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Summary 75 

Six extant species of non-human great apes are currently recognized: Sumatran and Bornean 76 

orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps 77 

remain in our knowledge of the fine-scale variation in hominoid morphology, behavior, and genetics, 78 

and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: 79 

Pongo), the only Asian great apes, and phylogenetically our most distant relatives among extant 80 

hominids [1]. Definitive designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 81 

1760) and P. abelii (Lesson 1827), as distinct species took place as recently as 2001 [1, 2]. Based on 82 

morphological, behavioral and environmental data, and corroborated by population genetic analyses 83 

of 37 orangutan genomes, we show that an isolated population of the Sumatran orangutan south of 84 

Lake Toba, Batang Toru, is highly distinct from the northern Sumatran and Bornean populations. The 85 

deepest split in the evolutionary history of extant orangutans occurred ~3.38 Ma between this remnant 86 

population south of Lake Toba and those to the north, while both currently recognized species 87 

separated much later about 674 ka. A morphometric analysis based on cranio-mandibular and dental 88 

characters as well as behavioral data revealed consistent differences between individuals from Batang 89 

Toru and other extant Ponginae. Our combined analyses support a new classification of orangutans 90 

into three extant species. One of them, P. tapanuliensis, encompasses the Batang Toru population, of 91 

which fewer than 800 individuals survive.  92 
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Results and Discussion 93 

Despite decades of field studies [3] our knowledge of variation among orangutans remains limited as 94 

many populations occur in isolated and inaccessible habitats, leaving questions regarding their 95 

evolutionary history and taxonomic classification largely unresolved. In particular, Sumatran 96 

populations south of Lake Toba had long been overlooked, even though a 1939 review of the species’ 97 

range mentioned that orangutans had been reported in several forest areas in that region [4]. Based on 98 

diverse sources of evidence, we describe a new orangutan species, Pongo tapanuliensis, which 99 

encompasses a geographically and genetically isolated population found in the Batang Toru area at 100 

the southernmost range of extant Sumatran orangutans, south of Lake Toba, Indonesia. 101 

Systematics 102 

Genus Pongo Lacépède, 1799 103 

Pongo tapanuliensis sp. nov. Nurcahyo, Meijaard, Nowak, Fredriksson & Groves 104 

Tapanuli Orangutan 105 

Etymology. The species name refers to three North Sumatran districts (North, Central, and South 106 

Tapanuli) to which P. tapanuliensis is endemic. 107 

Holotype. The complete skeleton of an adult male orangutan that died from wounds sustained by local 108 

villagers in November 2013 near Sugi Tonga, Marancar, Tapanuli (Batang Toru) Forest Complex 109 

(1⁰35’54.1”N, 99⁰16’36.5”E), South Tapanuli District, North Sumatra, Indonesia. Skull and 110 

postcranium are lodged in the Museum Zoologicum Bogoriense, Indonesia, accession number 111 

MZB39182. High-resolution 3D reconstructions of the skull and mandible are available as 112 

supplementary material. 113 

Paratypes. Adult individuals of P. tapanuliensis (P2591-M435788 – P2591-M435790) photographed 114 

by Tim Laman in the Batang Toru Forest Complex (1⁰41’9.1”N, 98⁰59’38.1”E), North Tapanuli 115 

District, North Sumatra, Indonesia. Paratypes are available from http://www.morphobank.org (Login: 116 

2591 / Password: tapanuliorangutan). 117 

Differential diagnosis. Unless otherwise stated, all units are [mm]. Summary statistics for all 118 

measurements are listed in Tables S1–3. Pongo tapanuliensis differs from all extant orangutans in the 119 

breadth of the upper canine (21.5, vs. <20.86); the shallow face depth (6.0 vs. >8.4); the narrower 120 

interpterygoid distance (at posterior end of pterygoids 33.8 vs. >43.9; at anterior end of pterygoids, 121 

33.7 vs. >43.0); the shorter tympanic tube (23.9 vs. >28.4, mostly >30); the shorter 122 

temporomandibular joint (22.5 vs. >24.7); the narrower maxillary incisor row (28.3 vs. >30.1); the 123 

narrower distance across the palate at the first molars (62.7 vs. >65.7); the shorter horizontal length of 124 



