interval × (1 + P ) (1)

The sub-policy using EC seeks to increase the maintenance
rate, so the new lower interval is calculated as:

new interval = current interval × (1− P ) (2)

In both cases, the proportion of change P lies between zero
and one, and is calculated as:

P = 1− 1
metric−ideal

k + 1
(3)

where metric denotes either WMC or EC as appropriate.
ideal is zero in both cases. k is a dampening factor for
each sub-policy, a positive constant that controls the rate of
change of P with respect to the difference between the metric
value and its ideal value. The higher the value of k, the
lower the resulting proportion of change, and hence the slower
the resulting response by the manager. This is illustrated in
Fig. 1, which shows the proportion of change resulting from
various EC metric values, for a range of k values. The overall
response of the policy is to set the maintenance interval to
the mean of the values recommended by the sub-policies. In
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addition, if any error has been detected during the current
cycle, a maintenance operation is invoked immediately. This is
intended to improve reaction to phase changes when the error
rate increases rapidly. Without this action, errors occurring
during a long maintenance interval (set due to a currently low
error rate) would not be rectified until the end of the interval.1

E. Execution

Once the planning phase is complete, the execution
phase involves invoking a maintenance operation if nec-
essary, and setting the new value for the Chord node’s
maintenance interval. The latter is achieved simply via
a setMaintenanceInterval() interface added to the
Chord node implementation.

IV. EXPERIMENT DESIGN

A. Overview

The effects of the autonomic manager on Chord’s perfor-
mance and network usage were measured in a sequence of
experiments. Each experiment combined a particular:
• workload (a temporal pattern of lookup requests),
• membership churn (a temporal pattern of nodes joining

and leaving the overlay), and
• scheduling policy.
For each experiment, a fixed number of Chord nodes were

deployed in an isolated test-bed, each on a separate physical
machine to avoid competition for CPU and network resources
on individual machines. To test repeatability of results, each
experiment was repeated three times.

B. Workloads

Each workload was specified as a temporal pattern of P2P
routing requests (termed lookup operations). The keys being
looked up were pseudo-randomly generated with a fixed seed
for each experiment.
• A synthetic light-weight workload represented scenarios

in which few lookups were executed. A total of 10
lookups were issued, with 300 seconds of inactivity
between each one.

• A synthetic heavy-weight workload represented scenarios
in which lookups were executed at a high rate. A total of
6,000 lookups were issued, with no delay between each
one.

• A synthetic variable-weight workload represented scenar-
ios involving temporal variation in workload intensity. A
total of 1,000 lookups were issued, in batches of 100
successive lookups followed by 300 seconds of inactivity.

• A file system workload simulated the Chord workload
that might result from running a real world file system
trace on a file system built above Chord.2 The resulting
workload contained 15,000 lookups.

1Note that the length of a maintenance interval may be considerably longer
than the duration of an autonomic cycle.

2This research took place within the context of work using a P2P overlay
as a platform for a distributed file system.

Whereas the synthetic workloads were all sequential, the file
system workload contained a mix of sequential and parallel
lookups, since the lookups required for some file system
operations (such as locating all replicas of a file) can be
performed in parallel.

C. Churn Patterns

Each churn pattern modeled the behavior of a set of nodes,
in terms of a sequence of alternating on-line and off-line
phases for each node.

The first two churn patterns represented uniform behavior
among all nodes, one pattern with a low churn rate and the
other with a high churn rate. The durations of the on-line
and off-line phases were pseudo-randomly generated from
specified normal distributions.

Two other churn patterns represented networks exhibiting
both low and high churn rates. In one, the behavior of any
given node exhibited either low or high churn consistently
throughout the experiment. The final churn pattern involved
a series of phases during which the whole network switched
repeatedly between low and high churn rates.
• In the low churn pattern all nodes exhibited a sequence

of alternating on-line and off-line phases with durations
drawn from the following normal distributions:

– on-line: µ = 10, 000s, σ = 0s
– off-line: µ = 160s, σ = 20s

For each node it was pseudo-randomly decided whether
it started in an on-line or off-line phase. Since the on-
line phases were chosen to be longer than the overall
experiment duration, the only variation between nodes
arose from the initial off-line phase, if present.

