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While the advanced coherent control of qubits is now routinely carried out in low-frequency (gigahertz) systems like
single spins, it is far more challenging to achieve for two-level systems in the optical domain. This is because the latter
evolve typically in the terahertz range, calling for tools of ultrafast, coherent, nonlinear optics. Using four-wave mixing
microspectroscopy, we here measure the optically driven dynamics of a single exciton quantum state confined in a
semiconductor quantum dot. In a combined experimental and theoretical approach, we reveal the intrinsic Rabi os-
cillation dynamics by monitoring both central exciton quantities, i.e., its occupation and the microscopic coherence, as
resolved by the four-wave mixing technique. In the frequency domain, this oscillation generates the Autler–Townes
splitting of the light-exciton dressed states, directly seen in the four-wave mixing spectra. We further demonstrate that
the coupling to acoustic phonons strongly influences the four-wave mixing dynamics on the picosecond time scale,
because it leads to transitions between the dressed states. © 2018Optical Society of America under the terms of the OSAOpen

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.5.001442

1. INTRODUCTION

The coherent control of individual spins and excitons in quantum
dots (QDs) has been the scope of semiconductor quantum optics
for many years. To unveil the potential lying in QDs and other
single-photon emitters for high-speed optical quantum technol-
ogy, it is urgent to bring the manipulation schemes to perfection.
This is nowadays approached using individual spins in electrically
defined [1] and epitaxial [2,3] QDs, as well as in color centers in
diamond [4,5], which is conditioned by setting up robust spin-
photon interfacing. This difficulty can be mitigated using QD
excitons: because of their direct coupling to light, the related co-
herent control protocols operate on the picosecond (ps) time scale
[6]. The context of ultrafast control points to the subject of our
work, focusing on optically driven coherent dynamics of the
exciton state efficiently coupled to longitudinal acoustic (LA)
phonons of the GaAs host matrix. Previous research has shown
that by observing Ramsey fringes [7,8] the quantum state of single
localized excitons can be navigated on the Bloch sphere by varying
the delay between two laser pulses with ps duration. It has also
been demonstrated that by increasing the applied laser power, the
final exciton occupation after a single pulse can be adjusted [9,10]
by performing Rabi rotations. Excitations with chirped laser

pulses have been used to realize robust state preparations via
the so called rapid adiabatic passage effect [11–17]. A pump-
probe experiment [18] and time-resolved resonance fluorescence
[19] have been used to study the optically driven Rabi oscillation
dynamics of the QD exciton occupation. Rabi oscillations have
also been investigated in larger systems, i.e., in QD ensembles
[20–22], quantum wells [23,24], and quantum dash ensembles
[25]. Note that these Rabi oscillations have to be differentiated
from Rabi rotations [9,10,26–31]. The oscillations directly cor-
respond to the dynamical aspect of the genuine Rabi problem
[32]. Rabi rotations instead reflect the final exciton state and thus
lack direct visibility of the temporal interplay between exciton and
phonons.

We here propose and realize an original approach to monitor a
single exciton’s Rabi oscillations in the time domain. Namely, we
use the delay dependence of four-wave mixing (FWM) signals to
probe the dynamics of both central quantum mechanical quan-
tities of a single QD exciton, i.e., its occupation and its micro-
scopic coherence, which represent the entire quantum state or its
Bloch vector. Note that combined with the time-dependence of
the emitted signal, this delay dependence can be used to generate
two-dimensional spectra. These provide a rich playground to

2334-2536/18/111442-09 Journal © 2018 Optical Society of America

Research Article Vol. 5, No. 11 / November 2018 / Optica 1442

https://orcid.org/0000-0002-4190-8803
https://orcid.org/0000-0002-4190-8803
https://orcid.org/0000-0002-4190-8803
mailto:jacek.kasprzak@neel.cnrs.fr
mailto:jacek.kasprzak@neel.cnrs.fr
mailto:jacek.kasprzak@neel.cnrs.fr
mailto:jacek.kasprzak@neel.cnrs.fr
mailto:d.wigger@wwu.de
mailto:d.wigger@wwu.de
mailto:d.wigger@wwu.de
https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OPTICA.5.001442
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.5.001442&domain=pdf&date_stamp=2018-11-06


study spectral features of coupled and uncoupled quantum
systems [33–39]. Here, however, our focus is on the temporal
evolution of the exciton quantum state. Our dual insight into
Rabi oscillation dynamics of a single QD exciton represents a
novel aspect and is enabled by the FWM methodology. In a com-
bined experimental and theoretical study, we investigate the
dynamics of both quantities in FWM signals. When increasing
the intensities of the exciting laser pulses, oscillations on the
ps time scale build up during the optical driving. The measured
oscillations directly reflect Rabi oscillations of the Bloch vector of
an individual QD exciton. In exciton ensembles, the isolation of a
single Bloch vector has so far not been realized, because one
always deals with a bunch of Bloch vectors undergoing different
dynamics. Carrying out this study in the ultimate limit of a single
QD exciton allows for an investigation of the fundamental inter-
play between the optically driven two-level system and its
coupling to the host lattice via the exciton-phonon interaction.

