
H2O: An Autonomic, Resource-Aware Distributed

Database System

Angus Macdonald, Alan Dearle, Graham NC Kirby

{angus,al,graham}@cs.st-andrews.ac.uk

Jack Cole Building, School of Computer Science,

University of St Andrews, Fife, KY16 9SX

Abstract. This paper presents the design of an autonomic, resource-aware

distributed database which enables data to be backed up and shared without

complex manual administration. The database, H2O, is designed to make use of

unused resources on workstation machines.

 Creating and maintaining highly-available, replicated database systems can

be difficult for untrained users, and costly for IT departments. H2O reduces the

need for manual administration by autonomically replicating data and load-

balancing across machines in an enterprise.

 Provisioning hardware to run a database system can be unnecessarily costly

as most organizations already possess large quantities of idle resources in

workstation machines. H2O is designed to utilize this unused capacity by using

resource availability information to place data and plan queries over

workstation machines that are already being used for other tasks.

 This paper discusses the requirements for such a system and presents the

design and implementation of H2O.

Keywords: Distributed Databases, Autonomic Computing, Resource

Utilization

1 Introduction

Providing replication and load-balancing in modern database systems can be difficult

for untrained users, while the creation of database applications incurs substantial

setup and maintenance costs if they are required to scale and be resilient to failure.

Servers running such database systems cost a substantial amount to support [1], and

may be unnecessary since most organizations have large amounts of unused resources

already available on workstation machines [2].

We propose to make better use of local resources by creating a database which uses

the existing infrastructure of an organization to provide database services. Our system

automates the replication and load-balancing of small-scale databases to reduce the

need for database administration, enables the sharing of data, and exploits existing

2 Angus Macdonald, Alan Dearle, Graham NC Kirby

resources on unused machines to maximize use of local resources and minimize

reliance on expensive server room clusters.

The remainder of this paper is organized as follows. Section 2 discusses the

motivation for our work. Section 3 derives requirements from these motivations

which are used to guide the design of the system in Section 4. Section 5 discusses our

current implementation of H2O, while Section 6 discusses work that is still to be

done. Finally Sections 7 and 8 present related work and our conclusions.

2 Motivation

We are motivated by a number of observations on the use of database systems and

workstations within enterprises:

1. Sharing. Allowing data to be shared is difficult without a central solution.

2. Availability. Ensuring data is always available forces a user to implement a

replication strategy which tolerates machine failure.

3. Administration. Replication strategies for databases require significant manual

administration, much of which could be avoided.

4. Utilization. Workstation machines are often underused and could be utilized to run

distributed applications.

Many databases start small on a single user’s machine. For example, in a University

department a secretary may create and maintain a small database of student queries,

while an admissions officer may create another database of applicants. The users of

these databases may want to do two things: first, ensure the database is backed up to

guard against machine failure, and second, to share the data with another member of

staff.

 The University may have a backup plan which ensures database files are replicated,

but this only guarantees a recent copy of data, not necessarily the current copy. Such

backups don’t address the need for data to be shared. The user could provide remote

access to the database on their machine, but as more people become involved this

becomes undesirable, and if the machine is turned off the data becomes unavailable.

The user could request that their IT department provides a centralized database

solution, but this may be time consuming to set up and require frequent maintenance.

Data would also have to be migrated to the new database before it could be used.

 The proposed system solves the backup problem by providing database services

which automatically replicate data onto machines in the same enterprise. Data can be

easily shared with other members of staff, who can access it transparently without

regard for its location. Replication ensures that the data remains available even when

the original user takes their machine offline, and makes it more resilient against

hardware failure.

 The system will reduce the need for manual administration by automatically

creating replicas for resilience and availability. If many users are accessing the same

data then the system will autonomically balance the load between these replicas and

adjust the location and replication factor of the data itself.

H2O: An Autonomic, Resource-Aware Distributed Database System 3

 By providing a method to harness otherwise unused resources the system increases

the overall computational and storage capacity of organizations which run it.

3 Requirements

A database system designed to run over existing infrastructure must meet the

following requirements with respect to our initial motivations:

1. Sharing: access to data must be location-independent. Users should be able to

share and access data without regard for its location.