• In the high churn pattern all nodes exhibited a sequence
of alternating on-line and off-line phases with durations
drawn from the following normal distributions:

– on-line: µ = 200s, σ = 40s
– off-line: µ = 100s, σ = 20s

• In the locally varying churn pattern 25% of the nodes
exhibited the low churn behavior described above, and
75% of the nodes exhibited high churn behavior.

• In the temporally varying churn pattern the entire net-
work exhibited alternating phases of low churn and
high churn behavior. The duration of each phase was
≈ 1, 000s.

D. Scheduling Policies

The following policies for maintenance scheduling were
used:
• A null policy, policy 0, made no dynamic changes to the

maintenance interval. For fair comparison, this was im-
plemented using the same mechanisms as the autonomic
policies. Thus the policy was invoked in the same way
as the others, incurring the same management overheads.

• A ‘relaxed’ autonomic policy, policy 1, used high damp-
ening factors (8 for WMC and 32 for EC), yielding a
relatively slow response to unsatisfactory situations.



• An ‘aggressive’ autonomic policy, policy 2, used low
dampening factors (1 for both WMC and EC), yielding
a relatively rapid response to unsatisfactory situations.

In all cases the duration of the autonomic cycle was set
at 2s, thus the policies were evaluated every 2s. The initial
default maintenance interval was also set at 2s.

E. Evaluation Criteria

The effectiveness of the various policies was evaluated in
terms of impact on Chord performance as perceived by the
user, and on network traffic generated by Chord. Network
usage was measured simply as the mean outgoing data rate
for all nodes.

The chosen performance metric was expected lookup time,
defined as the mean overall duration of lookup operations,
under the assumption that the caller retries repeatedly on error
until a result is obtained.

Values for this metric were derived from the following
measurements extracted from the experimental logs:
• lookup time tlookup, the mean duration of individual

successful lookup operations
• lookup error time terror, the mean duration of individual

failed lookup operations
• lookup error rate perror, the probability that an individual

lookup operation fails
The expected lookup time comprised the cost of the eventual

successful lookup plus the weighted sum of all possible
sequences of successive failures:

tlookup +

∞∑
i=1

i× terror × pierror (4)

We calculated two different versions of the expected lookup
time (ELT ) and network usage (NU ) metrics. In one version,
a value was calculated for each metric for each successive 5
minute time-window during the course of each experiment.
This allowed us to plot the metric values over time. The
disadvantage of this version was that there were some time-
windows for which no ELT value could be calculated, since
no successful lookup operations were performed during the
time-window.

The other version of the metrics involved calculating a
single value for each metric over the entire course of each
experiment. This gave well-defined values in all cases, at the
cost of no longer allowing any insight into changes over time.

F. Experiment Platform

The experiments were conducted on a local area test-
bed consisting of 16 dedicated hosts each with a 3GHz
Intel R©Pentium R©4 CPU and 1GB of RAM. The hosts were
connected to a dedicated switch and isolated from the rest of
the network. A separate host, the workload-executor, ran the
workload and recorded the performance measurements needed
to derive ELT . Network usage measurements were recorded
locally on each node, and collected after the experiments to
reduce probe effects.

This style of experiment platform was chosen to allow us to
focus on obtaining repeatable results for a realistic small-scale
deployment, this being of immediate interest in the storage
research that led to this work.

V. RESULTS

A. Overview
The experiments comprised all combinations of the four

workloads and four churn patterns. Table I shows the number
of experiments in which each policy yielded the best results,
for ELT , NU , and for both together.3

ELT NU both
policy 0 (null) 2 (2) 1 (0) 0 (0)
policy 1 (relaxed) 8 (6) 3 (3) 0 (1)
policy 2 (aggressive) 6 (8) 12 (13) 5 (7)

TABLE I: Number of experiments ‘won’ by each policy,
assessed using time-window metrics and, in brackets, single-
value metrics

Table II shows the values of the ELT and NU metrics
in the autonomically managed systems, normalized relative
to the unmanaged system. Thus values below one represent
improvements achieved by autonomic management. The first
number given in each case is the mean of all the time-window
metric values, while the second, in italics, is the single-
value metric. Bold numbers highlight cases where significantly
different values were obtained for the different versions of the
metrics.