A NEW SPECIES OF ORANGUTAN 

6 

the mandibular symphysis (49.3 vs. >53.7); the smaller inferior transverse torus (horizontal length 125 

from anterior surface of symphysis 31.8 compared to >36.0); and the width of the ascending ramus of 126 

the mandible (55.9 vs. >56.3). 127 

Pongo tapanuliensis differs specifically from P. abelii by its deep suborbital fossa, triangular 128 

pyriform aperture, and angled facial profile; the longer nuchal surface (70.5 vs. <64.7); the wider 129 

rostrum, posterior to the canines (59.9 vs. <59); the narrower orbits (33.8 vs. <34.6); the shorter (29.2 130 

vs. >30.0) and narrower foramen magnum (23.2 vs. >23.3); the narrower bicondylar breadth (120.0 131 

vs. >127.2); the narrower mandibular incisor row (24.4 vs. >28.3); the greater mesio-distal length of 132 

the upper canine (19.44 vs. <17.55). The male long call has a higher maximum frequency range of the 133 

roar pulse type (> 800 Hz vs. <747) with a higher ‘shape’ (>952 Hz/s vs. <934). 134 

Pongo tapanuliensis differs from P. pygmaeus by possessing a nearly straight zygomaxillary suture; 135 

the lower orbit (orbit height 33.4 vs. >35.3); the male long call has a longer duration (>111 seconds 136 

vs. <90) with a greater number of pulses (>52 pulses vs. <45), and is delivered at a greater rate (>0.82 137 

pulses per 20 seconds vs. <0.79). 138 

Pongo tapanuliensis differs specifically from Pongo ‘pygmaeus’ palaeosumatrensis in the smaller 139 

size of the first upper molar (mesio-distal length 13.65 vs. >14.0, buccolingual breadth 11.37 vs. 140 

>12.10, crown area 155.2 mm2 vs. >175.45). 141 

Description. Craniometrically, the type skull of P. tapanuliensis (Fig. 1B) is significantly smaller than 142 

any skull of comparable developmental stage of other orangutans; it falls outside of the interquartile 143 

ranges of P. abelii and P. pygmaeus for 24 of 39 cranio-mandibular measurements (Table S1). A PCA 144 

of 26 cranio-mandibular measurements commonly used in primate taxonomic classification [5, 6] 145 

shows consistent differences between P. tapanuliensis and the two currently recognized species (Fig. 146 

1C). 147 

The external morphology of P. tapanuliensis is more similar to P. abelii in its linear body build and 148 

more cinnamon pelage than P. pygmaeus. The hair texture of P. tapanuliensis is frizzier, contrasting 149 

in particular with the long, loose body hair of P. abelii. Pongo tapanuliensis has a prominent 150 

moustache and flat flanges covered in downy hair in dominant males, while flanges of older males 151 

resemble more those of Bornean males. Females of P. tapanuliensis have beards, unlike P. pygmaeus. 152 

Distribution. Pongo tapanuliensis occurs only in a small number of forest fragments in the districts of 153 

Central, North, and South Tapanuli, Indonesia (Fig. 1A). The total distribution covers approximately 154 

1,000 km2, with an estimated population size of fewer than 800 individuals [7]. The current 155 

distribution of P. tapanuliensis is almost completely restricted to medium elevation hill and 156 

submontane forest (~300–1300 m asl) [7-9]. While densities are highest in primary forest, it does 157 
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occur at lower densities in mixed agroforest at the edge of primary forest areas [10, 11]. Until 158 

relatively recently, P. tapanuliensis was more widespread to the south and west of the current 159 

distribution, although evidence for this is largely anecdotal [12, 13]. 160 

To corroborate our morphological analysis, we investigated the evolutionary history of the genus 161 

Pongo, particularly the relationships between P. tapanuliensis and its extant congeners, using whole-162 

genome data of 37 orangutans (Table S4). Our dataset is based on wild-born individuals with known 163 

provenance, covering the entire range of extant orangutans including areas never sampled before (Fig. 164 

2A). This dataset therefore provides a valuable resource for future studies of great ape biology and 165 

genomics. 166 

A principal component analysis (PCA; Fig. 2B) of genomic diversity highlighted the divergence 167 

between individuals from Borneo and Sumatra (PC1), but also separated P. tapanuliensis from P. 168 

abelii (PC2). The same clustering pattern was also found in a model-based analysis of population 169 

structure (Fig. 2C), and is consistent with an earlier genetic study analyzing a larger number of non-170 

invasively collected samples using microsatellite markers [14]. However, while powerful in detecting 171 

extant population structure, population history and speciation cannot be inferred, as they are not suited 172 

to distinguish between old divergences with gene flow and cases of recent divergence with isolation 173 

