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Abstract

Integrated data analyses are becoming increasingly popular in studies of wild

animal populations where two or more separate sources of data contain infor-

mation about common parameters. Here we develop an integrated population

model using abundance and demographic data from a study of common guille-

mots Uria aalge on the Isle of May, southeast Scotland. A state-space model

for the count data is supplemented by three demographic time series (produc-

tivity and two mark-recapture-recovery (MRR)), enabling the estimation of

prebreeder emigration rate—a parameter for which there is no direct observa-

tional data, and which is unidentifiable in the separate analysis of MRR data.

A Bayesian approach using MCMC provides a flexible and powerful analysis

framework.

This model is extended to provide predictions of future population trajecto-

ries. Adopting random effects models for the survival and productivity param-

eters, we implement the MCMC algorithm to obtain a posterior sample of the

underlying process means and variances (and population sizes) within the study

period. Given this sample, we predict future demographic parameters, which in

turn allows us to predict future population sizes and obtain the corresponding

posterior distribution. Under the assumption that recent, unfavourable condi-

tions persist in the future, we obtain a posterior probability of 70% that there

is a population decline of > 25% over a 10-year period.

Lastly, using MRR data we test for spatial, temporal and age-related cor-

relations in guillemot survival among three widely separated Scottish colonies

that have varying overlap in nonbreeding distribution. We show that survival is

highly correlated over time for colonies/age classes sharing wintering areas, and

essentially uncorrelated for those with separate wintering areas. These results

strongly suggest that one or more aspects of winter environment are responsi-

ble for spatiotemporal variation in survival of British guillemots, and provide

insight into the factors driving multi-population dynamics of the species.
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Chapter 1

Introduction

1.1 Justification

How and why populations change over time are two of the central questions in

population ecology (Turchin 2003). The ‘how’ concerns the quantification of

changes in population size in terms of the key demographic parameters of pro-

ductivity, survival and movement. The ‘why’ attempts to identify the factors

driving changes in these primary population processes. Knowledge of population

ecology can help us understand why some populations are decreasing rapidly

while others are increasing and expanding their range; why some species’ pop-

ulations cycle or crash and others do not; and whether changes in demographic

rates and/or population size are related to intrinsic factors (e.g. density depen-

dence), extrinsic factors (e.g. weather variables, habitat changes), or both.

In this time of dramatic losses of global biodiversity and ever greater de-

mands placed on wild living resources by an increasing human population, such

knowledge is essential for conservation biologists, wildlife managers, and re-

source biologists alike (Rockwood 2006). Therefore, as King et al. (2009) note,

‘it is clearly a very important time for the study of population ecology, for the

precise estimation of demographic rates, and application of the best methods

for statistical inference and forecasting’. Two important recent advances that

help to fulfil these criteria are the development of integrated population mod-

elling, and the growth of Bayesian methods for statistical ecology. These topics

are the focus of this thesis.

In this introductory chapter, we give a brief overview of some of the models

encountered in population ecology, along with the essentials of Bayesian infer-

ence, before applying the methods to real data in the remainder of the thesis.

1



2 Introduction

1.2 Models for population data

Long-term monitoring schemes for wildlife populations may generate numerous

types of data, each containing information on different aspects of the popu-

lation, for example its size, survival rates, productivity parameters, movement

rates, measurements of the size/weight of individuals, behavioural observations,

etc. In this section, we provide a brief introduction to some of the data types

encountered in the remainder of the thesis, including discussion of the associ-

ated models that are typically fitted to these data. We note here that all the

modelling approaches used in the thesis are based on a discrete time-scale with

yearly intervals, which is highly appropriate for annually reproducing organisms

in a seasonal environment, such as seabirds.

1.2.1 Modelling survival

Survival is an important driver of population growth rate (Heppell et al. 2000,

Sæther & Bakke 2000, Oli & Dobson 2003), and is thus a key parameter of pop-

ulation dynamics models. Estimates of survival are most commonly obtained

using mark-recapture and/or ring-recovery data, known collectively as mark-

recapture-recovery (MRR) data. We first outline separately the two types of

data and their associated models, before considering how they may analysed

simultaneously.

Mark-recapture data

The collection of mark-recapture data for survival estimation begins with mark-

ing a sample of animals using unique individual marks—these are commonly

either man-made marks such as rings or tags, or natural physical features of

the animal such as pelage colouration or fin shape—and these ‘marked’ animals

may then be identified at subsequent recapture occasions. Identification may

be through physical recapture or, if the mark is identifiable from a distance,

through resighting; however, due to the nature of wild animals, it is rare for

them to be seen on every occasion. It is also typical for there to be additional

releases of newly-marked animals at each occasion. This process results in a

unique capture history for each animal, consisting of a series of ones and zeros

indicating whether that individual was caught or not caught, respectively, at

each recapture occasion; see Section 2.3.2 for an example capture history and

further explanation.

Modelling the recapture process requires two sets of parameters: survival



1.2 Models for population data 3

rates, commonly denoted by φ, give the probability of survival for an individual

from one capture occasion to the next, and recapture probabilities, denoted p,

give the probability that an individual, alive during a particular capture occa-

sion, is recaptured or resighted at that time (Lebreton et al. 1992). With these

parameters, the probability of the various possible capture histories can be cal-

culated and the likelihood formed as the product of the probabilities associated

with each capture history, conditional on first release, resulting in a product-

multinomial likelihood (see King et al. 2009, section 2.3.2). It is important

to note that the survival parameter φ estimated using mark-recapture data is

actually a product of two biologically interpretable parameters: the probability

of surviving between capture occasions, and the probability of remaining in the

study area (fidelity). Because these two parameters are confounded, φ essen-

tially represents ‘apparent survival’ (Burnham 1993). We return to this issue

below.

The standard model for analysing mark-recapture data is the Cormack-Jolly-

Seber (CJS) model (Cormack 1964, Jolly 1965, Seber 1965), which considers

time-dependent survival and recapture rates, denoted φt and pt, respectively.

Reduced forms of the CJS model exist, allowing φ, p, or both, to be constant

over time (Lebreton et al. 1992). These models are often too simplistic to re-

alistically capture biological processes, and thus a number of extensions have

been proposed over the years. Lebreton et al. (1992) considered modelling of

survival and capture rates as functions of time, age, environmental covariates

and categorical variables characterising the individuals (e.g. gender, location),

as well as accounting for previous capture history effects (e.g. trap dependence).

Individual fixed covariates (e.g. size or weight at birth) can also be handled (e.g.

Skalski et al. 1993), and more recent developments allow for the modelling of

time-varying individual covariates (Bonner & Schwarz 2004, King et al. 2006,

2008a). Random effects can be introduced to allow for additional variability

not accounted for by any of the covariates (King et al. 2009) and may provide

a parsimonious compromise between constant and completely time-dependent

models (Royle & Link 2002). Data from several populations can be analysed

simultaneously to gain further insight into spatiotemporal patterns of variation

in survival (e.g. Harris et al. 2005, Schaub et al. 2005, Grosbois et al. 2006). Nu-

merous other approaches and applications are discussed in reviews by Schwarz

& Seber (1999) and Grosbois et al. (2008), for example. A comprehensive cover-

age of the topic is provided by Williams et al. (2002, chapter 17), and King et al.

(2009) give many up-to-date examples featuring use of the latest methodology.
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Ring-recovery data

The structure of ring-recovery data is very similar to that of mark-recapture

data, as are the statistical methods involved. The major difference is that,

instead of animals being recaptured/resighted on multiple recapture occasions,

they may only be recorded once (after initial capture and marking) and that is

upon their death. Thus, instead of a recapture probability we have a recovery

probability, commonly denoted by λ, which is the combined probability that a

dead animal is found and has its mark reported. The full likelihood is again

the product of separate multinomial likelihoods, one for each cohort of marked

animals (see King et al. 2009, section 2.3.1).

A classic reference for recovery data is Brownie et al. (1985), in which the

basic modelling framework is summarised, including models to allow for depen-

dence of survival and recovery on time, age, sex and geographic area. Many of

the same extensions applied to mark-recapture data are possible, for example

the effects of covariates (Catchpole et al. 1999), and the inclusion of random

effects (Royle & Link 2002, Barry et al. 2003). See Schwarz & Seber (1999) and

Williams et al. (2002, chapter 16) for further details and alternative models.

Combining mark-recapture and ring-recovery data

Many studies generate both live recaptures and ring recoveries for the same

individuals, and in such cases it is natural to consider a fusion of the two mod-

elling approaches. Burnham (1993) developed a theory for the combined anal-

ysis of ‘mark-recapture-recovery’ data for the time-dependent case and showed

that this enables the separate estimation of survival and fidelity, which are

confounded in the standard mark-recapture model. Catchpole et al. (1998)

generalised this approach to allow both age- and time-dependence of the model

parameters, and showed that it allows more realistic models to be fitted and in-

creases precision of parameter estimates compared with separate analyses. Fur-

ther details, including Catchpole et al.’s efficient form for the likelihood and the

associated sufficient statistics required, are provided in Sections 3.2.2 and 3.2.3.

1.2.2 State-space models for abundance data

Abundance data, or count data, come in many forms, from complete national

censuses to site-specific indices of abundance. These estimates of abundance

are rarely without error, and state-space models provide a means to account for

this ‘observation error’ separately to the noise in the underlying demographic
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Figure 1.1 Schematic diagram of a state-space model. The process model describes the
evolution of the true but unknown state of the population over time, which may involve
intermediate subprocesses. The observations are connected to the states by an observation
model.

process, or ‘process uncertainty’ (e.g. Newman 1998, Millar & Meyer 2000,

de Valpine & Hastings 2002, Buckland et al. 2004, Jamieson & Brooks 2004).

They thereby provide a framework for linking observations on the size of a

wildlife population to a population dynamics model.

In essence, a state-space model describes the evolution of two time series

running in parallel, referred to as the observations and the states: for count data,

the observations correspond to estimates of population size, whereas the state(s)

correspond to the true, underlying number of animals in one or more age/size

classes, regions, etc. These time series are linked by an observation model, while

the population dynamics model, or process model, describes the transition of

the underlying states between consecutive time points (Figure 1.1). It is possible

in the state-space approach to obtain estimates of the number of individuals in

each state without having observed them all directly (Thomas et al. 2005).

The process model may be parameterised by, for example, growth rates and

density dependence structures (e.g. Jamieson & Brooks 2004), or birth, survival

and movement rates (e.g. Buckland et al. 2004). The state-space framework

readily incorporates additional information relating to these population pro-

cesses: this may be in the form of prior distributions in a Bayesian analysis,

reflecting expert opinion (Thomas et al. 2005) or the results of previous analyses

(Harrison et al. 2006); alternatively, additional datasets may be incorporated,

to be analysed simultaneously in an integrated population model.

1.2.3 Integrated population modelling

Abundance and demographic data are often collected on the same population of

animals, and the integration of these data within a single, consistent framework

has been the focus of a number of recent studies (e.g. Besbeas et al. 2002, Brooks
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et al. 2004, Schaub et al. 2007, Borysiewicz et al. 2008). This methodology is

termed ‘integrated population modelling’ and it underlies much of the work in

this thesis. The backbone of the approach is a state-space model describing

the population counts, and additional likelihoods for other datasets may be

simply ‘bolted on’; more formally, assuming independence between datasets, a

joint likelihood may be formed by multiplying the likelihood resulting from the

count data and the likelihoods for the demographic data. (In cases where the

separate likelihoods are not independent, it may be possible to split the data

into two (or more) subsets that are independent and use each one to derive a

different likelihood; see Cave et al. 2009.)

By combining data from different sources, we obtain more robust (and

self-consistent) parameter estimates that fully reflect the information available

(King et al. 2009). The approach also has great potential for estimating parame-

ters that were not originally monitored in the field and cannot be estimated from

the individual data alone. These are termed ‘hidden’ parameters by Tavecchia

et al. (2009), and an example is the estimation of productivity using abundance

and ring-recovery data (Besbeas et al. 2002). Integrated population modelling

may be especially relevant in conservation biology, where the available data

for a particular species of concern are often sparse or incomplete. Here, the

improved population estimates and demographic rates from an integrated pop-

ulation model may be crucial for assessing a species’ endangered status and

devising conservation actions (Schaub et al. 2007, Véran & Lebreton 2008).

Previous studies have considered the integration of abundance data with

various types of demographic data, including ring-recoveries (Besbeas et al.

2002, Brooks et al. 2004, Besbeas & Freeman 2006), mark-recaptures (Goodman

2004, Schaub et al. 2007), mark-recapture and productivity data (Gauthier et al.

2007) and multi-site mark-recapture-recovery data (Borysiewicz et al. 2008).

But in theory it is possible to combine and analyse simultaneously any two (or

more) sources of data containing information about the same parameters.

1.3 Bayesian inference

The use of Bayesian techniques for the statistical analysis of ecological data

has become increasingly common in recent years, with a wide variety of appli-

cations especially in population and community ecology (Wade 2000, Ellison

2004, Royle & Dorazio 2008, King et al. 2009, Link & Barker 2009). There

are a number of reasons for this, not least that the Bayesian approach pro-
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vides ‘a far more powerful and flexible framework for the analysis of complex

stochastic processes than the corresponding [classical approach]’ (King et al.

2009). We leave discussion of the differences between Bayesian and classical

statistical inference, along with their respective advantages and disadvantages

for population data analysis, to later chapters, and we also refer the reader to

the references given above (also Ellison 1996) for more detailed comparisons.

In the following sections, we provide a brief overview of some of the important

concepts in Bayesian inference that are relevant to the material in this thesis.

1.3.1 Bayes’ Theorem

Bayesian inference is based upon what is known as Bayes’ Theorem: a simple

mathematical formula used for calculating conditional probabilities, first pro-

posed by the Rev. Thomas Bayes (Bayes 1763). Suppose we have a set of pa-

rameters θ = {θ1, . . . , θm} on which we wish to make inference. We then observe

data x = {x1, . . . , xn} from some known probability density function f(x|θ),

which determines the probability of observing different data under different pa-

rameter values. Then, by Bayes’ Theorem, the (joint) posterior distribution for

θ is given by

π(θ|x) =
f(x|θ)p(θ)

f(x)
. (1.1)

Here the term p(θ) is referred to as the prior distribution and π(θ|x) the pos-

terior distribution: the prior represents the initial beliefs about the parameters

prior to observing any data; the posterior represents an update of these beliefs,

following the data x being observed. The denominator f(x) is independent

of the parameters θ, being a function only of the observed data, and is sim-

ply equal to some constant; it is typically omitted from the calculation, and

Bayes’ Theorem is more often quoted in the form

π(θ|x) ∝ f(x|θ)p(θ). (1.2)

The resulting posterior distribution is multi-dimensional and often complex,

but in most cases we are interested in the marginal posterior distributions of

individual parameters. For example, suppose we are only interested in θ1, then

π(θ1|x) =

∫
π(θ|x)dθ2, . . . , dθm. (1.3)

Alternatively, we might be interested in summary inferences such as point esti-

mates and uncertainty intervals, which, as Gimenez et al. (2008) note, are often
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more interpretable (see King et al. 2009, section 4.4, for an overview of different

ways to summarise the posterior). The integrals involved in calculating marginal

distributions or summary statistics are typically too complex to calculate ana-

lytically. However, the Markov chain Monte Carlo (MCMC) algorithm provides

an alternative approach, whereby we sample from the posterior and obtain

sample estimates of the quantaties of interest (Brooks 1998). Before we present

details of the MCMC algorithm, we first discuss the issue of prior specification.

1.3.2 Prior distributions

As noted above, the prior distribution represents an analyst’s beliefs about the

parameter values before observing any data. In ecological applications, the

prior is a useful means of incorporating expert opinion or information from

previous studies, particularly in situations where the data are sparse and infer-

ence on certain parameters would otherwise be impossible (King et al. 2009).

Conversely, the subjectivity involved in specifying priors is one of the criticisms

that Bayesian methods often face (Dennis 1996). In general throughout this

thesis we have highly detailed data and little useful prior information. There-

fore, to ‘let the data speak for themselves’ we specify vague, or noninformative,

prior distributions that essentially contain little or no information about the

parameters (Gelman et al. 2003).

A uniform prior is the obvious choice for a completely flat prior density

that assigns equal probability to all possible parameter values. This prior is

well suited to probability parameters—as found in many applications in popu-

lation ecology (e.g. survival rates, recapture probabilities, etc.)—because there

are predefined bounds on the parameter space (i.e., they are contained in the

interval [0,1]). However, when no bounds are imposed the uniform prior is an

improper distribution, which can lead to an improper posterior and, in turn, the

possible non-existence of a posterior mean (King et al. 2009). Another prob-

lem with specifying a flat prior arises under reparameterisations of the model,

because a density that is flat or uniform in one parameterisation will not be

in another (Gelman et al. 2003). For example, when considering logistic re-

gression on probability parameters, placing a flat or noninformative prior on

the logit-scale regression parameters induces a far from flat prior on the back-

transformed probabilities (see King & Brooks 2008, with further clarification in

King et al. 2009). A further difficulty with the use of vague priors, though not

applicable to this thesis, is highlighted by Link & Barker (2006) in the context

of multimodel inference and model selection: they note that Bayes factors (a
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statistic used to compare competing models) are unstable in the presence of

noninformative priors for model parameters, especially when there are vary-

ing numbers of parameters in the different models under consideration. Link

and Barker’s suggested approach to deal with this sensitivity, in the context of

model selection for logistic regression, is to partition an estimated total prior

variance of regression coefficients, thus fixing the total prior uncertainty in the

linear predictor.

Some models require specifying a prior on the variance parameter of a nor-

mal distribution, two examples encountered in this thesis being the observation

error for a state-space model and the variance of random effects models. A

noninformative prior that has commonly been used for normal variance param-

eters is the inverse-gamma distribution, which in this case is a conjugate prior,

that is, it is from the same distributional family as the posterior. Although

not necessary in modern Bayesian analyses, conjugate priors can have advan-

tages in terms of improving efficiency of computational algorithms (King et al.

2009). However, Gelman (2006) showed that the inverse-gamma distribution

may not be suitable as a prior for variance parameters in hierarchical models

(multilevel, or nested, models in which the prior parameters are themselves

given prior distributions, called hyperpriors): he found that, when the variance

is small, posterior inference is very sensitive to the choice of prior parameters.

Instead, Gelman recommends the use of a noninformative uniform prior density,

or a distribution from the half-t family, such as the half-Cauchy distribution,

specified on the standard deviation parameter.

Regardless of the choice of prior distribution, its influence on the posterior

should always be checked via a prior sensitivity analysis, even in the case of

informative priors. See King et al. (2009), section 4.3, for details and examples;

Millar (2004) describes a useful automated method for assessing sensitivity to

informative priors. Given the priors specified on the parameters, we can write

down the posterior distribution up to proportionality. Direct inference is typi-

cally not possible, but we can use MCMC to sample from the posterior.

1.3.3 Markov chain Monte Carlo

Recall that the derivation of marginal distributions or calculation of posterior

summary statistics often involves complex, multi-dimensional integrals. How-

ever, instead of trying to integrate the joint posterior distribution analytically,

we can employ simulation procedures to obtain samples from the posterior. One

such procedure is Markov chain Monte Carlo (MCMC).
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MCMC methods perform Monte Carlo integration using a Markov chain

to generate observations from the posterior, π. Essentially, a Markov chain is

constructed whose stationary distribution is the posterior distribution. If we run

the chain for long enough until it has converged to the stationary distribution,

subsequent simulated values can be treated as a sample from π and used to

obtain empirical (Monte Carlo) estimates of posterior summary statistics of

interest (see, e.g., Brooks 1998 for further details). Constructing a Markov

chain requires an updating scheme in order to move from one state of the chain

to the next, and there are a number of different approaches to achieve this. One

is the Gibbs sampler (Casella & George 1992), which is often highly efficient

but requires knowing the posterior conditional distribution of each parameter

and being able to sample from this distribution directly. An alternative, more

general updating scheme, and the one used exclusively in this work, is the

Metropolis-Hastings algorithm (Chib & Greenberg 1995).

Metropolis-Hastings algorithm (single-update)

The Metropolis-Hastings algorithm is an extension of the Metropolis algorithm

introduced by Metropolis et al. (1953), adapted and generalised by Hastings

(1970) to focus on statistical problems. It is a form of generalised rejection

sampler. The method begins with a density for generating candidate observa-

tions (the proposal distribution), which typically depends on the current state

of the chain and, for single-update Metropolis-Hastings, is different for each

parameter. Suppose that the Markov chain is currently at θt = {θt1, . . . , θtm},
having been initialised with some starting parameter values θ0 = {θ0

1, . . . , θ
0
m}

and updated through θ1, . . . ,θt. Then at iteration t + 1, a candidate value

for θt+1
j (1 6 j 6 m), denoted φj, is generated from the proposal distribution

qj(φj|θtj).
The second step is to accept or reject the candidate value φj. Defining φj =

{θt+1
1 , . . . , θt+1

j−1, φj, θ
t
j+1, . . . , θ

t
m} and θtj = {θt+1

1 , . . . , θt+1
j−1, θ

t
j, θ

t
j+1, . . . , θ

t
m}, we

accept the candidate observation with probability α(θtj, φj), given by

α(θtj, φj) = min

(
1,
π(φj|x)qj(θ

t
j|φj)

π(θtj|x)qj(φj|θtj)

)
. (1.4)

To actually implement this, we generate a U(0, 1) random variable, U , and if

U < α(θtj, φj) we accept the proposed move and set θt+1
j = φj; otherwise we set

θt+1
j = θtj (i.e., we reject the proposed move and the parameter remains at its

current value).
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We then move on and propose to update θt+1
j+1, and so on. Once all m

parameters in θt have been updated, the transition from θt to θt+1 is complete

and we move on to the next iteration, t+ 2.

Random walk updates

Where the proposal distribution for a parameter is centred around the current

value, this is known as a random walk, and when the candidate generating

function is symmetric (i.e., qj(φj|θtj) = qj(θ
t
j|φj), as for the uniform, normal or

t-distribution), the acceptance probability reduces to

α(θtj, φj) = min

(
1,
π(φj|x)

π(θtj|x)

)
. (1.5)

In the analyses contained herein, we use a Metropolis-Hastings random walk

algorithm with uniform proposal density. In particular, suppose we are inter-

ested in updating a parameter θt, then we propose a new value φ such that

φ ∼ U(θt − δ, θt + δ). Values for δ are tuned to achieve reasonable acceptance

rates of 20–40% for proposed moves (Gelman et al. 1996).

Convergence/run length

Two practical considerations when determining how many MCMC iterations

to run are (1) the time required for convergence, and (2) the post-convergence

sample size required for suitably small Monte Carlo errors (King et al. 2009).

We are only interested in observations taken from the Markov chain once it

has converged to the stationary distribution. Therefore, we discard observations

within an initial transient phase, or burn-in period. There are a variety of

methods for determining a suitable length for the burn-in, ranging from simply

looking at MCMC trace plots (plots of iterations versus sampled values for each

variable in the chain), to elaborate methods including eigenvalue estimation

techniques and diagnostics based on analysis of variance (see Brooks 1998, King

et al. 2009, and references therein). Within this thesis we use the Brooks-

Gelman-Rubin (BGR) statistic, R̂interval (Brooks & Gelman 1998). The basic

idea is to run multiple chains, initiated from overdispersed starting points, and

assess convergence by comparing within- and between-chain variability over

the second half of those chains. The width of the 80% credible interval for

the parameter of interest is taken as the measure of variability, and R̂interval is
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calculated as the ratio of pooled to average interval widths, i.e.,

R̂interval =
width of 80% credible interval of all chains combined

average width of 80% credible intervals of individual chains
.

This tends to 1.0 as convergence is approached; for practical purposes conver-

gence may be assumed when R̂interval < 1.05 (Spiegelhalter et al. 2007), although

generally it is preferable to use a more conservative burn-in if possible (King

et al. 2009).

After the burn-in period, we need to take enough samples from the posterior

to allow reliable inference to be made, but within the constraints of time and

computational storage limits. Again, there are a number of formal techniques

to determine how long the simulations need to be run (see Brooks 1998). In

practice, it is common to run the chain for 2–10 times the burn-in length, and

an adequate number of samples may generally be assumed if posterior summary

statistics from multiple runs of the chain are identical to 2 or 3 significant figures,

depending on the level of accuracy required.

1.3.4 Bayesian state-space model

We now consider the application of Bayesian methods to the fitting of state-

space models. We are typically interested in obtaining estimates of the param-

eters within the process model (e.g. survival and productivity rates) and the

observation error variance. The true underlying population sizes are essentially

nuisance parameters which we wish to integrate out to form only the likelihood

of the model parameters—although we are often interested in the population

estimates as well—but this integration is impossible to do analytically. Classi-

cal analyses of state-space models typically employ numerical techniques such

as the Kalman filter (Kalman 1960; see also Besbeas et al. 2002) to obtain es-

timates. However, use of the standard Kalman filter relies on assumptions of

linearity and normality of the observation and process models, which in practice

are often violated (King et al. 2009; but see Besbeas et al. 2008). It may be

possible to use normal approximations to discrete distributions, for example for

binomial or poisson models (e.g. Besbeas et al. 2002), but this approach will

not be valid for small sample sizes (Brooks et al. 2004). Furthermore, while the

Kalman filter can be extended to cope with non-normal or nonlinear models, it

can be prohibitively complex to apply in these situations (Jamieson & Brooks

2004, King et al. 2009) and only provides approximate answers.

From the Bayesian perspective, we treat the true underlying population
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sizes as auxiliary variables and form the joint posterior distribution over both

the parameters and unknown population sizes. We can then use MCMC to

sample from the posterior distribution, whereby we update the parameters and

the auxiliary variables at each iteration of the MCMC algorithm and thus obtain

marginal posterior distributions for both. It is then straightforward to obtain

estimates of the true population sizes in the form of marginal posterior means or

medians. It is equally simple to calculate error bands, in the form of posterior

credible intervals, whereas this can be difficult or time consuming in the classical

paradigm (Brooks et al. 2004). Further mathematical and implementational

details of the Bayesian approach are provided for specific applications in later

chapters (see, in particular, Sections 2.2.2 and 2.2.3), and see also King et al.

(2009) for some additional, more general information.

1.4 Application: common guillemots in the UK

The UK is host to internationally important numbers of breeding seabirds—

including around 12% of the world common guillemot Uria aalge population

(Harris & Wanless 2004)—making them an important component of the nation’s

biodiversity. Furthermore, the position of seabirds at the top of the marine food

chain makes them useful indicators of both the state of the marine environment

and the effects of human activities upon it (Parsons et al. 2008). Thus, there is

an incentive to collect and analyse data on seabird populations, both to assess

their conservation status, and to monitor aspects of the health of the wider

marine environment. In this thesis we focus on the integrated analysis of data

collected on several UK populations of common guillemot. Our primary aim

is the integration of multiple sources of data from a single colony, but we also

consider how this may be beneficially combined with similar data from other

populations.

1.4.1 Guillemot biology

The common guillemot (hereafter guillemot) is a medium-sized marine bird of

the auk (Alcidae) family. The guillemot is one of the most abundant seabirds in

temperate and colder parts of the northorn hemisphere, with very large popula-

tions in the Atlantic, Pacific and Arctic Oceans (Harris & Wanless 2004). It is

primarily a pelagic species, but during the breeding season (April–September)

birds return to land, forming large, dense colonies on coastal cliffs and rocky

offshore islands. At this time they are highly visible and accessible, making
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monitoring and data collection relatively straightforward and inexpensive com-

pared to some terrestrial mammals, for example. Adult guillemots are highly

territorial and site-faithful, returning to the same small area of cliff ledge year

upon year (Harris et al. 1996b)—a characteristic that makes them particularly

suitable for long-term, individual-based studies such as mark-recapture. Young

guillemots also have a tendency to return to their natal areas during their pre-

breeding years and many subsequently recruit nearby (Harris et al. 1996a),

although a proportion of birds are known to recruit to other colonies (Halley &

Harris 1993).

The guillemot is a typical ‘K-selected’ species (MacArthur & Wilson 1967),

its life history being characterised by a long lifespan (expected 24 years: Robin-

son 2005), low reproductive rate (maximum clutch size 1 egg: Robinson 2005)

and delayed maturity (median age of first breeding 5–7 years: Harris et al. 1994).

Consequently, guillemots have low annual recruitment rates so populations tend

to change slowly over time. In common with other species at the ‘slow’ end of

the life-history continuum (Sæther & Bakke 2000), adult survival has a high

contribution to the population growth rate.

1.4.2 Status and trends

The guillemot is Britain and Ireland’s most abundant breeding seabird with one

million pairs estimated in the Seabird 2000 census, the main concentrations of

these being in the north and west (Harris & Wanless 2004). The total population

increased substantially between 1969–70 and 1998–2002, although the rate of

increase slowed from 4–5% per annum during the 1970s and ’80s, to 2% during

the 1990s (Harris & Wanless 2004). More recently, the population has levelled

off or even started to decline (2% decline 2000–2008: JNCC 2009).

A greater cause for concern has been the recent decline in breeding per-

formance of many UK seabird populations—the common guillemot included—

which has made national headlines and featured prominently in high-profile

publications (e.g. Eaton et al. 2005, 2007). Guillemot productivity in 2004 was

by far the worst on record for many colonies in the North Sea and Northern

Isles, with no chicks fledged at all from the large colony on Fair Isle (Mavor

et al. 2005). In 2005 there was some improvement, although productivity was

still markedly below the long-term mean and breeding failures were observed

for the first time along the west coast of Scotland (Swann 2005, Mavor et al.

2006). The trend continued in 2006, with low levels of breeding success recorded

throughout Britain: guillemots on Handa (northwest Scotland) experienced al-
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most complete breeding failure, and record lows were observed at colonies as far

apart as the Isle of May (southeast Scotland) and Skomer (Wales) (Mavor et al.

2008). Further decreases in mean UK guillemot productivity were recorded

in 2007 and 2008 (JNCC 2009). Overall, annual productivity in guillemots

declined by nearly 50% during the period 1989–2007, with most of that fall

occurring since 2002 (Eaton et al. 2009).

The main reason for the poor breeding success appears to have been low

availability and poor quality of the guillemot’s main prey species, especially the

lesser sandeel Ammodytes marinus (Mavor et al. 2005, Wanless et al. 2005);

this, in turn, is thought to be linked through complex mechanisms to climate

change (MCCIP 2009). Sea surface temperatures in UK coastal waters have

been rising since the early 1980s by around 0.2–0.9◦C per decade (Holliday

et al. 2008), and warmer sea temperature has been correlated with poorer than

average sandeel recruitment (Arnott & Ruxton 2002). This is presumed to be

the mechanism linking high winter sea surface temperature to poor breeding

success (and survival) in another seabird species, the black-legged kittiwake

Rissa tridactyla, during the last two decades (Frederiksen et al. 2004b). Un-

til recently the guillemot appears to have been largely buffered against these

changes, possibly because it dives and thus may gain access to a wider variety

of prey than surface feeders such as kittiwakes. The fact that guillemot breed-

ing success is also now being affected thus points towards more severe food

shortages in 2004 and subsequent years (Mavor et al. 2005).

Due to the low annual recruitment rate of most seabirds, even dramatic

changes in productivity may take a number of years to manifest themselves

as changes in population growth rates (Eaton et al. 2007). Changes in adult

survival, on the other hand, have a more direct and immediate effect on breeding

population size, and because population growth of long-lived species is most

sensitive to variation in adult survival (Lebreton & Clobert 1991, Sæther &

Bakke 2000) even small reductions can have large effects on population trends.

A strong negative relationship has been identified between autumn sea surface

temperature in the North Sea and adult survival of common guillemots from

the colony of Hornøya, northern Norway, which are known to winter in the

North Sea (Sandvik et al. 2005). Although no such relationship has yet been

found among any UK guillemot populations, predictions from climate change

scenarios of further increases in sea surface temperature (Lowe et al. 2009)

must inevitably raise serious concerns about the future of common guillemots

and other UK seabird populations.
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1.4.3 Data collection

The Joint Nature Conservation Committee (JNCC)’s Seabird Monitoring Pro-

gramme coordinates seabird monitoring on a UK-wide basis (Mavor et al. 2006).

Under the Seabird Monitoring Programme, a variety of species have been rou-

tinely assessed for breeding numbers and breeding success at a representative

sample of UK colonies since 1986. More intensive, individual-based monitor-

ing schemes, providing information on survival rates, for example, have been

conducted at a few geographically dispersed ‘key sites’: Isle of May (southeast

Scotland), Fair Isle (Shetland), Canna (west Scotland), Colonsay (west Scot-

land), and Skomer (Wales). It is these detailed data that we are interested in

here.

The Isle of May long-term study (IMLOTS; Centre for Ecology and Hy-

drology 2009) has provided a particularly rich dataset for common guillemots,

including: annual counts, productivity estimates, mark-recapture and ring-

recovery time series, data on chick diet and growth rates, laying dates, colony

attendance patterns, etc. As a result this colony has been extensively stud-

ied (see, for example, references above and in later chapters), but most analyses

have focused on a single aspect of guillemot biology and, until now, no attempts

have been made to integrate the different data sources and model the complex

dynamics of the population.