In most cases (54 or 52 out of the 64 comparisons, for
time-window and single-value respectively), autonomic man-
agement yielded better results than the unmanaged system,
by detecting unsatisfactory situations and adapting the main-
tenance interval accordingly.

The more aggressive policy, policy 2, was the better of the
two autonomic policies. It gave an improvement in both per-
formance and resource consumption for 75% of combinations
tested, and an improvement in one and worsening in the other
for 25% of combinations; none of the combinations led to a
worsening in both metrics. The average expected lookup time
was 90% (187%)4 of the average for the unmanaged system,
while the resource consumption was 46% (39%).

The large difference in ELT values for the two versions
of the metric demonstrates that the mean of all time-window
values was not representative of overall performance. This is
because the time-window version masked the two cases in
which policy 2 gave very poor performance results: a light-
weight workload with either high or temporally varying churn.
However, we think that these poor results were largely due
to an artefact of our experimental design, and the resulting
methodology for calculating ELT . We discuss this in section
V-C, and argue that performance for real workloads would be
considerably better.

3Raw data from the experiments is available from the authors on request.
4Figures using single-value metrics are given in brackets.



policy 1 policy 2
workload churn ELT NU ELT NU

light-
weight

low 0.72 0.09 0.70 0.03
0.73 0.09 0.70 0.03

high 0.81 0.55 0.82 0.35
13.4 0.55 14.0 0.35

local 0.83 0.45 1.21 0.44
0.89 0.45 1.24 0.44

temporal 0.81 0.29 0.98 0.18
0.73 0.29 4.21 0.18

heavy-
weight

low 0.73 0.31 0.70 0.23
0.73 0.22 0.70 0.16

high 0.60 1.33 0.69 0.98
0.57 1.29 0.61 0.95

local 0.08 1.27 0.18 1.08
0.36 0.56 0.60 0.67

temporal 0.56 0.54 0.67 0.40
0.68 0.39 0.79 0.34

variable

low 0.71 0.11 0.70 0.05
0.71 0.10 0.70 0.05

high 0.36 1.20 0.36 0.78
0.39 1.24 0.39 0.81

local 3.24 0.42 2.95 0.42
1.52 0.47 1.75 0.47

temporal 1.56 0.26 0.97 0.24
1.52 0.29 0.94 0.24

file-
system

low 0.80 0.34 0.79 0.29
0.80 0.26 0.79 0.22

high 5.14 0.47 1.09 0.52
2.42 1.70 1.00 0.47

local 0.60 0.45 0.59 0.88
0.70 0.28 0.57 0.46

temporal 0.86 0.59 0.93 0.41
0.86 0.51 0.91 0.40

summary
mean 1.15 0.54 0.90 0.46

1.69 0.54 1.87 0.39

median 0.77 0.45 0.75 0.41
0.73 0.42 0.79 0.38

TABLE II: Normalized performance and network usage met-
rics (single-value metrics shown in italics, significant differ-
ences between single-value and time-window metrics shown
in bold)

B. Autonomic Manager Behavior

We now examine in more detail the effects of policy 2 in
a sample group of experiments, those using a heavy-weight
workload. Table II shows that in the experiments with low,
high and temporally varying churn, policy 2 yielded greater
performance and reduced resource consumption. For locally
varying churn the effect varies depending on which of the
metric versions is considered. To illustrate the policy actions
resulting in these effects, we plot the progression of mainte-
nance intervals over time. Figs 2a-2d show the progressions of

the maintenance intervals over the courses of the experiments,
for the four churn patterns. Each point plotted is the mean
of the corresponding figures for three repeated runs. In the
experiment with locally varying churn, the progressions are
plotted separately for low-churn nodes (LCN) and high-churn
nodes (HCN).