2. EXPERIMENT AND THEORY

To measure FWM on individual QDs, we employ a three-beam
heterodyne spectral interferometry setup optimized for the near-
infrared spectral range [38], as schematically depicted in Fig. 1.
The FWM is driven using a Ti:Sapphire femtosecond laser. The
QD exciton is excited by Gaussian laser pulses, formed by a pas-
sive pulse shaper based on a diffraction grating. The pulse train is
(i) split into three beams Ei�i � 1, 2, 3� and a reference beam ER ;
(ii) the beams Ei are individually phase-modulated using acousto-
optic modulators (AOMs) operating at distinct radio frequencies
Ωi around 80 MHz; (iii) the pulses E1,2,3 are delayed with respect
to one another by τ12 and τ23; (iv) their intensities Pi ∼ jEij2,
which are varied to scan the pulse areas θi, are controlled via fixed
radio-frequency drivers. After steps (i)–(iv), E1,2,3 propagate col-
inearly and are focused on the sample surface. The pulse shaper is
also used to geometrically compensate the first-order chirp, attain-
ing a focal spot close to the Fourier limit. FWM is retrieved in
reflectance [note that, for the sake of readability, Fig. 1(a) shows a
transmission configuration] by locking ER at the specific hetero-
dyne frequency (ΩFWM � 2Ω2 − Ω1 or Ω3 � Ω2 −Ω1) and in-
terfering it with the signal beam from the sample [red in
Fig. 1(a)], which is phase-modulated with the same heterodyne
frequency as ER . The FWM signal is retrieved by subtracting
the intensities in channels A and B from each other, attaining
the shot-noise limited detection. ER is also used to generate
background free spectral interference on a CCD camera installed
at the output of an imaging spectrometer.

In these experiments, the E1,2,3 pulse durations, hereafter
denoted as τ, arriving at the QD position are in a few hundred
femtoseconds up to ten ps range. Therefore, the theoretical treat-
ment of the optical excitation has to go beyond the computation-
ally handy ultrashort-pulse limit, where analytic expressions for
the FWM signals can be derived [38,40]. To simulate the
FWM signals of the optically driven QD, we model the QD ex-
citon as a two-level system coupled to LA phonons via the defor-
mation potential mechanism [41]. The equations of motion for
the occupation and the polarization are then obtained with the
well-established correlation-expansion approach [42]. The full
set of equations of motion are given in Ref. [43]. Practically,
to compute the FWM signal we drive the QD exciton with
Gaussian laser pulses:
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in general with i � 1, 2, 3, the pulse areas θi, the dipole moment
μ, and the pulse duration τ at times ti. The central energy is ℏωL,
which is chosen to be in resonance with the exciton transition. We
label each pulse with a phase φi with i � 1, 2 for two-pulse and
with i � 1, 2, 3 for three-pulse FWM. These phases φi corre-
spond to the radio-frequency shiftsΩi in our experimental hetero-
dyne detection scheme. The FWM signal SFWM is then isolated
by filtering the resulting microscopic polarization p � hjgihxji
with respect to the FWM phases φFWM � 2φ2 − φ1 or
φFWM � φ3 � φ2 − φ1, resulting in the FWM polarization
pFWM ∼ SFWM. Here, jgi denotes the ground state and jxi the
exciton state. Note that this filtering of the signal with respect
to the phases directly mimics the heterodyne detection scheme.
In particular, although both in experiment and in theory the
lowest order contribution to the FWM signal is of the order
χ�3�, the signals are not limited to this order. Instead, they include
all nonlinear odd orders of the susceptibility χ. This allows us to
directly resolve Rabi oscillations both in experiment and in theory.
By varying the delay τ12 � t2 − t1 in two-pulse FWM and
τ23 � t3 − t2 in three-pulse FWM, we probe the coherence

(a)

(b)

(c)

Fig. 1. Schematic picture of the experiment and the theory.
(a) Experimental setup. AOMs label the excitation pulses with radio
frequencies Ωi . The signal beam after the sample is mixed in an AOM
with the reference beam into channels A and B to generate the stationary
spectral interference at the CCD camera. FWM is detected background
free by subtracting A and B. Note that the actual experiment is working
in reflection from the sample. To keep the picture as simple as possible,
the figure shows transmission geometry. (b), (c) Schematic picture of the
theoretical simulation of the exciton state on the Bloch sphere. After each
pulse with pulse area θi the state is filtered with respect to phase factor φi
corresponding to the final FWM phase φFWM. (b) For two-pulse FWM
where τ12 is scanned and (c) for three-pulse FWM where τ23 changes.
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and population dynamics, respectively. This can be seen from the
Bloch sphere (spanned by the real and imaginary part of p and
the exciton occupation f � hjxihxji) schematics in Figs. 1(b)
and 1(c). Due to the excitation with phase-modulated laser pulse
train, for each repetition, the Bloch vector switches from its initial
(gray) to its final state (black). The curved arrows represent the
pulse areas of each driving pulse. The successive selection of the
FWM phase after each pulse results in the final FWM polarization
(orange arrow). In the experiment, optical heterodyning allows us
to probe a FWM representation of the Bloch vector dynamics in
its rotating frame. Changing the delay τ12�τ23� probes the dynam-
ics of the polarization (population) in the case of two-pulse (three-
pulse) FWM, as can be seen from the selected Bloch vector
(dotted black line and blue arrow) directly before τ12�τ23�.
The simulations reaching delay times over 100 ps are computa-
tionally demanding, which makes finding appropriate system
parameters such as pulse areas, pulse duration, and QD geometry
quite challenging. Note that we add a phenomenological long-
time dephasing rate β for the polarization and a spontaneous
decay rate γ for the exciton occupation to the model when
simulating dynamics in the 100 ps range.