2. Availability: the system must be highly available. Data should be replicated to limit

unavailability as a result of the failure or periodic unavailability of individual

machines. Data should be replicated sufficiently to be made resilient to permanent

failure (e.g. disk loss).

3. Administration: the system must be self-managing. Changes in the availability of

machines, the availability of resources, and access patterns require that data can be

replicated and moved dynamically. The database system must be able to

automatically make these adjustments without manual administration.

4. Utilization: the system must be resource-aware. To utilize unused resources

effectively on workstations the system must be able to identify what resources are

available. This requires a resource monitoring framework to collect and collate

monitoring data.

5. Compatibility: the system must be comparable to centralized databases. A

centralized database system will typically aim to provide fast response times to

queries but may require substantial effort to scale up and manage replication. The

proposed system should provide the same ACID transactions as a centralized

solution, with comparable query response times. It should show a perceptible

improvement in the time taken to manage other factors involving maintenance of

the data itself.

4 Design

Each of the requirements outlined above guides the design of the database system:

1. Access to data must be location-independent. Users interact with the database

system through an interface on their local machine. A location-aware database

substrate is responsible for locating and querying data.

2. The system must be available. Tables are replicated over many machines so that the

failure or unavailability of one machine does not render the database unavailable.

3. The system must be self-managing. Resource monitoring data is used in query

planning and data placement decisions. Autonomic components monitor various

aspects of the system’s state and make changes to data placement and replication

factors when necessary.

4 Angus Macdonald, Alan Dearle, Graham NC Kirby

4. The system must be resource-aware. Each machine hosts a resource monitor to

capture resource availability. Another monitoring component is able to collate this

monitoring data to use it in query planning and data placement.

5. The system must be comparable to centralized databases. Users access the

database system through a JDBC interface on their own machine. Two-phase

locking of replicas is used to ensure strict serializability as part of the database’s

support of ACID transactions.

4.1 Architecture

The database system consists of a database instance running on every available

machine in an enterprise. Relations can be replicated onto multiple machines, with the

copies of data for each relation managed by a Table Manager, which is responsible for

the locking and persistence of the table it is managing. To enable discovery of

existing tables and to mediate the creation of new tables, the system maintains a

System Table which holds references to all extant Table Managers. Users submit

queries to the database instance on their machine and the query is executed at the

most appropriate replicas. This architecture is illustrated below in Figure 1.

 In this example machine B is responsible for maintaining the System Table which

holds references to the Table Managers for X and Y. The Table Manager for table X

maintains references to replicas of the table data on C and D, while the Table

Manager for Y keeps references to the data on C. A user making queries from

machine A has no knowledge of the location of the System Table, the Table

Managers, or the data.

Fig. 1. Overview of System Architecture.

Machine A
Machine B

Resource
Monitor

Resource
Monitor

Resource
Monitor

Machine D

Table
Manager (Y)

Resource
Monitor

Machine C

Database Database

Database

Database

Table X

Table X

Table Y Table
Manager (X)

System Table

H2O: An Autonomic, Resource-Aware Distributed Database System 5

The System Table is needed to find extant relations, though references to these

relations may also be cached locally by database instances. The System Table is

effectively a write-through cache whose state is synchronously replicated following

changes, so that it can fail without affecting the availability of the database system.

Similarly, Table Managers are replicated synchronously, though locking information

is not persisted because in the event of failure any running transactions are rolled

back. Because critical meta-data is replicated, the system is able to recover from

failure by re-instantiating the System Table and Table Managers on other available

machines.

The strict two-phase locking approach used in H2O ensures serializability. To

ensure replicas are kept consistent two-phase commit is used on updates.

4.2 Example Query

To illustrate the architecture of the system consider how a basic join query is executed

by the database system.

Fig. 2. Example Join Query.

1. A user submits a query via a database interface on their machine, A.

SELECT * FROM X, Y WHERE X.a_id = Y.a_id;

2. Their local database instance (on machine A) parses the query and sends a request

to the System Table for the location of the X and Y Table Managers.

3. The System Table returns the location of these Table Managers on machines C and

D.