Fig. 2a shows that for low churn, the autonomic policies
detected an unsatisfactory situation with respect to network
usage, and reacted by steadily increasing the maintenance
interval. This decreased the amount of work each node spent
(unnecessarily) maintaining its peer-set, and thus reduced
the amount of data sent to the network in comparison with
unmanaged nodes. Additionally, a reduction in the work spent
on maintenance operations left more computational capacity
for dealing with lookup operations. This reduced the expected
lookup time. The progressions of the network usage and
expected lookup time metrics are described later in this section.
As expected, policy 2 reacted more aggressively, increasing the
maintenance interval at a higher rate than policy 1.

Fig. 2b shows that for high churn, the autonomic policies
held the intervals fairly constant, though at higher values
than for unmanaged nodes. Referring to Table II, this yielded
roughly the same network usage as for unmanaged nodes,
and a significant improvement in expected lookup time. This
improvement in performance may appear counter-intuitive,
given the reduction in overall maintenance effort, particularly
since examination of the experimental logs shows that error
rates were significantly lower for the autonomic policies than
for unmanaged nodes. The explanation is that each value
plotted is derived by averaging individual maintenance inter-
val values over the entire network, and over a five minute
aggregation time window. This masks the fact that there was
considerable variation in controlled interval values within each
time window. Whenever the manager of a given node detected
errors in its peer-set, it immediately decreased the maintenance
interval, giving a period of high maintenance activity. Once
the errors were corrected, the manager increased the interval
again until the next error. Thus errors were corrected more
rapidly than in an unmanaged system, despite the overall
average interval being higher. Again, policy 2 reacted more
aggressively than policy 1, and kept the maintenance interval
at higher levels.

Fig. 2c shows the resulting intervals for locally varying
churn, where some nodes (75%) exhibited high churn, and
the rest, low churn. There are two features of interest: the
apparent phase change after about 40 minutes, and the fact
that the autonomic managers behaved markedly differently on
the low churn and high churn nodes.

We have no simple explanation for the phase change, other
than to hypothesize that the particular churn patterns in use
caused some threshold in the error rate to be exceeded,
triggering rapid decreases in the intervals.

The differences in behavior between low and high churn
nodes appear anomalous, since all nodes experience roughly
the same environment in terms of the aggregate behavior of
their peers (assuming that the low churn nodes are uniformly
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(d) Temporally varying churn

Fig. 2: Interval progressions for heavy-weight workload and various churn patterns

distributed throughout the network). The explanation is that
a node’s maintenance interval was reset to the default value
every time it restarted, in order to simulate the arrival of new
nodes in a network. Thus each manager on a high churn node
did react to the environment in the same way as the low churn
nodes, by steadily increasing the maintenance interval, but
since the interval was regularly reset, the average value was
held fairly constant and close to the default value.

We could have chosen not to reset the interval on restart,
to simulate nodes failing and recovering rather than having
nodes permanently leaving and new nodes joining in their
place. In that case we would expect to see little difference
in the behavior of low and high churn nodes.

Fig. 2d shows the autonomic policy behavior for temporally
varying churn, in which the entire network alternated between
low and high churn, in phases lasting about 17 minutes. During
the initial low churn phase the managers responded as ex-
pected, in the same way as in the low churn experiment. When
the network moved into high churn they reacted by decreasing
the maintenance intervals. The more aggressive behavior of

policy 2 can be seen clearly. Table II shows that this gave
slightly better results for network usage than policy 1, but
slightly worse for expected lookup time. Both policies obtained
significantly better results than the unmanaged network.

C. Autonomic Manager Effects

Fig. 3 shows how the time-window versions of the high-
level metrics network usage and expected lookup time pro-
gressed over the course of the experiment with low churn and
heavy-weight workload. This demonstrates the concrete effects
of the autonomic manager behavior described in Fig. 2a. For
this experiment, the two versions of the metrics give similar
values, thus it is reasonable to assume that the plotted values
do correspond to what would be experienced by a user.

Fig. 3a shows that, under low churn, the expected lookup
time for autonomically managed nodes stabilized, within a
few minutes, at about 70% of the figure for unmanaged
nodes. Similarly, in Fig. 3b it can be seen that the network
usage for autonomically managed nodes stabilized early in the
experiment, this time at about 30% of the figure for unmanaged
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Fig. 3: High-level metric progressions for heavy-weight workload and low churn

nodes. Further analysis showed that the network usage with
managed nodes was mainly due to the execution of workload
lookups.