1.5 Thesis aims and outline

The theme of this thesis is the Bayesian analysis of integrated data, with par-

ticular application to seabird populations. The primary focus is the combined

analysis, using an integrated population model, of several long-term datasets

relating to the Isle of May guillemot colony. A general outline of the thesis is

as follows.

In Chapter 2 we set the scene for the more advanced models to follow in later

chapters by introducing the four key Isle of May guillemot datasets that describe

the dynamics of the colony, namely, count data, two mark-recapture time series

(from birds ringed as chicks and birds ringed as adults), and productivity data.

Each dataset is presented separately, with corresponding preliminary model

structures and Bayesian analyses.

The four sources of Isle of May guillemot data described in Chapter 2 con-

tain information on common parameters. Therefore, to obtain full advantage

from the data it is worthwhile to perform an integrated data analysis, in which
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data from all sources are analysed simultaneously within a single, consistent

framework. This approach pools the information on shared parameters to pro-

vide more robust parameter estimates that fully reflect all available information,

and may permit the estimation of additional parameters that would be uniden-

tifiable in a separate analysis. An integrated analysis of the Isle of May data

is the focus of Chapter 3, in which the strength of the combined abundance

and demographic data is utilised to gain a greater understanding of guillemot

population dynamics.

The severe declines in demographic performance of many UK seabirds in

recent years has heightened the need for models that can reliably predict popu-

lation dynamics, including proper quantification of uncertainty and the ability

to incorporate various modelling assumptions. Such models will form an essen-

tial part of the planning of effective conservation or management strategies. In

Chapter 4, we use the integrated population model developed in Chapter 3 as

a basis for predicting 10-year future population trajectories of the Isle of May

guillemot colony under a range of assumptions about future demographic rates.

The Bayesian approach provides probability distributions of future population

sizes, which are easy to understand and communicate, provide clear indication

of uncertainty, and can be queried for any number of relevant statistics.

Studies of wild populations often attempt to explain variation in survival

using environmental covariates, but no suitable variables have previously been

identified for the Isle of May guillemots; therefore, we do not try to incorporate

covariates in the analyses of Chapters 2, 3 and 4. To at least gain some insight

into the spatial scale(s) over which the drivers of variability in UK guillemot sur-

vival operate, in Chapter 5 we extend the Isle of May mark-recapture-recovery

analysis to incorporate data from two west coast Scottish colonies. We look

for spatial, temporal and age-related correlations in survival among the three

colonies, and assess whether any pairwise correlations are associated with the

degree of overlap in nonbreeding distribution. The consequences of spatiotem-

poral variation in survival for multi-population dynamics are discussed in the

context of possible future climate change.

We finish with a general discussion in Chapter 6, in which we draw together

the material presented in the thesis and suggest some potential directions for

future research.





Chapter 2

Isle of May guillemot data and
preliminary models

2.1 Overview

Located in the outer Firth of Forth, southeast Scotland, the Isle of May

(56◦11′N, 2◦33′W) is one of the most important seabird breeding colonies on

the British North Sea coast, with approximately 250,000 seabirds attending the

island each year (Scottish Natural Heritage 2006). The Centre for Ecology &

Hydrology has been carrying out research on the Isle of May’s seabirds since

1973, monitoring many aspects of the biology of five key species, both to assess

the status of their breeding populations, and to monitor the state of the marine

environment. The Isle of May long-term study (IMLOTS; Centre for Ecol-

ogy and Hydrology 2009) is currently the most data-rich and comprehensive

study of its type in Europe.

In this thesis, we focus mainly on data collected on the Isle of May common

guillemot Uria aalge population—although many of the analyses are also ap-

plicable to other seabird species—and particularly on several key datasets that

provide information relevant to guillemot population dynamics. These data

are: (1) abundance data in the form of annual colony counts (in latter years

these have been made by Scottish Natural Heritage staff); (2) mark-recapture

data from birds ringed as breeding adults; (3) mark-recapture and ring-recovery

data from birds ringed as chicks; and (4) productivity data in the form of annual

records of breeding success. In later chapters we consider combining these data

to develop an integrated population model, and compare them with data from

other UK colonies, but here we simply focus on introducing the individual Isle of

May datasets, along with preliminary modelling approaches and corresponding

Bayesian analyses.

19
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In Section 2.2 we present an analysis of the count data. A state-space

approach is used to model the underlying population dynamics generated by the

counts alone, or additionally by point estimates of demographic rates derived

independently from productivity and mark-recapture data. A combined analysis

of the adult and chick mark-recapture data is described in Section 2.3, in which

we attempt to explain the discrepancy in adult survival rates obtained from

separate analyses of these two datasets. In Section 2.4 we present a Bayesian

analysis of the productivity data, and we finish with some brief conclusions in

Section 2.5.

2.2 Count data

2.2.1 Introduction

Abundance data are generally relatively easy to collect—particularly compared

to detailed, individual-based demographic data—and are, therefore, often the

only information available for a particular population of interest. However,

abundance data provide relatively little information on the underlying demo-

graphic rates. Sometimes there may also be available estimates of demographic

parameters, but no access to the raw data from which they were obtained. Here,

we attempt to model the dynamics of the Isle of May guillemot colony without

using the raw demographic data, that is, based only on the abundance data, or

additionally on point estimates of the demographic parameters.

2.2.2 Data and model

We have abundance and demographic data from the Isle of May spanning

22 years, from 1983 to 2004, which we denote by t = 1, . . . , T . The abun-

dance data, hereafter referred to as count data, are annual estimates of the

number of breeding pairs, derived from field counts of full-grown birds present

in the colony during the first ten days of June. The field counts included one

or two adults per breeding pair, plus a variable number of failed breeders (that

continue to visit the colony), nonbreeders and prebreeders. Few guillemots oc-

cur outside the visible area and these were ignored. Each complete count took

several days, so immediately before or after each partial count, which took ap-

proximately 3 hours, a count was made of guillemots present in smaller parts

of the colony with a known number of breeding pairs (Harris 1989). This time-

specific correction factor was used to correct the partial colony count to the
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Table 2.1 Count data (Nt), productivity rates (ρt), and prebreeder (φj,t) and adult (φa,t)
survival estimates for the Isle of May guillemot population from 1983 to 2004 (t = 1, . . . , T ).
Corresponding estimates of combined female productivity–survival to adulthood are also pro-
vided (φρ,t = ρtφj,t/2).

t Nt ρt φj,t φρ,t φa,t

1 14750 0.771 0.313 0.121 0.957
2 13000 0.691 0.243 0.084 0.940
3 13000 0.825 0.366 0.151 0.936
4 13700 0.808 0.524 0.212 0.994
5 11680 0.795 0.167 0.066 0.931
6 11223 0.851 0.346 0.147 0.966
7 12736 0.849 0.215 0.091 0.965
8 12632 0.804 0.204 0.082 0.923
9 11440 0.832 0.497 0.207 0.955
10 11511 0.843 0.578 0.244 0.975
11 12418 0.769 0.437 0.168 0.947
12 13843 0.780 0.473 0.184 0.952
13 15326 0.802 0.323 0.130 0.920
14 14500 0.830 0.473 0.196 0.964
15 17152 0.783 0.455 0.178 0.944
16 17384 0.741 0.409 0.152 0.917
17 16933 0.668 0.350 0.117 0.956
18 17979 0.743 0.220 0.082 0.928
19 18442 0.638 – – 0.936
20 20185 0.698 – – 0.922
21 19162 0.702 – – 0.942
22 19833 0.510 – – –

Mean 14947 0.761 0.366 0.145 0.942
SD 2938 0.083 0.123 0.052 0.027

Note: Data/estimates provided by M. Frederiksen; see text for further details.

number of pairs, and the corrected partial counts were then summed to give an

annual estimate of the total breeding population. For simplicity, we focus on

the number of breeding females, which we denote by Nt for t = 1, . . . , T (these

are provided in Table 2.1).

The demographic data used in this analysis are time-specific estimates of

breeding success and prebreeder and adult survival probabilities, denoted by ρt,

φj,t and φa,t, respectively (also provided in Table 2.1). These data were provided

by M. Frederiksen as estimates with associated sample sizes (breeding success)

or standard errors (survival rates). Breeding success, hereafter productivity, is

defined as the mean number of chicks fledged per breeding pair; estimates for

t = 1, . . . , T were derived from intensive monitoring of breeding guillemots in

several study plots on the Isle of May (see Section 2.4 for further methodological

details). Survival probabilities were estimated from mark-recapture data using
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Program MARK (see Section 2.3 for a Bayesian analysis of these data using

similar model structures). Prebreeder survival was derived from a dataset of

chicks colour-ringed just prior to fledging, and is defined here as the probability

of a bird fledged at time t surviving to time t+4 (i.e., the probability of surviving

the first four years of life). From age 4 onwards, guillemots are assumed to have

reached adulthood and survive with annual survival rate φa,t, defined as the

probability of an adult bird, alive at time t, surviving to time t+1; estimates of

adult survival were derived from a separate dataset of birds ringed as breeders of

unknown age. Estimates of φa,t are available for t = 1, . . . , T − 1, and estimates

of φj,t for t = 1, . . . , T − 4 only.

The counts, Nt, are only estimates of the true population size and are there-

fore subject to error, both in the raw data collection process and in the sub-

sequent estimation of the number of breeding pairs. This observation error is

in addition to the noise in the underlying demographic process (de Valpine &

Hastings 2002). To fit a model to the count data that simultaneously includes

both types of noise, we consider a state-space approach (e.g. Newman 1998, Mil-

lar & Meyer 2000, de Valpine & Hastings 2002, Buckland et al. 2004, Jamieson

& Brooks 2004, King et al. 2008b), which models observation error and pro-

cess uncertainty separately so that the demographic model is fitted to the true

underlying population sizes.

The observation model relates the observed annual counts to the true (but

unknown) underlying population sizes. We assume that

Nt ∼ N(Xt, σ
2
N), (2.1)

where Xt denotes the true underlying number of breeding females in year t and

σ2
N is the observation error variance.

The process model describes changes in the true population size over time

and represents the underlying biological system. For the adult population,

we assume that the number of breeding females in year t is derived from the

number surviving from year t − 1, plus the number of new females recruiting

into the breeding population. Although we assume guillemots reach adulthood

at age 4, few (∼ 5%) start breeding at this age on the Isle of May, and most

start breeding at ages 5–7 years (Harris et al. 1994). For simplicity, we assume

here that all birds recruit at age 5; thus, a simple model for the underlying

number of breeding females is

Xt ∼ Bin(Xt−1 + Jt−5, φa,t−1), (2.2)
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where Jt denotes the number of female prebreeders that are fledged in year t

and survive to age 4. A female guillemot lays a single egg per year (except that

it may replace this if lost); therefore, each breeding pair can produce only a

single chick per year. Assuming all adults breed every year, a similar model for

the number of female prebreeders is

Jt ∼ Bin(Xt, ρtφj,t/2). (2.3)

The term of 1/2 corresponds to the probability of a chick being female.

For notational convenience, we let φρ,t = ρtφj,t/2 (the probability that a

breeding attempt results in a female chick that survives to adulthood) and we

define φρ = {φρ,t : t = 1, . . . , T−4}, with similar notation and appropriate time

intervals for φa, N , J and X. The approximate likelihood for the observation

model is then given by

Lobs(N |X, σ2
N) =

T∏
t=6

[
1√

2πσ2
N

exp

(
−(Nt −Xt)

2

2σ2
N

)]
. (2.4)

Similarly, the approximate likelihood for the process model is

Lsys(J ,X | φρ,φa) =
T−4∏
t=1

(
Xt

Jt

)
(φρ,t)

Jt(1− φρ,t)Xt−Jt

×
T∏
t=6

[(
Xt−1 + Jt−5

Xt

)
(φa,t−1)Xt(1− φa,t−1)Xt−1+Jt−5−Xt

]
,

(2.5)

and the joint likelihood for the count data is given by

LN(N ,J ,X | φρ,φa, σ2
N) = Lobs(N |X, σ2

N) Lsys(J ,X | φρ,φa). (2.6)

Note that t starts at 6 in both the observation likelihood (equation (2.4))

and adult breeder portion of the process likelihood (line 2 of equation (2.5)):

these run in parallel, and because X1, . . . , X5 depend on J−4, . . . , J0 (i.e., birds

hatched before the study began) they do not feature in either likelihood. In-

stead, we place priors on these initial population sizes (see Section 2.2.3). The

portion of the process likelihood relating to prebreeders (line 1 of equation (2.5))

ends at T − 4 because estimates of φρ,t are not available after this time.

We consider fitting three models to the count data, denoted M1, M2 and

M3, which vary by their use of the available productivity and survival estimates.
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These models are described in turn below.

M1 Constant φρ and φa

In M1 we use only the count data, so productivity and survival are parameters

to be estimated. Clearly, there are not enough data points to estimate time-

specific rates for ρt, φj,t and φa,t, so we assume them to take the constant values

ρ, φj and φa. Furthermore, the parameters ρ and φj only appear in the process

model as a product (see equation (2.3)) and are thus confounded; therefore, we

estimate the combined productivity–survival parameter φρ, as defined above.

M2 Time-specific φρ,t, constant φa

A model with constant productivity and survival is not very realistic because

the only possible outcomes are exponential growth or exponential decline. In

addition, there is a large amount of year-to-year variability in the Isle of May

demographic data, particularly prebreeder survival (see Table 2.1). To incorpo-

rate this variability, in M2 we fix φρ,t to the values provided in Table 2.1, but

keep φa as a constant parameter to be estimated.

M3 Time-specific φρ,t and φa,t

In M3 we incorporate the time-specific estimates of both φρ,t and φa,t, so that

the only thing the model has to estimate is the initial age structure of the

population, to see if this completely explains the year-to-year variability in the

counts.

2.2.3 Bayesian analysis

We undertake a Bayesian analysis of the data, in which the joint probability

distribution for the count data is combined with prior distributions (where ap-

plicable) for the model parameters to obtain a posterior distribution for the

parameters. A Bayesian approach avoids reliance on the assumptions of nor-

mality and linearity inherent to the classical approach (Millar & Meyer 2000,

Jamieson & Brooks 2004) and provides a more flexible framework for obtaining

parameter estimates than the Kalman filter (see, e.g., Besbeas et al. 2002). In

addition, Bayesian methods provide a framework for using valuable prior infor-

mation we may have about the model parameters (Hilborn & Mangel 1997).
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Priors

In this analysis, we assume that we have no prior information; therefore, we

specify vague priors containing essentially no information about the param-

eters. For the demographic parameters φρ and φa, where estimated, we take

Beta(1, 1) priors (equivalent to a U(0, 1) distribution) which restrict these prob-

ability parameters to lie within the limits of zero and one. For the observation

error variance, we take the commonly used noninformative inverse-gamma prior

σ2
N ∼ Γ−1(10−3, 10−3), which has a point mass at zero but is otherwise essen-

tially uniform, particularly for high values such as we expect for σ2
N .

Because of the way the process model is constructed, we also need to specify

priors on the initial population levels X1, . . . , X5, which depend on prebreeders

fledged in years t = −4, . . . , 0 (see equation (2.2)), about which we have no in-

formation. We make use of the observed counts N1, . . . , N5 as prior information

with the normal prior Xt ∼ N(Nt, σ
2
N), where σ2

N is the estimated observation

error variance. This choice of prior reflects our belief that the initial population

levels should be related to the counts in the same way as those in the observation

model (equation (2.1)).

Posterior distribution

The model depends on the demographic parameters φρ and φa, and observation

error variance σ2
N—which we combine for notational convenience into the single

parameter vector θ—and the underlying population levels J and X. These are

all values to be estimated using our observed data N . Using Bayes’ Theorem,

the posterior distribution is given by

π(J ,X,θ |N ) ∝ LN(N ,J ,X | θ) p(θ), (2.7)

where p(θ) denotes the prior distribution for the parameters. We fit the model

using Markov chain Monte Carlo (MCMC; Brooks 1998) with Metropolis-

Hastings sampling to obtain a sample from π, which we use to obtain posterior

summary statistics (e.g. means, standard deviations, 95% credible intervals)

for the parameters and population sizes. For each model M1–M3, the MCMC

algorithm was run for 10 million iterations, with the first 5 million discarded

as burn-in and the remaining output thinned to every thousandth iteration to

save storage space. Simulations were implemented in Fortran and took approx-

imately 5 hours on a 1.8 GHz personal computer. We initially tried to use the

specialist Bayesian analysis software WinBUGS (Spiegelhalter et al. 2007), and
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then wrote our own code in [R] (R Development Core Team 2008), but in both

cases found that computational efficiency was poor, requiring unfeasibly long

running times to calculate the necessary number of iterations (e.g. ∼ 60 hours

for 100,000 iterations in WinBUGS!). Thus, while Fortran programs generally

take longer to write, the pay-off can be significant, particularly when many

runs need to be performed, for example when checking convergence or prior

sensitivity. Further advantages of writing bespoke code to implement MCMC

algorithms are discussed by Brooks et al. (2004) and include the option to

select and tune the MCMC proposals, and the ability to extend the code to

incorporate reversible jump MCMC updates to allow for Bayesian model dis-

crimination (though note that limited reversible jump MCMC may be achieved

in WinBUGS by installing the Jump extension; see Gimenez et al. 2008).

Convergence issues

Three independent MCMC chains with overdispersed starting points were run

for each model to check convergence. Standard convergence diagnostics and

plots (the Brooks-Gelman-Rubin (BGR) statistic R̂interval, with α = 0.2; Brooks

& Gelman 1998, Spiegelhalter et al. 2007) suggested rapid convergence for M2

and M3, so run lengths and burn-in periods were very conservative. However,

M1 had failed to converge by the end of the burn-in period (e.g. R̂interval of

1.25 and 1.21 for φρ and φa, respectively; convergence if R̂interval < 1.05), and

posterior inference varied drastically between runs. MCMC trace plots of the in-

dividual parameters indicated very slow mixing of the chain, despite reasonable

acceptance rates, and they also highlighted a significant amount of codepen-

dence between φρ and φa (see Section 2.2.4 for plots and summary statistics).

2.2.4 Results

Posterior means and 95% symmetric credible intervals (CIs) for the true under-

lying population sizes J and X for each of the three models are provided in

Figure 2.1, and corresponding parameter estimates in Table 2.2. M1 provided a

remarkably good fit to the data (Figure 2.1a), considering the constant produc-

tivity and survival rates, although this was largely facilitated by the relatively

constant population growth indicated by the counts during the majority of the

study period. Estimates of demographic rates φρ and φa under M1 are provided

in Table 2.2, separately for each of the three independent runs of the MCMC

chain, denoted M1a, M1b and M1c. Run M1a was initiated using realistic

parameter values and population sizes, based on means of the provided demo-
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Figure 2.1 Posterior means and corresponding 95% symmetric CIs for the true underlying
population levels of female prebreeders J (H) and breeding females X (N) over time under
models M1 (run M1a) (a), M2 (b) and M3 (c). The Isle of May counts N (�) are plotted for
comparison.

graphic estimates and the count data. Resulting parameter estimates (posterior

means) were similar to the Isle of May time series means; however, posterior

standard deviations were large, particularly for φρ, and this is reflected in the

huge CIs on the prebreeder population sizes (see Figure 2.1a). Runs M1b and

M1c were initiated from overdispersed starting points (e.g. 0.99 and 0.01 for φρ

and φa, respectively, for M1b, and vice versa for M1c), and resulting posterior

inference was significantly different, although in both cases the breeding adult

population sizes were very similar to those estimated under M1a.

Table 2.2 Posterior means (SDs) for the parameters in M1 (a–c: three independent runs
from different starting points), M2 and M3. Means (SDs) of the supplied time series of
parameter estimates (Data) are included for comparison.

Parameter Data M1a M1b M1c M2 M3

φρ 0.15 (0.05) 0.15 (0.12) 0.41 (0.39) 0.29 (0.31) – –
φa 0.94 (0.03) 0.92 (0.07) 0.81 (0.19) 0.86 (0.15) 0.91 (0.004) –
σ2
N (×106) – 1.35 (0.60) 1.65 (0.91) 1.55 (0.79) 1.47 (0.60) 5.98 (0.23)
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Figure 2.2 MCMC sample paths for φρ (a) and φa (b), taken from run M1a and thinned
to every 1000th iteration. Note the strong symmetry between the plots, indicating high
codependence between these parameters.

MCMC trace plots for φρ and φa are provided from run M1a in Figure 2.2 and

clearly display very poor mixing of the chain and possible nonconvergence to the

stationary distribution, even after the full 10 million iterations (a much longer

burn-in would be needed before we could be certain about convergence). The

plots also highlight very high codependence between the two survival parameters

(when φρ was high, φa was low, and vice versa; Spearman’s rank correlation:

rs = −0.995).

The effect of incorporating the time-specific estimates of φρ,t in M2 is clearly

demonstrated in the pattern of variability in the prebreeder population sizes Jt

and, with a 5-year time lag, in the adult population sizes Xt+5 (Figure 2.1b).

This model also provided a good fit to the count data, although the year-to-year

fluctuations in the underlying adult population estimates do not precisely match

those in the counts. To achieve this fit, constant adult survival was estimated

to be lower than the Isle of May time series mean and with a very high degree

of precision (see Table 2.2).

M3 also incorporated the time-specific estimates of φa,t, to see if these helped

to explain the variability in the counts. Together, the two time series of demo-

graphic estimates appear to have generated an expected population growth rate

somewhat higher than that observed (Figure 2.1c). Note also the much larger

observation error variance than either M1 or M2 (Table 2.2), which is probably
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a consequence of the poor fit rather than a genuine reflection of the observation

error.

2.2.5 Discussion

The analysis of count data alone provides very little information about the un-

derlying demographic rates, as demonstrated by model M1. First, due to there

being only a single data value per year, it was only possible to obtain con-

stant estimates of the demographic rates. Second, productivity and prebreeder

survival were confounded in our process model, so that it was only possible

to estimate their product φρ. Finally, there was too little information to even

obtain reliable estimates of φρ and adult survival φa: an increasing population,

as indicated by the counts, could equally be the result of high productivity and

prebreeder survival, or high adult survival, or moderate increases in both of the

above rates. Nevertheless, it does not appear that these rates were completely

confounded; in fact, the parameter trace plots (Figure 2.2) suggest that there

was little overlap in their respective posteriors (assuming convergence), so there

does appear to be some information in the count data to estimate the two pa-

rameters separately. However, there was still a problem of high codependence

observed among the MCMC samples of φρ and φa under M1, which in turn

necessitated very narrow Metropolis-Hastings proposals, leading to slow mix-

ing and possible lack of convergence after 10 million iterations of the MCMC

chain. One possible solution to this last problem is to use block updates to

update highly correlated parameters simultaneously (see, e.g., King et al. 2009,

section 5.4.4).

Adding some rigidity to the model in M2 by fixing φρ,t to the time-specific

estimates significantly improved mixing and convergence, and constrained adult

survival to a very narrow range of possibilities. However, to achieve the best fit

to the count data, φa was estimated to be somewhat lower than the Isle of May

time series mean (0.91 compared to 0.94, representing approximately a 50% in-

crease in mortality). Furthermore, fixing both φρ,t and φa,t to the time-specific

estimates in M3 resulted in a very poor fit to the counts by producing an ex-

pected population growth rate considerably higher than the observed growth

rate. These two results point towards an inconsistency between the count data

and the estimates of survival derived from mark-recapture analyses; more specif-

ically, they suggest that factors other than productivity and survival influence

the dynamics of the Isle of May guillemot colony, for example, migration into

or out of the system.
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Halley & Harris (1993) showed that intercolony movement of prebreeding

Isle of May guillemots does occur, and that birds may recruit to colonies other

than their natal colony. Immigration would typically be inferred if survival rates

from mark-recapture data predicted a population growth rate lower than that

observed, or if survival estimated using count data was higher than the mark-

recapture estimates. We found the opposite for the Isle of May data, suggesting

substantial net emigration of prebreeders to recruit at other colonies. But emi-

gration is essentially included in the survival estimates, because in the analysis

of mark-recapture data death and permanent emigration are inseparable, both

contributing to the ‘apparent survival’ rate. However, the process model did

not account for the potential dispersal of prebreeders in the year immediately

prior to recruitment: age 4 birds were assumed to recruit to the colony with the

survival rate φa,t of established breeders, which rarely (if ever) change colony.

Therefore, reconfiguring equation (2.2) to allow a proportion of new recruits to

emigrate could be what is required to ‘balance the books’, so that the model

fits the counts. We consider this approach in Chapter 3.

Another unrealistic feature of the count model was the use of point estimates

for the time-specific productivity and survival rates, which, like the count data,

are also subject to sampling error. Standard errors were provided with the

estimates and could be used to sample productivity and survival rates at each

iteration from beta distributions, for example. A preferable approach would

be to fit the model simultaneously to the time series of counts and the raw

productivity and mark-recapture data in a so-called ‘integrated data analysis’

(see, e.g., Besbeas et al. 2002, Brooks et al. 2004, King et al. 2008b). This

approach is also described in Chapter 3. Along the same lines, the annual

number of breeding pairs were not counted directly but were calculated from

the total colony count using a time-specific correction factor (refer back to

Section 2.2.2 for details). To better account for the way the data on population

size were collected and analysed, it may be more realistic to fit the observation

model to the raw colony counts, assuming observation error to come from a

binomial sampling process (the n being the count and the p being the proportion

of breeding pairs observed on the intensively monitored plots). Although we do

not implement such an approach in the analyses contained herein, it may be

worth considering in future studies.
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2.3 Mark-recapture data

2.3.1 Introduction

Mark-recapture data from Isle of May guillemots ringed as chicks and from a

separate set of birds ringed as breeding adults have previously been analysed in-

dependently to obtain estimates of, respectively, juvenile (Crespin et al. 2006a)

and adult (Harris & Wanless 1995, Crespin et al. 2006b) survival rates. (Note

that we refer to the data corresponding to birds ringed as chicks as ‘chick data’

and to birds ringed as adults as ‘adult data’.) In addition, Harris et al. (2007b)

provide an analysis of combined chick mark-recapture and ring-recovery data.

In this section we focus on combining the adult and chick mark-recapture data

and for the time being ignore the chick ring-recoveries, which are incorporated

in the integrated model described in Chapter 3.

In combining the adult and chick mark-recapture data, a major assumption

is that ‘adult’ (i.e., age 4 years and older) survival rate is a shared parameter

between the two datasets. However, among the previously published estimates

of adult survival there is a large discrepancy between estimates based on the

adult data (0.90–0.99; Crespin et al. 2006b) and those based on the chick data

(0.70; Crespin et al. 2006a). A proportion of birds emigrate prior to first breed-

ing (Halley & Harris 1993) and those that remain tend to disperse through the

breeding ledges of the colony and start losing their colour-rings. The combina-

tion of these factors result in the lower adult survival estimates from the chick

data, which are in fact estimates of apparent survival. In addition, recaptures of

birds aged 5-and-older that were ringed as chicks are sparse, so it is not possible

to estimate year-specific survival rates for these birds. The adult data, on the

other hand, contain many recaptures and are thus highly informative. Thus,

by combining the two datasets, the adult data provide most of the information

on adult survival rates, while the additional, alternative information provided

by the chick data allows the estimation of a pre-recruitment dispersal rate.

2.3.2 Data and notation

The raw data for this analysis are the individual capture histories from which

the survival point estimates used in the state-space model in Section 2.2 were

derived. The capture histories consist of a series of ones and zeros, denoting

for each capture occasion from year t = 1, . . . T whether an individual was seen

alive (recaptured or resighted) or not seen, respectively. The first ‘1’ indicates

the year (or cohort) in which the bird was ringed, and the last ‘1’ the year
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the bird was last seen, though not necessarily the year in which it died. For

example, the capture history

0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0

describes a bird (in this case a guillemot chick ringed on the Isle of May) ringed

and released in the fourth year (1986) of a 23-year study, recaptured during

1989–1992, and again in 1994, after which it was not seen again. A total of 6396

guillemot capture histories are used in this analysis, consisting of 802 breeding

adults captured and marked during 1982–2004, and 5594 chicks captured during

1983–2003, with resightings of both groups up to 2005. Thus, we have T = 24

capture/recapture occasions.

Modelling the recapture process requires two sets of parameters: survival

rates and recapture probabilities. We let R = {0, 1, 2, 3, 4, 5+, a} denote the set

of ages at which birds may be recorded, with a denoting the adult age-class.

For r ∈ R and t = 1, . . . , T − 1, we define

φr,t = Pr(a bird of age r, alive at time t, survives until time t+ 1);

pr,t+1 = Pr(a bird of age r, alive at time t+ 1, is resighted at that time).

For notational convenience, we also define φ = {φr,t : r ∈ R; t = 1, . . . , T − 1}
and p = {pr,t : r ∈ R; t = 2, . . . , T} to denote the set of all survival and

resighting probabilities, respectively, and θ = {φ,p} to denote the full set of

model parameters.

2.3.3 Analysis and results

We take a Bayesian approach to the analysis, using noninformative U(0, 1) priors

on all probability parameters. MCMC, with updates by a Metropolis-Hastings

random walk algorithm with uniform proposal density, is used to obtain a sam-

ple from the posterior distribution π, from which posterior summary statistics

are extracted. The MCMC algorithms for the following models were all run for

100,000 iterations, with the first half of the chain discarded as burn-in. Standard

convergence diagnostics and plots (BGR statistic; see Section 1.3.3) suggested

that this burn-in period was very conservative, with rapid convergence indicated

for all models. Simulations were implemented in Fortran and took from a few

minutes to 10 hours (according to the model; see individual model descriptions,

below) to run on a 1.8 GHz personal computer.



2.3 Mark-recapture data 33

M1 Simple combined analysis

We begin with a straightforward combined analysis, where time-specific adult

survival probabilities are assumed to be equal for the adult and chick data. This

assumption is not made for adult resighting probabilities because resighting data

for the two groups was collected by different methods. The model to describe

the other chick survival parameters (i.e., for juvenile and immature birds) and

the model for resighting parameters are based on biological reasoning and the

amount of information in the data. One-year-old birds were never observed

at the colony, so resighting probabilities for this age group are fixed to zero

(p1,t = 0 ∀ t) and juvenile survival is therefore restricted to a composite estimate

over the first two years of life, denoted by φ0–1,t. Survival of juvenile birds is

allowed to vary annually, but for ages 2 and 3 it is constrained to be constant

with time as there is not enough information in the data to permit time-specific

estimates. Once birds reach age 4, they are assumed to survive with a time-

dependent adult survival rate, in common with birds from the adult dataset

(φ4,t = φ5+,t = φa,t). Therefore, we have survival parameters φ0–1,t, φ2, φ3

and φa,t. Resighting probability is assumed to be age-dependent up to 5 years

because immature guillemots visit the colony with increasing frequency until

they start breeding (Halley et al. 1995); it is also fully time-dependent for all

age classes of birds ringed as chicks, and for birds ringed as adults. This gives

the resighting parameters p2,t, p3,t, p4,t, p5+,t and pa,t, where p5+,t 6= pa,t.

Catchpole et al. (1998) derived an efficient form for the likelihood of joint

mark-recapture and ring-recovery data that allows age- and time-dependence.

Instead of using the individual capture histories, their approach requires sum-

marising these raw data into four upper-triangular matrices, which form suffi-

cient statistics for estimation of the parameters. Using a similar, but simplified

approach for the mark-recapture data, we define the following three matrices:

vr,t = the number of birds of age r captured or resighted at time t and

not seen again during the course of the study;

wr,t = the number of birds of age r at time t, resighted at time t+ 1;

zr,t = the number of age r birds at time t not resighted at time t+ 1 but

seen alive later.

Two sets of these statistics are required: xj = {vj ,wj , zj} for the capture

histories of birds ringed as chicks; and xa = {va,wa, za} for those of birds

ringed as breeding adults. The likelihood for the chick data is then expressed
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Figure 2.3 Posterior means and 95% symmetric CIs for survival rates under the combined
adult-chick mark-recapture model: (a) juvenile survival (from fledging to age 2) of birds
ringed as chicks, φ0–1,t; (b) combined adult survival of age 4+ birds ringed as chicks and birds
ringed as breeding adults, φa,t. (Note the different y-scales.)

in the form

Lj(xj | θ) =
∏
r∈R

[T−1∏
t=1

(φr,t)
wr,t+zr,t(pr,t+1)wr,t(1− pr,t+1)zr,t

T∏
t=1

(χr,t)
vr,t

]
, (2.8)

where χr,t denotes the probability that a guillemot of age r, alive at time t =

1, . . . , T , is not observed after this time. For t = 1, . . . , T − 1, χr,t is given by

the recursion

χr,t = (1− φr,t) + φr,t(1− pr,t+1)χr+1,t+1, (2.9)

with χr,T = 1. The likelihood for the adult data, La(xa | θ), is a similar

expression with r = a, and the joint likelihood for the combined data is formed

by multiplying the adult and chick expressions together.

The MCMC iterations for this model took ∼ 7 minutes of computing time

(for 100,000 iterations), which is a reflection of the efficiency of the above

method for calculating the likelihood.