Machine A
Machine B

Resource
Monitor

Resource
Monitor

Resource
Monitor

Machine D

Table
Manager (Y)

Resource
Monitor

Machine C

Database Database

Database

Database

Table X

Table X

Table Y Table
Manager (X)

Query

(1)
(2, 3)

(4, 5)
(6, 7)(4, 5)

System Table

6 Angus Macdonald, Alan Dearle, Graham NC Kirby

4. The user’s local database instance (which now has references to both Table

Managers) requests read locks on both tables from their managers.

5. The Table Managers return locks and meta-data describing where the table data

can be found.

6. The query is sent to machine C, which holds both tables, and is then executed. The

decision about which machine executes the query is based on monitoring

information relating to computational availability on machines and on database

monitoring of aspects such as table size.

7. Once the query has been executed, read locks for both tables are released and the

result of the query is returned to the user.

5 Implementation

H2O is an implementation of the resource-aware distributed database system

described above. It is designed to run over small sets of workstation machines (tens to

low hundreds). The main database functionality of H2O is provided by the H2

database system [3] around which the rest of the system is built.

Each database instance consists of an H2 database modified to support replication,

and a resource monitor. One of these instances manages the System Table and each

instance may have many extant Table Manager processes.

5.1 Bootstrapping

The first database instance to be started is responsible for creating the System Table.

Subsequent instances connect by specifying the location of a known instance, which

is used as an entry point into the system. We use an implementation of the peer-to-

peer overlay Chord [4] to provide this bootstrapping mechanism. Chord’s lookup

functionality is used to find the System Table on startup, thus abstracting over

locality.

5.2 Detecting Failure

Chord’s maintenance mechanism is used as a means of detecting database instance

failure. On the failure of a database instance the succeeding instance in the Chord ring

detects this failure and makes an up-call into H2O. The database notifies Table

Managers that may have had replicas located on the failed instance, allowing them to

create more replicas if necessary.

When the System Table or a Table Manager has also failed it is re-instantiated

elsewhere from persisted copies of its state on the successor node.

H2O: An Autonomic, Resource-Aware Distributed Database System 7

6 Future Work

The architecture described above is currently implemented. This section presents the

remainder of our design as a series of open-ended design decisions.

 Resource monitoring systems typically run processes on each machine to collect

raw data, and use logically centralized databases to collate data for processing [5].

H2O will use this approach, storing monitoring data in the database itself.

Every instance will monitor CPU, memory and disk utilization, while every Table

Manager will monitor replication factor and access patterns. These access patterns

include factors such as query response time, load balancing between replicas, and

more general query patterns such as read-write ratios and burstiness.

The database system must be able to cope with change relating to the failure and

variable resource availability of machines, and to usage patterns and demand.

Changes will be made autonomically [6] by processes making use of monitoring data

and tunable heuristics. Where possible, these processes should be decentralized to

avoid the system becoming reliant on any one machine collecting all meta-data. For

instance, replication factor can be trivially decentralized by making Table Managers

responsible for them. Other decisions, such as those involving data placement, will be

made by a system-wide autonomic process when more global information is needed.

Due to the potential quantity of resources made available on workstation machines,

many may remain unused even in the presence of a resource-aware database system.

These resources can be speculatively harnessed to test placement strategies and other

non-critical operations. Data can be replicated onto unused machines to be

reformatted and repartitioned speculatively, then queries can then be executed against

both the primary and speculative replicas as a means of evaluating possible placement

strategies and updating the system’s knowledge-base.

Failure of databases instances can take one of a number of forms. It can be either

unexpected, where the process dies, or pre-empted, where the process anticipates that

there will soon be too few resources available to service requests. When failure is pre-

empted processes can be migrated to more available machines, as is possible with

Condor [7]. Unexpected failure can be permanent, meaning data is unrecoverable (for

example, as a result of disk loss), or transitory, meaning data will become available at

an undetermined later point (for example on machine restart, or after a power cut).

7 Related Work

Condor [7] is a scheduling system which aims to maximize the utilization of

workstation resources by allowing long running computations to be run remotely.

Processes are checkpointed so that they can be paused for a short period, or moved

between machines (process migration). Compute jobs are self-contained, and so can

be restarted on any available workstation. Data is maintained on the machine which

submitted the compute job and not on the machine running the job, to prevent the job

from monopolising resources on the remote machine.