[15, 16]. To address this problem and further investigate the timing of population splits and gene flow, 174 

we therefore employed different complementary modeling and phylogenetic approaches. 175 

We applied an Approximate Bayesian Computation (ABC) approach, which allows to infer and 176 

compare arbitrarily complex demographic modes based on the comparison of the observed genomic 177 

data to extensive population genetic simulations [17]. Our analyses revealed three deep evolutionary 178 

lineages in extant orangutans (Figs. 3A and B). Colonization scenarios in which the earliest split 179 

within Pongo occurred between the lineages leading to P. abelii and P. tapanuliensis were much 180 

better supported than scenarios in which the earliest split was between Bornean and Sumatran species 181 

(combined posterior probability: 99.91%, Fig. 3A). Of the two best scenarios, a model postulating 182 

colonization of both northern Sumatra and Borneo from an ancestral population likely situated south 183 

of Lake Toba on Sumatra, had the highest support (posterior probability 97.56%, Fig. 3A). Our results 184 

supported a scenario in which orangutans from mainland Asia first entered Sundaland south of what is 185 

now Lake Toba on Sumatra, the most likely entry point based on paleogeographic reconstructions 186 

[18]. This ancestral population, of which P. tapanuliensis is a direct descendant, then served as a 187 

source for the subsequent different colonization events of what is now Borneo, Java and northern 188 

Sumatra. 189 

We estimated the split time between populations north and south of Lake Toba at ~3.4 Ma (Fig. 3B, 190 

Table S5). Under our best-fitting model, we found evidence for post-split gene flow across Lake Toba 191 
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(~0.3–0.9 migrants per generation, Table S5), which is consistent with highly significant signatures of 192 

gene flow between P. abelii and P. tapanuliensis using D-statistics (CK, BT, WA, Homo sapiens: D= 193 

-0.2819, p-value<0.00001; WK, BT, LK, Homo sapiens: D= -0.2967 , p-value<0.00001)[19]. Such 194 

gene flow resulted in comparatively high autosomal affinity of P. tapanuliensis to P. abelii in the 195 

PCA (Fig. 2B), explaining the smaller amount of variance captured by PC2 (separating P. 196 

tapanuliensis from all other populations) compared to PC1 (separating P. pygmaeus from the 197 

Sumatran populations). The parameter estimates from a Bayesian full-likelihood analysis 198 

implemented in the software G-PhoCS were in good agreement with those obtained by the ABC 199 

analysis, although the split time between populations north and south of Lake Toba was more recent 200 

(2.28 Ma, 95%-HPD: 2.21–2.35, Table S5). The G-PhoCS analysis revealed highly asymmetric gene 201 

flow between populations north and south of the Toba caldera, with much lower levels from north to 202 

south than vice versa (Table S5). 203 

The existence of two deep evolutionary lineages among extant Sumatran orangutans was corroborated 204 

by phylogenetic analyses based on whole mitochondrial genomes (Fig. 4A), in which the deepest split 205 

occurred between populations north of Lake Toba and all other orangutans at ~3.97 Ma (95%-HPD: 206 

2.35–5.57). Sumatran orangutans formed a paraphyletic group, with P. tapanuliensis being more 207 

closely related to the Bornean lineage from which it diverged ~2.41 Ma (1.26–3.42 Ma). In contrast, 208 

Bornean populations formed a monophyletic group with a very recent mitochondrial coalescence 209 

at~160 ka (94–227 ka).  210 

Due to strong female philopatry [20], gene flow in orangutans is almost exclusively male-mediated 211 

[21]. Consistent with these pronounced differences in dispersal behavior, phylogenetic analysis of 212 

extensive Y-chromosomal sequencing data revealed a comparatively recent coalescence of Y 213 

chromosomes of all extant orangutans ~430 ka (Fig. 4B). The single available Y-haplotype from P. 214 

tapanuliensis was nested within the other Sumatran sequences, pointing at the occurrence of recent 215 

male-mediated gene flow across the Toba divide. Thus, in combination with our modeling results, the 216 

sex-specific data highlighted the impact of extraordinarily strong male-biased dispersal in the 217 

speciation process of orangutans. 218 

Our analyses revealed significant divergence between P. tapanuliensis and P. abelii (Figs. 3B and 219 