Posterior means and associated 95% CIs for time-specific survival rates are

provided in Figure 2.3. Survival from fledging to age 2 was highly variable

between years, with posterior means during 1983–2001 ranging from 0.210 to

0.642 (Figure 2.3a). The large uncertainties in 2002/2003 reflect the fact that

few chicks ringed in these years were resighted before the end of the study; fur-

thermore, the 2003 estimate is confounded with age 2 resighting probability in

2005 (note the correspondingly large CI on the final p2,T in Figure 2.4a). Adult

survival also varied significantly from year to year (0.812–0.991; Figure 2.3b),

but over a much smaller range than juvenile survival (note that the magnitudes

of the two survival rates are not directly comparable as juvenile survival covers
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Figure 2.4 Posterior means and 95% symmetric CIs for resighting probabilities under the
combined adult-chick mark-recapture model: (a)–(d) birds ringed as chicks, respectively p2,t,
p3,t, p4,t and p5+,t; (e) birds ringed as breeding adults pa,t (note the different y-scale for this
plot).

a two-year period, whereas adult survival is only over a single year of life). The

main detail to note is the steady decrease in adult survival after 1989 to a new,

apparent lower level, and the associated increase in uncertainty of the estimates,

the possible reasons for which will be discussed later. Constant survival esti-

mates for immature birds were 0.915 (95% CI: 0.839, 0.979) for φ2, and 0.813

(0.777, 0.849) for φ3.

Resighting probabilities of birds ringed as chicks increased with age up to

4 years old (Figure 2.4a–c). Birds aged 5-and-older were resighted with lower
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Figure 2.5 A comparison of adult survival estimates (posterior means and 95% CIs) ob-
tained under combined adult-chick model M1 (©) with those from adult-only (4) and chick-
only (�) analyses using identical model structures.

probability than age 4 birds (Figure 2.4d). This can be explained as these are

birds of breeding age that would have dispersed throughout the densely packed

breeding ledges of the colony making them harder to resight, and the wear and

loss of colour-rings would also have started to occur. Resighting probabilities

of birds ringed as breeding adults pa,t were very high throughout the study

(Figure 2.4e), due to a combination of the intensity of observations on these

birds and their site-faithfulness. The disparity between the estimates from birds

ringed as adults and those ringed as chicks shows that it would be unrealistic

to assume the same resighting probability for all breeding-age guillemots.

With the exception of φ3 and φa,t, all parameter estimates were essentially

the same as those obtained from independent analyses of the adult and chick

data (where applicable) using identical model structures. The posterior mean

for third-year survival derived from the combined data (0.813) was 0.078 lower

than the posterior mean from the chick data (0.891) with minimal overlap in

the CIs. Combined adult survival estimates during 1982–1989 were very similar

to those from the adult data only, but from 1990 onwards these estimates also

diverged, with those from the combined analysis being consistently lower and

with larger CIs; however, they were higher than the estimates of adult survival

from the chick data (Figure 2.5). The combined estimates thus appear to reflect

a compromise between the information about adult survival contained in the

two datasets: in the early years there was little information (none before 1987)

coming from the chick data as few marked birds had reached adulthood, so the

estimates mostly reflect the information in the adult data; as time progresses,
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however, more cohorts of birds ringed as chicks enter the adult age-class, giving

the chick data greater weight (note the smaller CIs on the chick estimates in

later years in Figure 2.5) and thus pulling the combined estimates away from

what we assume to be the ‘true’ adult survival rates.

M2 Incorporating pre-recruitment emigration

The estimates of adult survival obtained from the chick data are clearly anoma-

lously low when compared to what we believe to be the more realistic estimates

from the adult data (see Figure 2.5). Because mark-recapture models are un-

able to distinguish permanent emigration from death (both result in zero future

recaptures), emigration produces negatively biased survival estimates; indeed,

Crespin et al. (2006a) attribute the discrepancy in adult survival on the Isle of

May primarily to the permanent emigration of ‘as many as 25%’ of prebreeding

guillemots to other colonies. Emigration is not an issue for the breeding adult

mark-recapture data, as breeding guillemots rarely (if ever) change colonies.

Therefore, if we assume that the difference between the two sets of adult sur-

vival estimates is due to permant pre-recruitment emigration, then accounting

for this in the combined model should produce improved estimates of adult

survival, plus an estimate of the rate of emigration.

On the Isle of May most guillemots start breeding at ages 5–7 years (Harris

et al. 1994), but for simplicity we assume that all birds recruit at age 5 and,

as already noted, that they survive with adult survival rate φa,t from age 4.

Most chicks return to the Isle of May during their prebreeding years (Crespin

et al. 2006a), so that we assume that all emigration takes place in the year

immediately prior to first breeding, that is, at age 4. Using ψ to denote the

emigration rate, survival for age 4 birds is now given by φ4,t = (1−ψ)φa,t, while

for birds aged 5-and-older we still have that φ5+,t = φa,t.

Parameter estimates from this model were generally very similar to those

from M1, notable exceptions being φ3, which at 0.864 (95% CI: 0.821, 0.905)

was somewhat higher than the M1 estimate of 0.813, and adult survival φa,t,

which although still not as high as the estimates from the adult-only analysis,

were a slight improvement over the model without emigration (Figure 2.6). The

emigration parameter ψ was estimated to be 0.202 (0.158, 0.244); this implies

a permanent pre-recruitment emigration rate of about 20% from each cohort,

which is not too dissimilar to the 25% estimated by Crespin et al. (2006a).

Computation time for the MCMC iterations was essentially the same as for M1

(∼ 7 minutes; only one additional parameter was updated at each iteration).
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Figure 2.6 A comparison of adult survival estimates (posterior means) obtained under the
following combined survival models: M1 (©; simple combined analysis); M2 (�; extended
analysis incorporating pre-recruitment emigration); M3.1 and M3.2 (×; attempts to account
for heterogeneity in age 5+ resighting probabilities with, respectively, a mixture-distribution
and random effects—results were essentially identical). The ‘true’ estimates given by the
adult data are also plotted for comparison (4).

M3.1 Modelling heterogeneity in p5+: two-component mixture-distribution

The fact that incorporating emigration in the combined model did not con-

tribute significantly to improving estimates of adult survival suggests that we

are still missing an important aspect of the system. We therefore hypothesise

that, while part of the discrepancy between adult survival estimates from the

independent chick and adult analyses may be explained by permanent emigra-

tion, unmodelled heterogeneity in age 5+ resighting probabilities of birds ringed

as chicks may also have an effect.

There are a number of factors that may affect the probability of resighting

breeding-age guillemots that were ringed as chicks, making the assumption that

all age 5+ birds share the same resighting probability potentially unreasonable.

According to our assumptions, guillemots recruit to the breeding population at

5 years of age. From then on, they are most likely to be resighted at the location

of their breeding site, which generally remains the same from year to year

(Harris et al. 1996b), so resighting probability is highly dependent on whether

an individual recruits to a high- or low-visibility nest site: those recruiting

to high-visibility sites are likely to be resighted with high frequency, whereas

individuals recruiting to low-visibility sites will only be seen sporadically, if at

all. A further potential source of heterogeneity is caused by wear and loss of

colour-rings, which takes place once birds start breeding and spend much more
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time ashore on the drier, more abrasive rock of the breeding ledges. Marked

birds that have a missing or unreadable colour-ring can only be identified by

means of their numbered metal ring, which are much more difficult to find

during searches and are also harder to positively identify once discovered.

To model these two sources of heterogeneity we use a similar approach to

Pledger et al. (2003), splitting p5+ into two separate parameters: the probability

of resighting a bird given it is in a high-visibility location, denoted ph5+, and

the probability of resighting a bird given it is in a low-visibility location, pl5+.

The resulting posterior distribution for p5+ is a mixture of the two component

distributions.

For this approach, we consider an individual-based approach to formulating

the likelihood for the chick data. We let xj = {xi,t : i = 1, . . . , n; t = 1, . . . , T}
denote the full set of n = 5594 chick capture histories, where each row i gives

the capture history of a single individual and each column t represents a single

capture occasion, containing a ‘1’ if an individual was captured or resighted on

that occasion and ‘0’ otherwise. For each individual i, we denote the year of its

first capture by tci, the year of its last capture by tki and its age at last capture

by rki. At any time t, the age of an individual is given by r = min(t−tci+1, G),

where G = 6 is the total number of age classes. Then, for each individual we

let

δhi =


1, tki = tci,

tki−1∏
t=tci

φr,t(p
h
r,t+1)xi,t+1(1− phr,t+1)1−xi,t+1 , tci < tki 6 T,

(2.10)

be the probability of observing that individual’s capture history from first cap-

ture until its last recapture occasion, given that it is in a high-visibility location,

with an analogous definition for δli by replacing phr,t with plr,t. To complete the

individual likelihood, we also need to define the probability that an individual

is not observed after its last recapture occasion. In general, for an individual of

age r, last seen at time t, this is given by the recursion

χhr,t = (1− φr,t) + φr,t(1− phr,t+1)χhr+1,t+1, t = 1, . . . , T − 1, (2.11)

with χhr,T = 1, given that the individual is in a high-visibility location, with

an analogous definition for χlr,t. Then for r 6 4 (i.e., prebreeders) we simply

let pr,t = phr,t = plr,t, while for breeders we specify that ph5+ > pl5+, and so

p5+ = πhph5++(1−πh)pl5+, where πh is the probability of being in a high-visibility
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site. The full likelihood is calculated as the product of the probabilities of the

individual capture histories and is given by

Lj(xj | θ) =
∏
i

(
πhδhi χ

h
rki,tki

+ (1− πh)δliχlrki,tki
)
, (2.12)

where θ = {φ,p} is a vector of model parameters, as defined in Section 2.3.2.

Computation time for this individual-based analysis was ∼ 5 hours, which

is more than 40 times longer than for M1 or M2. This further highlights the

considerable advantage of using Catchpole et al.’s (1998) approach based on

the sufficient statistics, where possible, when implementing computationally

intensive likelihood-based simulations such as MCMC.

Posterior means for the resighting probabilities ph5+ and pl5+ were 0.762

(95% CI: 0.708, 0.817) and 0.188 (0.145, 0.234), respectively, with the proba-

bility of being in a high-visibility site πh being 0.386 (0.322, 0.451). This result

clearly suggests that adult guillemots that were ringed as chicks are divided into

(at least) two distinct groups with very different resighting probabilities, as we

expected. However, while estimates of adult survival were improved further over

the previous estimates from the emigration model, the difference was very small

(Figure 2.6; also note the slightly different trend of survival estimates, which

is most likely the result of p5+ no longer being time-specific, due to insufficient

information in the data). In addition, the posterior estimate of the emigration

rate ψ was drastically reduced in this model to 0.081 (0.012, 0.147). It is proba-

ble that this model is still not adequate to capture all the heterogeneity in p5+,

so with the following model we consider a random effects model.

M3.2 Modelling heterogeneity in p5+: random effects

The most general option for modelling heterogeneity in p5+ is to model the pa-

rameter using random effects—essentially a form of continuous mixture model

(Coull & Agresti 1999, Dorazio & Royle 2003)—which assumes that each guille-

mot has its own individual resighting probability derived from an underlying

distribution. We denote the age 5+ resighting probability of individual i by pi5+,

which takes the form

logit(pi5+) = µ+ εi, (2.13)

where µ denotes the underlying resighting probability and εi denotes random

effects, such that

εi ∼ N(0, σ2
ε ). (2.14)
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The random effects variance σ2
ε is a parameter to be estimated. As with

Model 3.1, this calls for a likelihood based on the individual capture histories.

We define

δi =


1, tki = tci,

tki−1∏
t=tci

φr,t(p
i
r,t+1)xi,t+1(1− pir,t+1)1−xi,t+1 , tci < tki 6 T,

(2.15)

to be the probability of observing the capture history of individual i from first

until last capture, and

χir,t = (1− φr,t) + φr,t(1− pir,t+1)χir+1,t+1, t 6 T − 1, (2.16)

with r = rki, t = tki, and χir,T = 1, to be the probability that individual i is not

observed after its last recapture occasion. For r 6 4 we let pir,t = pr,t ∀ i, and

pi5+ is given by equation (2.13). The full likelihood is simply given by

Lj(xj | θ) =
∏
i

δiχ
i
rki,tki

, (2.17)

where θ = {φ,p, µ, εi, σ2
ε} is a vector of survival rates, resighting probabilities

and random effects parameters.

The underlying resighting probability µ and random effects variance σ2
ε for

the model on pi5+ require some attention regarding prior specification because,

unlike all the other parameters specified in Section 2.3, they do not come under

the umbrella of ‘probability parameters’ with the corresponding U(0, 1) prior.

Following King & Brooks (2008), the prior for µ is specified to have probability

density function

f(µ) =
exp(µ)

(1 + exp(µ))2
, (2.18)

which exactly induces a U(0, 1) prior on the resighting probability in the absence

of random effects. Regarding σ2
ε , we specify a prior of the form

σ2
ε ∼ Γ−1(b1, b2), (2.19)

for which we require the parameters b1 and b2 such that the corresponding

prior distribution of εi approximately induces a U(0, 1) prior on the resighting

probability pi5+. Ignoring the µ term in the logistic regression, this is closely

achieved by setting b1 = 3 and b2 = 7 (see Appendix A for a full discussion of

the derivation of these parameters).
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The estimate of the underlying resighting probability µ, on the logit scale,

was −0.745 (95% CI: −0.960, −0.523), with a corresponding back-transformed

estimate for p5+ of 0.322 (0.277, 0.372). The random effects variance σ2
ε , also

on the logit scale, was 3.34 (2.54, 4.27), which is rather large and reflects the

great individual variation in resighting probabilities. Even so, this approach

gave essentially identical estimates of adult survival to those from M3.1 (see

Figure 2.6) and the emigration parameter ψ was reduced even further to 0.022

(0.001, 0.073). Computation time was ∼ 10 hours, more than 80 times longer

than M1 or M2, which demonstrates the considerable computational demand

of implementing individual random effects in an MCMC simulation.

2.3.4 Discussion

The results from the models presented in this section suggest that modelling em-

igration and heterogeneity in p5+ are of limited benefit in achieving improved es-

timates of adult survival from the combined adult-chick mark-recapture model.

Even allowing for individual variation in age 5+ resighting probabilities, pos-

terior means for φa,t remained well below those obtained from the breeding

adult-only data. However, none of the above models account for the individuals

that truly become invisible to future live detections, through dispersing to an

‘invisible’ location in the colony (where identification is impossible) and/or los-

ing their colour-ring. Accounting for these individuals requires a way of knowing

that they are still alive without the need for live resightings, and dead recov-

eries provide the answer: a bird may be recovered dead and identified via its

numbered metal ring regardless of whether it is in an ‘invisible’ location, has

lost its colour-ring, or even if it has emigrated and recruited to another colony.

Fortunately, information on recoveries is available for guillemots ringed as

chicks on the Isle of May, and the combined analysis of mark-recapture and

ring-recovery data for these birds provides a realistic estimate of adult survival

(95%: Harris et al. 2007b), even without the additional information in the adult

data. The inclusion of recoveries is considered in Chapter 3, as part of a fully

integrated approach to analysing the Isle of May data.
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2.4 Productivity data

2.4.1 Data and model

The productivity data analysed in this section are derived from daily monitoring

of breeding guillemots in several study plots located in the main part of the Isle

of May colony. Each year from 1983 to 2005 (denoted by t = 1, . . . , T ), 607–

1014 pairs (representing on average 5.5% of the total colony) laid an egg in the

study areas. The fates of these eggs were then followed through the breeding

season, resulting in a known number of successfully ‘fledged’ chicks (fledging

here being defined as a chick having left the colony, which usually occurs at

around 3 weeks of age).

For t = 1, . . . , T , we denote the number of observed breeding attempts in

year t by ne,t, and the number of successfully fledged chicks by nf,t. Because

a female guillemot only lays a single egg per year, each breeding attempt is an

independent Bernoulli trial with probability ρt (the productivity rate at time t)

and so we have that

nf,t | ρt ∼ Bin(ne,t, ρt). (2.20)

2.4.2 Analysis and results

We perform a Bayesian analysis of the data, and because the posterior distribu-

tion is of a simple form, we are able to derive it analytically in our case. Placing

a Beta(α, β) prior on ρt, by Bayes’ Theorem the posterior distribution for the

productivity rate in year t is given by

π(ρt | nf,t) ∝ f(nf,t | ρt) p(ρt)

∝ (ρt)
nf,t(1− ρt)ne,t−nf,t(ρt)α−1(1− ρt)β−1

= (ρt)
nf,t+α−1(1− ρt)ne,t−nf,t+β−1. (2.21)

Then, by inspection, we have that

ρt | nf,t ∼ Beta(nf,t + α, ne,t − nf,t + β). (2.22)

Therefore, the expected value (posterior mean) for ρt is given by

Eπ(ρt) =
nf,t + α

ne,t + α + β
, (2.23)
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Figure 2.7 Posterior means and 95% symmetric CIs for productivity rates, ρt.

and the standard deviation by

σπ(ρt) =

√
(nf,t + α)(ne,t − nf,t + β)

(ne,t + α + β)2(ne,t + α + β + 1)
. (2.24)

The symmetric 100(1− αc)% credible interval (a, b) is defined such that∫ a

0

π(ρt | nf,t)dρt =
αc
2

=

∫ 1

b

π(ρt | nf,t)dρt,

i.e.,∫ a

0

(ρt)
nf,t+α−1(1− ρt)ne,t−nf,t+β−1dρt

=
αc
2

=

∫ 1

b

(ρt)
nf,t+α−1(1− ρt)ne,t−nf,t+β−1dρt. (2.25)

The integration for the credible interval is not possible analytically; however,

the necessary quantiles of the beta distribution may be obtained using computer

routines such as the qbeta function in [R].

We have no prior information regarding the productivity rates, so we specify

the prior parameters α = β = 1, giving a prior equivalent to a U(0, 1) distri-

bution. Resulting posterior means and corresponding symmetric 95% CIs are

plotted in Figure 2.7. The CIs were quite small, due to the large sample sizes,

and clearly there was a significant degree of year-to-year variation in productiv-

ity. This was particularly true during the later years of the study, when there

appears to have been a significant decline in mean productivity and an increase
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in interannual variability, both of which are likely to have a negative impact on

the colony growth rate.

It is straightforward to incorporate the productivity data and model into an

integrated analysis, and we do so in Chapter 3.

2.5 Conclusions

In this chapter, we have considered each of the Isle of May guillemot datasets

separately. However, some of the parameters are common to more than one

dataset, and treating the analyses separately can provide inconsistent results;

in particular, we note the different survival rates generated by the count and

mark-recapture data in Section 2.2, and the difference in adult survival esti-

mated by separate analyses of the chick and adult mark-recapture datasets, as

mentioned in Section 2.3. Furthermore, approaches that simply compare pa-

rameter estimates from separate analyses, to see whether they are compatible,

are piecemeal and generally not statistically rigorous (Besbeas et al. 2002).

We want a robust analysis and, therefore, in the following chapter consider

an integrated approach in order to ‘borrow’ information across the different

data. For example, mark-recapture and ring-recovery data both contain infor-

mation on survival rates, and may be analysed simultaneously to share this

information and obtain more self-consistent survival estimates (Burnham 1993,

Catchpole et al. 1998). We have also demonstrated that count data contains

little information on demographic rates, but it too can be combined with MRR

data to obtain more accurate demographic rates and, at the same time, im-

proved population estimates (e.g. Besbeas et al. 2002, Brooks et al. 2004). In

Chapter 3 we show, using the Isle of May guillemot data, how count, mark-

recapture, ring-recovery and productivity datasets may be combined in an in-

tegrated population model, and how this enables the estimation of additional

parameters that would be unidentifiable when using only a single data source.





Chapter 3

Integrated data analysis

3.1 Introduction

Long-term monitoring schemes for wildlife populations often involve the col-

lection of several types of data relating to various aspects of the population

(Besbeas & Freeman 2006). Abundance data are relatively easy to collect and

are thus frequently encountered; they can provide estimates of total population

size, or indices, from which population growth rates can be inferred. At the in-

dividual level common types of data include mark-recapture and ring-recovery

time series (MRR data; respectively, records of live recaptures/resightings and

dead recoveries of marked individuals), which contain information on survival

probabilities, and records of breeding success (for example, nest record data)

for estimating productivity rates. The forms of data collected are typically

dependent on the underlying biological dynamics of interest and on practical

constraints.

For a given population one may analyse each type of data in turn and, where

two or more datasets contain information about common parameters, compare

estimates to check for consistency. Survival and productivity estimates may also

be incorporated into population models to see whether they explain observed

year-to-year variations in population size—an approach which has been used

to investigate causes of population decline in several species (e.g. Peach et al.

1999, Freeman & Crick 2003). However, these types of analysis do not use the

data to their full potential (Besbeas et al. 2002).

Recent interest has focused on integrating all available data within a single,

consistent framework (e.g. Catchpole et al. 1998, Besbeas et al. 2002, Brooks

et al. 2004, Besbeas et al. 2008). Resulting parameter estimates and associated

measures of precision then fully reflect all available information; this approach

may also permit the estimation of parameters that are unidentifiable when using

47
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only a single data source (Besbeas & Freeman 2006) and is useful for obtaining

information from limited data (Schaub et al. 2007, Véran & Lebreton 2008).

Mark-recapture and ring-recovery data from the same individuals contain

information on common survival parameters and are thus readily combined

(Burnham 1993, Catchpole et al. 1998), allowing the estimation of ‘fidelity’

probabilities to account for permanent emigration from the study site and/or

loss of marks (Frederiksen & Bregnballe 2000, Frederiksen et al. 2004a, Harris

et al. 2007b). Abundance data provide information on population size but

generally relatively little information on the underlying survival probabilities

and productivity rates. Therefore, combining abundance data with MRR data

in a single analysis permits improved estimates for survival and hence improved

estimates for productivity and population size (Besbeas et al. 2002, Brooks et al.

2004). Previous studies have combined various different types of abundance

and MRR data using both classical (e.g. Besbeas et al. 2002, Borysiewicz et al.

2008, Véran & Lebreton 2008) and Bayesian (Brooks et al. 2004, Goodman

2004, Schaub et al. 2007) approaches. If additional, independent productivity

data are available these may also be incorporated (Gauthier et al. 2007), further

refining estimates of demographic parameters and population size and providing

greater flexibility to estimate additional parameters.

In this chapter we consider a combined analysis of abundance, mark-

recapture, ring-recovery and productivity data from a long-term study of com-

mon guillemots Uria aalge on the Isle of May. Although the Isle of May guille-

mot colony has been extensively studied, previous analyses have focused on a

single aspect of the population (for example, adult survival (Harris & Wanless

1995, Crespin et al. 2006b), juvenile survival and fidelity (Harris et al. 2007b),

intercolony movement (Halley & Harris 1993), and philopatry (Harris et al.

1996a)) and have not considered the dynamics of the colony as a whole.

The dynamics of guillemot colonies are complex, due to variation in age of

first breeding (Harris et al. 1994) and potentially high rates of emigration among

prebreeders (Halley & Harris 1993). However, quantifying emigration rates for

Isle of May prebreeders is difficult due to the scarcity of direct observational

data: very few guillemots ringed on the Isle of May are subsequently resighted

among the hundreds of thousands at other colonies. ‘Fidelity’ rates have been

estimated using combined MRR data from birds ringed as chicks (Harris et al.

2007b), but it is not possible using these data alone to separate emigration

from the confounding influences of colour-ring loss and the low visibility of

breeders. Here we present an integrated analysis of the Isle of May guillemot

data that provides a formal estimate of the rate of pre-recruitment emigration
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and a separate parameter to account for ring loss and reduced visibility.

We describe the data and model in Section 3.2, and the corresponding

Bayesian analysis that we implement in Section 3.3. In Section 3.4 we present

our results and in Section 3.5 we provide a discussion, in which we compare

parameter estimates with those from previous studies to check the performance

of the integrated model.

3.2 Data and modelling

We have four separate sources of data relating to the Isle of May guillemots,

collected as part of the Centre for Ecology and Hydrology’s ‘Isle of May long-

term study’: (1) abundance data in the form of annual colony counts, hereafter

referred to as count data (in latter years these have been made by Scottish

Natural Heritage staff); (2) mark-recapture data from birds ringed as breed-

ing adults; (3) mark-recapture-recovery data from birds ringed as chicks; and

(4) productivity data in the form of annual records of breeding success. Each

dataset has a minimum of 23 years of observations from 1983 to 2005, which we

denote by t = 1, . . . , T .

We consider each of the data sources and their corresponding models and

parameters in turn, before describing how they are combined in the integrated

model. A summary of all the parameters in the analysis and their interconnec-

tions between models is provided in Table 3.1, at the end of the section, and

may be used as a quick-reference guide.

3.2.1 Count data

The count data are annual estimates of the number of breeding pairs, derived

from counts of the total number of full-grown birds present in the colony. These

total counts include one or two adults per breeding pair plus a variable number of

nonbreeders and prebreeders, so a count-specific correction factor (Harris 1989)

was applied to obtain an estimate of the total number of breeding pairs (see

Section 2.2.2 for further details of the count methodology). For simplicity we

focus on the number of breeding females, which we denote by Nt for t = 1, . . . , T .

Because the Nt are only estimates of the true population size we use a state-

space approach to model the count data (e.g. Millar & Meyer 2000, Buckland

et al. 2004, Jamieson & Brooks 2004, Brooks et al. 2008, King et al. 2008b),

which models observation error (associated with the data collection process and

subsequent estimation of the number of breeding pairs) and process uncertainty
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(associated with the variability within the population itself) separately.

The observation model relates the observed annual counts to the true, but

unknown, underlying population size. We assume that

Nt ∼ N(Xt, σ
2
N), (3.1)

where Xt denotes the true underlying number of breeding females in year t and

σ2
N is the observation error variance.

The process model describes changes in the true population size over time.

For the adult population, we assume that the number of breeding females in

year t is derived from the number surviving from year t − 1, plus the number

of new females recruiting into the breeding population. On the Isle of May

most guillemots start breeding at ages 5–7 years (Harris et al. 1994), but for

simplicity we assume that all birds recruit at age 5. We also assume that

all birds have the same ‘adult’ survival rate from age 4. Although established

breeding guillemots rarely (if ever) change colonies, a proportion of birds reared

on the Isle of May recruit elsewhere (Halley & Harris 1993). Most surviving

chicks return to the Isle of May during their prebreeding years (Crespin et al.

2006a, Harris et al. 2007b), so we assume that any emigration takes place in

the year immediately prior to first breeding. The local apparent survival rate—

the probability of surviving and returning to the colony the following year—for

age 4 females will therefore be lower than for breeding females. The parallel

process of birds born on other colonies recruiting into the Isle of May breeding

population also occurs (Halley & Harris 1993); however, there is no data to

estimate immigration directly, so for simplicity we assume there is none (but

see discussion in Section 6.2). Therefore, we consider two components of the

adult breeders: continuing female breeders Yt, and new female recruits Zt. We

then assume that

Yt ∼ Bin(Xt−1, φa,t−1), (3.2)

and

Zt ∼ Bin(Jt−5, ψφa,t−1), (3.3)

where Jt denotes the number of female prebreeders that are fledged in year t

and survive to adulthood, φa,t denotes the adult survival rate in year t, and ψ is

the fidelity rate of recruiting birds, which is assumed to be constant over time.

Finally, the total number of female breeders in year t is Xt = Yt + Zt.

A female guillemot lays a single egg per year (except that it may replace
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this if lost); therefore, each breeding pair can produce only a single chick per

year. Assuming all adults breed every year, we model the number of female

prebreeders by

Jt ∼ Bin(Xt, ρtφ
∗
t/2), (3.4)

where ρt denotes the productivity rate in year t (the mean number of chicks

fledged per pair) and φ∗t is the compound survival rate over the first four years of

life for chicks fledged in year t. The term of 1/2 corresponds to the probability

of a chick being female.

For notational convenience we let φρ,t = ρtφ
∗
t/2 and we define φρ = {φρ,t :

t = 1, . . . , T − 4}, with similar notation and corresponding time intervals for

φa, N , J , X, Y and Z. The approximate likelihood for the observation model

is then given by

Lobs(N |X, σ2
N) =

T∏
t=6

[
1√

2πσ2
N

exp

(
−(Nt −Xt)

2

2σ2
N

)]
. (3.5)

Similarly, the approximate likelihood for the process model is

Lsys(J ,Y ,Z | ψ,φρ,φa) =
T−4∏
t=1

(
Xt

Jt

)
(φρ,t)

Jt(1− φρ,t)Xt−Jt

×
T∏
t=6

[(
Xt−1

Yt

)
(φa,t−1)Yt(1− φa,t−1)Xt−1−Yt

×
(
Jt−5

Zt

)
(ψφa,t−1)Zt(1− ψφa,t−1)Jt−5−Zt

]
, (3.6)

and the joint likelihood for the count data is given by

LN(N ,J ,Y ,Z | ψ,φρ,φa, σ2
N)

= Lobs(N | Y ,Z, σ2
N) Lsys(J ,Y ,Z | ψ,φρ,φa). (3.7)

Note that t starts at 6 in both the observation likelihood and adult breeder

portion of the process likelihood (see Section 2.2.2 for explanation), so we need

to place priors on the initial population sizes X1, . . . , X5 (see Section 3.3.1).

3.2.2 Adult mark-recapture data

A total of 802 breeding adults of both sexes and unknown age were captured

between 1982 and 2004 in five intensively monitored study plots on the Isle of

May and marked with a numbered metal ring and an individually recognisable
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combination of three colour-rings. The data take the form of encounter histories,

which record annual resightings of individual birds (7294 in total) from 1983

to 2005. Resightings came mainly from the study plots because site-fidelity

of breeding adults is high (Harris et al. 1996b), but wider searches were also

regularly made. We ignore the recoveries of dead adult birds as there were too

few (11) to justify the added complexity of the model.

We assume that all adults share common survival and resighting probabil-

ities, regardless of sex or cohort, but allow both to vary annually. Using a to

denote the adult age-class and taking into account that t = 1 corresponds to

1983, for t = 0, . . . , T − 1 we let

φa,t = Pr(an adult bird, alive at time t, survives until time t+ 1);

pa,t+1 = Pr(an adult bird, alive at time t+ 1, is resighted at that time).

We also define φa = {φa,t : t = 0, . . . , T − 1} and pa = {pa,t : t = 1, . . . , T}
to denote the set of all survival and recapture probabilities respectively, and

θa = {φa,pa} to denote the full set of model parameters for the adult data.

Catchpole et al. (1998) derived an efficient form for the likelihood of joint

mark-recapture and ring-recovery data that allows age- and time-dependence

(see also Catchpole et al. 2000, King & Brooks 2002). Using a similar approach,

we define the following sufficient statistics for the adult mark-recapture data:

vt = the number of adult birds captured or resighted at time t and not seen

again during the course of the study;

wt = the number of adult birds resighted at time t+ 1;

zt = the number of adult birds not resighted at time t+ 1 but seen alive later.

We let xa = {va,wa, za} denote the full adult dataset. The likelihood is

simply expressed by

La(xa | θa) =
T−1∏
t=0

(φa,t)
wt+zt(pa,t+1)wt(1− pa,t+1)zt

T∏
t=0

(χa,t)
vt , (3.8)

where χa,t denotes the probability that an adult guillemot, alive at time t =

0, . . . , T , is not observed after this time, and for t = 0, . . . , T − 1 is given by the

recursion

χa,t = (1− φa,t) + φa,t(1− pa,t+1)χa,t+1, (3.9)

with χa,T = 1.
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3.2.3 Chick mark-recapture-recovery data

Chicks were ringed on the Isle of May in two areas (4127 chicks in area A, 1467

in area B; 5594 in total) during 1983–2003 with a numbered metal ring and a

unique colour-ring readable at distances up to 75 m. Encounter histories record

resightings of live birds on the Isle of May and recoveries of dead birds away

from the island from 1984 to 2005. In all there were 3867 live resightings and

243 dead recoveries. Most resightings resulted from almost daily searches of the

breeding ledges and tidal rocks in the general vicinities of the two ringing areas,

because of the tendency of guillemots to return to their natal area during their

prebreeding years and to subsequently recruit nearby (Harris et al. 1996a).

The likelihood for standard MRR data is a function of survival, recapture

and recovery probabilities (Catchpole et al. 1998). In particular, letting R =

{0, 1, 2, 3, 4, 5+} denote the set of ages at which birds may be recorded, for r ∈ R
and t = 1, . . . , T − 1 we define

φr,t = Pr(a bird of age r, alive at time t, survives until time t+ 1);

pr,t+1 = Pr(a bird of age r, alive at time t+ 1, is resighted at that time);

λr,t = Pr(a bird of age r which dies in (t, t+ 1) has its death reported).

The model to describe the chick data is similar to that of Harris et al.

(2007b): we assume that both survival and resighting probability are age-

dependent for juvenile and immature birds. One-year-old birds were never ob-

served at the colony, so resighting probabilities for this age group are fixed to

zero. However, information provided by the dead recoveries allows the estima-

tion of survival over the first year of life. First-year survival is allowed to vary

annually, while from ages 1–3 survival rate varies with age but is contrained

to be constant over time because there is not enough information in the data

to permit time-specific estimates. Once birds reach age 4, they are assumed to

survive with a time-dependent adult survival rate in common with birds from

the adult dataset (φ4,t = φ5+,t = φa,t). Therefore, we have survival parameters

φ0,t, φ1, φ2, φ3 and φa,t (with φ0,tφ1φ2φ3 = φ∗t ). Resighting probabilities are

assumed to be age-dependent up to 5 years because immature guillemots visit

the colony with increasing frequency until they start breeding (Halley et al.