3. RESULTS

We have recently shown that the pulse areas θi of the driving laser
fields in FWM experiments have a strong influence on the sys-
tem’s dynamics between the pulses. For instance, the visibility
of quantum beats, arising due to the splittings in the excitonic
level structure of a QD system, depends on the pulse area [38].
Furthermore, in a two-pulse FWM experiment, the strength of
the phonon-induced dephasing (PID) becomes more pronounced
when increasing θ1 towards π [29].

The pulse area dependence of the exciton quantum state is
rather obvious, when considering the dynamics during the inter-
action with the laser field, i.e., Rabi oscillations take place. When
keeping τ fixed and increasing Pi and therefore θi, the exciton is
excited and de-excited during the pulse more often. In the picture
of the Bloch vector, it performs more rotations, which means
that the rotation speed, i.e., the Rabi frequency ΩR, increases.
Additionally, the coupling between exciton dynamics and pho-
nons depends on the instantaneous Rabi frequency and the
phonon spectral density J�ωph�. For the deformation potential
coupling between the QD exciton and LA phonons J�ωph� scales
like ω3

ph for small phonon frequencies ωph [44]. For typical self-
assembled InGaAs/GaAs QDs with sizes in the range of a few
nanometers, the spectral density forms a broad maximum at ωph,0

in the range of a few ps−1, i.e., a few milli-electron volts [45]. The
upper cutoff frequency is roughly given by ωph,max � 2c∕a, where
c is the sound velocity and a the localization length of the exciton.
Therefore, the strongest interaction between exciton and LA pho-
nons lies in the range of ΩR ≈ ωph,0.

In the limit of ultrafast laser pulse excitation, in the range of
τ ≈ 100 fs, we have shown that simulations in the delta-pulse
limit yield a satisfactory agreement with experiments [38,46].
In this limit, the properties of the excited phonons only depend
on the final occupation of the exciton state [47]. Therefore, to
sense the PID effects related with the variation of the pulse area,
one needs to work with longer pulses. With this aim, we spectrally
shape the initial laser beam, setting durations of τ ≃ 300 fs. To
enhance the influence of LA phonons, we set the temperature to

T � 23 K, increasing the phonon occupation of modes in the
range of 7 meV by a factor of 7 × 106 with respect to 4.2 K, while
keeping sufficiently long dephasing of the zero-phonon line
[46,48]. T � 23 K is also considered in the simulations. We first
present the results obtained on a neutral exciton in an InAs QD
embedded in a planar cavity, exhibiting a low quality factor
Qplanar ≃ 1.7 × 102, as recently employed in Refs. [6,29,38]. The
layer of annealed and capped InAs QDs (density 2 × 109 cm−2) is
placed in the center of a GaAs spacer. The spectrum of the driving
laser pulses is tuned to cover the ground state to exciton transition
as shown in Fig. S1(a) in Supplement 1. Also, the exciton
to biexciton transition is slightly covered by the tail of the pulse
spectrum, generating small signals for negative delays via the two-
photon coherence [see Fig. S1(a) in Supplement 1]. A strong in-
fluence from the biexciton state would also lead to a beating for
positive delays due to the biexciton binding energy [38]. Because
the pulse spectrum has only little overlap with the exciton to biex-
citon transition, we do not resolve this beating for positive delays.
Therefore, we conclude that the influence of the biexciton for
the signals at positive delay times is negligible and neglect the
biexciton state in our study, restricting it to a two-level system.
In Figs. 2(a) and 2(b), we plot the two-pulse FWM amplitude as
a function of τ12. The FWM phase is given by φFWM � 2φ2 − φ1,
meaning that the first pulse creates a coherence and the second
pulse converts this coherence into the FWM signal [see Fig. 1(b)].
We show results for four different pulse areas θ1 at a fixed second
pulse area of θ2 � π. Figure 2(a) presents the measurement and
Fig. 2(b) the respective simulation results for small to large pulse
areas from bottom to top. Note that all curves are normalized to
unity. The pulse areas in the calculations are listed in the plot next
to the respective graph. For the geometry of the QD, we choose
slightly different parameters than in Ref. [29]. Here, the electron
and hole localization lengths are ae � 7 nm and ah � 1.5 nm,
respectively. These parameters give the best agreement between
the measured data in Fig. 2(a) and the simulations in Fig. 2(b).
Note that the dimensions of the exciton ae and ah are a spherical
representation of the exciton, which leads to the same physical
results as a lens-shaped model [49]. Therefore, these sizes must
not be seen as the real size of the exciton wave function.