4A), but also low levels of male-mediated gene flow until recently between both species (Figs. 3B and 220 

4B). Populations north and south of Lake Toba on Sumatra had been in genetic contact for most of the 221 

time since their split, but there was a marked reduction in gene flow after ~100 ka (Fig. 3C), 222 

consistent with habitat destruction caused by the Toba supereruption 73 ka ago [22]. Pongo 223 

tapanuliensis and P. abelii have been on independent evolutionary trajectories at least since the late 224 

Pleistocene/early Holocene, as gene flow between these populations has ceased completely 10–20 ka 225 

(Fig. 3C) and is now impossible because of habitat loss in areas between the species’ ranges [7]. 226 
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Nowadays, most biologists would probably adopt an operational species definition such as: ‘a species 227 

is a population (or group of populations) with fixed heritable differences from other such populations 228 

(or groups of populations)’ [23]. With totally allopatric populations, a ‘reproductive isolation’ 229 

criterion, such as is still espoused by adherents of the biological species concept, is not possible [24, 230 

25]. Notwithstanding a long-running debate about the role of gene flow during speciation and genetic 231 

interpretations of the species concept [26, 27], genomic studies have found evidence for many 232 

instances of recent or ongoing gene flow between taxa which are recognized as distinct and well-233 

established species. This includes examples within each of the other three hominid genera. A recent 234 

genomic study using comparable methods to ours revealed extensive gene flow between Gorilla 235 

gorilla and G. beringei until ~20‒30 ka [28]. Similar, albeit older and less extensive, admixture 236 

occurred between Pan troglodytes and P. paniscus [29], and between Homo sapiens and H. 237 

neanderthalensis [30]. Pongo tapanuliensis and P. abelii appear to be further examples, showing 238 

diagnostic phenotypic and other distinctions that have persisted despite gene flow between them. 239 

With a census size of fewer than 800 individuals [7], P. tapanuliensis is the least numerous of all 240 

great ape species [31]. Its range is located around 200 km from the closest population of P. abelii to 241 

the north (Fig. 2A). A combination of small population size and geographic isolation is of particular 242 

high conservation concern, as it may lead to inbreeding depression [32] and threaten population 243 

persistence [33]. Highlighting this, we discovered extensive runs of homozygosity in the genomes of 244 

both P. tapanuliensis individuals (Fig. S3), pointing at the occurrence of recent inbreeding. 245 

To ensure long-term survival of P. tapanuliensis, conservation measures need to be implemented 246 

swiftly. Due to the rugged terrain, external threats have been primarily limited to road construction, 247 

illegal clearing of forests, hunting, killings during crop conflict and trade in orangutans [7, 11]. A 248 

hydro-electric development has been proposed recently in the area of highest orangutan density, 249 

which could impact up to 8% of P. tapanuliensis’ habitat. This project might lead to further genetic 250 

impoverishment and inbreeding, as it would jeopardize chances of maintaining habitat corridors 251 

between the western and eastern range (Fig. 1A), and smaller nature reserves, all of which maintain 252 

small populations of P. tapanuliensis.  253 
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 370 

Figure 1. Morphological evidence supporting a new orangutan species. A) Current distribution of 371 

Pongo tapanuliensis on Sumatra. The holotype locality is marked with a red star. The area shown in 372 

the map is indicated in Fig. 2A. B) Holotype skull and mandible of P. tapanuliensis from a recently 373 

deceased individual from Batang Toru. C) Violin plots of the first seven principal components of 26 374 

cranio-mandibular morphological variables of 8 north Sumatran P. abelii and 19 Bornean P. 375 

pygmaeus individuals of similar developmental state as the holotype skull (black horizontal lines).  376 
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 377 

Figure 2. Distribution, genomic diversity, and population structure of the genus Pongo. A) 378 

Sampling areas across the current distribution of orangutans. The contour indicates the extent of the 379 

exposed Sunda Shelf during the last glacial maximum. The black rectangle delimits the area shown in 380 