8 Angus Macdonald, Alan Dearle, Graham NC Kirby

H2O differs from Condor in that it is explicitly aiming to store relatively large

quantities of data on workstation machines. It is the data and not the computation

which is the focus of our work. Brief periods of inactivity are acceptable in the

context of long-running computations, but not in database systems where quick

responses are demanded.

 Research looking at server power consumption has shown that machines which are

not used to full capacity consume a substantial portion of their peak power

consumption [8]. For instance, servers with near zero percent utilization still use

around 50% of the power used at peak utilization. A consequence of this consumption

is that resources left unused are a considerable source of waste. H2O aims to address

this by making better use of existing resources.

 There is a substantial quantity of work on data placement and query optimization in

database systems generally [9][10]. While centralized decision making is most

typical, various approaches have been taken to spread decision making through the

system. Mariposa [11] uses a micro-economic approach to decentralizing decision-

making in a heterogeneous wide-area DDBMS. Nodes operate in a market economy,

buying and selling space for replicas, and time for queries. Consequently, they are

able to indicate their resource availability through pricing. H2O is designed to run

over local area networks, so it doesn’t require decision making to be decentralized to

the same degree as Mariposa.

Piazza [12] introduced ‘spheres of co-operation’ designed to cluster heterogeneous

databases together to make decisions about query optimization as a group. Grouping

is seen as more scalable than global optimization, but provides a broader knowledge-

base than purely local optimization. This solution may be appropriate for H2O if

system-wide decision making proves impractical or consumes too many local

resources.

Commercial database systems use a variety of mechanisms to support replication.

Oracle [13] supports snapshot replication from master databases, where snapshots

may be a subset of the database. If there are multiple masters updates can be

propagated synchronously as they occur, or asynchronously via batch update.

Microsoft SQL Server [14] uses a publish-subscribe model for replication where

subscription can be either push or pull. Snapshot replication is supported as well as

transactional replication, where individual updates are propagated, and merge

replication, where databases act autonomously and are later merged. H2O provides

synchronous transactional replication managed through Table Managers (primary

copy locking [9]), though the system’s design is not dependent on this mechanism.

More recent database systems such as Greenplum [15] and Aster [16] are based on

shared-nothing architectures that allow new nodes to be added with a linear increase

in performance. Both systems automatically partition data across nodes, attempting to

minimize intra-node data transfer [17]. They are designed to be run on server clusters,

not workstation machines, though the mechanisms used to add nodes and to partition

data are relevant to the design of H2O.

 There are numerous resource monitoring systems aimed at grid computing [5]

which provide the functionality needed for this project. H2O is more notable for its

use of resource monitoring data in database decision making. Clustered database

H2O: An Autonomic, Resource-Aware Distributed Database System 9

systems generally assume machine-level resources are static and so do not factor

dynamic resource availability into query planning. More recently some projects have

begun looking at energy consumption as a primary performance metric in query

planning [18]. Mariposa indirectly factors resource utilization into query planning

through pricing.

 While clustered database systems tend to support ACID semantics, wider-area

databases tend to sacrifice the consistency for reasons captured by the CAP theorem

[19]. If consistency is to be prioritized, availability or partition tolerance must be

sacrificed. In a clustered database system where partitions are rare, availability is

favoured over partition tolerance. Conversely, systems that operate over a wide area

tend to sacrifice consistency because of the likelihood of partitions and machine

failure.

 PIER [20], which supports hundreds of thousands of machines, offers no

guarantees about the freshness of data received as part of a query. Amazon SimpleDB

[21], one of many cloud offerings, provides eventual consistency with an option for

consistent reads. H2O aims to provide ACID transactions by operating at a smaller

scale over local area networks.

Yang et al. [22] present a database clustering middleware which runs clusters of

databases running on off-the-shelf hardware. Each machine runs a single MySQL

database, which is expected to be large enough to support an entire web application.

Updates are made to a number of replicas using the two-phase commit protocol,

meaning the system can recover from individual machine failure. ACID-compliant

transactions are also supported. This shows that centralized databases can scale out to

support synchronous replication and ACID-compliant transactions. H2O differs in

running over workstation machines with variable resources.