We start the discussion with the smallest measured pulse area
at the bottom in Fig. 2(a) (yellow). The FWM amplitude builds
up around τ12 � 0 and reaches a maximum at around 0.5 ps
(marked by the circle). After that, the signal slightly decays within
the next 3 ps. This behavior is well reproduced by the simulation
in Fig. 2(b), including the coupling to LA phonons (solid) for
θ1 � 0.4π. The drop of the signal within the first few ps results
from the PID effect. Together, the phonons and the exciton in the
QD form a new equilibrium state, the acoustic polaron. This po-
laron is accompanied by a static lattice displacement in the vicin-
ity of the QD [50]. When the exciton, and therefore the polaron,
is created faster than the typical time scale of the involved pho-
nons, a phonon wave packet is emitted. This results in an irre-
versible loss of exciton coherence [46,51,52]. To emphasize that
the signal drop results from the phonon coupling, we also provide
simulations neglecting the exciton-phonon interaction, resulting
in the dashed yellow curve in Fig. 2(b), visibly lacking the initial
decay due to the PID effect.

Going over to the next larger pulse area in Fig. 2(a) (green), we
clearly see that the drop of the measured FWM signal is signifi-
cantly increased and reaches an almost stationary value within less
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than 1 ps. Additionally, the circle shows that the maximum of the
signal shifts to shorter delays. These findings are consistent with
the simulation for θ1 � 1.0π in Fig. 2(b) (solid green). However,
the calculated FWM signal without the exciton-phonon coupling
(dashed green) goes exactly to zero after τ12 � 1 ps. To explain
this, we take a look at the schematic Bloch sphere picture in
Fig. 2(c), where the green arrow visualizes the movement of
the Bloch vector during the first laser pulse excitation. When
the first pulse area is small, i.e., θ1 < π∕2, the microscopic polari-
zation p is maximal at the end of the pulse. Therefore, also the
two-pulse FWM signal is maximal for small positive delays,
i.e., after the first pulse. This is the case for the dashed yellow
curve. However, for pulse areas π∕2 < θ1 < π, the Bloch vector
crosses the equator of the Bloch sphere, i.e., the state of maxi-
mum coherence, during the pulse. For the special case of a π
pulse, the final polarization is zero, leading also to a vanishing
FWM signal. Already here we see that the dynamics of the
FWM signal resembles more involved movements of the Bloch
vector during the action of the first laser pulse. The full model,

including the coupling to LA phonons, is shown as a solid green
line in Fig. 2(b). We see that the stationary value of the curve
strongly deviates from the dashed line. This mismatch is again
a consequence of the PID effect. Going from a 0.4π pulse to
a π-pulse excitation, the dephasing influence of the phonon cou-
pling should significantly increase because the final exciton occu-
pation f is approximately twice as large [45,53]. Comparing the
solid lines with the dashed lines of the same color (yellow and
green), we see that this is clearly the case. A stronger excitation
leads to a larger phonon wave packet and therefore to stronger
dephasing.

When increasing the pulse area further, in the second curve
from the top in Fig. 2(a) (blue), the signal drop decreases again,
and the maximum of the signal also goes back to longer
τ12 ≈ 0.5 ps, as marked by the circle. We find the best agree-
ment with the experiment for the simulation with θ1 � 1.5π
in Fig. 2(b) (solid blue). The dynamics of the simulated signals,
both with and without the exciton-phonon interaction, look very
much like the θ1 � 0.4π case (yellow). The only significant dif-
ference of the blue curve is an additional minimum at τ12 � 0 ps.
This is again a result of the Bloch vector dynamics. We are now
dealing with the θ1 > π case, schematically shown in Fig. 2(d).
The Bloch vector crosses the north pole of the sphere during the
pulse, which leads to null polarization, and, in consequence, to a
vanishing FWM signal. After 1 ps, the solid blue line in Fig. 2(b)
is again governed by the PID drop of the signal. The additional
minimum of the FWM signal around τ12 � 0 ps is obviously
too unpronounced to be clearly resolved in the experiment in
Fig. 2(a). When comparing the simulation with and without pho-
non coupling, we find that the drop of the signal, i.e., the PID
effect, gets weaker with respect to the pulse area discussed above.
This is in line with the previous explanation of the strength of
the PID effect. For this pulse area, the final exciton occupation
is smaller than for the π pulse, which leads to weaker dephasing.

When we move to the largest considered pulse area at the top
(violet), a clear minimum shows up in the measured signal in
Fig. 2(a). This is in excellent agreement with the simulation for
θ1 � 1.8π in Fig. 2(b) (solid violet). Here, the signal minimum is
significantly more pronounced than in the case considered before.
This is an instructive demonstration of the optically driven Rabi
oscillations of the exciton state. The PID drop after τ12 � 0.5 ps
is of a comparable strength as for the 1.5π case in blue.