Fig. 1A. n = numbers of sequenced individuals. B) Principal component analysis of genomic diversity 381 

in Pongo. Axis labels show the percentages of the total variance explained by the first two principal 382 

components. Colored bars in the insert represent the distribution of nucleotide diversity in genome-383 

wide 1-Mb windows across sampling areas. (C) Bayesian clustering analysis of population structure 384 

using the program ADMIXTURE. Each vertical bar depicts an individual, with colors representing the 385 

inferred ancestry proportions with different assumed numbers of genetic clusters (K, horizontal 386 

sections).  387 
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 388 

Figure 3. Demographic history and gene flow in Pongo. A) Model selection by Approximate 389 

Bayesian Computation (ABC) of plausible colonization histories of orangutans on Sundaland. The 390 

ABC analyses are based on the comparison of ~3,000 non-coding 2-kb loci randomly distributed 391 

across the genome with corresponding data simulated under the different demographic models. The 392 

numbers in the black boxes indicate the model’s posterior probability. NT = Sumatran populations 393 

north of Lake Toba, ST = the Sumatran population of Batang Toru south of Lake Toba, BO = 394 

Bornean populations. B) ABC parameter estimates based on the full demographic model with 395 

colonization pattern inferred in panel A. Numbers in grey rectangles represent point estimates of 396 

effective population size (Ne). Arrows indicate gene flow among populations, numbers above the 397 

arrows represent point estimates of numbers of migrants per generation. C) Relative cross-coalescent 398 

rate (RCCR) analysis for between-species pairs of phased high-coverage genomes. A RCCR close to 399 

1 indicates extensive gene flow between species, while a ratio close to 0 indicates genetic isolation 400 

between species pairs. The x-axis shows time scaled in years, assuming a generation time of 25 years 401 

and an autosomal mutation rate of 1.5x10-8 per site per generation.  402 
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 403 

Figure 4. Sex-specific evolutionary history of orangutans. Bayesian phylogenetic trees for (A) 404 

mitochondrial genomes and (B) Y chromosomes. The mitochondrial tree is rooted with a human and a 405 

central chimpanzee sequence, the Y chromosome tree with a human sequence (not shown). ** 406 

Posterior probability = 1.00. (C) Genotype-sharing matrix for mitogenomes (above the diagonal) and 407 

Y chromosomes (below the diagonal) for all analyzed male orangutans. A value of 1 indicates that 408 

two males have identical genotypes at all polymorphic sites; a value of 0 means that they have 409 

different genotypes at all variable positions. 410 

  411 
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 412 

Supplemental Fig. S1, related to Fig. 1C. Kernel density mirror plots showing the results of 413 

Euclidean D2 analyses of six principal components calculated from 26 cranio-mandibular 414 

morphological variables (Table S1). The between-species distribution (blue line) was calculated as the 415 

distances of all Pongo abelii samples to the P. pygmaeus centroid plus all of the P. pygmaeus samples 416 

to the P. abelii centroid, whereas the within-species distribution (red line) was calculated as the 417 

distances of all P. abelii samples to the P. abelii centroid plus all of the P. pygmaeus samples to the P. 418 

pygmaeus centroid. The dotted line represents the distance of the P. tapanuliensis sample to the P. 419 

abelii centroid (exact permutation test; within-species distribution: p-value<0.001; between-species: 420 

p-value<0.001), whereas solid line represents the distance of the P. tapanuliensis samples to the P. 421 

pygmaues centroid (within-species: p-value<0.001; between-species: p-value<0.001).  422 



A NEW SPECIES OF ORANGUTAN 

18 

 423 

Supplemental Fig. S2, related to Fig. 1C. Comparisons of five dental variables across P. abelii 424 

(red), P. pygmaeus (blue), P. tapanuliensis (black horizontal line), and P. p. palaeosumatrensis 425 

(green). Variables include upper canine breadth (A), lower canine breadth (B), lower M1 length (C), 426 

lower M1 breadth (D), and lower M1 area (E). For each boxplot, the middle line is the median value 427 

of the distribution, with the box representing the first (lower extreme) and third (upper extreme) 428 

quartile values (i.e., the interquartile range [IQR]), and the whiskers representing the lower and upper 429 

extreme values that are within 1.5 x IQR of the first and third quartile values.  430 
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 431 

Supplemental Fig. S3, related to Fig. 3C. Number of genomic fragments that are autozygous (y-432 

axis) plotted against the total fraction of the genome covered by such fragments (x-axis). Each dot 433 

represents and individual, with sample origins represented by colors corresponding to those in Fig. 434 

2A. 435 