8 Conclusion

This paper has presented the requirements for a resource-aware database system, and

outlined the design and implementation of H2O which aims to meet these

requirements. H2O is currently an operational database system and is able to replicate

data across many machines with manual administration. We are currently developing

the autonomic functionality of the database in order to automate this decision making.

Once development is complete, we will begin evaluations of the system’s

performance. These evaluations will look at the performance of the database when

answering queries, the effectiveness of the resource monitor at detecting availability

and the autonomic system in adapting to change.

At a point where resource consumption is a growing concern H2O is notable in

using existing resources to accomplish a task normally achieved with clusters of

computers in server rooms. This may help to reduce energy consumption within

organizations.

This work aims to show that it is possible for a database to be distributed over a set

of workstations without need for manual administration. We believe that this

approach of utilizing workstations is suitable for a wider class of applications,

10 Angus Macdonald, Alan Dearle, Graham NC Kirby

provided they can be adapted to take resource availability into account in decision

making.

9 References

[1] A. Greenberg, J. Hamilton, D. Maltz, and P. Patel, "The cost of a cloud: research

problems in data center networks," ACM SIGCOMM Computer Communication Review,

vol. 39, 2008, p. 68–73.

[2] M. Mutka and M. Livny, "Profiling workstations’ available capacity for remote

execution," Performance, 1987, p. 529–544.

[3] M. Thomas, "H2 Database." (http://www.h2database.com)

[4] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, "Chord: A scalable

peer-to-peer lookup service for internet applications," Proceedings of the 2001 conference

on Applications, technologies, architectures, and protocols for computer communications,

ACM, 2001, p. 160.

[5] S. Zanikolas and R. Sakellariou, "A taxonomy of grid monitoring systems," Future

Generation Computer Systems, vol. 21, 2005, p. 163188.

[6] J. Kephart and D. Chess, "The vision of autonomic computing," Computer, vol. 36, 2003,

pp. 41-50.

[7] M. Litzkow, M. Livny, and M. Mutka, "Condor-a hunter of idle workstations,"

proceedings of the 8th International Conference of Distributed Computing Systems, 1988.

[8] L.A. Barroso and U. Hölzle, "The Case for Energy-Proportional Computing," Computer,

vol. 40, 2007, pp. 33-37.

[9] M. Özsu and P. Valduriez, Principles of Distributed Database Systems, 1999.

[10] J. Hellerstein, "Architecture of a Database System," Foundations and Trends in

Databases, vol. 1, 2007, pp. 141-259.

[11] M. Stonebraker, P.M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and A.

Yu, "Mariposa: a wide-area distributed database system," The VLDB Journal The

International Journal on Very Large Data Bases, vol. 5, 1996, pp. 48-63.

[12] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu, "What can databases do for

peer-to-peer," WebDB Workshop on Databases and the Web, Citeseer, 2001.

[13] Oracle, "Oracle Database 11g."

[14] Microsoft, "Microsoft SQL Server." (http://www.microsoft.com/sqlserver/2008/en/us/)

[15] Greenplum, Greenplum Database 4.0, 2009. (http://www.greenplum.com)

[16] T. Argyros, M. Bawa, and G. Candea, Next-Generation Data Warehouses, 2008.

[17] D.J. DeWitt and J. Gray, "Parallel database systems," ACM SIGMOD Record, vol. 19,

1990, pp. 104-112.

[18] W. Lang and J. Patel, "Towards eco-friendly database management systems," Imprint,

2009.

[19] S. Gilbert and N. Lynch, "Brewer's conjecture and the feasibility of consistent, available,

partition-tolerant web services," ACM SIGACT News, vol. 33, 2002, p. 51.

[20] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe, S. Shenker, I.

Stoica, and A. Yumerefendi, "The architecture of PIER: an internet-scale query

processor," Proceedings of 2nd Conference on Innovative Data Systems Research

(CIDR), 2005, p. 2843.

[21] Amazon.com, "Amazon SimpleDB," http://aws.amazon.com/simpledb/.

[22] F. Yang and R. Yerneni, "A Scalable Data Platform for a Large Number of Small

Applications," research.yahoo.net, 2009.