From the pulse area series in Figs. 2(a) and 2(b), we find that
the effect of the PID and therefore the influence of the exciton-
phonon interaction changes measurably with the pulse area θ1 of
the first driving laser pulse. For large positive delays, i.e., τ12 > τ,
pulse one arrives first, while for large negative delays, pulse two
arrives first. Therefore, around τ12 � 0, both pulses overlap. The
additional dynamics evolving around τ12 � 0 happen during the
presence of the first pulse. Because the τ12 dependence of the two-
pulse FWM signal represents the dynamics of the coherence,
i.e., the microscopic polarization of the exciton p, the resolved
oscillations for the largest considered pulse area stem from opti-
cally driven Rabi oscillations in the time domain.

It was shown that the exciton-phonon interaction leads to
more involved movements of the Bloch vector during optical driv-
ing. The phonon lead to (i) dephasing, i.e., shrinking of the Bloch
vector length and (ii) a mixture of real and imaginary part of the
polarization [54], i.e., a movement out of the Rabi oscillation
plane of the Bloch vector. For simplicity, the illustrating pictures

(a)

(c) (d)

(b)

Fig. 2. Normalized two-pulse FWM generated with subps pulses on a
QD exciton embedded in a low-Q cavity. (a), (b) FWM amplitude as a
function of the delay τ12 for increasing pulse area of the first pulse from
bottom to top. The FWM delay dependence probes the optically driven
evolution of the exciton polarization, performing Rabi oscillations for
excitations with high pulse areas. (a) Experiment, the P1 impinging
the sample surface are �0.14, 1.1, 2.3, 2.7� μW, P2 � 1 μW, tempera-
ture T � 23 K. The dots indicate the noise level. (b) Theory, solid lines
with phonon coupling dotted lines without phonons. θ1 as given in the
plot. The circles mark maxima of the FWM signal. (c), (d) Schematic
pictures of the FWM signal on the Bloch sphere; (c) for small pulse areas
θ1; (d) for pulse areas θ1 exceeding π.
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in Figs. 2(c) and 2(d) do not take these complexities into account.
Instead, they capture well the origin of the Rabi oscillations
observable in the FWM delay dynamics. Following this proof
of principle demonstration, we now generalize this approach
using a more suitable photonic nanostructure.

Shifting the focus from the PID phenomenon to the Rabi
oscillations, we aim to drive the QD with laser pulses that are
as long as possible, to stretch the dynamics in time. In parallel,
we want to reach preferably large pulse areas, to generate as many
Rabi periods as possible. Our FWM methodology relies on the
detection of spectrally resolved interference between the QD
emission and the reference ER , requiring a bandwidth well beyond
the spectrometer resolution, in practice over 0.1 meV. As such,
the experiment is limited to pulse durations τ in the few ps range.
To overcome this issue, we switch to a micropillar cavity [55,56]
with a diameter of 1.8 μm and a height around 10 μm, as depicted
in Fig. 3(a), which yields a 2 orders of magnitude higher quality
factor of Qpillar ≃ 2.4 × 104. This structure, containing a layer of
InAs QDs at the antinode of the cavity mode, allows us to access
the photonic structure with subps pulses (namely, τ ≃ 0.4 ps). See
Supplement 1 for spectra of spectral interference and laser pulses.
We tightly focus them onto the top facet of the pillar and con-
struct spectral interferences with ER , placed 12 μm apart at the
auxiliary pillar [56]. Crucially, due to the high quality factor, the
optical field reaches the QD in the cavity in a retarded way. This
stretches the pulses to durations of over 10 ps, as schematically
shown in Fig. 3(b). Figure 3(c) shows a temperature scan of the
FWM spectrum of the QD cavity system (a corresponding scan of
the photoluminescence intensity is shown in Supplement 1). The
resonances of exciton and cavity are marked in the picture.
Around T � 27 K both resonances cross, which shows that
the coupled QD cavity system operates in the weak coupling

regime [55,57,58]. The possibility of adjusting the detuning very
precisely makes this system prototypical to demonstrate the Purcell
effect [59,60]. We do so by applying a three-pulse FWMmeasure-
ment for different detunings between the cavity mode and the ex-
citon transition. The results are shown in Supplement 1.

The enhancement of the intracavity field in the pillar structure
allows for reaching larger θi with respect to the low Q-factor pla-
nar cavity explored in Fig. 2. In the following, we choose the tem-
perature to T � 27 K, setting the exciton transition to be
approximately in resonance with the cavity mode, as marked
by the red arrows in Fig. 3(c). Working at these elevated temper-
atures results in a significant increase of the LA phonon influence
than at 5 K [46]. In all simulations, we choose the temperature to
be 25 K.

The results for the two-pulse FWM study are shown in Fig. 4
with the measurements in Fig. 4(a) and the simulations in
Fig. 4(b). All curves are normalized to their respective maximum.
We consider four different pulse areas, increasing from bottom to
top. The second pulse area is fixed in the simulations to θ2 � π.
The pulse duration τ and the long time dephasing rate β are fitted
to the smallest pulse area, and we found the best agreement for
τ � 12 ps and β � 0.01∕ps. For the simulations, we choose the
same QD geometry as for the calculations shown in Fig. 2.