1995), and also time-dependent for 2- and 3-year-olds. Resighting probabili-

ties for breeding-age birds (age 5+) are not assumed to be the same as those for

birds in the adult dataset due to the different methods used to obtain resighting

data for the two groups. We also allow resighting probability to differ between
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birds ringed in areas A and B. We therefore have resighting parameters p2,t(A),

p2,t(B), p3,t(A), p3,t(B), p4(A), p4(B), p5+(A) and p5+(B). The probability of

a bird being found dead and subsequently reported (recovery probability) is

assumed to be the same over all age classes, but is constrained to change lin-

early (on the logit scale) over the period of the study. Systematic temporal

declines in reporting rates in the UK have been found across a wide range of

species, including seabirds (Robinson et al. 2004, Clark et al. 2005, Freeman

et al. 2007), and this model allows for such a decline in Isle of May guillemot

recoveries. Therefore, we simply have recovery parameters λt, given by

logit(λt) = αλ + βλτt, (3.10)

where τt are the normalised times t = 1, . . . , T − 1.

Combining the analysis of mark-recapture, ring-recovery and count data al-

lows the estimation of fidelity rates. The count data enter here because they

share some of the same parameters as the chick MRR model (see Section 3.2.1

and Table 3.1). We assume that the probability of a dead bird being recovered

and reported is independent of permanent emigration, colour-ring loss, or any

other factor acting to make birds permanently unavailable for future live de-

tections (Burnham 1993, Frederiksen et al. 2004a, Harris et al. 2007b). Here

we assume that overall ‘fidelity’—the probability that a bird remains avail-

able for future live resightings—is the result of three independent processes:

(1) true fidelity (i.e., the complement of permanent emigration), hereafter sim-

ply referred to as fidelity; (2) retention/continued readability of colour-rings

(numbered metal rings are assumed to always remain intact and readable upon

dead recovery); and (3) recruitment to, and continuation of breeding in, a visi-

ble location (a nest site at which it is possible to read a bird’s ring; we assume

that if a bird moves to an ‘invisible’ location it becomes unavailable for future

live resightings but is still included in the counts). In reality, (2) and (3) are

confounded, but fidelity may be estimated separately in the integrated model

due to information contained in the count data. Therefore, for r ∈ R and

t = 1, . . . , T − 1, we define

ψr,t = Pr(a bird of age r, present in the colony at time t,

does not permanently emigrate in (t, t+ 1)),

and

τr,t = Pr(a bird of age r, potentially visible and identifiable

at time t, remains so at time t+ 1),
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corresponding to processes (1) and (2)/(3) respectively.

In keeping with the model for the count data, we assume that fidelity is

constant over time and only applies to age 4 birds, so that

ψr,t =

{
ψ, r = 4, t = 1, . . . , T − 1,

1, otherwise.

Wear and loss of colour-rings is assumed to take place once birds start breed-

ing, because they spend much more time ashore on the rough, dry rock of the

breeding ledges. Thus, we let

τr,t =

{
τ, r = 5+, t = 1, . . . , T − 1,

1, otherwise.

We define the following vector notation for the parameters in the chick MRR

model: φj = {φr,t : r = 0, 1, 2, 3; t = 1, . . . , T − 1}, φa = {φr,t : r = a; t =

1, . . . , T − 1}, pj = {pr,t : r = 2, 3, 4, 5+; t = 2, . . . , T} and λj = {λt : t =

1, . . . , T − 1}. Finally, we let θj = {φj ,φa,pj ,λj , ψ, τ} denote the full set of

model parameters for the chick data. The likelihood takes the form of that

derived by Catchpole et al. (1998), extended to incorporate fidelity and ring

loss. The matrices vj , wj and zj take analogous definitions to those of va,

wa and za given in Section 3.2.2, with appropriate modifications to allow for

age-dependence. We also require dj , defined as follows:

dr,t,u = the number of birds of age r at time t, last seen alive at that time,

and recovered dead in the interval (u, u+ 1).

Letting xj = {vj ,wj , zj ,dj} denote the full set of sufficient statistics for the

chick dataset, the likelihood can be expressed in the form

Lj(xj | θj) =
∏
r∈R

[T−1∏
t=1

(ψr,tτr,tφr,t)
wr,t+zr,t(pr,t+1)wr,t(1− pr,t+1)zr,t

×
T∏
t=1

(χr,t)
vr,t

T−1∏
t=1

T−1∏
u=t

(ξr,t,u)
dr,t,u

]
, (3.11)

where χr,t denotes the probability that a bird of age r, alive at time t = 1, . . . , T ,

is not observed after this time and ξr,t,u denotes the probability that an indi-

vidual aged r at time t and last seen alive at that time is recovered dead in

(u, u+ 1). We consider each of these probability terms in turn.
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The χ-term needs to account for three possibilities: (1) the bird remains

at a visible location in the colony and does not lose its colour-ring, but is

simply not resighted; (2) the bird permanently emigrates from the colony, loses

its colour-ring or moves to an ‘invisible’ location so that its future resighting

probability becomes zero; (3) the bird dies but is not recovered. Obviously, any

bird obeying (1) may switch to (2) or (3), and birds obeying (2) may either

survive in their invisible state until the end of the study or die without being

recovered. Therefore, for t = 1, . . . , T − 1, χr,t is given by the recursion

χr,t = ψr,tτr,tφr,t(1− pr,t+1)χr+1,t+1

+ (1− ψr,tτr,t)φr,tνr+1,t+1 + (1− φr,t)(1− λt), (3.12)

with χr,T = 1, where the three individual terms correspond respectively to

processes (1), (2) and (3) described above. Here νr,t is the probability that a

bird which has emigrated from the colony or lost its colour-ring is not seen again

(i.e., not recovered dead; recall that unique metal-rings always remain intact

and readable on dead recovery, even if the colour-ring is lost), and is given by

νr,t = (1− φr,t)(1− λt) + φr,tνr+1,t+1, (3.13)

with νr,T = 1, for all r ∈ R.

The ξ-term needs to account for two possibilities, which are the same as (1)

and (2) in the χ-term above ((3) does not apply because we know the bird to be

alive until the year of its recovery). We first define the probability that a bird

of age r at time t, last seen alive at that time and recovered dead in (u, u+ 1),

is not seen from t to u, which for t 6 u− 1 is given by the recursion

ωr,t,u = (1− ψr,tτr,t)
u−1∏
s=t

φr+(s−t),s + ψr,tτr,tφr,t(1− pr,t+1)ωr+1,t+1,u, (3.14)

with ωr,u,u = 1. Then ξr,t,u = ωr,t,u(1−φr+(u−t),u)λu. Note that this is essentially

a rewriting of the γ-term in Burnham (1993).

3.2.4 Productivity data

The productivity data are derived from daily monitoring of breeding birds in

several study plots located in the main part of the colony. Each year between

1983 and 2005, 607–1014 pairs, representing on average 5.5% of the total colony,

laid an egg in the study areas. The fates of these eggs were then followed through
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the breeding season resulting in a known number of successfully ‘fledged’ chicks.

Fledging here is defined as a chick having left the colony, which usually occurs

at around three weeks of age.

For t = 1, . . . , T we denote the number of observed breeding attempts in

year t by ne,t, and the number of breeding successes by nf,t. Then we assume

that

nf,t ∼ Bin(ne,t, ρt), (3.15)

where ρt denotes the productivity rate in year t. Letting ne = {ne,t : t =

1, . . . , T}, nf = {nf,t : t = 1, . . . , T} and nρ = {ne,nf}, we have a simple

binomial likelihood to describe the data given by

Lρ(nρ | ρ) =
T∏
t=1

(
ne,t
nf,t

)
(ρt)

nf,t(1− ρt)ne,t−nf,t , (3.16)

where ρ = {ρt : t = 1, . . . , T} denotes the set of productivity parameters.

3.2.5 Integrated model

The model for the count data depends on the demographic parameters ρ, φj

and φa, fidelity rate ψ, observation error σ2
N , and the underlying population

levels J and X (= Y + Z). Similarly to equation (3.7), the joint probability

density for the observed data N in terms of these parameters is given by

LN(N ,J ,Y ,Z | ρ, ψ,φj ,φa, σ2
N)

= Lobs(N | Y ,Z, σ2
N) Lsys(J ,Y ,Z | ρ, ψ,φj ,φa). (3.17)

The mark-recapture-recovery model for birds marked as chicks depends on

parameters φj , φa, ψ, τ , pj and λj , with corresponding density given by

Lj(xj | φj ,φa, ψ, τ,pj ,λj). Similarly, for the breeding adult mark-recapture

data we have density La(xa | φa,pa). Finally, we have the model for the pro-

ductivity data, which depends only on ρ and has probability density Lρ(nρ | ρ).

The full set of parameters and their connections with each of the four models

are summarised in Table 3.1. Clearly there are several parameters that are

common to more than one model: φj , ψ and ρ are each present in two models

and φa is present in three of the four models (count, adult MRR and chick

MRR). By performing an integrated analysis, in which data from each of our

four sources is analysed simultaneously, the information regarding these shared

parameters may be pooled. With this in mind, and under the assumption

of independence between all data sources, a joint probability distribution for
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Table 3.1 List of all parameters in the integrated model and their interconnections
with each of the four constituent models (presence in a model denoted by X). Several
of the parameters are common to more than one model; information about these
parameters is pooled in the integrated analysis.

Model

Parameter Count Adult MRR Chick MRR Productivity

φj X – X –
pj – – X –
λj (αλ, βλ) – – X –
ψ X – X –
τ – – X –
φa X X X –
pa – X – –
ρ X – – X
σ2
N X – – –
J ,Y ,Z X – – –

the combined data is obtained by simply multiplying together the individual

probability densities,

Lint(N ,J ,Y ,Z,xj ,xa,nρ | ρ,pj ,pa,λj ,φj ,φa, ψ, τ, σ2
N)

= LN(N ,J ,Y ,Z | ρ, ψ,φj ,φa, σ2
N) Lj(xj | φj ,φa, ψ, τ,pj ,λj)

× La(xa | φa,pa) Lρ(nρ | ρ). (3.18)

3.3 Bayesian analysis

Following the theme of the thesis, we approach this analysis from a Bayesian

perspective, combining the joint probability distribution for the data with prior

distributions for the model parameters to obtain a posterior distribution for the

parameters. This has a number of advantages over the classical approach. In

particular, in this analysis the true population sizes J andX are essentially nui-

sance parameters which we wish to integrate out to form only the likelihood of

the model parameters. However, the integration is analytically intractable and

Kalman filtering techniques can be prohibitively complex to apply (Jamieson

& Brooks 2004). From the Bayesian perspective, we treat J and X as pa-

rameters (or auxiliary variables) and form the joint posterior distribution over

all the parameters and auxiliary variables. Then, using Markov chain Monte

Carlo (MCMC) to obtain a sample from the posterior distribution, we take

the marginals of the distribution, essentially integrating out the auxiliary vari-

ables as part of the simulation process. This approach also allows us to obtain
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posterior estimates of the true underlying population sizes.

3.3.1 Priors

We begin by constructing prior distributions for our model parameters that rep-

resent our beliefs about the parameter values before observing any data. With-

out any strong prior information we specify vague priors on all the parameters.

Hence we take independent U(0, 1) priors for the probability/rate parameters,

which simply restrict the parameters to lie within meaningful limits, N(0, 10)

priors for the linear trend parameters αλ and βλ, and a U(0, 104) prior for the

observation error standard deviation σN , based on the recommendation of Gel-

man (2006). Finally, we need to specify priors on the initial population levels

X1, . . . , X5 because they are dependent on prebreeders fledged before the study

began, about which we have no information. Here we make use of the observed

counts N1, . . . , N5 as prior information with the normal prior Xt ∼ N(Nt, σ
2
N),

taking the estimated observation error to be the prior variance. Note that here

(and in the observation model), we use a normal approximation to a discrete

distribution: this is simply for ease of analysis, and is justified due to the large

values for the population sizes.

3.3.2 Posterior distribution

Using Bayes’ Theorem, the posterior distribution is given by

π(J ,Y ,Z,θ |N ,xj ,xa,nρ) ∝ Lint(N ,J ,Y ,Z,xj ,xa,nρ | θ) p(θ), (3.19)

where θ denotes the vector of all parameters from all models and p(θ) the prior

distribution for the parameters.

The posterior distribution is complex so we use MCMC to obtain a sample

from π, which we can then use to obtain posterior summary statistics for pa-

rameters of interest. All parameters are updated using a Metropolis Hastings

random walk algorithm with uniform proposal density (details provided in Sec-

tion 1.3.3). The MCMC algorithm was run for 5 million iterations, with the

first 1 million discarded as burn-in and the remaining output thinned to every

hundredth iteration to save storage space. Simulations were implemented in

Fortran and took approximately 67 hours on a 1.8 GHz personal computer.
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3.3.3 Convergence and sensitivity

Three independent MCMC chains with over-dispersed starting points were run

to check convergence. Initial values for these chains were chosen towards the

upper or lower limit of what were considered plausible values for each parame-

ter: 0.01 and 0.99 for the rate parameters; 1% and 99% quantiles of a normal

distribution with mean N1 and variance 1.5 × 106 for X1 (X2, . . . , XT , J , Y

and Z were simulated conditional on X1, so that no impossible combinations

of initial population sizes were generated); and 105 and 107 for the observa-

tion error variance. Essentially identical results were obtained from each run,

MCMC trace plots showed all parameters to be mixing well, and standard

convergence diagnostics and plots suggested sufficient convergence by at most

200,000 iterations for some of the population sizes and significantly sooner for

most parameters. The convergence diagnostic used was the Brooks-Gelman-

Rubin (BGR) statistic, R̂interval (Brooks & Gelman 1998)—a modification of

the earlier Gelman-Rubin statistic (Gelman & Rubin 1992)—with α = 0.2,

as used in the WinBUGS software (Spiegelhalter et al. 2007). The maximum

value of all the univariate R̂interval by the end of the burn-in period was 1.009

(for Y6); Spiegelhalter et al. (2007) suggest that convergence may be assumed

if R̂interval < 1.05, so our burn-in period and run lengths appear to have been

more than adequate.

To investigate the possible influence of prior choice on posterior inference,

an extensive prior sensitivity study was performed, in which each prior distribu-

tion had its mean and/or variance modified by up to two orders of magnitude.

The alternative priors tested are summarised alongside the original prior dis-

tributions in Table 3.2. Essentially identical results were obtained under all

alternative prior specifications for the model parameters, suggesting that re-

sults are largely data-driven and robust to prior choice. Using a diffuse prior

for the initial population sizes X1, . . . , X5 resulted in much more diffuse poste-

rior distributions on X1, . . . , X4, with corresponding increases in uncertainty for

Table 3.2 Prior distributions specified in the standard model and alternative priors tested
in the sensitivity analysis.

Parameter(s) Original prior Alternative priors

φj ,φa,pj ,pa, ψ, τ,ρ U(0, 1) Beta(1
2 ,

1
2 ), Beta(1, 2), Beta(2, 1), Beta(2, 2)

αλ, βλ N(0, 10) N(0, 1000)
σN U(0, 104) U(0, 105)
σ2
N – Γ−1(10−3, 10−3)
X1, . . . , X5 N(Nt, σ2

N ) N(Nt, 107)



3.4 Results 61

J1, . . . , J4. The estimate for X4 was also reduced, suggesting that the population

count in 1986 may have been over-estimated; however, the 95% credible interval

easily overlapped the count and posterior means and variances for X5, . . . , XT

were essentially unchanged, so we conclude there is little prior sensitivity. We

are thus assured that our choice of priors was suitable and did not unduly

influence the outcome of the model.

In particular, we draw attention to the priors specified for the observation

error variance σ2
N . A commonly used noninformative prior for variance pa-

rameters is the inverse-gamma distribution with both parameters set to 10−3

(e.g. Brooks et al. 2004, Jamieson & Brooks 2004). However, Gelman (2006)

suggested that for scale parameters in hierarchical models this prior can cause

serious problems, particularly where σ is estimated to be near zero; therefore,

we took a cautious approach and adopted Gelman’s recommendation to use

a noninformative uniform prior on the standard deviation. The results of our

sensitivity analysis suggest that an inverse-gamma prior on σ2
N would have been

equally suitable, presumably because σN is very large in comparison with typical

hierarchical standard deviation parameters.

In addition to prior sensitivity, we also checked the robustness of the results

to changes in some of the model assumptions. Increasing the age of recruitment

from 5 to 6 or 7 years produced essentially identical results, as did allowing

colour-ring loss to occur from age 3 onwards (estimates for ages 3 and 4 were

close to zero with large credible intervals). Removing emigration, on the other

hand, resulted in a very poor-fitting model, demonstrating the importance of

accounting explicitly for this process.

3.4 Results

The count data are plotted in Figure 3.1, along with posterior means and associ-

ated 95% symmetric Bayesian credible intervals (CIs) for estimates of numbers

of adult breeder and prebreeder females from the integrated model. There ap-

pears to have been an initial decline in the breeding population, followed by

a steady increase from around 1991 to the end of the study period. The inte-

grated estimates of the number of breeding females (X) track the count data

closely. Note the wider CIs for the initial population levels, especially X1 to

X4, information for which come almost entirely from the normal priors placed

on these parameters. However, some information is clearly filtering back into

these estimates from later years. This is particularly noticeable for the final
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Figure 3.1 Posterior means and corresponding 95% symmetric CIs for the true underlying
population levels of female prebreeders J (H) and breeding females X (N) over time under
the integrated model. The Isle of May counts N (�) are plotted for comparison.

initial population level X5, which has a considerably narrower CI that does not

include the observed population count for that year.

We also note the small CIs on the underlying numbers of prebreeders (J)

estimated by the model, despite the lack of any data relating directly to pop-

ulation sizes of juvenile or immature birds. The large amount of year-to-year

variability in the estimates of J (range of posterior means: 577–2995) is clearly

illustrated in Figure 3.1 and appears to be driven mainly by variations in first-

year survival and productivity (see Figures 3.2 and 3.3). The steady decline

in numbers of prebreeders towards the end of the study period is despite a

growing population of adult birds, and is a direct consequence of declines in

first-year survival and productivity over the same period. It is not possible to

obtain estimates of Jt from 2002 onwards, because full juvenile and immature

survival information is unavailable for birds hatched in these years (as explained

in Section 3.2.1); it would only be possible to estimate numbers of birds suc-

cessfully fledged. However, as we can see in Figures 3.2 and 3.3, the last few

years have some of the lowest juvenile survival and productivity estimates from

the entire study. Numbers of prebreeders are therefore likely to have decreased

even further over this period, which in turn has consequences for future adult

population sizes (see Chapter 4).

Figure 3.2 gives posterior means and CIs for first-year and adult survival

rates. Adult survival remained high throughout the study, with posterior mean

estimates ranging from 0.904 to 0.991. First-year survival showed considerably

greater interannual variation (range of posterior means: 0.130–0.879), and there
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Figure 3.2 Posterior means and 95% symmetric CIs for adult and first-year survival under
the integrated model.
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Figure 3.3 Posterior means and 95% symmetric CIs for productivity rates under the inte-
grated model, defined as the mean number of chicks (males and females combined) fledged
per breeding female.

appears to have been a steady decline in survival at the end of the study period.

Constant survival estimates for immature birds (ages 1–3) are given in Table 3.3.

Survival increased with age from age 0 (weighted mean survival over all years

equal to 0.54) to age 2 years, by which time immature guillemots appear to

have a survival rate approaching that of adult birds.

Figure 3.3 provides posterior means and CIs for productivity rates. Pro-

ductivity was high and relatively stable during the first two-thirds of the study

period, with all but one posterior mean estimate falling between 0.75 and 0.85;
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Table 3.3 Posterior summary statistics for all time-invariant parameters:
ages 1–3 survival; ages 4 and 5+ resighting probabilities for birds ringed
as chicks (areas A and B); regression parameters for recovery probabilities;
fidelity rate and visibility parameter; and observation error variance.

Parameter Mean SD 95% symmetric CI

φ1 0.76 (0.024) (0.72, 0.81)
φ2 0.93 (0.017) (0.89, 0.96)
φ3 0.91 (0.018) (0.87, 0.94)
p4(A) 0.62 (0.016) (0.58, 0.65)
p5+(A) 0.56 (0.013) (0.53, 0.58)
p4(B) 0.38 (0.024) (0.33, 0.43)
p5+(B) 0.34 (0.017) (0.31, 0.37)
αλ −2.79 (0.067) (−2.92,−2.66)
βλ −0.39 (0.073) (−0.54,−0.25)
ψ 0.81 (0.022) (0.76, 0.85)
τ 0.76 (0.010) (0.74, 0.78)
σ2
N 1.37× 106 (6.01× 105) (6.06× 105, 2.88× 106)

however, a general and rather drastic decline is apparent from around 1998

onwards.

Resighting probabilities varied substantially over age, time and ringing area.

Resighting probabilities of 2- and 3-year-old birds increased gradually between

1985 and 1990 and then declined in later years (see Figure 1 in Harris et al.

2007b). Harris et al. attribute these changes to increasing observer effort during

the early years of the study and a real decline towards the end, when observers

and methods remained constant. Age 3 resighting probabilities were somewhat

higher than those for age 2 birds, and estimates were generally higher for birds

ringed in area A compared to area B: ranges of posterior means for age 2 birds

were (0.01–0.32) and (0.02–0.41) for areas A and B, respectively; corresponding

ranges for age 3 birds were (0.16–0.80) and (0.02–0.63). Posterior means and

CIs for constant resighting probabilities of chick-ringed birds aged 4 and 5 years-

and-older are given in Table 3.3 and show a clear difference between birds ringed

in areas A and B. Resighting probabilities of birds ringed as breeding adults

were very high throughout the study (Figure 3.4; all posterior mean estimates

except 2005 above 0.93) with little variation between years. The estimate for

2005 is unreliable (note the large CI) and is linked to the rather high estimate

of adult survival in 2004. There does appear to have been a slight systematic

decline in adult resighting probability through the course of the study, despite

the fact that observer effort for these birds remained unchanged over the study

period. Thus, it may be possible to model this parameter as a linear trend,

which would also help to tie down final year survival estimates. The disparity
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Figure 3.4 Posterior means and 95% symmetric CIs for resighting probabilities of birds
ringed as breeding adults.

between the resighting probabilities of breeding birds ringed as adults (pa,t)

and those ringed as chicks (p5+) clearly shows that it would be unrealistic to

assume the same resighting probability for all ringed adults. As mentioned in

Section 3.2.3, this is due to the different methods used to obtain resighting data

for these two groups: birds ringed as breeding adults are resighted with high

certainty within a confined area, whereas breeders that were ringed as chicks

are widely dispersed and often difficult to see.

Posterior means and CIs for the intercept and slope parameters of the logit-

linear trend on recovery probability (αλ and βλ, respectively) are given in Ta-

ble 3.3. The negative estimate for βλ and a 95% CI that does not include zero

provide strong evidence for a temporal decline in recovery probability over the

period of the study. Corresponding posterior estimates of λt range from 0.105

(95% CI: 0.082, 0.131) at the beginning of the period to 0.032 (0.024, 0.041) at

the end—a decrease of almost 70%.

Table 3.3 also provides posterior means and CIs for the fidelity rate ψ and

visibility parameter τ . The estimate for fidelity implies a permanent pre-

recruitment emigration rate of 19.5% from each cohort (95% CI: 15.0, 23.9),

and the estimate for τ suggests that among those birds ringed as chicks which

do not emigrate, 24.2% (22.2, 26.2) per year lose their colour-rings or otherwise

become unobservable once they have recruited.
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3.5 Discussion

The focus of this chapter has been the combined analysis of count, mark-

recapture, ring-recovery and productivity data from the long-running study of

common guillemots on the Isle of May. We were able to develop a comprehen-

sive process model for this population that incorporated delayed recruitment

and accounted explicitly for the emigration of prebreeders, allowing us to esti-

mate parameters that would have been unidentifiable with a single data series.

The integration of abundance and demographic data in models of wildlife

population dynamics has been the subject of recent research by several authors.

Previous studies have combined abundance data with ring-recoveries (Besbeas

et al. 2002, Brooks et al. 2004, Besbeas & Freeman 2006), mark-recaptures

(Goodman 2004, Schaub et al. 2007), mark-recapture and productivity data

(Gauthier et al. 2007) and multi-site MRR data (Borysiewicz et al. 2008). How-

ever, as far as we are aware, this is the first study to integrate abundance data

with all three of the major sources of demographic data.

Estimates of survival and productivity under the integrated model compared

closely to those obtained from separate analyses of the MRR and productivity

datasets using identical models. They were also consistent with previously pub-

lished results based on these data (see, e.g., Harris et al. 2000, Crespin et al.

2006b, Harris et al. 2007b). Adult survival rates were similar to those from

the separate analysis of the adult mark-recapture data, probably because the

chick MRR data provides very little information on adult survival: although

almost seven times as many birds were ringed as chicks, birds ringed as adults

accounted for nearly three quarters of all adult resightings. Furthermore, there

was no significant improvement in precision of the model parameters as a result

of using the additional data. These findings suggest that most of the informa-

tion on the survival and productivity parameters came from their respective

datasets. Nevertheless, we are reassured that our model is reasonable, and the

advantage of the combined parameter estimates is that they fully reflect all

available information. We were also able to obtain improved estimates for the

breeding adult population sizes due to ‘borrowing’ information from the other

data sources, although an estimate of 1170 for the standard deviation of the

count data (
√
σ2
N ; Table 3.3) suggests that the counts were reasonably precise.

The assumption of constant survival within the immature age classes is one

aspect of the model that is perhaps unrealistic, and time-varying estimates

may allow an improved fit to the count data. Although relatively few data are

available to estimate survival of these ages, it may be more reasonable to assume
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that they vary in parallel with those of first-years or adults in the same year

(on the assumption that any annual variation in mortality would be likely to

affect consecutive age-classes equally—especially as much is likely to be related

to events away from the breeding grounds such as annual variation in weather,

food supplies, oil spills, etc.). A model allowing parallel variation requires the

same number of parameters as a constant survival model (one per age class

for the immature age classes), and can be implemented by modelling survival

for each age class as that of first-years or adults plus a difference parameter,

preferably on the logit scale. Even more realistic, in a Bayesian framework, this

difference parameter can even be modelled as a random effect using hierarchical

models. We considered the former of these approaches in preliminary analyses

using Program MARK, but there appeared to be less support in the data for

such parallel survival models. Therefore, for the sake of simplicity and ease

of interpretation, we favoured the constant survival model in the integrated

analysis.

Previous studies all appear to suggest a marginally higher emigration rate

for Isle of May prebreeders than our estimate of 19.5% (Harris et al. 1996a:

25–33%; Crespin et al. 2006a: ‘perhaps as high as 25%’; Harris et al. 2007b:

‘fidelity’ estimates of 0.761 and 0.689 for birds aged 4 and 5+ years respectively).

However, their authors were unable to disentangle the effects of emigration,

ring loss and reduced visibility of breeding birds. Because the count data also

contained some indirect information on emigration, we were able to obtain

separate, more robust estimates of emigration rate and the combined effects

of colour-ring loss and low visibility. Our results suggest that over time the rate

of ring loss from birds ringed as chicks, and their low visibility as adults, have

an effect that is greater in magnitude than that of pre-recruitment emigration.

The contents of this chapter have been published as a paper in the Journal

of Agricultural, Biological and Environmental Statistics (Reynolds et al. 2009).





Chapter 4

Predicting population change
using an integrated model

4.1 Introduction

In the face of a changing climate and rapidly increasing human population,

there is a growing need for reliable predictions of future trends in the size of

wild animal populations, particularly for species of management or conserva-

tion concern. In particular, uncertainties in such predictions must be quantified

and clearly presented. Forward projections and their associated estimates of

uncertainty are already an important and popular piece of management advice

in fisheries stock assessment, where they are used to inform quotas and predict

the outcome of future management actions (Punt & Hilborn 1997, Maunder

et al. 2006). Similarly, stochastic predictive models have been applied to other

wild populations requiring active management: for example, to explore culling

strategies for red deer Cervus elaphus (Trenkel et al. 2000) and great cormorants

Phalacrocorax carbo (Smith et al. 2008), and for assessing the success of man-

agement policies for North American duck species (Jamieson & Brooks 2004).

They also form the basis for population viability analyses to estimate species’

extinction probabilities (Beissinger & McCullough 2002), and have been used to

test assumptions about future environmental change in a number of species of

conservation concern (e.g. black-legged kittiwake Rissa tridactyla: Frederiksen

et al. 2004b; European shag Phalacrocorax aristotelis : Frederiksen et al. 2008;

emporer penguin Aptenodytes forsteri : Jenouvrier et al. 2009a).

Predictions about future population size first require a model describing

the population dynamics, and estimates of its component parameters. Two

main types of predictive population model have been commonly applied: those

based on historic time series of population fluctuations, with parameters such

69
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as the specific population growth rate, the form of density regulation and the

carrying capacity (e.g. Asbjørnsen et al. 2005, Sæther et al. 2007, 2009); and

demographic models based on stochastic projection matrices (Caswell 2001),

parameterised by estimates of fecundity and survival/growth rates (e.g. Nur

et al. 1994, Stephens et al. 2002, Jenouvrier et al. 2009a). The type of predic-

tive model used is usually determined by the available data for the species of

interest. Where both abundance and demographic data are available, they may

be combined in an ‘integrated population model’ (Brooks et al. 2004, Besbeas

et al. 2005, 2008; see also Chapter 3). This approach has potential for obtaining

more accurate and robust population predictions that fully reflect all available

sources of information.

Environmental stochasticity influences fluctuations in the size of large pop-

ulations (Sæther et al. 1998) and should always be considered when developing

realistic predictive population models (Nur & Sydeman 1999, Maunder et al.

2006). Only with a stochastic framework is it possible to gain a sense of variabil-

ity of outcome (Nur & Sydeman 1999), yet it is knowledge of this uncertainty

that is often more interesting and useful than the average predicted trajec-

tory. Quantifying environmental variability is usually by means of estimating

the temporal process variance in population fluctuations or demographic rates,

based on historical data. This is best implemented in a random effects frame-

work (Gould & Nichols 1998, Loison et al. 2002): if both the estimated and

predicted parameters are treated as random effects, there is no difference be-

tween the two so that, for example, future survival rates are no different from

historical survival rates (Maunder et al. 2006). Investigations of small popula-

tions should also include the effects of genetic and demographic stochasticity

(Nur & Sydeman 1999).

Reliable population projections also need to account for parameter uncer-

tainty and errors in estimating population size, both of which affect the vari-

ability of the predictions (Sæther et al. 2009). The model parameters are not

known with certainty and must be estimated from observable data, providing a

range of possibilities for the ‘true’ parameter value. Projecting from parameter

point estimates ignores this uncertainty—which in some cases represents the

majority of the uncertainty in a model (Maunder et al. 2006)—and can lead

to overly optimistic prediction intervals and considerable inaccuracies in esti-

mating future quantities of interest (Sæther & Engen 2002). Likewise, treating

estimates of population size as if they were the true values may result in bi-

ased population projections with far greater levels of uncertainty (Jamieson &

Brooks 2004, Sæther et al. 2007). Consequently, it is also necessary to estimate
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and model observation error, and the most common framework for this is a

state-space model (e.g. de Valpine & Hastings 2002, Buckland et al. 2004).

The issues of model specification and model selection introduce yet further

elements of uncertainty, and hence variability, into predictions about a particu-

lar ecological system (Harwood & Stokes 2003). Biological processes can often

be described adequately by many rival models, and model uncertainty can form

an important part of the predictive framework and management planning pro-

cess. Model mis-specification, on the other hand, can contribute to errors in

parameter estimation through the inferential process which will be amplified by

the prediction process.

A Bayesian approach is the natural choice for analysing predictive popula-

tion models, for a number of reasons. First, Bayesian analyses facilitate repre-

senting and accounting for uncertainties related to parameter values (and mod-

els, where more than one model is considered; Punt & Hilborn 1997, Jamieson

& Brooks 2004). Each posterior sample is a plausible realisation of the param-

eters; therefore, each set of parameter values can be used sequentially as input

parameters for stochastic projections (Taylor et al. 1996). Second, the Bayesian

approach easily deals with the fitting of non-normal, nonlinear state-space mod-

els to estimate and model the true underlying population sizes (Newman 1998,

Millar & Meyer 2000)—a process that can be complicated within the classical

paradigm (Brooks et al. 2004, Jamieson & Brooks 2004, King et al. 2008b).

Third, the difficulties involved in modelling random effects in a conventional

likelihood-based framework are naturally dealt with within a Bayesian frame-

work (Royle & Link 2002, Link & Barker 2004, King et al. 2009). Finally,

Bayesian analyses yield probability distributions (posterior distributions) that

are easy to understand and communicate to managers, stakeholders and policy

makers, and can be queried for biologically important questions, for example:

‘What is the probability that the population will decline by more than 25% over

a 10-year period?’ (Taylor et al. 1996, Wade 2000, Brooks et al. 2008).