We now consider the differences between the values ob-
tained for the single-value and time-window versions of the
high-level metrics. The overall mean normalized performance
for policy 2, as measured by the single-value version of the
ELT metric, was 1.87. The median value of the metric was
0.79; the mean was skewed by particularly poor results for
light-weight workload under both high and temporally-varying
churn.

These results are obscured by the time-window version of
ELT , hence the introduction of the single-value version. This
is because, for the light-weight workload, there were some
time-windows during which no lookup operations completed
successfully, and thus an ELT value could not be calculated
as described in section IV-E. As a result, no value from that
time-window was fed into the average, leading to an apparently
much better value for the time-window average overall. We
therefore feel that the single-value metrics give a fairer means
of comparison between policies.

Nonetheless, we think that the poor single-value metric
values for light-weight workloads are artificially high, due to a
poor (in retrospect) experimental design decision. During the
execution of the experimental workloads, any lookup operation
resulting in an error was logged but not retried.

One consequence of this design was that for a light-weight
workload there was a high probability that significant network
topology change had occurred between any given successive
pair of lookup operations, and thus a high probability that
any given lookup operation would yield an error. Even though
each error triggered an immediate maintenance operation, the
following lookup operation, occurring a significant time later,
would not receive any benefit from that maintenance, due to
network topology change during the intervening period. The

resulting high error rate leads directly to a high expected
lookup time metric value.

In practice, with a client that immediately retries each failed
lookup operation, we expect the error rate for light-weight
workloads to be much lower. This is because retried lookups
will often succeed before the next network topology change.

It would have been better to have performed such retries as
part of the experimental workload execution. This would have
enabled us to simply measure expected lookup time rather than
having to derive it from the error rate, and it seems likely
that the resulting performance metric values would have been
significantly better than the derived values presented here.

The behavior of policy 2 for high churn and light-weight
workload is illustrated in Fig. 4, and contrasted with the
behavior for heavy-weight workload.

With the light-weight workload, the autonomic manager
perceives a lower error rate due to the lower frequency of
lookup operations, and thus increases the maintenance inter-
vals relative to those resulting from a heavy-weight workload.
It is the low absolute error rate that governs the manager’s
behavior in this situation, even though the ratio of errors to
successful lookups is high. This behavior seems appropriate,
since the lighter the workload, the less effort that we wish the
maintenance activity to expend.

D. Repeatability

Each experiment was executed three times, and the results
averaged to produce the observations reported. In order to
assess repeatability, the variation of the ELT values between
experimental runs was investigated. For each set of three
values, corresponding to the values calculated for a particular
time window in each of the runs, a similarity metric was
calculated. This process was performed for every experiment.

The chosen similarity metric was normalized standard de-
viation (NSD), defined as the standard deviation of the set
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of three values divided by its mean. Thus perfect repeatability
would yield zero for every NSD value.

Figure 6 shows the cumulative frequency distribution of
all NSD values. The median of the NSD values was about
0.2; we conclude that the observed experimental behavior was
acceptably repeatable.
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To illustrate the degree of variability represented by par-
ticular NSD values, Fig. 6 shows the ELT progressions for
the individual runs of two particular experiments, with overall
average NSD values of 0.23 and 0.01.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated that autonomic management of
maintenance scheduling in Chord can achieve significant
improvement in performance and resource consumption in
many situations. Under changing conditions, management can
adapt scheduling to suit prevailing conditions. Under static
conditions, it can converge to a better scheduling than is likely
to be configured for an unmanaged system.

We have argued that the cases in which autonomic man-
agement performed significantly worse than an unmanaged

system may be at least partially explained by our experimental
decision not to retry lookup operations on failure. Nonetheless,
there are several avenues for possible further development of
our management approach. Some involve refinements to Chord
itself, while others involve different approaches to autonomic
management. Our autonomic management approach could also
be applied straightforwardly to other P2P overlay networks
that perform periodic maintenance operations.

A. Chord Adaptations

Chord could be adapted in several ways to allow autonomic
management of the structure of a node’s peer-set, in addition
to the scheduling of its maintenance. The aim would be to
improve lookup performance—which might be achieved by
reducing the probability of an error on a given lookup, or by
reducing the number of hops required for a given lookup.