For the smallest considered pulse area, the measured FWM
signal in Fig. 4(a) just forms one maximum around τ12 �
25 ps and decays for longer delays single exponentially with β.
These dynamics are well reproduced by the simulation in
Fig. 4(b). Additionally, there is hardly any difference between
the calculation with and without exciton-phonon interaction

(a) (c)

(b)

Fig. 3. Micropillar cavity system. (a) Scanning electron microscopy
image of an exemplary micropillar cavity system with a diameter of
1.8 μm and a height around 10 μm; (b) FWM spectra for varying tem-
peratures, demonstrating operation in the weak coupling regime: exciton
and cavity resonances shift in energy and cross at T ≈ 27 K; (c) schematic
picture of the driving laser pulses and the measured FWMdynamics. The
effective pulse duration τ is increased by a factor of 30 inside the cavity.
Green trace is the measured time-resolved FWM field (vertical logarith-
mic scale), illustrating its buildup owing to the high Q factor.

(a) (b)

(c) (d)

Fig. 4. Normalized two-pulse FWM with τ ≃ 12 ps pulses in a micro-
pillar cavity. (a), (b) FWM amplitude as a function of the delay τ12 for
increasing pulse area of the first pulse from bottom to top.
(a) Experiment, P1 � �0.02, 0.24, 0.35, 0.55� μW, P2 � 0.08 μW;
(b) theory, with θ1 as given in the plot and θ2 � π; solid/dotted lines
with/without coupling to phonons; (c), (d) FWM spectral amplitudes
as a function of excitation power for τ12 � 0 illustrating emergence
of the AT splitting with increasing θ1. Experiment in (c) against

ffiffiffiffiffi
P1

p
and theory in (d) against θ1.
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(solid and dashed lines). This indicates that the optically driven
dynamics are too slow to induce the PID drop of the signal.
In other words, the polaron creation follows the exciton occupa-
tion adiabatically, and no phonon wave packet is emitted [45].
We can instructively describe the optical excitation process using
the laser-exciton dressed state picture [61]. These states then
have an energy splitting ΔAT, the so called Autler–Townes (AT)
splitting [62], which is proportional to the instantaneous laser
field amplitude. While in the exciton basis the LA phonons
only couple to the exciton state, in the presence of a light field
they lead to transitions between the dressed states. For small pulse
areas, i.e., θ1 ≪ π, ΔAT is in the μeV range, hence in the energy
range, where the phonon spectral density is negligible [29].
Therefore, the phonons do not lead to efficient transitions
between the dressed states, which allows them to evolve
adiabatically.

The appearance of a splitting between the dressed states with
increasing field strength can be seen in Figs. 4(c) and 4(d). There,
we show the FWM spectrum centered around the exciton tran-
sition energy E x. In the measurement in Fig. 4(c), it is plotted
against

ffiffiffiffiffi
P1

p
∼ θ1, which is proportional to the field amplitude.

The corresponding simulation is presented in Fig. 4(d) and shows
a good agreement with the measurement. The spectra are taken
for τ12 � 0. While for small pulse areas the spectrum is domi-
nated by a single line at the exciton energy, it splits according
to the AT splitting of the dressed states, reaching values of approx-
imately 0.1 meV in Fig. 4(c). Note that the AT splitting is time-
dependent for pulsed excitations. Therefore, we are seeing a time-
integrated version of the splitting between the dressed states in the
FWM spectra. However, ΔAT is the direct spectral domain trans-
lation of the Rabi oscillations in the FWM signal. In agreement
between the dynamics depicted in Figs. 4(a) and 4(b) and the
spectral behavior in Figs. 4(c) and 4(d), we find clear signatures
of the Rabi oscillations from pulse areas of θ1 ≈ 1.5π onward. We
additionally find that the line at positive detuning is stronger than
the other one. This stems from a slight mismatch between the
energies of the driving laser pulses and the exciton transition
of ℏωL − E x � −0.05 meV, which was considered in the simu-
lation in Fig. 4(d). This detuning agrees well with the separation
between the exciton and cavity line in Fig. 3(b) at 27 K. Only for
the case of exact resonance between the driving field and the tran-
sition energy are the dressed states equally occupied [61]. As we
find here, already detunings in the few μeV range result in a sig-
nificant mismatch of the two lines in the FWM signal. To check
that the AT splitting is driven by the laser pulses, we performed
the same measurement and simulation as in Figs. 4(c) and 4(d)
but with a large delay of τ12 � 30 ps to reduce the overlap of the
pulses. Here, no AT splitting was found (see Supplement 1).