In recent years, many UK seabird populations have experienced declines in

demographic performance, including a number of high-profile breeding failures

and severe mortality events (e.g. Eaton et al. 2005, 2007). However, while wor-

rying long-term declines in population size have also been recorded for some

species (e.g. the black-legged kittiwake: Heubeck 2004, JNCC 2009), others,

particularly the offshore diving species (including the common guillemot Uria

aalge), have increased in numbers or remained relatively stable over the same

period (JNCC 2009). Most seabirds have low annual recruitment rates (small

clutch sizes, deferred sexual maturity) and high adult survival (Croxall & Roth-
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ery 1991), so populations tend to change slowly over time and even major

declines in breeding success and/or juvenile survival can take a long time to

show up as reductions in population size. Conversely, even if these rates re-

turn to ‘normal’ levels the breeding population may continue to decline for a

number of years (Croxall & Rothery 1991), and its subsequent ability to re-

cover is constrained by the naturally low reproductive output (Nur & Sydeman

1999). Given these characteristics and in light of the recent widespread breed-

ing failures, an imminent decline in many UK seabird populations seems likely

and their long-term futures are highly uncertain (Heath et al. 2009). There is

thus an urgent need for predictions of the future consequences of current de-

mographic trends, to investigate the expected magnitude and duration of any

population declines and the likelihood of recovery under different scenarios.

Common guillemots are one of the species to be most affected by recent

events, having suffered widespread declines in both breeding success (e.g. Ma-

vor et al. 2005, 2008) and survival (e.g. Harris et al. 2007b) since the early

2000s (see also Chapter 3). In this study, we combine detailed abundance and

demographic data from 25 years of intensive field research on common guille-

mots on the Isle of May, southeast Scotland, to predict 10-year population

trajectories under a range of assumptions about future demographic rates. For

example, we project productivity, juvenile survival and adult survival accord-

ing to their long-term historical means and variabilities, and compare resulting

population trajectories with those generated according to more recent trends in

each, and all, of these parameters. An integrated population model, analysed

in a Bayesian framework, simultaneously provides posterior distributions of his-

torical and future parameter values and population sizes. By estimating the

posterior probability of population decline from these distributions under each

scenario, we investigate which parameter declines are of the greatest concern for

the future of the population. Results are compared to a traditional sensitivity

analysis and discussed in the context of environmental change.

4.2 Methods

4.2.1 Modelling framework

We use the integrated population model presented in Chapter 3 as a framework

for predicting future population sizes of the Isle of May guillemot colony. To

recapitulate, we have four sources of data and their corresponding models—

counts, adult mark-recapture, chick mark-recapture-recovery, and productivity
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(see Sections 3.2.1–3.2.4)—which we combine to form a joint probability distri-

bution for the data (Section 3.2.5). This is analysed in a Bayesian framework

using Markov chain Monte Carlo (MCMC) to obtain a posterior distribution

for the model parameters (survival, recapture, recovery, fidelity, ring loss and

productivity rates) and population sizes (numbers of female breeders X and

prebreeders J ; Section 3.3).

In the present analysis we make use of two additional years of data, giving

a total of 25 years (1983–2007, denoted t = 1, . . . , T ). As well as obtaining

parameter and population estimates for these years, within the framework of the

integrated model we also project the population forwards a further 10 years to

2017, thus providing posterior distributions of the predicted breeding adult and

prebreeder population sizes. This approach ensures that all the major sources

of uncertainty are accounted for in the population projections. Methodological

details of the predictions are provided in the following sections.

4.2.2 Random effects modelling of demographic rates

To provide a framework for incorporating environmental stochasticity into the

population projections, we modify the models for all time-dependent survival

and productivity rates. First-year survival, adult survival and productivity were

allowed to vary over time in Chapter 3 by specifying models containing fixed

year-effects. Here, we alternatively account for year-to-year variation by assum-

ing underlying random effects models for these parameters. Taking productivity,

which for year t we denote by ρt, as an example, we assume that

logit(ρt) = µρ + ερ,t, (4.1)

where

ερ,t ∼ N(0, σ2
ρ). (4.2)

(Recall that, for guillemots, 0 6 ρt 6 1, i.e., each female can produce a maxi-

mum of one chick per year.) Analogous models exist for first-year survival φ0,t

(with hyperparameters µ0, ε0,t and σ2
0) and adult survival φa,t (hyperparameters

µa, εa,t and σ2
a). The µ· represent underlying survival and productivity rates,

and the ε·,t denote random year effects, which are assumed to come from an un-

derlying mean-zero normal distribution with variance σ2
· . It is the parameters of

the underlying distributions (the µ· and σ2
· ) that we are interested in, as we use

the estimates of these parameters to simulate future survival and productivity

rates (see below).
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Priors

Prior distributions for the Bayesian analysis are specified on the random ef-

fects means and variances. We take a logistic prior for the µ·, which has the

desirable property of inducing a U(0, 1) distribution on the corresponding sur-

vival/productivity rates in the absence of random year effects. For the variance

parameters, we follow Gelman (2006) and use a noninformative uniform prior

density on the standard deviation parameters σ·. In some cases, where the

uniform prior led to unrealistically high estimates of σ·, we replace it with a

half-Cauchy distribution with scale set to 2 (also after Gelman 2006). The half-

Cauchy has a broad peak at zero and a gentle slope in the tail, and is thus

considered a ‘weakly informative’ prior distribution. The value of the scale pa-

rameter is chosen to be a bit higher than the maximum we expect for σ·, the

aim being to restrict the sampler away from unrealistic values but otherwise

let the data inform the posterior. Sensitivity to the chosen priors for the σ·

was assessed by also specifying the traditional inverse-gamma prior with both

parameters set to 10−3 on the σ2
· . Prior distributions for the rest of the model

parameters and the initial population levels are as described in Section 3.3.1.

4.2.3 Obtaining future population estimates

We describe two implementational approaches to obtaining posterior samples of

future population sizes. In the first, we generate future survival and productivity

rates and update the predicted population states within the MCMC algorithm

(within-chain predictions). The second method initially obtains a posterior

sample of the parameter values, excluding the future states; then, given the

set of posterior values, we impute future parameter values for each individual

posterior sample independently (independent post hoc predictions).

Within-chain predictions

At each iteration of the chain, we first update all historical parameter values

and states for times t = 1, . . . , T or T − 1 (dependent on the parameter) using

a Metropolis-Hastings random walk algorithm with uniform proposal density,

as described in Section 1.3.3. Using the same algorithm we then propose to

update, for example, ερ,t from t = T + 1, . . . , T + P , where P = 10 is the

number of years to be predicted; however, because there are no data for this

period, acceptance probabilities for proposed moves depend only on the process

likelihood (equation (3.6)) and the normal ‘prior’ with variance σ2
ρ placed on the
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ερ,t (equation (4.2)). With the updated ερ,t and current value of µρ, we calculate

future productivity rates ρt by the inverse-logit of equation (4.1). Similarly, we

generate future first-year and adult survival rates from t = T, . . . , T + P by

updating ε0,t and εa,t for those years.

Given the future demographic rates, we update the corresponding future

population sizes of female breeders Yt and Zt (respectively, continuing female

breeders, equation (3.2), and new female recruits, equation (3.3); total breeders

Xt = Yt + Zt) and female prebreeders Jt (equation (3.4)). There is only the

process model involved in formulating future J and X values.

The above method is the more intuitive, and elegant, means of obtaining

posterior samples of predicted population sizes. However, because the accep-

tance probability of any proposed update of future population sizes depends

on the values of the future demographic parameters at the current iteration—

and vice versa—the imputed predicted values are necessarily highly correlated.

Correspondingly, proposal distributions need to be narrow and mixing of the

MCMC chain is poor. Given the large degree of uncertainty in population sizes

towards the end of the prediction period, this method proved impractical for

obtaining suitable samples from the posterior: even after 10 million iterations

(two weeks of computing time) the chain did not appear to have converged and

the Monte Carlo error was unacceptably large.

Independent post hoc predictions

As an alternative to the above approach, we initially run the Bayesian integrated

model to obtain a posterior sample of parameter values and population sizes

for the historical period t = 1, . . . , T only. Then, for each posterior sample i

from the MCMC chain (i = 1, . . . , S, where S is the number of (thinned) post-

burn-in samples) we first simulate new future productivity, first-year survival

and adult survival rates by sampling from

logit(ρ
(i)
t ) ∼ N(µ(i)

ρ , σ
2(i)
ρ ), t = T + 1, . . . , T + P, (4.3a)

logit(φ
(i)
0,t) ∼ N(µ

(i)
0 , σ

2(i)
0 ), t = T, . . . , T + P, (4.3b)

and

logit(φ
(i)
a,t) ∼ N(µ(i)

a , σ
2(i)
a ), t = T, . . . , T + P. (4.3c)

The normal distribution parameters in equations (4.3) are the underlying means

and variances from the random effects models, with superscript ‘(i)’ denoting

the ith sample from the posterior distribution. Future values for time-constant
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survival rates φ1, φ2 and φ3, and fidelity rate ψ, simply take their values as at

the ith iteration.

Given the demographic rates and the ith sample of the current population

sizes XT and JT−4, we generate future breeding population trajectories for t =

T+1, . . . , T+P and obtain the corresponding posterior distribution by sampling

from

Y
(i)
t ∼ Bin(X

(i)
t−1, φ

(i)
a,t−1) (4.4)

and

Z
(i)
t ∼ Bin(J

(i)
t−5, ψ

(i)φ
(i)
a,t−1), (4.5)

with X
(i)
t = Y

(i)
t +Z

(i)
t representing the total predicted population sizes of female

breeders in year t. Similarly, for t = T − 3, . . . , T + P we sample from

J
(i)
t ∼ Bin(X

(i)
t , ρ

(i)
t φ
∗(i)
t /2) (4.6)

to generate predicted population sizes of female prebreeders, where φ
∗(i)
t =

φ
(i)
0,tφ

(i)
1 φ

(i)
2 φ

(i)
3 .

The posterior distribution for the predicted states obtained using this ap-

proach will be the same as for the previous method. Both approaches take

full account of all sources of uncertainty liable to affect the estimates of future

population sizes: uncertainty in the demographic parameter estimates; uncer-

tainty in the counts, and hence the values of the true underlying population

sizes during the study period; and uncertainty caused by future environmental

stochasticity (although in our approach this is limited to the range of historic

interannual variation and does not account for potentially more extreme con-

ditions in the future). However, the current approach significantly reduces the

dependence of the predicted states, and hence increases the effective sample size

(the number of effectively independent draws from the posterior distribution)

of predicted values.

We ran the MCMC chain for 2 million iterations, discarding the first 1 million

as burn-in, which convergence diagnostics indicated was ample for this model

(see Section 3.3.3). To save storage space, and to reduce the autocorrelation

among consecutive samples, we thinned the output to every one-hundredth it-

eration, thus providing 10,000 posterior samples. To boost the sample size

of projected population sizes, we simulated 10 projections from each realisa-

tion of the posterior, resulting in 100,000 posterior samples for each predicted

state. The MCMC simulation took approximately 40 hours, and the subsequent
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projections took less than 1 minute!

4.2.4 Prediction scenarios

We apply several different scenarios for projecting future population trajecto-

ries, differentiated by variations in the models used to simulate future demo-

graphic parameters. We note in Section 3.4 that both first-year survival and

productivity declined steadily towards the end of the study period (from around

year 2000 to 2005; see Figures 3.2 and 3.3). Two further years of data suggest

that this decline has continued; furthermore, adult survival also appears to have

declined over the same period, with three of the four lowest survival estimates of

the study occurring during this interval (2002, 2004 and 2005). For each of these

three parameters, we therefore consider splitting the random effects model into

two separate models: one for the period of (relatively) high and stable survival

and productivity 1983–1999, and a second for the period of decreasing survival

and productivity from year 2000 onwards. Thus, letting tK = 17 (i.e., 1999),

the model for productivity becomes

logit(ρt) = µρ1 + ερ,t, t = 1, . . . , tK , (4.7a)

logit(ρt) = µρ2 + ερ,t, t = tK + 1, . . . , T, (4.7b)

where

ερ,t ∼ N(0, σ2
ρ1), t = 1, . . . , tK , (4.8a)

ερ,t ∼ N(0, σ2
ρ2), t = tK + 1, . . . , T, (4.8b)

with similar definitions for first-year and adult survival. Assuming that recent

conditions persist in the future, we can use the underlying means and variances

from the latter period (µ·2 and σ2
·2) to simulate future demographic rates accord-

ing to equation (4.3), which we then feed in to equations (4.4) to (4.6) to project

population sizes. By altering which demographic rates we predict according to

the full time-series mean and variance, and which by the mean and variance

for years 2000-onwards, we generate five prediction scenarios, summarised in

Table 4.1.

We specify a prediction period of P = 10 years (taking the population to

year 2017), which gives a reasonable time frame for the predictions to settle

down and to observe potential future trends following the period of influence

of recent survival and productivity rates (up to 2012). Given the posterior
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Table 4.1 Description of the five scenarios used to simulate future demographic rates, and
hence generate projections of population size.

Scenario Definition

S1—‘Business as usual’ Random effects means and variances derived from the entire
study period are used to simulate future rates for all time-
varying demographic parameters.

S2—‘Productivity 2000’ Productivity rates simulated using random effects mean and
variance from year 2000 onwards (µρ2 and σ2

ρ2).

S3—‘First-year survival 2000’ First-year survival simulated using random effects mean and
variance from year 2000 onwards (µ02 and σ2

02).

S4—‘Adult survival 2000’ Adult survival simulated using random effects mean and vari-
ance from year 2000 onwards (µa2 and σ2

a2).

S5—‘Worst case’ All three time-varying demographic rates simulated using
random effects means and variances from 2000 onwards (com-
bination of S2, S3 and S4).

distribution of current and future breeding population sizes generated by each

scenario, we calculate the posterior probability of population decline below the

current (2007) level, and probabilities of greater than 10% and greater than

25% declines, over the 10-year prediction period: these are, respectively, the

proportions of posterior samples for which XT+P < XT , XT+P < 0.90XT and

XT+P < 0.75XT . Furthermore, we obtain the posterior distribution for the

predicted proportional change in population size between 2007 and 2017, by

calculating (X
(i)
T+P −X

(i)
T )/X

(i)
T for each sample i.

4.2.5 Matrix population modelling

To explore the theoretical effect of changes in the different vital rates on pop-

ulation growth rate, we construct an age-classified matrix population model

and conduct a perturbation analysis, to calculate sensitivities and elasticities

(Caswell 2001). Sensitivity is defined as the absolute change in population

growth rate given an absolute change in a vital rate. However, because the

magnitude of vital rates may vary considerably it is usually more useful to

work with elasticities, defined as the proportional change in population growth

rate given a proportional change in a vital rate, that is, sensitivity rescaled to

account for the magnitude of the vital rate.

In a stochastic environment such as ours, population growth is described by

the time-varying matrix population model

n(t+ 1) = Atn(t), (4.9)
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where n(t) is a vector giving the numbers in each age class of the population at

time t, andAt is the projection matrix describing population growth of these age

classes from time t to t+ 1 (Caswell 2001). Because guillemot breeding occurs

annually over a relatively short period we consider a birth-pulse model, and we

assume a prebreeding census. The population vector n(t) therefore contains

five age-classes (1-year-old, 2-year-old, 3-year-old, 4-year-old and 5+-year-old

(adult) individuals) and the female-based projection matrix At is structured

accordingly:

At =


0 0 0 0 ρtφ0,t

φ1 0 0 0 0

0 φ2 0 0 0

0 0 φ3 0 0

0 0 0 ψφa,t φa,t

 , (4.10)

with the parameters taking analogous definitions to those previously defined.

Following Caswell (2001, 2005), we use numerical simulations to compute

the stochastic growth rate λs and its sensitivity and elasticity to the entries of

At and to lower-level parameters. We have a full sequence of N = 24 population

projection matrices A1, . . . ,AN , parameterised by the corresponding survival,

productivity and fidelity estimates (posterior means) for the period 1983–2006

derived from the output of S1, and we take this sequence as a sample of environ-

mental variability. We additionally consider a reduced set of N = 7 projection

matrices for years 2000–2006, corresponding to the later period in the prediction

scenarios described above, which we parameterise with the appropriate poste-

rior means from S5. Then, for a large number of time periods (T = 50000), we

draw at each time an integer uniformly distributed between 1 and N and use

the corresponding matrix to project the population.

Beginning with an arbitrary non-negative vector w(0), with ‖w(0)‖ = 1

where ‖ · ‖ denotes the 1-norm, we generate and store a sequence of age distri-

bution vectors

w(t+ 1) =
Atw(t)

‖Atw(t)‖
, t = 0, . . . , T − 1, (4.11)

and one-step growth rates

Rt =
‖Atw(t)‖
‖w(t)‖

, t = 0, . . . , T − 1. (4.12)

Similarly, starting with an arbitrary non-negative terminal vector v(T ) with

‖v(T )‖ = 1, we use the same sequence of matrices to generate and store a
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sequence of reproductive value vectors

vT(t− 1) =
vT(t)At−1

‖vT(t)At−1‖
, t = T, . . . , 1. (4.13)

The stochastic growth rate λs is taken as the average of the simulated Rt (Co-

hen et al. 1983), after discarding 5000 initial iterations to eliminate transient

effects. Based on Tuljapurkar’s (1990) derivation, the sensitivity of log λs to the

elements aij of At is calculated by

∂ log λs
∂aij

=
1

T

T−1∑
t=0

vi(t+ 1)wj(t)

RtvT(t+ 1)w(t+ 1)
, (4.14)

and the elasticities of λs to aij by

∂ log λs
∂ log aij

=
1

T

T−1∑
t=0

vi(t+ 1)aij(t)wj(t)

RtvT(t+ 1)w(t+ 1)
. (4.15)

Several entries ofAt are defined in terms of lower-level parameters; for example,

overall fecundity given by a15 is the product of annual productivity and first-year

survival rates (ρtφ0,t), and apparent survival of 4-year-olds, a54, is moderated by

emigration (ψφa,t). Therefore, we require to calculate the sensitivity of log λs

and the elasticity of λs to ρ, φ0, ψ and φa. Denoting the lower-level parameter

of interest by θ, Caswell (2005) derived the sensitivity of log λs to θ as

∂ log λs
∂θ

=
1

T

T−1∑
t=0

vT(t+ 1)
∂At

∂θ
w(t)

RtvT(t+ 1)w(t+ 1)
(4.16)

and the elasticity of λs to θ as

∂ log λs
∂ log θ

=
1

T

T−1∑
t=0

θtv
T(t+ 1)

∂At

∂θ
w(t)

RtvT(t+ 1)w(t+ 1)
. (4.17)

Simulations were implemented in program Octave (Eaton et al. 2008a) us-

ing code fragments provided by Caswell (2001, chapter 14), plus an additional

algorithm for lower-level parameters described in Caswell (2005).
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4.3 Results

4.3.1 Population projections

We projected the Isle of May guillemot population forward 10 years, using the

second of the two methods described in Section 4.2.3 (independent post hoc

predictions), under five different scenarios (S1 to S5; see Table 4.1). Table 4.2

provides posterior means and standard deviations for random effects means and

variances estimated under each scenario, along with the corresponding simu-

lated future demographic rates, averaged over all predicted years. Where split

random effects models were used (S2 to S5), underlying means on the logit scale

for years 2000-onwards (µ·2) were consistently lower than those for the earlier

years (µ·1; 1983–1999), with no overlap in the corresponding 95% credible in-

tervals (CIs; not shown) for productivity and adult survival models, and only

slight overlap for the first-year survival model. Predicted rates on the real scale

were correspondingly lower under scenarios with split random effects models

than when based on the entire historical time series. With the exception of

Table 4.2 Posterior means (SDs) for random effects means µ·· and variances σ2
··, and cor-

responding simulated real parameters ρt, φ0,t and φa,t (averaged over all predicted years),
under each prediction scenario.

Prediction scenario

Parameter S1 S2 S3 S4 S5

µρ1 1.01 (0.14) 1.34 (0.08) 1.01 (0.14) 1.00 (0.14) 1.35 (0.08)
σ2
ρ1 0.50 (0.16) 0.10 (0.05) 0.50 (0.16) 0.50 (0.16) 0.10 (0.05)
µρ2 – 0.33 (0.34) – – 0.30 (0.30)
σ2
ρ2 – 0.85 (0.88) – – 0.81 (0.74)

ρt 0.71 (0.14) 0.57 (0.19) 0.71 (0.14) 0.71 (0.14) 0.57 (0.19)

µ01 0.07 (0.21) 0.07 (0.22) 0.30 (0.22) 0.07 (0.20) 0.28 (0.25)
σ2

01 0.87 (0.39) 0.86 (0.41) 0.86 (0.39) 0.86 (0.38) 0.87 (0.42)
µ02 – – −0.74 (0.58) – −0.68 (0.52)
σ2

02 – – 1.83 (3.88) – 1.36 (2.63)

φ0,t 0.52 (0.20) 0.51 (0.20) 0.36 (0.21) 0.51 (0.20) 0.37 (0.19)

µa1 2.72 (0.10) 2.73 (0.10) 2.73 (0.10) 2.88 (0.13) 2.89 (0.13)
σ2
a1 0.19 (0.09) 0.20 (0.10) 0.21 (0.10) 0.22 (0.14) 0.23 (0.14)
µa2 – – – 2.34 (0.12) 2.34 (0.11)
σ2
a2 – – – 0.06 (0.11) 0.06 (0.13)

φa,t 0.93 (0.03) 0.93 (0.03) 0.93 (0.03) 0.91 (0.02) 0.91 (0.02)

Notes: Where estimates of µ·2 and σ2
·2 are not provided, simulated rates for the corresponding demographic

parameter are based on µ·1 and σ2
·1, which are derived from the entire time-series of data. Estimates of µ·2

and σ2
·2 indicate split random effects models (equations (4.7) and (4.8)), denoting the random effects mean and

variance for years 2000-and-onwards, and simulated future demographic rates are based on these parameters.
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adult survival, the recent period was also more variable than the earlier years

(σ2
·2 > σ2

·1), presumably due to this being a period of declining, rather than sta-

ble, dynamics. Regarding prior sensitivity for the variance parameters, in most

cases the chosen priors (uniform: σρ1, σρ2, σ01, σa1, σa2; half-Cauchy: σ02) gave

essentially identical results to the alternative inverse-gamma prior specified on

the σ2
··. However, in the case of σ2

a2, which was estimated to be very small, pos-

terior inference appears to have been constrained by the inverse-gamma prior

(see Gelman 2006), and therefore our choice of alternative priors appears to be

more appropriate.

Posterior means and corresponding 95% CIs for historical and future esti-

mates of population sizes J and X obtained under each scenario are provided

in Figure 4.1. During 2008–2012, predicted breeding population sizes remained

under the influence of recent (2003–2007) productivity and first-year survival

rates, as the JT−4, . . . , JT matured and recruited into the breeding population.

Following this transition period, the ‘true’ projected trend became apparent.

Under S1, there was initially a period of stable or decreasing population sizes,

followed by a steady increase similar in rate to the majority of the historical

period (Figure 4.1a). S2, S3 and S4, characterised by low future productivity,

first-year survival and adult survival, respectively, all exhibited similar projected

population trajectories, with stable or slightly increasing breeding populations

after the transition period (Figures 4.1b–d). When all three time-varying demo-

graphic parameters were projected at their post-2000 rates (S5), the predicted

breeding population declined rapidly throughout the projection period, with a

corresponding decline in the number of prebreeders (Figure 4.1e).

The count data, which are overlaid on each plot in Figure 4.1, indicate a

sudden and dramatic decrease in breeding population size between 2005 and

2006, and subsequent counts—including the two most recent estimates for 2008

and 2009—suggest this decline has continued, albeit at a lower rate. The pop-

ulation model did not capture the initial decline in the counts, which was much

faster than expected, and none of the prediction scenarios were able to repli-

cate the more recent counts (none of the posterior 95% CIs for the 2006–2009

population estimates include the corresponding counts). However, ‘worst case’

scenario S5 appears to have approximated the 2005–2009 trajectory reasonably

well, and continued at a similar rate of decline beyond this period.

All of the above descriptions of population trajectories are based on the pos-

terior mean predicted population sizes; however, we note that the corresponding

95% CIs soon become very large so that there is a large amount of uncertainty.

The posterior probabilities of population decline, provided in Table 4.3, sum-



4.3 Results 83

(a)

Year

P
op

ul
at

io
n 

si
ze

1985 1995 2005 2015

0

5000

10000

15000

20000

25000

(b)

Year
1985 1995 2005 2015

(c)

Year

P
op

ul
at

io
n 

si
ze

1985 1995 2005 2015

0

5000

10000

15000

20000

25000

(d)

Year
1985 1995 2005 2015

(e)

Year

P
op

ul
at

io
n 

si
ze

1985 1995 2005 2015

0

5000

10000

15000

20000

25000

Figure 4.1 Posterior means and 95% symmetric CIs for historical and predicted population
levels of female prebreeders J (H) and breeding females X (N), obtained under the five
prediction scenarios: (a) S1—‘business as usual’; (b) S2—future productivity simulated at
post-2000 levels; (c) S3—future first-year survival simulated at post-2000 levels; (d) S4—
future adult survival simulated at post-2000 levels; (e) S5—all three of the above demographic
parameters simulated at post-2000 levels. The vertical dashed line indicates the beginning of
the 10-year prediction period. The count data N are also plotted for 1983–2009 (�).

marise this uncertainty into a single statistic that is easy to compare between

scenarios. S1 gave a probability of decrease of 0.305, which equates to a greater

than even probability that the population will increase over the next 10 years.

However, there remains a very small probability that the population will de-

cline by more than 25% under these conditions. The probability of decrease
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Table 4.3 Posterior probabilities of future population decline over a 10-year period (2007–
2017) under each of the five scenarios, along with posterior means and 95% credible intervals
for the predicted proportional change in population size over the same period (positive values
indicate an increase, negative values a decrease).

Pr(population decrease)

Scenario Decrease Decr. > 10% Decr. > 25% Proportional change

S1 0.305 0.113 0.012 0.072 (−0.208, 0.357)
S2 0.520 0.251 0.042 0.004 (−0.284, 0.289)
S3 0.728 0.478 0.161 −0.095 (−0.399, 0.204)
S4 0.834 0.558 0.141 −0.119 (−0.380, 0.130)
S5 0.994 0.964 0.697 −0.309 (−0.534,−0.078)

became progressively larger moving from S2 to S4, which appears to mainly

reflect differences in trajectory through the transition period, as all three pop-

ulations appear to be stable or slightly increasing following this period (see

Figures 4.1b–d). The ‘worst case’ scenario S5 gave a very high probability of

population decline over a 10-year period of 0.994, and it is likely that this decline

will be of a magnitude greater than 25%. This is confirmed by the proportional

decline, also provided in Table 4.3, which suggests a mean predicted population

decrease of approximately 31% after 10 years, corresponding to a growth rate

of −3.6% year−1. Furthermore, and unlike S1 to S4, the 95% CI for the propor-

tional change under S5 does not include zero, so that there appears to be very

strong evidence of a decline in population under these conditions.

4.3.2 Perturbation analysis

The estimated stochastic population growth rate λs based on the full set of

N = 24 environments was 1.026, or +2.6% year−1. This accords well with

the post-transitional (after 2012) predicted growth rate under S1 (posterior

mean 5-year proportional change of 0.135, giving an identical growth rate of

+2.6% year−1). Associated sensitivity and elasticity matrices corresponding to

the projection matrix entries aij are shown in Figure 4.2, and sensitivities of

log λs and elasticities of λs to lower-level parameters are provided in Table 4.4.

The larger the elasticity of a parameter, the more sensitive the population

growth rate to proportional changes in that parameter (this is not necessarily

the case for sensitivities, as they are magnitude-dependent). Therefore, popula-

tion growth rate appears to be most sensitive to proportional changes in adult

survival and considerably less sensitive to changes in the other matrix elements

and lower-level parameters, which all have the same elasticities. For example,

a 10% decrease in adult survival would result in an approximately 7% decrease
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Figure 4.2 (a) Sensitivity (∂ log λs/∂aij) and (b) elasticity (∂ log λs/∂ log aij) of the
stochastic growth rate λs to changes in the projection matrix entries aij (see equation (4.10);
note that in (a) only the sensitivities to non-zero transitions are shown).

Table 4.4 Sensitivity and elasticity of the
stochastic growth rate to changes in lower-level
demographic parameters.

Parameter Sensitivity Elasticity

ρt 0.173 0.065
φ0,t 0.125 0.065
ψ 0.077 0.065
φa,t 0.793 0.741

in population growth rate, while an equivalent decrease in, say, productivity

would only result in a 0.7% decrease in population growth.

The reduced set of environments taken from the end of the study period

(2000–2006) produced a stochastic growth rate λs2 of 0.974, which corresponds

to an annual growth rate of −2.5% year−1. This is similar to the mean post-

transitional growth rate under S5 of −2.9% year−1. Patterns of sensitivity

and elasticity were the same as for the full set of environments, although the

elasticity of λs2 to adult survival was slightly higher (0.797), and the elasticities

of the other parameters were consequently lower (all 0.051).

4.4 Discussion

Effective conservation of wild animal populations requires accurate forecasts of

population fluctuations, including reliable quantification of uncertainty. This
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study shows how population projections may easily be incorporated into an

integrated population model, using a Bayesian state-space framework with ran-

dom effects models for the demographic parameters. Multiple sources of data

simultaneously inform the projections, and all major sources of uncertainty are

accounted for except model uncertainty, which if desired could also be incor-

porated via reversible jump MCMC (Green 1995, King & Brooks 2002, King

et al. 2009). The resulting output takes the form of probability distributions

(marginal posterior distributions) of future population sizes, which describe the

uncertainty in an easy-to-understand format and from which any number of

summary statistics and quantities of interest may be derived (Wade 2000). For

example, our predictions of the Isle of May common guillemot population in-

dicate that if recent poor demographic performance is continued in the future,

there is a greater than 99% probability of population decrease after 10 years.

The stochastic matrix model produced similar population growth rate es-

timates to the corresponding integrated model scenarios, but was inferior in

a number of respects. First, although environmental stochasticity was incor-

porated by using a sequence of projection matrices parameterised by estimates

from the integrated model output, no sense of the variability of the outcome was

provided. This would require carrying out additional Monte Carlo simulations.

Second, projection matrices were parameterised using posterior means, but no

consideration of the level of parameter uncertainty was incorporated. (Note

that we could have used other posterior point estimates (e.g. the median) but

this would have made little difference due to the largely symmetric posterior

distributions of the parameters.) Simulating from the posterior would be an

easy way to incorporate parameter uncertainty, but this clearly requires having

already conducted a Bayesian analysis. Finally, we conducted a prospective per-

turbation analysis, which explores how much the population growth rate would

change in response to specified changes in the vital rates. However, this says

nothing about the observed variation in the vital rates—if a vital rate did not

vary, it can have made no contribution to the observed variation in the growth

rate—so to test this we would also need to conduct a retrospective analysis (see

Caswell 2000). All of the above points were addressed by the Bayesian analysis.

To project the population using the integrated model, we first required pre-

dictions of future demographic rates. Predictions of productivity and first-year

and adult survival were based on extrapolation of historical conditions into the

future, by treating both the estimated and predicted parameters as random

effects (Maunder et al. 2006). Posterior means of predicted rates generated ac-

cording to the recent period of decline (2000 onwards) were all lower than those



4.4 Discussion 87

based on the entire historical period (1983–2007; Table 4.2), as we expected.

The respective variabilities of these predicted rates varied according to the pa-

rameter, from higher when based on the recent period (productivity), to about

the same (first-year survival), to slightly higher when based on the historical

period (adult survival). However, the random effects variance estimates for year

2000 onwards (σ2
·2) were not very precise as they were only based on eight years

of data, and even fewer reliable estimates in the case of the survival rates, par-

ticularly first-year survival where there was very little data to inform the last

few years (Table 4.2; note the large posterior SDs relative to the means, espe-

cially for σ2
02). This uncertainty in the variance estimates is also incorporated

in the population predictions.

The recent population counts suggest that some factor, or combination of

factors, is already having a major effect on the breeding population: after a long

period of steady increase, the population declined by almost 6000 pairs between

2004 and the latest count in 2009, to the lowest level since 1994 (Figure 4.1).

However, there was no information in the demographic data to support such a

dramatic decrease: even assuming zero recruitment in 2006, an adult survival

rate of 82.6% would have been required to generate the observed 2005–2006 pop-

ulation change, compared to the actual 2005 estimate of 90.7%, already well be-

low the long-term average. Consequently, the observed decline was much faster

than expected from the process model, highlighting that perhaps some other

processes beyond demographic ones contributed to the decrease, although what

these might have been is not clear. It is possible that the study plots and sam-

ples of marked chicks and adults are not representative of the whole population,

but they do cover several locations and a range of breeding densities within the

colony. Error in the counts may have been partly responsible; however, the 2006

count N24 was outside of the corresponding population estimate X24±1.96
√
σ2
N

(i.e., outside that expected due to observation error) under all five scenarios,

and the number of pairs that bred in the study plots followed a similar pattern

(M. P. Harris pers. comm.), so even if the count was erroneously low that year,

it is unlikely that observer error was the only cause of the discrepancy between

it and the expected population size. Colony attendance patterns have changed

in recent years, with guillemot parents spending a greater percentage of time

away from the colony, apparently due to food shortages (Ashbrook et al. 2008),

but the correction factor used to convert the actual counts of birds to the num-

ber of breeding pairs should have allowed for this. We can also discount the

possibility of a sudden large increase in the proportion of nonbreeders entirely

absent from the colony for the whole breeding season: this would generate a
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significant decrease in adult resighting probability, which has in fact remained

very high in recent years.