The probability of error could be reduced by adjusting the
lookup algorithm so that it can use other fingers if the closest
preceding finger to the target is invalid. Another possibility is
to cache the successor list of each finger, for use during lookup
if the finger is discovered to be invalid. The average number
of hops required could be reduced by enlarging the finger
table, thus providing fingers that are closer to the target. These
options could be combined by adding autonomic management
hooks for:
• the size of the finger table
• the number of successors to be cached for each finger
As with our maintenance interval control scheme, the

autonomic manager could adjust these dynamically, thereby
managing an additional tradeoff between performance and
maintenance costs. In the limit, the finger table could be
expanded to encompass the entire network. [17] argues that
this is feasible, although it does not propose autonomic man-
agement of finger table size.

Another Chord aspect that could be dynamically managed
is the length of each node’s successor list, as suggested in
[13]. The longer the list, the greater the number of near-
simultaneous successor failures that a node can recover from,
but the greater the maintenance overhead. The autonomic
manager could adjust this based on an assessment of the recent
churn level, or simply based on how many elements of the list
have been recently used for ring repair.

B. Autonomic Management

We chose to structure the autonomic management policy
using distinct sub-policies, each of which had a separate sub-
goal and considered only a subset of the monitored information
available. Instead, a single policy taking a holistic view of all
monitored information could be used. This would be more
flexible but would probably also be more complex.

Our management scheme operates entirely locally; the auto-
nomic managers work completely independently, considering
only local monitoring data, and make no attempt to coordi-
nate their actions. Both of these aspects could be addressed:
monitoring data could be disseminated within the network to
allow managers to take a broader view of the network state,
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Fig. 6: Expected lookup time progressions for individual runs of selected experiments

and managers could communicate in an effort to harmonize
their actions. For example, with dynamic control of successor
list length as mentioned previously, it would be useful for a
manager to know about topology repair operations on other
nodes, to allow it to better assess the current stability of the
overall network.

Our autonomic manager does not maintain long-term state.
This could be added, allowing the manager to learn from expe-
rience. The ability could be introduced in the form of a ‘meta
feedback loop’ using a management hierarchy, where the main
manager was itself managed by a higher-level meta-manager.
The meta-manager could monitor user-centric metrics such
as expected lookup time and network usage, and tune the
parameters of the main manager accordingly. Such parameters
could include the relative weights placed on the sub-policies,
and the dampening factors used in those sub-policies.

A different learning approach would be for the manager
to periodically store a record of the current conditions, its
response to those conditions, and the resulting effects. Given
some pattern matching mechanism, it could then periodically
retrieve historical records for previous conditions similar to
those currently prevailing, and take into account the success
or otherwise of its past actions in deciding how to act in the
current situation.

Finally, one other possible tactic would be for the manager
to try making small speculative adjustments and monitor their
effects for a short time. This might enable a gradient descent
approach—the manager would enact the adjustments that led
in the best ‘direction’ in terms of user-centric metrics, and
then repeat the process.
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[9] A. Binzenhöfer and H. Schnabel, “Improving the Performance and
Robustness of Kademlia-based Overlay Networks,” University of
Würzburg, Tech. Rep. 405, 2007.

[10] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-peer Informa-
tion System Based on the XOR Metric,” in 1st International Workshop
on Peer-to-Peer Systems (IPTPS ’02), 2002, pp. 53–65.

[11] J. Yuh-Jzer and W. Jiaw-Chang, “Chord2: A Two-Layer Chord for Re-
ducing Maintenance Overhead via Heterogeneity,” Computer Networks,
vol. 51, no. 3, pp. 712–731, 2007.

[12] X. Kaiping, H. Peilin, and L. Jinsheng, “FS-Chord: A New P2P Model
with Fractional Steps Joining,” in Proceedings: Advanced International
Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT-ICIW’06), 2006,
p. 98.

[13] A. Binzenhöfer, D. Staehle, and R. Henjes, “On the Stability of Chord-
based P2P Systems,” University of Wuerzburg, Tech. Rep., 2004.
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