Comparing the second pulse area in Fig. 4(a) (green) to the
yellow curve, the maximum of the signal splits into two local
maxima, with one moving to smaller and one moving to larger
delays τ12. The maxima are marked by the circles. In the simu-
lation in Fig. 4(b), we find the best agreement for θ1 � 1.4π
(solid green line), where we already find clear signatures of the
Rabi oscillations during the interaction with the first laser pulse.
Here two distinct maxima of almost equal height are formed.
Compared to the simulation without the exciton-phonon inter-
action (dashed green line), we find a significant deviation for the
second maximum already for this pulse area. Without the
coupling to phonons, the FWM signal drops very rapidly, and

the second maximum is much smaller than the first one.
There are two main effects enhancing the discrepancy between
the two calculations: (i) For these pulse areas we have shown that
ΔAT attains the 0.1 meV range. This allows for more efficient
phonon-assisted transitions between the dressed states and there-
fore to strong dephasing during the first laser pulse. (ii) The ex-
citon-phonon interaction leads to a renormalization of the pulse
areas [26,63–65]. This makes a direct comparison of the pulse
areas with and without phonon coupling difficult.

Stepping to the next larger pulse area in Fig. 4(a), i.e., from the
green to the blue curve, does not alter the dynamics of the FWM
signal significantly. We basically find a slightly larger difference in
the height of the two maxima in the signal. This is reproduced by
the modeled signal in Fig. 4(b). Here the minimum between the
two maxima is more pronounced, as in the experiment, which we
already found in a similar way for the shorter pulses in Fig. 2.
The deviation between the simulation with and without phonon
coupling remains remarkable because of the reasons pointed
out earlier.

The most significant difference for the signal dynamics is
found for the largest considered pulse area in the experiment,
which is shown as a violet curve in Fig. 4(a). It forms a double
peak structure within the first 25 ps followed by a minor maxi-
mum around τ12 � 50 ps. After that, the signal is basically null.
The very same behavior is found in the simulation with θ1 �
2.0π in Fig. 4(b): Two strong and narrow peaks around τ12 �
0 ps are followed by a small maximum at τ12 ≈ 50 ps.
Together with the stunning agreement with the simulated curve
in Fig. 4(b) (solid violet), this impressively shows that multiple
Rabi oscillations are resolved in the coherence dynamics of the
two-pulse FWM experiment. Without considering the coupling
to phonons, the model gives the dashed line in Fig. 4(b). Here
also three maxima build up, but the relative heights of the second
and third maximum do not agree with the measured curve
in Fig. 4(a) at all. This shows that coupling to phonons has a
strong impact on the optically driven dynamics of the exciton
quantum state.

The FWM technique allows us to use different pulse sequences
that lead to different microscopic quantities determining the
FWM signal. So far, we have studied the exciton polarization
p by employing a two-pulse FWM experiment with φFWM �
2φ2 − φ1. We now turn to a three-pulse excitation with φFWM �
φ3 � φ2 − φ1 where—in a two-level system—the FWM signal
carries information about the occupation of the exciton state
f . A schematic picture of the Bloch sphere for this experiment
is shown in Figs. 5(a) and 5(b) [see also Fig. 1(c)]. The first pulse
drives a microscopic coherence. The second pulse converts this
coherence into an occupation of the exciton, which is then turned
into the FWM signal by the third pulse. A larger occupation of
the exciton state f will accordingly lead to a stronger FWM am-
plitude. The idea is to fix the first and third pulse areas to small
values θ1, θ3 ≲ π∕2 and change the second area θ2. This will then
result in different occupations f and therefore different signal
strengths. For large pulse areas θ2, the three-pulse FWM signal
will resolve the optically driven Rabi oscillations projected on the
exciton occupation f .

Figures 5(c) and 5(d) present the normalized experimental and
theoretical results, respectively, for different pulse areas θ2, in-
creasing from bottom to top. The FWM amplitude is plotted
as a function of the delay τ23 to investigate the exciton population
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dynamics. The first delay is fixed to τ12 � 10 ps to enable the
buildup of the intracavity field. We see for the smallest pulse area
at the bottom (yellow) that the dynamics of the three-pulse FWM
amplitude forms a single broad maximum. For long delays, the
signal is dominated by the spontaneous decay. The decay rate was
chosen to γ � 0.004∕ps to give the best fit to the measurement.
We found the best agreement between measurement and simu-
lation for θ2 � 0.8π. The other pulse areas are chosen to be
θ1 � 0.2π and θ3 � 0.4π in all simulations.

Comparing experiment and theory, we find an excellent agree-
ment for each considered θ2. With increasing pulse strength, the
first maximum shifts to shorter delays τ23, while at longer τ23,
additional maxima emerge, as marked by the circles. These dy-
namics now happen during the interaction with the second laser
pulse. Therefore, the signal is dominated by the Rabi oscillations
of the exciton occupation f . For the two largest pulse areas (blue
and violet), up to three distinct maxima can be found in the
signal. When comparing the simulations including the exciton-
phonon coupling (solid) with those omitting it (dashed), we find

clear qualitative differences. In the θ2 � 1.2π case (green), the
maxima have a significant mismatch in their delay τ23 of approx-
imately 25 ps. Another striking example is the largest pulse area at
the top, where the full model, including the phonon coupling,
develops multiple modulations, while the uncoupled calculation
yields a single broad peak. One obvious reason for this stronger
discrepancy between the model with and without phonons in
Fig. 5(b) compared to the results in Fig. 4(b) is the fact that
the former one includes three pulses, while the latter one only
two. Therefore, the impact of dephasing and pulse area renorm-
alization come into play for one more pulse, further enhancing
their influence. Additionally, we reach higher pulse areas, which
results in general in a more efficient exciton-phonon interaction.