Putting the discrepancies aside, the true underlying population estimates

also showed a clear switch between steady growth prior to 2004 and a rapid de-

cline after (Figure 4.1). Adult survival was particularly low on the Isle of May

in 2004 (as at a number of other UK colonies; see Chapter 5), and this probably

triggered the decline. 2005 was another very poor year for adult survival, follow-

ing which the post-2000 declines in productivity and first-year survival began to

contribute to the population decrease, as reduced numbers of birds from those

cohorts were available to recruit. The first five years of predictions (2008–2012)

were also strongly influenced by recent observed fluctuations in productivity

and first-year survival: the outcome of S1 suggests that, even if demographic

parameters are assumed to return to ‘normal’ levels in the future, the population

will continue to decline until 2012 (Figure 4.1a) due to demographic momentum

(see, e.g., Koons et al. 2006). This clearly demonstrates the importance of mon-

itoring seabird productivity and survival as well as population size, to provide

an early warning system for impending changes in conservation status and a

diagnosis of their cause (Eaton et al. 2008b). However, under S1 it is likely

that the population would soon make a full recovery (the mean proportional

population change for this scenario indicated a 7.2% increase in population size

after 10 years, in spite of the initial decline), while a continuing decline beyond

2012 appears to be extremely improbable (even the lower 95% credible limits

of predicted population sizes increased during this period).

S2, S3 and S4 all exhibited similar future dynamics (Figures 4.1b–d), al-

though the recent trend in adult survival appears to give the greatest cause for

concern (S4: 83.4% probability of population decrease), then first-year survival

(S3: 72.8%) and recent productivity the least (S2: 52.0%). These differences

appear to be largely determined by the predicted dynamics during 2008–2012,

as the trajectories of all three scenarios after this transitional phase were very

similar. The greater probability of decrease under S4 reflects the immediate

influence of reduced adult survival on population growth from the beginning of

the prediction period, compared to the 5-year time-lag following changes in pro-

ductivity or first-year survival. What is noteworthy is that essentially identical

dynamics were produced by a 29.5% decrease in mean predicted first-year sur-

vival and a 2.5% decrease in mean predicted adult survival—more than an order

of magnitude difference—suggesting that population growth rate in guillemots is

much more sensitive to variation in adult survival than either first-year survival

or productivity. This finding is consistent with previous studies of long-lived
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avian species (Lebreton & Clobert 1991, Rockwell et al. 1997, Sæther & Bakke

2000, Reid et al. 2004) and confirmed by the results of our perturbation analysis

(Figure 4.2, Table 4.4). On the other hand, the similar realised contribution to

population dynamics of the observed declines in first-year and adult survival also

highlights that the demographic rates to which population growth is theoreti-

cally most sensitive are not necessarily those that contribute most to changes in

growth rate over time (Gaillard et al. 1998, 2000, Sæther & Bakke 2000, Cooch

et al. 2001, Coulson et al. 2005). This is due to the relative variabilities of the

different traits: in general, those traits with the greatest potential contribution

to the population growth rate tend to exhibit the least temporal variability

(Gaillard et al. 2000, Sæther & Bakke 2000)—a phenomenon termed ‘environ-

mental canalization’ (Gaillard & Yoccoz 2003). Therefore, while the elasticity

of λs to adult survival of Isle of May guillemots was more than 10 times greater

than to productivity or first-year survival, the coefficients of variation (CVs)

of the latter two traits were 6 and 12 times greater, respectively, than that of

adult survival (CVρ = 19.1%, CV0 = 38.5%, CVa = 3.1%; CVs calculated from

posterior means and process standard deviations of simulated ρt, φ0,t and φa,t

under S1, see Table 4.2).

The final scenario S5 predicted a rapid decrease in breeder and prebreeder

population sizes throughout the 10-year prediction period (Figure 4.1e), with

an expected decline over this period of 31% and only a 0.6% probability of

population increase. Future simulations of productivity, first-year survival and

adult survival for this scenario were based on data from the recent drop in de-

mographic performance of Isle of May guillemots, which has also been a promi-

nent feature at a number of other UK colonies, affecting the majority of seabird

species (e.g. Mavor et al. 2005, 2008). These changes are presumed to be primar-

ily due to a reduction in the abundance and quality of their main prey species,

especially the lesser sandeel Ammodytes marinus (Mavor et al. 2005, 2008, Wan-

less et al. 2005, Heath et al. 2009), which in turn is thought to be linked to

climate change (MCCIP 2009). Although the mechanisms involved in these

connections are complex and not fully understood, in a recent review Heath

et al. (2009) propose the following causative link: (1) warming sea temperature

and changes in primary production patterns, leading to (2) changes in zooplank-

ton communities and production, leading to (3) suppression of sandeel growth

rate and recruitment, (4) changes in sandeel behaviour, (5) declining sandeel

abundance, and hence (6) reduced food availability for seabirds and (7) reduced

seabird breeding success, frequency of breeding, adult survival and/or increased

age of first breeding. Indeed, reductions in both breeding success and adult sur-
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vival of several seabird species, including the common guillemot, have already

been correlated with increases in sea surface temperature and climate indices

such as the North Atlantic Oscillation, with food availability implicated as the

link (e.g. Frederiksen et al. 2004b, Harris et al. 2005, Sandvik et al. 2005, Votier

et al. 2005). With climate change scenarios predicting that sea surface temper-

atures will increase around all UK coasts in the future (Lowe et al. 2009), S5

appears to be the most realistic of our five scenarios for Isle of May guillemots,

at least in the short term. Similar implications may be assumed for future pop-

ulation dynamics at other UK colonies, some of which may have, as yet, shown

no evidence of a population decrease, and also for similar species, such as the

razorbill Alca torda and Atlantic puffin Fratercula arctica.

In fact, there are several reasons why ‘worst case’ scenario S5 may be conser-

vative, and therefore not the worst possible case for the Isle of May guillemots.

First, if demographic rates decrease further in the future in line with climate

predictions, the population decrease will be greater. This could be modelled

by adding trends to the random effects models and projecting these forwards

with random variability, although it is unrealistic to assume that such trends

would continue indefinitely. Second, productivity and survival were all strongly

positively correlated during 1983–2006 (post hoc Spearman’s rank correlations:

rs(ρt, φ0,t) = 0.54, p = 0.007; rs(ρt, φa,t) = 0.65, p < 0.001; rs(φ0,t, φa,t) = 0.61,

p = 0.001). The stochastic matrix model approach accounted for this by per-

muting entire matrices rather than each parameter separately, and the good

agreement between the two approaches in terms of projected growth indicates

that ignoring this correlation does not induce significant bias in the population

growth rate. It could, however, lead to underestimating the variability of the

predictions (see Coulson et al. 2005), with potential consequence of underesti-

mating the probability of large (e.g. > 50%) declines. Nur et al. (1994) incorpo-

rated covariation among survival rates in their predictive model by simulating

adult survival and then assuming that immature survival rates were directly

proportional, and a similar approach might be suitable here. Finally, due to

a lack of information in the data, immature (ages 1–3) survival rates in this

study were estimated as constant parameters and assumed to maintain these

values (with parameter uncertainty) during the projections; however, it is likely

that they have also declined since 2000. Given that random effects provide a

compromise between constant and fully time-dependent models (Royle & Link

2002), there may be some merit in modelling immature survival with random

effects to estimate pre- and post-2000 means and process variances, similarly to

productivity, first-year survival and adult survival.
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As a final point, we note that although we have a very rich dataset and a

model that provides a good fit, credible intervals on the population sizes still

‘explode’ as soon as we start to predict, creating even more uncertainty over the

future of the population. As an example, S2 predicted an approximately even

probability of a decrease in population size after 10 years, but the uncertainty

in the estimates mean that the actual population change over this period could

feasibly be anywhere from a 28% decrease to a 29% increase. There would

thus be little benefit in projecting further than 10 years, as the uncertainty in

the estimates would become too large to be of any scientific value. Even more

uncertainty is introduced by the different scenarios, such that in total we have

realistic estimates of population change ranging from −53% to +36%, depend-

ing on the model assumptions. Furthermore, the projections are based on the

assumption that current conditions hold for the duration of the prediction pe-

riod (Coulson et al. 2001). Environmental conditions were actually relatively

stable throughout much of the historical period, but the rapid changes in UK

coastal waters of late suggest it is unlikely that conditions will remain con-

stant in the future, even for the next 10 years. Nevertheless, realistic predictive

models can still serve a useful purpose (Nur & Sydeman 1999), including: in-

vestigating the future population consequences of known changes (for example

the possible effects during the next 5 years of recent breeding failures); evaluat-

ing the significance of declines in different life stages in influencing population

growth; and exploring the implications of various model assumptions to see

where restoration efforts might be best rewarded.





Chapter 5

Multi-population modelling of
survival rates

5.1 Introduction

Year-to-year variation in demographic parameters is often pronounced, presum-

ably related to features of the environment, and a large number of ecological

studies have focussed on detecting and explaining such variation (see Grosbois

et al. 2008 for an overview of survival studies and, e.g., Gaston & Smith 2001,

Rodriguez & Bustamante 2003, Dickey et al. 2008, Jüssi et al. 2008 for re-

productive parameters). Relatively fewer studies have addressed the issue of

geographical variation among populations of the same species, and fewer still

variation over both time and space (but see, e.g., Grosbois et al. 2009). This

disparity is primarily due to the difficulty—in terms of time, cost and logistics—

of obtaining sufficiently detailed long-term data at the multi-population scale

to permit rigorous comparisons (Koenig 1999, Frederiksen et al. 2005). How-

ever, life-history traits can vary as much among populations as between species

(Dhondt 2001); indeed, spatial variation in demographic rates may well be

higher than the corresponding temporal variation (Paradis et al. 2000) and can

have a profound influence on population dynamics of species inhabiting hetero-

geneous landscapes (Ozgul et al. 2006). Therefore, findings from smaller-scale

studies may fail to represent larger-scale dynamics across a species’ range, par-

ticularly for species inhabiting large geographical areas (Baker & Thompson

2007). Conversely, spatial comparisons of geographically widespread popula-

tions could improve our understanding of population dynamics and the evolu-

tion of life histories (Frederiksen et al. 2005), and may aid in establishing which

environmental factors contribute to variations in demographic parameters and

when and where they exert their influence (e.g. Schaub et al. 2005, Grosbois

93
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et al. 2006, Jenouvrier et al. 2009b).

Many studies of time series of population abundance have considered the

mechanisms behind multi-population dynamics (reviewed in Liebhold et al.

2004). These mechanisms are difficult to infer via the sole analysis of population

time series (Bjørnstad et al. 1999, Liebhold et al. 2004), but may be interpreted

more easily through the analysis of demographic parameters at multi-population

spatial scales (Grosbois et al. 2009). The recent literature has seen an increase

in the number of studies investigating spatiotemporal variation in demographic

rates, and in particular survival, presumably related to increasing availability of

long-term datasets with the necessary level of spatial and temporal detail, and

the evolution of statistical tools to analyse them. Findings from the majority of

these studies seem to suggest that temporal variations in survival are often corre-

lated among different populations: these findings extend to a number of species

and across a variety of spatial scales, from a few kilometres (yellow-bellied mar-

mot Marmota flaviventris : Ozgul et al. 2006) to several thousand kilometres

incorporating a substantial part of a species’ distribution range (Atlantic puffin

Fratercula arctica: Harris et al. 2005, Grosbois et al. 2009; white stork Cico-

nia ciconia: Schaub et al. 2005; Hawaiian monk seal Monachus schauinslandi :

Baker & Thompson 2007; Cory’s shearwater Calonectris diomedea: Jenouvrier

et al. 2009b). Baker & Thompson (2007) note that such spatial synchrony in

survival rates among subpopulations ‘presumably results from individuals at

different sites experiencing similar conditions’, which can occur because ‘either

environmental conditions span more than one site or animals from different sites

move sufficiently that their ranges overlap’.

Environmental conditions that may act as synchronising agents include

large-scale climatic phenomena such as the North Atlantic Oscillation (NAO)

and Southern Oscillation (SO), which influence weather and oceanographic con-

ditions over vast geographic areas (see, e.g., Hurrell et al. 2003, Stenseth et al.

2003) and have been linked with spatiotemporal correlations in survival (Jenou-

vrier et al. 2009b) and multi-population dynamics (Post & Forchhammer 2002,

Sæther et al. 2006). Other large-scale or spatially correlated environmental co-

variates found to explain synchronous survival include snow cover (Grøtan et al.

2005), sea surface temperature (Grosbois et al. 2009), and vegetation indices

(Schaub et al. 2005). However, a correlated environment does not necessarily

result in synchrony, as demonstrated by findings of asynchronous survival and

reproductive success in an insular metapopulation of house sparrows Passer

domesticus (Ringsby et al. 1999, 2002). The second of Baker & Thompson’s

(2007) criteria, movement resulting in overlapping ranges, is particularly true
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of populations of migratory or dispersive species. Although widely separated

during the breeding season, such species often overlap in nonbreeding distri-

bution (e.g. Newton 1995, Schaub et al. 2005, Jenouvrier et al. 2009b) where

they may be exposed to a common environment and when highest mortality

tends to occur (Newton 1998). A third factor to consider is how the synchro-

nising effects of environmental conditions and movement on survival might vary

according to age: in long-lived species, survival rates of young animals are gen-

erally lower and more variable than those of adults (e.g. Gaillard et al. 1998,

Doherty et al. 2004, Ozgul et al. 2006) and may respond differently to changes

in the environment.

In some cases, despite extensive searching, no covariates can be found that

explain variation in survival. This is the case for Isle of May common guillemots

Uria aalge (Harris et al. 2007b). The available evidence suggests that the

main mortality of guillemots occurs during the nonbreeding season (Harris et al.

2007b), so it seems likely that some aspect of winter environment is responsible

for interannual variation in survival. To test this, we compare juvenile and adult

survival of guillemots from three widely separated Scottish colonies that have

varying overlap in winter distribution among age classes. The three colonies

considered are: the Isle of May, situated in the North Sea off the southeast

coast of Scotland; Canna, in the Sea of the Hebrides off the west coast of

Scotland; and Colonsay, in the outer Firth of Lorn, also off the west coast.

These are all substantial colonies, between them containing somewhere in the

region of 5% of the total British and Irish breeding population; their locations

provide a comparison between east and west coast populations which, at least

during the breeding season, are effectively geographically isolated; and they have

all been the subject of long-running, individual-based field studies, providing

mark-recapture and ring-recovery data.

Due to their isolation, it is to be expected that birds from the east and

west coasts will experience different conditions during breeding, and so have

different productivities. However, during nonbreeding guillemots disperse over

large areas of ocean and there is much mixing between birds from different

populations, potentially exposing them to the same environmental conditions;

furthermore, juvenile and immature birds disperse further from the colonies

than adults (Harris & Swann 2002), so it is less clear what might be expected

as regards differences in annual survival. Previous analyses have concentrated

on the Isle of May, which has the more detailed data and for which there are

recent published estimates of time-specific juvenile (Crespin et al. 2006a, Harris

et al. 2007b) and adult (Crespin et al. 2006b) survival. Field studies at Canna
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Figure 5.1 Map of the British Isles showing locations of the four common guillemot colonies
mentioned in this chapter: Isle of May, southeast Scotland; Canna and Colonsay, west Scot-
land; Skomer, southwest Wales.

and Colonsay have been less intensive, so the data are sparser and only time-

constant estimates of adult survival have previously been published for these

colonies (Harris et al. 2000), although this study did not incorporate information

on dead recoveries in the survival analysis. Using mark-recapture and ring-

recovery data, we look for spatial, temporal and age-related correlations in

survival among the three colonies and, for Isle of May and Canna birds, use

information on ring recovery locations to test whether any pairwise correlations

in survival are associated with evidence that their nonbreeding distributions

significantly overlap.

5.2 Data and analysis

5.2.1 Mark-recapture-recovery data and modelling

As mentioned in the Introduction, mark-recapture-recovery (MRR) data are

available for three Scottish common guillemot colonies (see Figure 5.1). Data

from Canna and the Isle of May both cover the same period (1983–2006) and

comprise capture histories of guillemots marked as chicks and as breeding adults,
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whereas the Colonsay data cover a much shorter period (1990–2006) and only

comprise birds ringed as adults. Therefore, we restrict the formal comparative

analysis to the Isle of May and Canna, and compare Colonsay adult survival

separately on an ad hoc basis.

Unlike previous chapters in this thesis, where Bayesian analyses are con-

ducted using bespoke Fortran code, analyses of survival data in this chapter

are all conducted in Program MARK (White & Burnham 1999) using a combi-

nation of Bayesian MCMC and classical maximum likelihood techniques. The

use of MARK is possible due to the fact that we are dealing with relatively

simple MRR data, rather than the analysis of multiple, integrated data types

with complex models for which no prewritten software exists; it is also desirable

because of its flexibility, given that we would like to use Bayesian methods (to

continue the theme of earlier analyses and for estimation of correlation param-

eters) but have a large number of models to fit and compare. We accommodate

these requirements in MARK by considering a two-step process: (1) model se-

lection (separately for each colony) using maximum likelihood estimation and

AIC, which has a more rigorous framework than the corresponding process us-

ing MCMC and DIC, accommodates goodness-of-fit testing, and is much faster

than MCMC estimation; (2) combining the Isle of May and Canna datasets

and fitting them using MCMC (with the chosen model structures from step 1)

to obtain posterior distributions for the parameters, including pairwise process

correlations among first-year and adult survival rates. Step 1 is described in

this section, and step 2 in Section 5.2.2.

The analysis of MRR data depends upon four sets of parameters—survival,

recapture, recovery and fidelity probabilities—which are estimated in MARK

using Burnham’s model for both live encounters and dead recoveries (Burnham

1993). Initially we analyse each colony separately, using maximum likelihood

estimation for goodness-of-fit (GOF) testing and subsequent model selection

on the Isle of May and Canna combined adult and chick datasets, and the

Colonsay adult data. For each dataset, we first identify a candidate model

set representing biological knowledge and statistical considerations (Lebreton

et al. 1992). To confirm that the most general, or ‘starting’, model in the

candidate set (i.e., the most parameterised model that has few or no estimability

problems) adequately fits the data, we conduct a goodness-of-fit test using the

bootstrap GOF procedure in MARK. This procedure yields an estimate of a

variance inflation factor, denoted ĉ and defined as the ratio of the model χ2

(model deviance) divided by the degrees of freedom (Burnham et al. 1987).

The variance inflation factor quantifies the amount of extrabinomial variation,
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or overdispersion, and is a measure of the lack of fit between the general model

and a saturated model. If the model fits the data perfectly then ĉ = 1, and

a value of ĉ > 1 indicates some degree of overdispersion, although ĉ 6 3 is

generally considered to be acceptable (Lebreton et al. 1992). Provided the fit of

the general model is adequate, we then select the most appropriate model using

Akaike’s Information Criterion, adjusted for effective sample size and any lack

of fit using the estimate of ĉ obtained from the GOF test (QAICc; Burnham &

Anderson 2002).

Notation in this chapter is as follows: survival probabilities are denoted

by φlocr,t , recapture probabilities by plocr,t , recovery by λlocr,t and fidelity by ψlocr,t .

Three-letter superscripts denote colony location, i.e., loc ∈ {iom, can, col};
r ∈ {0, 1, 2, 3, 4, 5, a} denotes age class from first-year to adult; t = 1, . . . , T

denotes time. The data and models are described separately for each of the

three colonies.

Isle of May

The Isle of May is located in the outer Firth of Forth, southeast Scotland

(56◦11′N, 2◦33′W). The island is 1.8 km long and 0.5 km wide, and has its

major seabird breeding colonies on the high cliffs of the west coast. The guille-

mot population was estimated at 15,578 breeding pairs in 2006. The island

was permanently occupied by a team of researchers throughout the 1983–2006

breeding seasons, during which guillemots were caught and marked annually

and the colony was intensively monitored on a daily basis. The practical meth-

ods for both initial capture and subsequent recaptures differed greatly between

birds marked as adults and those marked as chicks, and they are described

separately below.

Breeding adults were initially captured by noose or crook, or by mist-netting

during the winter, and marked with a numbered metal ring and an individu-

ally recognisable combination of three colour-rings. Otherwise birds were not

handled and subsequent identifications were by resighting using binoculars or a

telescope. Resightings came mainly from the intensively monitored study plots

where the birds were ringed, because site-fidelity of breeding adults is high (Har-

ris et al. 1996b), but wider searches were also regularly made. Individuals were

frequently seen several times within a single year, or capture occasion, but we

take no account of the number of observations and simply denote a resighting

by a single record per individual, per year (the same applies to Isle of May chick

resightings, below). In total 730 adults were ringed during the study period,
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resulting in 6292 live resightings, hereafter referred to as recaptures for con-

sistency with the other studies. Recoveries of dead adult birds are ignored as

there were too few (11) to justify their inclusion in the model.

Chicks were caught by hand in two easily accessible breeding areas, referred

to as areas A and B, and marked with a numbered metal ring and a unique

colour-ring readable at distances up to 75 m with a telescope. Most resightings

(hereafter referred to as recaptures) resulted from almost daily searches of the

breeding ledges and tidal rocks within a few hundred metres of the two ring-

ing areas, because of the tendency of guillemots to return to their natal area

during their prebreeding years and to subsequently recruit nearby (Harris et al.

1996a), although opportunistic observations were made throughout the island.

Recoveries of dead birds away from the island were also recorded. A total of

6145 chicks were ringed during the study, with 4678 of these in area A and 1467

in area B. These gave, respectively, 3264 and 861 live recaptures, and 169 and

85 dead recoveries.

We base the starting model for the combined adult-chick dataset on that

used in Chapter 3, which in turn is based on the reference model of Harris et al.

(2007b): survival is assumed to be time-dependent for first-years and adults

(adult survival includes age 4+ birds ringed as chicks) and constant for ages 1–3;

recapture probabilities for birds ringed as chicks are age- and time-dependent

up to 5 years (except for one-year-olds, which are fixed to 0) and are allowed

to differ between areas A and B, with separate time-specific estimates for birds

ringed as adults; recovery probabilities are allowed to vary over time but are

assumed to be the same for all age classes (recovery probability of birds ringed

as adults is fixed to 0); and fidelity is assumed to be constant over time for

age 4 and age 5+ birds ringed as chicks, and fixed to 1 for all other age classes

(including birds ringed as adults). The bootstrapped estimate of ĉ for this

model (observed ĉ/expected ĉ) was 1.23, indicating only slight overdispersion

and satisfactory model fit. Replacing any of the time-dependent parameters

in the starting model with constant ones resulted in significantly worse-fitting

models (∆QAICc > +20). However, a more parsimonious model (∆QAICc =

−7.45) was achieved by constraining recovery probabilities to change linearly

(on the logit scale), which allows for a potential systematic temporal decline in

reporting rates over the period of the study (Clark et al. 2005).
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Canna

Canna is located in the Inner Hebrides of Scotland, approximately 14 km south-

west of Skye (57◦03′N, 6◦35′W). It is a small island around 7 km long by 1.5 km

wide and its northern coastline is dominated by steep, basalt cliffs where the

major seabird breeding colonies are located. The island’s guillemot colony num-

bered in the order of 2000–3000 breeding pairs in 2006 (R. Swann pers. comm.).

Breeding areas were (mostly) visited once per summer 1983–2006, when

chicks, immatures and adults were caught by hand or crook and marked with a

numbered metal ring. Recaptures of previously ringed birds were by the same

method. Recoveries of dead birds were also recorded. Capture histories of birds

initially ringed as chicks were kept separate from those ringed as immatures or

adults, and the latter group formed the breeding adult dataset based on the

following criteria: known breeders were recorded from their first capture, while

for all other birds the initial capture was discarded and they were regarded

as breeders from their first recapture. The analysis also excluded birds marked

with older ‘G-series’ rings (mostly prior to 1983) because these were more prone

to wear and loss than the replacement type. The final dataset contains a total

of 44,799 chick and 4298 adult capture histories, with respectively 6078 and

5357 live recaptures, and 939 and 97 dead recoveries.

We specify a starting model for the Canna data that has time-dependence

in survival for all age classes from first-year (φcan0,t ) to adult (combined estimate

for birds ringed as chicks and adults: φcan4+,t = φcana,t ). As with the Isle of May

guillemots, one-year-olds were never observed at the colony, so recapture prob-

abilities for these birds are fixed to 0. For ages 2, 3 and 4 years, recapture

probabilities are specified to be constant due to data limitations, but we allow

them to vary over time for age 5+ birds ringed as chicks and for birds ringed as

adults, which we treat separately. Recovery probabilities are assumed to be the

same for all ages and for birds ringed as both chicks and adults, and are allowed

to vary over time. Time-constant fidelity is estimated separately for birds of all

age classes 0–5+ years that were ringed as chicks. To accommodate birds mov-

ing site following the disturbance associated with catching (Harris et al. 2000)

we also estimate fidelity of birds ringed as adults, with separate estimates for

the year following initial capture and all subsequent years, denoted ψcana1 and

ψcana2+, respectively. The estimate of ĉ for this model was 1.14, which gives no

concerns regarding model fit.

Fidelities of age 0 and age 1 birds were inestimable in the general model,

so fixing them both to 1 resulted in an improved model (∆QAICc = −4.03).
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Survival estimates of 2- and 3-year-olds were very similar to each other, and

combining them into a single age-class (φcan2−3,t) improved the model considerably

further (∆QAICc = −25.05). Recovery probability clearly varied over time

(∆QAICc = +72.39 when setting recovery to constant), but as with the Isle

of May model, a linear constraint (on the logit scale) appeared to adequately

explain this variation and resulted in the most parsimonious model (∆QAICc =

−23.37).

Colonsay

Colonsay, also in the Inner Hebrides, lies around 100 km south of Canna be-

tween the islands of Mull and Islay (56◦05′N, 6◦10′W). It is approximately 13 km

long by 5 km wide, with major cliffs on the north and west coasts which con-

tained 26,469 individual guillemots in 2000 (Jardine et al. 2002), equating to

approximately 17,700 breeding pairs (using a correction factor of 0.67: Harris

1989).

Two visits (only one in 1990) were made each summer 1990–2006 to catch

breeding adults using a noose or crook and mark them with a numbered metal

ring. Previously marked birds were recorded as recaptures. Recoveries of dead

birds were also recorded. In total 895 individuals were marked, resulting in

1630 live recaptures and 11 dead recoveries. Because of the small size of the

dataset, initial captures were not discarded.

For the starting model, we assume time-dependence in survival and recap-

ture probabilities, and also in fidelity probability in the year following initial

capture, denoted ψcola1 . Fidelity in subsequent years is specified to be time-

constant, and there were too few recoveries (less than one per year, on average)

to permit time-specific estimates of recovery probability, so we assume this to

be constant too. The estimate of ĉ for this model was 1.07, suggesting a satis-

factory fit.

Fidelity in years two-or-more after initial capture was estimated at 1 in the

starting model, so we first fixed this to 1 (∆QAICc = −2.08). Precisions on

survival estimates were poor, and a further reduction in QAICc of 13.36 points

was achieved by setting survival to be constant. However, although there was

too little information in the data to permit full annual variation, survival in 2004

appeared to be somewhat lower than the other years and allowing a separate

estimate for this year improved the fit of the model (∆QAICc = −3.50). There

was no improvement upon adding a logit-linear trend to the recovery probability

(∆QAICc = +0.30; confidence interval of slope parameter includes zero), but
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because it had very similar support to the constant recovery model, and for

consistency with the other colonies, we keep the trend in the final model.

5.2.2 MCMC modelling of process correlations

We implement the MCMC estimation procedure in MARK to model the Colon-

say data and a combined Isle of May–Canna dataset, using the model structures

selected in Section 5.2.1, in order to obtain posterior parameter distributions for

survival, recapture, recovery and fidelity probabilities. We also estimate pair-

wise process correlations in survival probability between and among first-year

and adult guillemots on the Isle of May and Canna. For each MCMC run we

specify 4000 ‘tuning’ samples, a burn-in period of 1000 samples, and 10,000 sub-

sequent samples to be stored from the posterior distribution. Multiple chains

(three for each model) are run to assess convergence using the Gelman (1996)

diagnostic statistic R̂, as calculated by MARK.

Priors in MARK are specified on the β parameters (logistic regression pa-

rameters, one for each column of the design matrix) because the MCMC update

procedure is performed on these. Priors for parameters not in hyperdistribu-

tions (i.e., all parameters except those pairs having their process correlation

estimated) are normally distributed with mean 0 and variance 1.752. This is the

default prior in MARK, specified such that the back-transformed distribution

on the ‘real’ parameter is approximately uniform with 95% of its probability be-

tween about 0.03 and 0.97. Pairs of survival parameters for which we estimate

process correlations have hyperdistributions specified on their β parameters,

i.e.,

logit(φt) = βt, (5.1)

where

βt ∼ N(µ, σ2
β). (5.2)

The hyperdistribution means, µ, take normally distributed priors with mean 0

and standard deviation 100, giving a very flat and noninformative prior; an

inverse-gamma distribution with parameters α = 3, β = 7 (see Appendix A) is

specified on the hyperdistribution variances σ2
β. The correlation between two

sets of time-specific survival parameters, for example φ1,t and φ2,t, is calculated

by

corr(φ1, φ2) =
cov(φ1, φ2)

σφ1σφ2

, (5.3)

and denoted by ρφ1,φ2 . In MARK, estimating the correlation between sets of
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parameters is achieved by specifying the upper off-diagonal elements of the

variance-covariance matrix: for a model with three capture occasions, the ap-

propriate upper-diagonal portion of the variance-covariance matrix looks like

the following 

σφ1 0 0 ρφ1,φ2 0 0

σφ1 0 0 ρφ1,φ2 0

σφ1 0 0 ρφ1,φ2

σφ2 0 0

σφ2 0

σφ2


. (5.4)

On the diagonal of the matrix are the σ values, the first three corresponding

to the hyperdistribution on φ1,t and the remaining three corresponding to the

hyperdistribution on φ2,t. The three ρφ1,φ2 entries correspond to the correlations

of φ1,1 with φ2,1, φ1,2 with φ2,2, and φ1,3 with φ2,3. Priors for ρ parameters are

taken to be uniform with bounds of −1 and 1.

5.2.3 Ring-recovery location data and analysis

Direct assessment of the nonbreeding season distribution of guillemots is not

possible, due to the difficulties involved in simply finding birds, let alone iden-

tifying individuals. However, locations of recoveries of dead guillemots form

a useful proxy for the location of live birds at that time, and the age class

and natal colony of recovered birds is also known. In this section, we describe

three methods for assessing overlap in recovery distributions: a simple visual

comparison of recovery locations and densities, and two statistical tests (two-

dimensional Kolmogorov-Smirnov and χ2).

Recovery location plots

Recoveries of guillemots ringed on Canna and the Isle of May, and reported

during the period October–March, inclusive, were separated by age into first-

year (age 0) and adult birds (age 4-or-more years old, ringed as either chick

or adult). Recoveries of immature age classes were discarded, as were those

reported during the breeding period (defined as April–September). Locations

of recoveries were then plotted separately according to age and natal colony

(i.e., Canna age 0, Canna age 4+, Isle of May age 0, and Isle of May age 4+)

along with 95, 75 and 50% kernel density contours, following the methodology
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of Votier et al. (2008). The resulting plots were compared visually for overlap in

recovery distributions. ArcView GIS 3.2 with the Animal Movement extension,

version 2.04 beta (Hooge et al. 1999), was used to produce the distribution

maps.

Two-dimensional Kolmogorov-Smirnov test

The distribution of recovery locations was divided into pairs according to age

(0 or 4+) and/or colony (Canna or Isle of May; six pairings in total) and

then compared statistically using a two-sample two-dimensional Kolmogorov-

Smirnov test. This test—first proposed by Peacock (1983) and later improved

by Fasano & Franceschini (1987)—is a generalisation of the one-dimensional

K-S test: the two-dimensional K-S statistic essentially defines the maximum

cumulative difference between two two-dimensional distributions (Press et al.

1994), as described below.

In a two-dimensional distribution, each data point is characterised by a

pair of values (x, y). To calculate cumulative differences in two dimensions,

Fasano & Franceschini (1987) made use of the total number of points in each

of the four quadrants around a given point (xi, yi), namely the fraction of data

points in the regions (x < xi, y < yi), (x < xi, y > yi), (x > xi, y < yi),

(x > xi, y > yi). The two-dimensional K-S statistic, DKS, is taken to be the

maximum difference between the fractions of data points of each sample in

any two matching quadrants, ranging over all data points; in other words, the

K-S test finds that data point containing the maximum difference between the

fraction of sample 1 and the fraction of sample 2 in one of its quadrants. Because

the value of DKS is likely to depend on which of the two samples is ranged over,

an effective DKS is defined as the average of the two values obtained by ranging

over each sample separately. The significance level can be calculated by the

approximate formula

Pr(DKS > observed) = QKS

( √
NDKS

1 +
√

1− r2 (0.25− 0.75/
√
N)

)
, (5.5)

where the function QKS is given by

QKS(λ) = 2
∞∑
j=1

(−1)j−1 exp(−2j2λ2), (5.6)

r is the average of the coefficients of correlation of the two samples, and N =

N1N2/(N1 + N2). Fortran code for the above implementation of the two-



5.2 Data and analysis 105

Figure 5.2 Map showing geographical regions defined for the χ2 tests on guillemot recovery
frequencies. Mini-tables provide frequencies of dead recoveries for each region by natal colony
and age class.

dimensional K-S test is provided by Press et al. (1994). In addition to calculat-

ing the significance level for each pairing using the approximate equation (5.5),

we also checked p-values by conducting a Monte Carlo test on each age/colony

pairing, using 999 randomised datasets.

Chi-squared test

For a less sensitive (and more subjective) statistical test, we also divided the

recovery location data according to three geographical regions—‘North Sea’,

for all recoveries on North Sea shores (including the Skagerrak and Kattegat),

Orkney, Shetland and the Norwegian coast; ‘South’, incorporating the English

Channel and Bay of Biscay; and ‘West’, for recoveries on the west coast of

the UK, Irish coast, and including the north Scottish coast, Faeroe Islands and

Iceland (see Figure 5.2)—and carried out pairwise χ2 tests on the frequencies

of recoveries in each region, for each of the six combinations of colony and age.
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5.3 Results

5.3.1 Mark-recapture-recovery analysis

All summary statistics provided below are posterior means and, where appli-

cable, 95% symmetric credible intervals (CIs) derived from MCMC simulations

conducted in Program MARK. Convergence was assessed by the Gelman (1996)

R̂ diagnostic provided by MARK, and was satisfactory in all cases (all R̂ less

than 1.05), suggesting that 10,000 simulations were sufficient for these analyses.

Isle of May

The selected model for Isle of May guillemots had year-to-year variation in first-

year and adult (age 4+) survival, with constant survival for intermediate age

groups; year-to-year variation in recapture probability independently for birds

ringed as adults, and 2-, 3-, 4-, and 5+-year-olds ringed as chicks in areas A and

B; a linear trend on recovery probability (same for all age classes); and separate

fidelity estimates for age 4 and age 5+ birds ringed as chicks.

Parameter estimates were very similar to those provided in Section 3.4. One

noteworthy difference is the estimate of ψ4, which at 0.855 (95% CI: 0.809, 0.901)

is somewhat higher than the 0.805 estimated by the integrated model. This is

possibly due to the additional year of survival data, or perhaps the lack of

influence from the count data. Survival probabilities of first-years and adults

are provided for ease of reference in Figure 5.3; note the additional year of data

compared to the integrated analysis of Chapter 3 and how this drastically alters

the 2004 adult survival estimate, now significantly lower than all other years

(cf. Figure 3.2).
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Figure 5.3 Posterior means and 95% symmetric CIs for survival probabilities of Isle of May
guillemots: (a) first-years; (b) adults.
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Figure 5.4 Posterior means and 95% symmetric CIs for survival probabilities of Canna
guillemots: (a) first-years (age 0); (b) age 1; (c) ages 2–3; (d) adults (note the different
y-scale for this plot).

Canna

The selected model for Canna guillemots had year-to-year variation in survival

for ages 0, 1, 2–3 combined, and adult; age variation in recapture probability

for 2-, 3- and 4-year-olds, with additional time variation for age 5+ birds ringed

as chicks, and birds ringed as adults; a linear trend on recovery probability; and

age variation in fidelity for 2-, 3-, 4- and 5+-year-olds ringed as chicks, and also

for birds ringed as adults, separately for the year following initial capture and

all subsequent years.

Survival estimates and associated 95% CIs for all age classes are provided in

Figure 5.4. First-year (age 0) survival varied strongly from year to year over a

similar range to that of Isle of May first-years, with a range of posterior means

0.242–0.901 (Figure 5.4a; Isle of May range 0.253–0.880). There appear to have

been sustained periods of lower survival during years 1987–1990 and 1999–2002,

separated by a period of above-average survival, but there does not appear to

have been the same steady decline in survival at the end of the study period

as noted for Isle of May first-years (Section 3.4; Harris et al. 2007b). There

was enough information in the Canna dataset to allow time-specific survival
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Table 5.1 Posterior summary statistics for time-constant param-
eters of Canna guillemots.

Parameter Mean SD 95% symmetric CI

p2 0.0009 (0.0002) (0.0005, 0.0013)
p3 0.004 (0.001) (0.003, 0.006)
p4 0.016 (0.002) (0.012, 0.020)
αλ −2.99 (0.079) (−3.14,−2.84)
βλ −1.25 (0.133) (−1.51,−0.98)
ψ2 0.797 (0.090) (0.648, 0.973)
ψ3 0.870 (0.083) (0.692, 0.987)
ψ4 0.766 (0.073) (0.632, 0.926)
ψ5+ 0.996 (0.003) (0.989, 0.999)
ψa1 0.866 (0.014) (0.840, 0.894)
ψa2+ 0.977 (0.005) (0.968, 0.985)

estimates for two immature age classes (age 1 and ages 2–3 combined), which

was not possible for Isle of May guillemots despite higher return rates; this may

be attributed to the extremely large number of birds ringed on Canna, where

ringing totals were approximately seven times those of the Isle of May. Survival

of age 1 birds followed a broadly similar pattern over time to first-year survival,

although it was higher and less variable (0.459–0.932; Figure 5.4b). Age 2–3

and adult survival both remained high throughout much of the study period

and followed a similar pattern to each other, but different to that of age 0 and

age 1 birds (Figures 5.4c, d). In both of these age classes there appears to have

been a decrease in survival from around year 2000, culminating in extremely

low survival in 2004 followed by partial recovery in 2005 (although this estimate

is unreliable due to confounding with the 2006 recapture estimate).

Recapture probabilities for birds aged 2, 3 and 4 years are provided in Ta-

ble 5.1, and time-specific estimates for adult birds in Figure 5.5. Recapture

probability increased with age and, for adult birds, varied considerably over

time. It was also clearly higher for adults ringed as breeders than those ringed

as chicks (age 5+ birds), particularly during earlier years of the study, although

the temporal trends were essentially the same. The estimates in 2006 are con-

founded with adult survival in 2005, hence the large credible intervals. Mean

age 5+ and adult recapture probabilities were markedly lower than equivalent

Isle of May recapture rates (actually resighting probabilities): weighted means

were 0.111 and 0.172 for Canna age 5+ and adults, respectively, with corre-

sponding Isle of May weighted means of 0.441 for age 5+ (averaged over areas A

and B) and 0.969 for adult birds, presumably reflecting the different recapture

methods and the much greater field effort put into the Isle of May study.
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Figure 5.5 Posterior means and 95% symmetric CIs for recapture probabilities of ‘adult’
Canna guillemots, i.e., aged 5+ birds ringed as chicks and birds ringed as adults.

Posterior means for the intercept and slope parameters of the logit-linear

trend on recovery probability, denoted αcanλ and βcanλ respectively, are given in

Table 5.1. The negative estimate for βcanλ and a 95% CI that does not include

zero provide strong evidence for a temporal decline in recovery probability over

the period of the study, which appears to be a common trend for many avian

populations (Baillie & Green 1987, Clark et al. 2005). Corresponding posterior

estimates of λcant are approximately half the magnitude of recovery rates of

Isle of May guillemots, and range from 0.046 (95% CI: 0.040, 0.052) to 0.014

(0.012, 0.016).

Fidelity probabilities for all age classes are also provided in Table 5.1. Fi-

delity probabilities of 2-, 3- and 4-year-olds were quite similar to each other

and were estimated with low precision (note the large CIs) so it is not possible

to draw any meaningful conclusions about how fidelity changed over these age

classes. Age 5+ fidelity of birds ringed as chicks was very high (essentially 1),

as was fidelity of birds ringed as adults, from the second year after initial cap-

ture onwards. However, fidelity of adult birds in the year immediately following

initial capture was rather lower, suggesting some degree (approximately 13%)

of transience among newly ringed adults.

Colonsay

The selected model for Colonsay guillemots (birds ringed as adults only) had

constant survival probability, with a separate estimate for 2004; year-to-year

variation in recapture probability; a linear trend on recovery probability; and
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Figure 5.6 Posterior means and 95% symmetric CIs for recapture probabilities of Colonsay
guillemots ringed as adults.
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Figure 5.7 Posterior means and 95% symmetric CIs for fidelity probabilities of Colonsay
guillemots in the year following initial capture (fidelity in subsequent years was fixed to 1).

year-to-year variation in fidelity probability in the year following initial capture

only.

Constant survival probability was 0.955 (95% CI: 0.944, 0.965), with the 2004

estimate being considerably lower at 0.654 (0.494, 0.850). Recapture probabil-

ities and corresponding 95% CIs are provided in Figure 5.6. As on Canna,

recapture probability varied strongly over time, but although recaptures were

by the same method as Canna, the Colonsay estimates were, on average, con-

siderably higher (weighted mean of 0.397).

The intercept αcolλ , and slope βcolλ , of the logit-linear trend on recovery were
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−2.42 (−3.86,−1.13) and −0.106 (−0.22, 0.02), respectively. The negative esti-

mate for βcolλ is indicative of a temporal decline in recovery probability, although

the relationship is weak and the 95% CI includes zero; however, strong evidence

provided by the Isle of May and Canna data for similar temporal declines sug-

gest that this is not a spurious finding, but rather is due to the small size of the

Colonsay dataset.

Fidelity in the year after marking was less than 1 and appears to have

decreased dramatically over time (Figure 5.7; 0.857 in 1990 to 0.192 in 2004).

This indicates a significant degree of transience among newly ringed adults:

fewer than 20% of birds ringed in 2004 were expected to subsequently return to

the study plot.

Survival comparison between colonies and age classes

Time-specific survival probabilities of Isle of May and Canna first-years and

adults are compared pairwise in Figure 5.8, and posterior summary statistics

of pairwise process correlations are provided in Table 5.2. First-year and adult

survival of Isle of May guillemots were strongly correlated, and this is clearly

apparent in the comparison plot (Figure 5.8a). Canna first-years and adults, on

the other hand, had rather different patterns of survival over time (Figure 5.8b)

and this is reflected by a low estimated correlation with a 95% CI that includes

zero. Comparing survival between colonies, Isle of May first-year survival was

very strongly correlated with Canna first-year survival (Figure 5.8c). Adult

survival did not appear to be correlated between the two colonies (Figure 5.8d;

95% CI of correlation parameter includes zero) but survival in 2004 was the low-

est estimate of the study in both cases, and by quite some margin for Canna;

furthermore, 2004 adult survival of Colonsay guillemots was also significantly

lower than the other years (∆QAICc of −3.50 for this model, compared to a

Table 5.2 Posterior summary statistics for pairwise process
correlations between Isle of May and Canna first-year and adult
survival parameters.

Correlation Mean SD 95% symmetric CI

φiom0,t , φioma,t 0.794 (0.134) (0.435, 0.951)
φcan0,t , φcana,t 0.273 (0.265) (−0.284, 0.715)
φiom0,t , φcan0,t 0.845 (0.096) (0.605, 0.956)
φioma,t , φcana,t 0.225 (0.353) (−0.489, 0.778)
φiom0,t , φcana,t 0.678 (0.194) (0.178, 0.913)
φcan0,t , φioma,t 0.569 (0.247) (−0.104, 0.881)
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Figure 5.8 Pairwise survival comparison plots for first-year and adult guillemots ringed
on Canna and the Isle of May. (a) Isle of May first-years and Isle of May adults; (b) Canna
first-years and Canna adults; (c) Isle of May and Canna first-years; (d) Isle of May and Canna
adults; (e) Isle of May first-years and Canna adults; (f) Canna first-years and Isle of May
adults. Filled circles show adult survival ((a), (b), (e), (f)) or survival of Isle of May birds
((c), (d)), and open circles show first-year survival or Canna survival in these respective plots.
Survival estimates are posterior means.

model with constant survival over all years). Isle of May first-year survival

did not appear to be particularly strongly correlated with Canna adult survival

(Figure 5.8e; although the posterior mean of the correlation is reasonably high,

the 95% CI is very wide indicating a high degree of uncertainty in the estimate).

Canna first-year survival followed a similar trend to Isle of May adult survival

in some years, but was quite different in others (Figure 5.8f), and this is re-

flected in the process correlation estimate which, although reasonably high, has

a 95% CI that includes zero. Regardless of the degree of temporal correlation,
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Table 5.3 Mean survival probabilities of Isle of May, Canna and
Colonsay guillemots.

Survival probability (by age)

Colony 0 1 2 3 4+ (adult)

Isle of May 0.542� 0.782 0.922 0.900 0.952�

Canna 0.556� 0.779� 0.898� 0.898� 0.950�

Colonsay – – – – 0.955�

� Weighted mean of time-specific estimates.
� Constant estimate does not include 2004 survival (estimated separately at 0.654).

when averaged over time survival rates were remarkably similar among all three

colonies for all age classes (where applicable; Table 5.3).

5.3.2 Ring-recovery locations

Locations of ring-recoveries of Canna age 0, Canna age 4+, Isle of May age 0 and

Isle of May age 4+ guillemots are plotted in Figure 5.9. The core areas of the

recovery distributions are defined as being contained by the 50% kernel density

contours. Apart from a small area in the northern Bay of Biscay, there is no

overlap in the core recovery areas of the two Canna age classes (Figures 5.9a, b):

age 0 birds were also recovered in high concentrations throughout the North

Sea, including the Skagerrak and Kattegat, along the Norwegian coast and

around the Faeroe Islands, but age 4+ core areas are restricted almost entirely

to northern Biscay, with some recoveries in the English Channel and up the

west coast of the UK. Within the Isle of May age classes there is a high degree

of correlation in core areas, with major concentrations of recoveries along the

southern and western shores of the North Sea; however, 75 and 95% contours

show Isle of May age 4+ recoveries to be almost exclusively within these zones,

whereas age 0 recoveries also extend into Biscay, the Faeroes, and in particular

the Skagerrak and Kattegat (Figures 5.9c, d). Hence, there is a very high degree

of correspondence between Canna and Isle of May age 0 distributions: although

the core areas differ in some respects, the 90% regions are extremely similar,

with the only real difference being that the Canna distribution extends further.

Conversely, Canna and Isle of May age 4+ recoveries show almost no overlap.

Neither is there much correspondence between Canna age 4+ and Isle of May

age 0 distributions, and although Canna age 0 and Isle of May age 4+ recoveries

share a core area on the east coast of the UK, there is little other correspondence

in these distributions.

Two-sample p-values from pairwise two-dimensional Kolmogorov-Smirnov
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Figure 5.9 Locations of common guillemot ring-recoveries during nonbreeding seasons
(October–March) 1983–2006, with 95, 75 and 50% kernel density contours (represented by
increasingly dark shades of grey). (a) Age 0, ringed on Canna (n = 485); (b) age > 4, ringed
on Canna (n = 185); (c) age 0, ringed on the Isle of May (n = 241); (d) age > 4, ringed on
the Isle of May (n = 139).
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Table 5.4 Results of two-dimensional Kolmogorov-Smirnov tests on
pairs of recovery distribution data.

Data pair DKS statistic p -value

Canna age 0 / Canna age 4+ 0.378 2.77e−12
Isle of May age 0 / Isle of May age 4+ 0.348 3.43e−07
Canna age 0 / Isle of May age 0 0.289 1.12e−08
Canna age 4+ / Isle of May age 4+ 0.743 1.67e−28
Canna age 0 / Isle of May age 4+ 0.471 1.85e−15
Isle of May age 0 / Canna age 4+ 0.626 3.42e−26

Table 5.5 Results of pairwise χ2 tests for differences in recovery fre-
quencies by geographical region, according to age and/or natal colony.

Data pair χ2
2 statistic p -value

Canna age 0 / Canna age 4+ 81.382 <2.20e−16
Isle of May age 0 / Isle of May age 4+ 10.376 5.58e−03
Canna age 0 / Isle of May age 0 58.022 2.52e−13
Canna age 4+ / Isle of May age 4+ 165.132 <2.20e−16
Canna age 0 / Isle of May age 4+ 62.012 3.42e−14
Isle of May age 0 / Canna age 4+ 177.366 <2.20e−16

Notes: Calculations performed with function ‘chisq.test’ in [R]; observed frequencies
are provided in Figure 5.2.

tests on recovery distributions are provided in Table 5.4. All p-values are highly

significant, indicating that each pair of distributions are significantly different

from each other. Results from Monte Carlo tests confirm this, with all p < 0.001

(observed DKS were greater than those from all 999 simulated datasets for all

pairings).

Results of pairwise χ2 tests on the frequency of recoveries by geographical

region are provided in Table 5.5. As with the two-dimensional K-S test, all

p-values are highly significant, implying that none of the age/colony pairings

have the same proportion of recoveries by region, even at this very coarse scale.

5.4 Discussion

Survival rates of wild animal species commonly vary over both time and space,

with important consequences for multi-population dynamics (Ozgul et al. 2006).

The identification of patterns of age-dependent temporal and spatial variation

in survival, and how these are related to features of the environment, is therefore

of prime importance to conservation ecology. However, due to the requirement

for detailed data at large spatial and temporal scales, published studies of spa-



116 Multi-population modelling of survival rates

tiotemporal variation in age-specific survival are scarce (but see Ringsby et al.

1999, Schaub et al. 2005, Ozgul et al. 2006, Baker & Thompson 2007). Using

mark-recapture and ring-recovery data obtained from long-running field studies

at three widely separated colonies, we were able to show that spatiotemporal

patterns of variation in survival between different age classes and colonies of

common guillemots are consistent with differences in distribution outside the

breeding season. Although we still cannot point to the exact aspect of winter

environment which drives interannual variation in survival, these results sup-

port the notion that spatial variation in winter conditions can have a strong

influence on population dynamics on a large scale.

Isle of May survival rates have been analysed in previous chapters and in

a number of other studies. The estimates provided here are very similar to

those provided by Harris et al. (2007b) (first-year survival) and Crespin et al.

(2006b) (adult survival), and we refer the reader to these papers for detailed

discussions of the various factors that may affect the survival of Isle of May

guillemots. First-year and adult survival were strongly correlated over time

(ρφiom0,t , φ
iom
a,t

= 0.79) and, with the exception of an agglomeration of first-year

recoveries in the Skaggerak, the two groups also had a high degree of overlap in

core (within 50% kernel density contours) ring-recovery distributions. Taking

the distributions of recovery locations, which by default are restricted to coast-

lines, as representative of at-sea wintering areas, we can therefore assume that

Isle of May first-years and adults winter mainly together in the southern and

western North Sea, where they are exposed to similar environmental conditions.

Adult survival of Canna guillemots was previously analysed for years 1983–

1995 by Harris et al. (2000). Here we present adult survival estimates for a much

longer time period, and by combining data from birds ringed as chicks and incor-

porating information on dead recoveries we produce more precise, time-specific

estimates for the earlier years. We also provide the first estimates of first-year

and immature survival for Canna guillemots. Unlike Isle of May guillemots,

first-year and adult survival of Canna birds were not significantly correlated

(ρφcan0,t , φ
can
a,t

= 0.27, 95% CI includes zero) and this is reflected in only a small

degree of overlap in core wintering areas: Canna adults appear to winter, or at

least die, mainly in a relatively small area off Brittany, and while first-years also

use this area, large numbers enter the North Sea where they mix extensively

with Isle of May birds, particularly first-years. The high correspondence be-

tween Isle of May and Canna first-year wintering areas almost certainly explains

the strong correlation in survival between these two groups (ρφiom0,t , φ
can
0,t

= 0.85).

Conversely, the lack of any overlap in core winter distributions of Isle of May
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Table 5.6 Results of post hoc Spearman’s rank correlation tests of first-year and adult sur-
vival between Skomer and Isle of May/Canna guillemots. Values are correlation coefficients,
rs, with p-values in parentheses.

φskoa,t φiom0,t φioma,t φcan0,t φcana,t

φsko0−1,t 0.36 (0.304) 0.44 (0.198) 0.25 (0.487) 0.60 (0.070) 0.19 (0.590)
φskoa,t – 0.20 (0.425) 0.30 (0.220) 0.30 (0.226) 0.23 (0.362)

and Canna adults probably explains the lack of correlation in survival between

them (ρφioma,t , φcana,t
= 0.23, 95% CI includes zero).

Due to data limitations, it was not possible to obtain time-specific survival

estimates for Colonsay adult guillemots, nor investigate their winter distribu-

tion. The constant survival estimate of 0.955 for all years except 2004 was very

much in line with mean adult survival on both the Isle of May and Canna (Ta-

ble 5.3). Survival in 2004 was considerably reduced on Colonsay, and was also

the lowest on record at the other two colonies: a reduction of a similar mag-

nitude to Colonsay was observed for Canna adults, and although less extreme

on the Isle of May, 2004 survival was nevertheless considerably lower than all

other years of the study (the 95% CI only included one other posterior mean).

Survival rates have also been previously published for a fourth UK guillemot

colony, on Skomer Island, southwest Wales. Skomer is located more than 400 km

from the nearest of our three Scottish colonies (see Figure 5.1), and is therefore

effectively isolated during the breeding season, but there is some small degree

of overlap among wintering distributions. Votier et al. (2008) provide juvenile

survival estimates for years 1985–1998 (excluding 1991–1994; estimates are two-

year compound survival to age 2), together with maps of nonbreeding season

ring-recovery distributions for guillemots ringed at southern Irish Sea colonies.

Adult survival rates for 1985–2002 are provided by Votier et al. (2005).

Juvenile and adult survival of Skomer guillemots were not correlated during

the ten years of concurrent estimates, and neither were survival of these two

groups significantly correlated with any of first-year or adult survival at either

the Isle of May or Canna (see Table 5.6). Younger guillemots from Skomer were

widely dispersed, with core recovery areas within southwest England, southeast

Ireland and the Bay of Biscay, whereas older birds had a far more restricted

range with a single, small core area off southeast Ireland (see Votier et al. 2008,

figure 2). The correspondence between these wintering areas and those of Isle

of May and Canna birds was also generally low. It is perhaps surprising that

survival of Skomer juveniles and Canna adults were not more similar, as these

groups have a reasonable overlap in core and overall (within 95% kernel den-
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sity contours) recovery areas, but this appeared to be the least correlated of

all pairs. The closest to statistical significance, with a reasonably high correla-

tion coefficient of 0.60 (p = 0.070), were Skomer and Canna juveniles, both of

which appear to have a large presence in Biscay; however, unlike Canna very

few Skomer birds enter the North Sea, where conditions are potentially quite

different. Despite the lack of any temporal correlations with other colonies,

the mean adult survival rate of Skomer guillemots, at 0.955, was very similar to

those at the three Scottish colonies (provided in Table 5.3). Assuming a second-

year survival rate equal to that of Isle of May and Canna birds (∼ 0.78), we

calculated mean first-year survival at Skomer to be approximately 0.623, which

is somewhat higher than the means for Isle of May and Canna over the same

10-year period (0.510 and 0.504, respectively). Survival estimates for birds aged

2 and 3 years were 0.953 and 0.874, which are, respectively, slightly higher and

lower than the equivalent estimates for the Isle of May and Canna (Table 5.3).

The available information for Skomer is thus generally consistent with our

findings from the Isle of May, Canna and Colonsay, that: (1) as predicted,

survival was highly correlated over time for ’groups’ sharing wintering areas,

and essentially uncorrelated for those with separate, or only partially overlap-

ping, wintering areas; and (2) despite widely varying degrees of temporal cor-

relation, mean age-dependent survival rates were remarkably consistent across

colonies. These results strongly suggest that some aspect of winter environ-

ment is responsible for interannual variation in survival of British guillemots.

The differences in temporal patterns of survival observed between groups of

birds with separate winter distributions point towards environmental features

that, within years, vary on a smaller spatial scale than the dispersal range of

the guillemot colonies studied, thus providing different conditions for annual

survival in, for example, the North Sea, Irish Sea and Bay of Biscay. How-

ever, the fact that there was no obvious latitudinal or longitudinal variation in

mean survival rates among the four colonies suggests that ‘average’ environmen-

tal conditions were similar across the entire range of winter distributions from

Spain to Norway. Furthermore, all correlations between pairs of time-specific

survival estimates—including nonsignificant correlations between groups with

widely separated wintering areas—were positive (Tables 5.2 and 5.6), implying

that the environmental drivers of survival are also correlated, albeit loosely, on

a large scale. Finally, adult survival in 2004 was similarly low for both east

and west coast Scottish colonies (no 2004 estimate was available for Skomer),

indicating the effect of an extreme large-scale or spatially correlated climatic

event that year. In fact, the poor survival in 2004 was associated with a sub-
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stantial wreck of seabirds in northwest Scotland during late August–September

of that year, of which the majority of Canna guillemots recovered were adults of

breeding age (Swann 2004). The apparent cause of the wreck was low availabil-

ity of suitable prey, exacerbated by a period of stormy weather (Swann 2006).

The low availability of prey may have been relatively localised, but a prolonged

series of Atlantic depressions has the potential to affect wintering guillemots

from all British colonies.

It therefore seems likely that spatiotemporal variation in survival of British

guillemots is driven by a combination of large-scale environmental factors and

more localised features: large-scale variables (for example the number of deep

winter depressions crossing northern Europe, or spatially correlated sea sur-

face temperatures) create similar conditions over a wide area, and thus act to

synchronise survival rates between distant colonies; meanwhile, smaller-scale

phenomena (for example local variations in prey density, or oil spills) appear to

reduce the strength of temporal correlations by creating within-year variability

in conditions between regions. The influence of spatial variation in environ-

mental conditions on survival is further complicated by variation in the degree

of nonbreeding season mixing between colonies and age classes, leading to the

observed correlations among birds from different regions (e.g. Isle of May and

Canna first-years), or different temporal trends for birds from the same colony

(e.g. Canna first-years and adults).

In long-lived species with low reproductive output and delayed maturity

survival is an important driver of population growth rate, and hence popula-

tion dynamics (Heppell et al. 2000, Sæther & Bakke 2000, Oli & Dobson 2003).

The spatiotemporal variation in survival found among four British guillemot

colonies therefore has important multi-population dynamics consequences for

the species. In particular, positive correlations of survival rates among age

classes within a colony (e.g. Isle of May first-years and adults) will tend to in-

crease variation in the population growth rate of that colony (Coulson et al.

2005). Furthermore, covariation of survival between multiple widely separated

colonies, whether due to overlap in winter distribution or the influence of corre-

lated environmental conditions, could synchronise the growth rate of the whole

metapopulation (Schaub et al. 2005, Jenouvrier et al. 2009b), potentially re-

ducing its persistence (Palmqvist & Lundberg 1998). Population growth rate is

most sensitive to adult survival in long-lived avian species (Lebreton & Clobert

1991, Sæther & Bakke 2000), so synchronised reductions in adult survival over

a wide geographic area, such as that observed for guillemots in 2004, are par-

ticularly harmful to metapopulation dynamics. Regarding the two apparent
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causes for low survival in 2004, climate forecasts predict an increase in the fre-

quency of ‘deep’ winter depressions crossing the UK (Hulme et al. 2002), and

ongoing changes in marine foodwebs of the northeast Atlantic are drastically

affecting the availability of suitable prey species for seabirds (e.g. Mavor et al.

2005, 2006, 2008, Harris et al. 2007a). Therefore, it seems likely that the fre-

quency and severity of such extreme survival years will increase in the future,

with potential serious consequences for common guillemots and other colonial

seabird populations.

In summary, the results of this study indicate that conditions in wintering

areas have a strong impact on guillemot demography and population dynamics,

and thus exemplifies how the identification of spatial patterns in demography

can lead to insights into the factors driving population change. In the current

context of environmental change, such large-scale studies provide a useful tool

for identifying vulnerable life-history traits, or important geographical regions,

and thus aid decisions on appropriate conservation strategies.



Chapter 6

General discussion

6.1 Thesis overview

Within the preceding chapters we have demonstrated how related ecological

datasets may be advantageously combined in integrated analyses, under a

Bayesian framework, to gain maximum benefit from those data. The particular

application involved a number of datasets relating to the UK’s most abundant

breeding seabird species, the common guillemot Uria aalge.

The thesis follows a natural progression, beginning with the separate anal-

yses of multiple guillemot datasets from a single colony; these data are then

combined to form an integrated population model; this model is extended to

make future population predictions for the colony; and finally, the spatial aspect

of the analysis is extended to consider data from other UK guillemot colonies.

In so doing, it performs two main functions: it adds to and extends the growing

body of literature on integrated modelling, and it provides an important appli-

cation to seabird data in a time of much uncertainty about the future of the

UK’s seabird populations.

6.2 An integrated model of a seabird colony

In Chapter 2, we presented three separate analyses of datasets relating to the

abundance, survival and productivity, respectively, of a single population of

guillemots breeding on the Isle of May, southeast Scotland. However, we note

that while abundance data most obviously contain direct information on the

size of a population, they also contain information about the underlying pro-

cesses that drive the observed changes in population size—its vital rates. As

we demonstrated though, the independent analysis of abundance data provides

relatively little information about the individual vital rates, because there is

121
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usually only one data point per year; in this case, it is only possible to say

whether the population had a good or bad year, but not which vital rate(s)

were responsible for the changes. Note that this is not always the case: data

obtained from multiple counts in a single season, such as under the British Trust

for Ornithology’s Constant Effort Sites scheme, can be used to estimate both

abundance and productivity (as well as survival from recaptures recorded dur-

ing the same visits; see, e.g., Cave et al. 2009); alternatively, multivariate time

series of counts, in which different age-classes are recorded separately, can also

help in this respect (Tavecchia et al. 2009). We also highlighted that analysing

data independently can produce inconsistent results, which may be due to gen-

uine inconsistencies in the data, or as a consequence of incorrect/inadequate

model specification for some or all of the datasets. Most notably, estimates of

guillemot survival derived from mark-recapture data were not consistent with

the population counts; additionally, adult survival estimates differed consider-

ably between two different mark-recapture datasets containing information on

essentially the same members of the population (breeding adults).

The observation that different datasets from the same population often con-

tain information about common parameters, and the piecemeal nature of many

ecological analyses where comparisons between datasets are made on an ad hoc

basis, were the primary motivations behind the development of integrated pop-

ulation modelling (Besbeas et al. 2002, 2005). This is where a model for abun-

dance data (usually a state-space model) is combined with one or more models

for demographic data under a joint likelihood to obtain simultaneous estimates

of population size and vital rates. The Isle of May guillemot data were ideally

suited to such an approach, with a number of parameters shared between two,

or even three, different datasets. Furthermore, there were questions relating

to the dynamics of the colony that the individual datasets on their own were

unable to answer, the foremost of these being: ‘What proportion of young Isle

of May birds emigrate from the colony?’ The natural solution was to develop

an integrated population model for the Isle of May data, which was the fo-

cus of Chapter 3. With this model we were able to account explicitly for the

emigration of prebreeder guillemots, using the strength of the combined data

to disentangle the effects of emigration from those of ring loss and reduced

visibility of breeding birds.

As noted in Section 3.5, the estimates of survival and productivity from the

integrated model compared closely to those obtained from separate analyses

of the mark-recapture-recovery and productivity data, using the same model

structures. This is in contrast to Chapter 2, where there were inconsistencies
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between the datasets, but these results were based on different model struc-

tures. In fact, preliminary attempts at the integrated model (not included in

this thesis) using similar models to those in Chapter 2 also performed poorly,

providing an unsatisfactory fit to the data. This highlights that integrated

population modelling is not an instant miracle cure to resolve inconsistencies

between datasets, and neither does it cover up for mis-specification of the under-

lying model structure. Rather, it can provide insight into the possible reasons

for any problems, and thereby suggest what adjustments to the model might

be made to improve the fit. Here, the observation error variance can reflect,

in part, a measure of model fit, and may be used to guide model construction

(Tavecchia et al. 2009). Integrated modelling may also help to identify where

additional data-collection efforts could be focused to provide the most useful

information on parameters of interest.

Although the dynamics of guillemot colonies are complex—due to delayed

maturity, individual and interannual variability in the age of first breeding, and

immigration/emigration of prebreeders—the Isle of May population model was

kept relatively parsimonious by defining only two age-classes and specifying a

number of simplifying assumptions. It could be argued that the model was not

realistic enough to properly capture the dynamics of the population. Neverthe-

less, it achieved a close fit to the data and appeared robust to changes in the

major assumptions, such as age of first breeding.