The FWM signal SFWM is a complex quantity with real and
imaginary part or amplitude and phase. This feature has, e.g., been
used to distinguish between different coupling situations in few-
level systems [35]. We here use it to further illustrate the dynam-
ics of the Rabi oscillations and especially the influence of the
exciton-phonon coupling. In Fig. 6 we plot real and imaginary
parts of the simulated FWM signals and color-code the delay
to visualize the dynamics of the signals. The arrow heads indicate
the direction of the time evolution. In principle, Figs. 6(a), 6(b)
and 6(c), 6(d) are more sophisticated representations of the data
shown in Fig. 4(b) and 5(d), respectively. In Figs. 6(a) and 6(b),
we show the smallest and largest pulse areas for the two-pulse
FWM case and in Figs. 6(c) and 6(d) the smallest and largest pulse
areas for the three-pulse FWM case. The remaining four consid-
ered pulse areas are given in Supplement 1. The simulations with-
out exciton-phonon coupling are shown as dotted lines. These
curves are restricted to the vertical axis, i.e., the FWM signal
is purely imaginary. When the full model is considered (solid
lines), real and imaginary parts of the FWM signals get mixed,
and the curves in Fig. 6 show very involved dynamics. While
for the small pulse area examples in Figs. 6(a) and 6(c) the signals
are governed by a single loop, in the high area cases in Figs. 6(b)

(a)

(c) (d)

(b)

Fig. 5. Normalized three-pulse FWM with τ ≃ 12 ps pulses in a mi-
cropillar cavity. (a), (b) Schematic pictures of the FWM signal on the
Bloch sphere. (a) For small pulse areas θ2; (b) for pulse areas θ2 exceeding
π; solid/dotted lines with/without coupling to phonons; (c), (d) FWM
amplitude as function of the delay τ23 for increasing pulse area of the
second pulse from bottom to top. The FWM delay dependence probes
the optically driven evolution of the exciton occupation, performing Rabi
oscillations for excitations with high pulse areas. (c) Experiment,
T � 27 K, τ12 � 10 ps, P1 � 0.05 μW, P3 � 0.1 μW, P2 �
�0.13, 0.3, 0.56, 1� μW; (d) theory, with θ1 � 0.2π, θ3 � 0.4π and
θ2 as given in the plot.

(a) (b)

(c) (d)

Fig. 6. Entire complex FWM signal. Real and imaginary part of the
FWM signal SFWM. The delays are color-coded; the dotted lines show
simulations without phonon coupling, and the solid lines with phonon
coupling. (a), (b) For two-pulse FWM. The corresponding dynamics
of the FWM amplitude are given in Fig. 4(b). (c), (d) For three-pulse
FWM. The corresponding dynamics of the FWM amplitude is given
in Fig. 5(d).
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and 6(d) the signals perform multiple loops. These loops re-
present the Rabi oscillations, which we also found in the dynam-
ics of the FWM amplitudes in Figs. 4 and 5. This way of
analyzing the FWM signals exploits the full potential of the
method in an appealing fashion.

4. CONCLUSIONS

In summary, we have investigated the optically driven dynamics
of the full quantum state of a single QD exciton in the presence of
efficient coupling to acoustic phonons. By driving the system with
sub- and superps laser pulses and applying two- and three-pulse
FWM techniques, we could isolate the dynamics of the micro-
scopic polarization and the exciton occupation, respectively. By
this, we showed that for large pulse areas, involved dynamics
of the Bloch vector in the form of Rabi oscillations take place.
Especially, the coupling to LA phonons plays a decisive role
for the optical control of the QD exciton: On the one hand,
for short laser pulses (τ < 1 ps) phonons lead to the loss of co-
herence after the first laser pulse, due to the emission of phonon
wave packets. On the other hand, for τ ≃ 10 ps the dephasing
happens already during the first pulse, and it therefore strongly
depends on the applied pulse area. Only the accurate theoretical
description of the exciton-phonon interaction allowed for a quan-
titative analysis and comprehension of the measured data. In the
spectral domain, the observed Rabi oscillations represent the AT
splitting, which we clearly observed in the FWM spectra.

We thus find that FWM is a versatile technique to study
optically driven dynamics in many different aspects, not only
in single QDs, but also in any other potential isolated quantum
systems such as spins of QD trions [1–3] or single defect centers
in insulators [4,5]. However, the time scales of spins are by a fac-
tor of 10–100 slower than our optically active exciton transition,
which renders the investigation in the optical range far more
challenging.

We have demonstrated that FWM spectroscopy of single
emitters can be used to study the optically driven dynamics of
the quantum state and at the same time works in a regime where
the coupling to phonons is rather strong. This makes this tech-
nique also promising to investigate optical transitions in localized
excitons in atomically thin structures such as transition metal di-
chalcogenides and hexagonal boron nitride or color centers in
insulators. These systems stand out due to their functionality
at elevated temperatures, making them an up-and-coming
platform for quantum applications.
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