A necessary assumption when combining likelihoods is that of independence

of the different surveys. However, in studies of wild populations—particularly

those living on islands, or colonially-nesting species such as seabirds—this as-

sumption will often not be met (Besbeas et al. 2008). This is because demo-

graphic information for such spatially confined populations is generally gathered

on a subset of the population being surveyed for abundance data. In the case of

the Isle of May guillemot study, for example, adult mark-recapture and produc-

tivity data were largely collected on the same sample of individuals nesting in

the easily observed study plots; the group of birds ringed as chicks contributed

to both live-recapture and ring-recovery data; and individuals in both these

groups were included in the total colony counts. Besbeas et al. (2008) showed,

using simulated data, that violation of the independence assumption can lead

to biased parameter estimates; however, they used an extreme case where the

entire censused population was marked. Conversely, in a test using real data,

Cave et al. (2009) found no evidence of bias when ignoring the issue of inde-

pendence. Given that the Isle of May demographic data was gathered on a

relatively small subset of the total colony, the effect of any dependence on the
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parameter estimates was probably very small (see also Tavecchia et al. 2009),

although this is an issue that may warrant further investigation. The most

likely source of any dependence would be among the productivity and adult

survival estimates, which could be tested by splitting these datasets into their

individual study plots and using separate sets of plots to estimate survival and

productivity.

Pre-recruitment emigration among the Isle of May guillemot colony was esti-

mated at 19.5% per cohort, which is lower than previously published estimates,

these ranging from 24 to 33% (Harris et al. 1996a, Crespin et al. 2006a, Harris

et al. 2007b). This difference is possibly because our estimate also reflected

immigration of prebreeders from other colonies recruiting into the Isle of May

breeding population, which is known to occur (Halley & Harris 1993) but which

for simplicity we did not explicitly allow for in the model. However, the em-

igration parameter ψ could not truly reflect net movement because it was a

probability, and consequently restricted to the interval [0,1]. Therefore, the

assumption of no immigration is likely to be an unrealistic one, and may have

implications for our estimates of other parameters in the model, particularly the

emigration rate. Knowledge of immigration comes from resightings on the Isle

of May of guillemots ringed at other colonies (Halley & Harris 1993) but there

are far too few of these observations to be of any use for estimating immigration.

It is difficult to see how other data might be collected to better estimate im-

migration rates, as the few sightings of birds from other colonies resulted from

several years of very labour intensive fieldwork. Increased ringing of guillemots

at nearby colonies would provide a larger source population for observations,

but this would be costly, and even then would give little indication of numbers

of birds coming from further afield. It may, however, be possible to incorporate

immigration in the model quite simply by, for example, specifying a constant or

time-specific number of immigrants per year in the process model, which would

be an extension to the model well worth investigating.

We approached this analysis from a Bayesian perspective, using MCMC to

obtain samples from the posterior distribution. We could equally have used

sequential importance sampling (SIS; Doucet et al. 2001) as an alternative to

MCMC. There is little to choose between the two methods, each having its

own advantages (and disadvantages): Newman et al. (2009) suggest that SIS

is ‘a more automatic procedure’ that is easier and quicker to programme than

MCMC, and performs comparably where data are relatively uninformative; on

the other hand, they note that a careful implementation of MCMC with in-

formative data (as we had) produces posterior distributions with considerably
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less Monte Carlo variation than SIS for the same computing time; in particu-

lar, standard SIS algorithms become very inefficient for random effects models

(L. Thomas pers. comm.). Computing time is often an important consideration

with complex Bayesian analyses, and given that our MCMC simulations took

upwards of 60 hours to run, a suitable SIS implementation may have proven

prohibitively time consuming. On the other hand, an advantage of SIS is that

it easily handles the incorporation of new time points at the end of the series

(Newman et al. 2009), so that as new data become available each year the model

can simply be updated, whereas the MCMC algorithm would need re-running

for the full time series.

A further alternative would be a classical analysis using the Kalman filter

(see, e.g., Besbeas et al. 2002). Traditionally, this approach relies on the use

of potentially restrictive normal approximations to discrete distributions and a

linear model structure. However, analyses based on the normality assumption

have been shown to be robust, at least with large population sizes (Brooks

et al. 2004). Furthermore, recent work by Besbeas et al. (2008) into methods

for initialising the Kalman filter for ecological time series, and accounting for

nonlinearities, have improved and extended the usability of the Kalman filter

such that it would be a viable alternative. This does not avoid the fact that the

Bayesian approach naturally deals with those situations for which the Kalman

filter essentially has ‘workarounds’, thereby providing a more flexible analysis

framework (Millar & Meyer 2000, Jamieson & Brooks 2004). Therefore, in this

case, the Bayesian approach using MCMC was the preferred choice.

6.3 Integrated population predictions

Increases in sea surface temperatures in UK coastal waters have already been

correlated with reductions in seabird productivity and survival, presumably

mediated through changes in prey abundance (e.g. Frederiksen et al. 2004b,

Harris et al. 2005, Sandvik et al. 2005). With UK climate-change scenarios

predicting further increases in sea surface temperature in the future (Lowe et al.

2009), serious pressures will potentially be placed on seabird populations. The

frequency of extreme weather events is also expected to increase (Solomon et al.

2007), likely leading to further reductions in population growth rates through

increased variability in demographic parameters (Frederiksen et al. 2008). The

recent widespread breeding failures at many UK seabird colonies (e.g. Mavor

et al. 2005, 2008) may already reflect the state of things to come, and the
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ability to reliably predict the population consequences of recent and possible

future changes in demographic rates is thus vital for the proper planning of

management and conservation strategies.

In Chapter 4, we implemented a modified version of the integrated popu-

lation model to produce population predictions for the Isle of May guillemot

colony. An advantage of the integrated approach over the standard types of pre-

dictive model is the way in which the predictions simultaneously reflect both

abundance and demographic data, thereby making full use of the available in-

formation and, potentially, resulting in more accurate, precise and reliable pre-

dictions. Also, the future projection period was essentially treated as part of

the estimation model, and in this way posterior distributions for the predicted

states (breeder and prebreeder population sizes) were obtained as part of the

model output, rather than performing stochastic projections (Maunder et al.

2006).

Here, again, the Bayesian approach was key, and to be preferred over a clas-

sical analysis. With the Bayesian analysis, we were easily able to incorporate

most major sources of uncertainty into the projections, including uncertainty

in the parameter and population estimates, and in the underlying demographic

process. Had we been selecting between competing models, we could also have

accounted for model uncertainty by using reversible jump MCMC (Green 1995,

King & Brooks 2002, King et al. 2009). But possibly the biggest advantage of

a Bayesian approach over a classical approach in the present context is in the

form of the statistical output. The posterior probability distributions yielded

by Bayesian analyses are simple to explain and present to managers and pol-

icy makers, and automatically include the uncertainty of the estimates (Wade

2000). And the potential of posterior distributions extends beyond obtaining

simple summary statistics. Once posterior samples are generated, they (or

functions of them) may be queried for a large number of biologically important

questions (e.g. Taylor et al. 1996, Brooks et al. 2008), or used by managers in

a decision analysis to evaluate the consequences of different conservation deci-

sions (Berger 1985, Taylor et al. 1996, Wade 2000). For example, we were able

to obtain posterior estimates of the 10-year probabilities of population decline

below a range of different thresholds, providing simple statistics for comparison

between scenarios.

One source of uncertainty that could not be formally incorporated in the

model framework was future uncertainty. By modelling a number of scenarios

we anticipated a range of possible outcomes, but without a means to assign

probabilities to these outcomes there is no way to know which, if any, is most
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likely. A formal way to include future uncertainty would be to use the proba-

bilities associated with climate prediction scenarios, but this depends first on

a model relating demographic parameters or population growth to an environ-

mental variable, and second that future climate models for this variable are

available. For example, Jenouvrier et al. (2009a) projected emperor penguin

Aptenodytes forsteri population responses to future sea ice changes, using In-

tergovernmental Panel on Climate Change (IPCC) projections of sea ice extent.

However, previous studies of the Isle of May guillemots did not identify any en-

vironmental covariates that adequately explained variation in survival (Crespin

et al. 2006a, Harris et al. 2007b). Although not detailed earlier in the thesis,

we also conducted our own exploratory analysis of a range of possible envi-

ronmental covariates for survival and productivity: the covariates tested were

the NAO index, local and regional winter sea surface temperatures, and one-

and two-year lagged versions of each of these, none of which appeared to be

significantly correlated with any of the demographic parameters. However, it

should be noted that these were only tested on an ad hoc basis by estimating

the Spearman’s rank correlation between covariates and parameter point esti-

mates, and did not take into account the sampling variability of the parameters.

Thus, there may be some profit in exploring these covariates further in a more

rigorous logistic regression framework, with random effects to cope with any

temporal variability not explained by the covariates (see, e.g., Gimenez et al.

2008), and with the benefit of several years of additional data.

In the absence of alternative information, we restricted our analysis to as-

suming that future conditions for each demographic rate mirrored either recent

or long-term historical conditions. Given the recent decline in demographic

performance, its probable links with environmental factors, and the predictions

of future environmental change, the ‘worst-case’ scenario (i.e., productivity and

survival continue at post-2000 levels) may well be the most realistic of the five

scenarios tested. Under this scenario, the model predicted an expected decline

in population size of 31% over 10 years. While this figure is in itself important,

of greater interest, particularly for policy makers, is the variation in popula-

tion trajectories, as this gives an indication of how confident we can be in our

predictions. For example, the 95% credible interval of the 10-year proportional

change for the above scenario ranged from an 8% to a 53% decrease, indicating

that there is a lot of uncertainty in the final outcome. However, the fact that

the upper limit was well below zero provides a very high degree of certainty

that there will be some decline in population size over this period.
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6.4 Spatiotemporal variation in survival

Although no environmental covariates have so far been found that explain in-

terannual variation in survival of Isle of May guillemots, evidence suggests that

the main mortality occurs during the nonbreeding season, which points towards

some aspect of winter environment. We provided strong evidence for this in

Chapter 5, with the finding that survival of guillemots from three widely sepa-

rated UK colonies was highly correlated for groups with overlapping wintering

areas, and essentially uncorrelated for those with little or no overlap. This sug-

gests that the main environmental drivers of UK guillemot survival act at a

regional scale (e.g. North Sea, Irish Sea, Bay of Biscay). However, there was

some evidence that larger-scale environmental phenomena also influence sur-

vival over a much wider geographic area (see, for example, discussion on 2004

adult survival rates in Section 5.4, page 118).

Spatiotemporal correlations in survival can have important consequences for

the population dynamics of a species (e.g. Schaub et al. 2005, Ozgul et al. 2006,

Jenouvrier et al. 2009b), potentially resulting in higher species extinction risk

(Palmqvist & Lundberg 1998). Of particular concern for long-lived species like

the common guillemot are large-scale reductions in adult survival caused by

extreme climate conditions, such as storms (Jenouvrier et al. 2009b). We found

generally low levels of synchrony in adult survival of guillemots from widely

separated UK colonies, presumably because they had nonoverlapping wintering

distributions and were, therefore, subject to different environmental conditions.

However, there was evidence of an extreme climatic effect in 2004, when sur-

vival of adult guillemots from both the east and west coasts was the lowest

on record. We highlighted in Chapter 4 that even relatively small decreases

in adult survival can have large consequences for guillemot population growth.

If, as predicted, extreme weather events become more common in the future

(Hulme et al. 2002, Solomon et al. 2007), exacerbating the effects of contin-

ued food shortages, the future of the entire UK guillemot population has the

potential to be severely threatened, along with other long-lived seabird species.

The search for suitable environmental covariates of survival described in

the previous section was also extended to this analysis, and included Canna

survival rates. In particular, here we considered regional winter sea surface

temperatures corresponding to the core wintering areas of each group of birds,

as defined by their ring-recovery distributions. As before, although our search

was unsuccessful, future studies may benefit from including such covariates

within the analysis framework.
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The conclusions of this chapter could potentially be strengthened by in-

corporating data from other UK guillemot colonies, particularly from different

regions not covered here (e.g. east coast of England, north Scotland and North-

ern Isles). There are a number of other colonies at which ringing takes place,

but unfortunately there are no other large guillemot mark-recapture-recovery

datasets from the UK that would have sufficient numbers of birds ringed for

this type of analysis. There are a few datasets with recoveries only, but only

Fair Isle (between Orkney and Shetland) and Great Saltee (southeast Ireland,

quite near to Skomer) would have enough recoveries to be worth looking at that

span a reasonably long period. However, it is believed that they ring almost

entirely chicks at these colonies, so it would not be possible to derive reliable

estimates of adult survival or winter distribution.

A meaningful comparison of ring-recovery locations of the different popula-

tions and age-classes of guillemots in this analysis was not possible using the

two-dimensional Kolmogorov-Smirnov test, which is perhaps unsurprising given

this tests for whether two distributions are exactly the same—an extremely un-

likely outcome in this context. We therefore relied upon a visual comparison of

kernel density plots; yet a more formal statistical comparison of winter distribu-

tions would greatly enhance the robustness and interpretation of the results. A

potential approach would be to calculate the overlap of kernel density regions

among the different groups, to produce a percentage similarity, for example.

Such a calculation does not appear to be possible with the output of ArcView

GIS 3.2; however, the statistics software [R] has a number of packages available

for computing kernel density estimates that may be useful.

We also draw attention to the potential problems of using ring-recovery

distributions as a proxy for wintering distributions of live guillemots. First, the

effect of wind and currents may cause corpses to drift some distance from the

location of death before being washed ashore, potentially resulting in systematic

bias due to prevailing conditions. Second, the occurrence of recoveries varies

spatially, and temporally, because of variation in reporting probabilities due to

non-uniform search effort (Siriwardena et al. 2004). Over half of all guillemot

recoveries have details of the cause of death, which include high proportions of

birds drowned in fishing nets (usually inshore), oiled individuals, and those shot

for human consumption (Harris & Swann 2002). The distribution of recoveries is

therefore heavily biased towards areas of high fishing activity (notably southern

Scandinavia and Ireland), pollution (the Netherlands, Germany and Channel

Islands) and human predation (Faeroe Islands), and biased away from remote,

sparsely populated regions (e.g. northwest Scotland). Furthermore, Harris &
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Swann (2002) note that birds in their first year of life are much more likely

to be shot or caught in nets than adults, which will exaggerate the bias in

estimated distribution of this age class. They also note that ring-recoveries

underestimate the true marine range of seabirds, with consequences outside the

relatively enclosed areas of the North and Irish Seas; in particular, they deduce

that guillemots are much more numerous off west Britain and Ireland than

the recoveries suggest. All these factors highlight the need for caution when

drawing conclusions about winter ranges of live birds derived from geographic

distributions of ring-recoveries.

The use of Program MARK to conduct the analyses in Chapter 5 represented

a deviation from previous chapters, where bespoke Fortran code was written to

implement MCMC simulations. The main reason for using MARK was to speed

up and simplify the process of model selection for the individual colony data,

by using maximum likelihood estimation with AIC. This is perhaps one area

where a classical analysis is to be preferred over a Bayesian one: we were using

standard mark-recapture-recovery models with well-tested, prewritten software;

we had no prior information to include, other than a set of candidate models;

and lastly, maximum likelihood with AIC has a more rigorous framework than

the equivalent process using MCMC and DIC (also available in MARK), as well

as being faster and accommodating goodness-of-fit testing.

We then used the MCMC module in MARK to test for process correlations

between pairs of survival rates. A simple extension to this analysis would be

to test whether correlated sets of parameters could be modelled more parsimo-

niously by assuming the same survival rates for both, or even multiple, groups,

perhaps with an additive effect (on the logit scale). For example, an obvious

model to try would be

logit(φcan0,t ) = logit(φiom0,t ) + k1 = logit(φioma,t ) + k2,

where k1 and k2 represent additive constants and are parameters to be esti-

mated. This approach might be particularly beneficial for the Colonsay data,

which was not detailed enough to obtain time-specific estimates but, due to its

proximity, is likely to have similar adult survival rates to Canna.

Clearly, with three colonies and multiple age-classes there would be a large

number of combinations to test, and the model selection approach in MARK

would be tedious and time-consuming, particularly given the size of the com-

bined dataset. Here, then, a Bayesian reversible jump MCMC framework could

have significant benefits for efficiently exploring the model space and rigorously
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selecting between competing models (see, e.g., King & Brooks 2002). This

framework is very flexible and could also, if desired, easily incorporate exten-

sions such as covariates and/or random effects. On the other hand, reversible

jump MCMC would be considerably more difficult to implement than a MARK

analysis, although advances in Bayesian analysis software such as WinBUGS

have already simplified the process considerably (see Gimenez et al. 2008) and

will most likely become even more user-friendly and powerful in the future.

6.5 Future directions

In light of the findings contained herein, particularly those relating to the future

of the Isle of May guillemot colony—combined with the results of other pub-

lished studies detailing the actual or potential effects of environmental change

on seabird populations—there is a clear need for continued gathering and analy-

sis of seabird data from UK colonies. Integrated analyses present a particularly

promising direction for seabird data, because collection of abundance and de-

mographic data routinely takes place at a number of UK colonies as part of

JNCC’s Seabird Monitoring Programme (see JNCC 2009). Annual estimates of

population size and breeding success are available for many UK colonies. More

detailed monitoring to provide data on survival rates, among other things, is

conducted at a few geographically dispersed ‘key sites’: Isle of May (southeast

Scotland), Fair Isle (Shetland), Canna (west Scotland) and Skomer (Wales). In

addition, three complete censuses of breeding seabirds have been conducted in

Britain and Ireland, during 1969–70, 1985–88, and 1998–2002.

A natural extension would be to perform integrated analyses of common

guillemot data from the other well-studied colonies, comparing estimates of

demographic parameters and emigration rates with those of the Isle of May

birds. The state-space model of Chapter 3 could also be easily adapted for

the analysis of abundance and demographic data from other, similar, seabird

species, for example razorbill Alca torda and Atlantic puffin Fratercula arctica.

These models could then be projected in the same way as we did for the Isle of

May guillemots in Chapter 4. There is also the possibility to incorporate other

forms of data, where available. A relevant example is data on the incidence of

nonbreeding on the Isle of May: this occurs at relatively low levels, but possibly

has significance for colonial dynamics, so these data could be included as an

additional binomial likelihood of the same form as the productivity model.

Seabird colonies are not closed units, and by far the most interesting direc-
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tion would be to develop an integrated metapopulation model using the entire

UK guillemot time series, with the aim to simultaneously model the dynamics

of all colonies or regions and movement between them. Similar models have al-

ready been developed for grey seal Halichoerus grypus metapopulation dynamics

(see Thomas et al. 2005, Harrison et al. 2006, Newman et al. 2009), providing a

useful starting point; indeed, the similarity between the grey seal and guillemot

model structures is striking! In a guillemot metapopulation model, informa-

tion from the well-studied colonies could be used to specify informative prior

distributions for demographic parameters at neighbouring colonies where only

annual abundance and/or productivity data are collected. The three whole-UK

counts would provide supplementary abundance information, particularly im-

portant for colonies not covered by the Seabird Monitoring Programme or other

studies.

Using such a model, it would be interesting to see if emigration from some

colonies—the Isle of May, for example—is complemented by substantial immi-

gration at nearby colonies. It is possible that some larger colonies act as source

populations, while smaller colonies, and those near range limits, act as sinks.

Thus, it may be that migration is density dependent, and probably also regu-

lated by intercolony distance, both of which can easily be accounted for with

appropriate models (see, e.g., Thomas et al. 2005).

Finally, a predictive integrated metapopulation model would provide a pow-

erful management and conservation tool, providing advanced warning of UK-

wide population declines and indication of regions where restoration efforts

should be focused.



Appendix A

Prior specification for
random effects variance parameters

A.1 The random effects model

Consider an individual random effects model on resighting probability pi, having

the form

logit(pi) = µ+ εi, i = 1, . . . , n. (A.1)

Here pi is the probability of resighting individual i, µ represents the underlying

resighting probability in the absence of any individual effects, and εi denotes

individual random effects. The εi are assumed to come from an underlying

normal distribution,

εi ∼ N(0, σ2
ε ), (A.2)

where σ2
ε , the random effects variance, is a parameter to be estimated.

Under a Bayesian analysis, priors need to be specified on parameters µ

and σ2
ε . Assuming a lack of any prior knowledge, we require noninformative

priors: a suitable noninformative prior placed directly on pi would be a U(0, 1)

distribution, so ideally we would like the priors placed on µ and σ2
ε to exactly

or most closely replicate this under the inverse-logit transformation.

A.2 Prior for underlying resighting probability

For the underlying resighting probability µ, we specify a prior with probability

density function

f(µ) =
exp(µ)

(1 + exp(µ))2
. (A.3)
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This is a logistic distribution with a mean of zero and variance 1
3
π2, and it

has the desirable property of exactly inducing a U(0, 1) prior on the resighting

probability in the absence of any individual effects, i.e., when εi = 0 (King &

Brooks 2008).

A.3 Prior for random effects variance

For the random effects variance σ2
ε , we specify a prior of the form

σ2
ε ∼ Γ−1(α, β), (A.4)

for which E(σ2
ε ) = β/(α − 1) and Var(σ2

ε ) = β2/((α − 1)2(α − 2)). It has been

common practice in Bayesian analyses of models containing random effects to

use the above inverse-gamma prior with parameters α = β = 0.001, under the

impression that this is suitably noninformative on σ2. However, King & Brooks

(2008) point out that this specification produces an undesirable distribution on

the probability parameter being modelled (in this case pi) with all the prior

mass on values very close to 0, 0.5 and 1, and very little support elsewhere

(see Figure A.1h). Furtheremore Gelman (2006), confirmed by Royle (2008),

showed that this prior can have problems, particularly for datasets in which low

values of σ2 are possible, and recommends the use of a noninformative uniform

prior on the standard deviation. Instead of this, we follow the same reasoning

as the prior on µ; i.e., we attempt to find the parameters α and β that most

closely induce a U(0, 1) distribution on pi, under the condition when µ = 0.

We begin below with a simple simulation study, using trial-and-error to find

suitable values for α and β, and then investigate the parameterisation further

using several analytical approaches.

A.3.1 Simulation study

We know that a logistic distribution on εi with mean equal to 0 and variance

of 1
3
π2 (∼ 3.29) would exactly induce a U(0, 1) prior on pi; we therefore seek

to approximate this distribution with our choice of prior parameters, α and β.

Trial-and-error simulations carried out in the statistics package [R] (R Devel-

opment Core Team 2008) showed that the integer values α = 3 and β = 7

reproduce the required distribution on εi very closely, with a variance of 3.49,

and thus result in an approximately U(0, 1) distribution on pi (Figure A.1a, b;

95% of the distribution of pi lies between 0.023 and 0.977). Importantly, the
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Figure A.1 Prior distributions induced on εi (histograms (a), (c), (e), (g)), and corre-
spondingly on pi following an inverse-logit transformation ((b), (d), (f), (h)), by a selection
of inverse-gamma priors on the random effects variance σ2

ε : (a) and (b) inverse-gamma pa-
rameters α = 3, β = 7; (c) and (d) α = 2, β = 3.4; (continued on page 136)

inverse-gamma prior on σ2
ε specified by these parameter values is also suitably

vague, having a mean of 3.5 and variance 12.25.

Many other combinations of α and β can be found that result in a variance

close to 3.29 for εi, but α = 3, β = 7 seem to reproduce the shape of the logistic

distribution most closely. When α and β are smaller, the prior on εi is narrower

with longer tails, and vice versa for larger values of α and β; the respective

distributions induced on pi have greater mass at the centre or at the tails (see

Figures A.1c, d and A.1e, f, for examples where α = 2, β = 3.4 and α = 10,

β = 30). The commonly-used inverse-gamma parameters α = β = 0.001 induce
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Figure A.1 (continued) (e) and (f) α = 10, β = 30; (g) and (h) α = β = 0.001. The solid
lines in (a), (c), (e) and (g) are equivalent to the logistic prior specified for µ (equation (A.3))
and are thus the distribution that would exactly induce a U(0, 1) prior on pi. Histograms are
based on 106 samples per distribution.

a very heavy-tailed distribution on εi with a variance of 9.09 and, as previously

mentioned, a distinctly non-uniform prior on pi (Figure A.1g, h).

A.3.2 Analytical methods

While we have shown by simulation that the parameters α = 3, β = 7 induce an

approximately uniform prior on pi, a more rigorous method is necessary in order

to find the combination of these parameters that result in the most uniform prior

distribution. In this section we describe a number of analytical approaches to

this problem. For the sake of simplicity and clarity, in the following calculations
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pi is replaced by p, and εi by ε. The computer algebra system Maple� 9.5

(Maple 9.51 2004) was used to solve some of the calculations.

We begin by deriving the probability density function of the distribution

induced on p by the hyper-prior on σ2
ε , in terms of the parameters α and β.

Recall that we are interested in the model

logit(p) = ε,

where

ε | σ2
ε ∼ N(0, σ2

ε ); σ2
ε ∼ Γ−1(α, β).

First we need to derive f(ε), which is given by

f(ε) =

∫ ∞
0

f(ε | σ2
ε )f(σ2

ε ) dσ
2
ε

=

∫ ∞
0

1√
2πσ2

ε

exp

(
− ε2

2σ2
ε

)
· βα

Γ(α)
(σ2

ε )
−(α+1) exp

(
− β

σ2
ε

)
dσ2

ε

=
1√
2π

βα

Γ(α)

∫ ∞
0

(σ2
ε )
−(α+ 3

2
) exp

(
−ε

2 + 2β

2σ2
ε

)
dσ2

ε

=
2αβα(ε2 + 2β)−(α+ 1

2
) Γ(α + 1

2
)

Γ(α)
√
π

. (A.5)

Then, to find the distribution in terms of p, we use the formula

fP (p) = fE(g−1(p))

∣∣∣∣ ddpg−1(p)

∣∣∣∣ ,
where

g−1(p) = log

(
p

1− p

)
,

and
d

dp
g−1(p) =

1

p(1− p)
.

Therefore, we have that

fP (p) =
2αβα

((
log
(

p
1−p

))2
+ 2β

)−(α+ 1
2

)
Γ(α + 1

2
)

Γ(α)
√
π p(1− p)

, 0 < p < 1. (A.6)

To further investigate the shape of this distribution we need to locate the

stationary point(s), for which we require the conditions that satisfy dfP (p)
dp

= 0,
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i.e.,

−(2 log( p
1−p )α+ log( p

1−p ) + log( p
1−p )2 + 2β− 2p log( p

1−p )2− 4pβ)2αβα(log( p
1−p )2 + 2β)

−(α+3
2 )

Γ(α+ 1
2

)

(−1 + p)2
√
πp2Γ(α)

= 0.

(A.7)

By inspection, we can see that p = 0.5 satisfies dfP (p)
dp

= 0 for all values of α

and β > 0, so there always exists a stationary point at the mid-point of p’s

range. To induce a distribution on p which is as close to uniform as possible, we

would like the second derivative of fP (p) at this point to equal zero, indicating

that the distribution is completely flat at the midpoint (i.e., not a maximum or

minimum). The second derivative of fP (p) is given by

d2fP (p)

dp2
= −(8β2− 24pβ2 + 24p2β2− 24p log( p

1−p )2β+ 6 log( p
1−p )β+ 8 log( p

1−p )2β− 2β+ 24p2 log( p
1−p )2β

+ 12 log( p
1−p )αβ− 4αβ− 12 log( p

1−p )pβ− 24 log( p
1−p )αpβ+ 3 log( p

1−p )3− 6p log( p
1−p )4 + 2 log( p

1−p )4

+ 6 log( p
1−p )3α− 6 log( p

1−p )3p+ 4α2 log( p
1−p )2 + 2 log( p

1−p )2− 12 log( p
1−p )3αp+ 6p2 log( p

1−p )4

+ 6α log( p
1−p )2)2αβα(log( p

1−p )2 + 2β)
−(α+ 5

2 )
Γ(α+ 1

2
) /(p3

√
π(−1 + p)3Γ(α)) ,

(A.8)

and setting d2fP (p)
dp2

∣∣
p=0.5

= 0 gives

8β2 − 12β2 + 6β2 − 2β − 4αβ = 0

⇒ β = 2α + 1, α, β > 0. (A.9)

Therefore, it appears that any values of α and β satisfying this equality will

induce a perfectly flat distribution on p at the mid-point, p = 0.5. However,

this does not imply that the distribution will be uniform across the entire range

of p, as illustrated in Figure A.2, although note that the parameters obtained

from the simulation study (α = 3, β = 7) seem to offer a reasonable solution.

Therefore, we also need a way to measure, and subsequently minimise, the

deviation of fP (p) from uniform across the range p = (0, 1).

Minimising the maximum first derivative

The first solution to finding the ‘flattest’ distribution involves finding the value

of α (and hence β, given β = 2α+ 1) that minimises the maximum gradient of

fP (p), i.e., min
α>1

(
max
0<p<1

dfP (p)
dp

)
. However, due to the behaviour of fP (p) at values

of p close to 0 and 1, where the density and gradient approach infinity (see

Figure A.2), this is not a reliable indicator of the gradient over the majority of

the distribution and the result is biased towards higher values of α (Figure A.3).
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Figure A.2 Distributions of p induced by three combinations of parameters α and β for
the inverse-gamma prior on σ2

ε : α = 2, β = 5 (dashed line); α = 3, β = 7 (solid line); α = 9,
β = 19 (dotted line). All three distributions are exactly uniform at the mid-point, p = 0.5,
but deviate to varying degrees towards the limits of the distribution.
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Figure A.3 Maximum first derivative of fP (p) versus inverse-gamma parameter α, calcu-
lated over the range p = (0.00001, 0.99999).

Minimising the mean/median first derivative

A similar solution to that above, but one that should reduce the influence

of extreme gradients, is to minimise the expected value of the absolute first

derivative of fP (p), i.e., min
α>1

E
(∣∣dfP (p)

dp

∣∣). However, the result is highly sensitive

to the range of p over which the statistic is calculated: there is a clear minimum

at α ≈ 3.62 for p = (0.001, 0.999) (Figure A.4a) but the result approaches

that of the previous method as the limits of p approach 0 and 1 more closely

(Figure A.4b).
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Figure A.4 (a), (b) Expected value of the absolute first derivative of fP (p) versus
inverse-gamma parameter α, calculated over the ranges: (a) p = (0.001, 0.999); (b) p =
(0.00001, 0.99999). (c) Median of the absolute first derivative of fP (p) versus α, calculated
over p = (0.00001, 0.99999); the result is essentially identical given various limits of p.

As an alternative to the expected value we can take the median of the

absolute first derivative, which is a better way to reduce the influence of extreme

gradients at the limits of p. Consistent results are achieved despite changes in

the endpoints of the calculation and the statistic is minimised at α ≈ 2.55

(Figure A.4c).

Minimising the deviation of the function from unity

A U(0, 1) distribution has a density of 1 across its entire range; thus, minimising

the expected absolute deviation of the function fP (p) from 1 over p = (0, 1), i.e.,
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Figure A.5 Expected absolute value of (1 − fP (p)) versus inverse-gamma parameter α,
calculated for p = (0.001, 0.999) (dashed line) and p = (0.00001, 0.99999) (solid line).

min
α>1

E
(∣∣1− fP (p)

∣∣), forms another criterion for determining a suitable value for

α. This solution also appears to be relatively insensitive to changes in the limits

of p (Figure A.5), but results in a slightly different optimum value of α to the

median first derivative method: α ≈ 2.96; calculated for p = (0.00001, 0.99999).

A.4 Summary

In choosing a suitable prior for use with random effects variance parameters,

we have taken the approach of finding a distribution such that the correspond-

ing induced prior on the untransformed variable is approximately uniform on

the interval (0, 1), in the absence of any other effects in the model. Using an

inverse-gamma distribution for the variance, σ2
ε , we showed that the combina-

tion of parameters β = 2α+1 induce a distribution fP (p) on the untransformed

parameter p that is perfectly flat at its midpoint, p = 0.5. Beyond this, no

single approach described in Section A.3.2 gave the same ‘best’ value of α, and

hence β, to achieve our objective.

Because fP (p) is undefined at 0 and 1, and its density tends to infinity as

these limits are approached, the outcome of all approaches depend to some

extent over what range of p calculations are performed, which in turn is lim-

ited by computational constraints. However, the ‘median first derivative’ and

‘deviation from unity’ methods were relatively insensitive to the limits used,

and gave consistent results down to p = 10−8. Of these, the latter is probably

the more suitable approach: because this statistic is based on a mean value,

rather than a median, it provides a better compromise between achieving over-
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all ‘uniformness’ and reducing the influence of undesirable spikes in the density.

Therefore, based on the deviation from unity method and the results of the

initial trial-and-error simulations, the inverse-gamma parameters α = 3 and

β = 7 are considered suitable for inducing an approximately uniform prior on

the untransformed parameter, before considering any fixed or other effects in

the model. Nevertheless, this distribution should be used with caution where

small values of the variance are expected, as it has little support for values less

than around 0.5. This highlights the need to always conduct a thorough prior

sensitivity analysis.



References

Arnott, S. A. & Ruxton, G. D. (2002). Sandeel recruitment in the North Sea:

Demographic, climatic and trophic effects. Marine Ecology Progress Series

238, 199–210.

Asbjørnsen, E. J., Sæther, B.-E., Linnell, J. D. C., Engen, S., Andersen, R.

& Bretten, T. (2005). Predicting the growth of a small introduced muskox

population using population prediction intervals. Journal of Animal Ecology

74, 612–618.

Ashbrook, K., Wanless, S., Harris, M. P. & Hamer, K. C. (2008). Hitting the

buffers: Conspecific aggression undermines benefits of colonial breeding under

adverse conditions. Biology Letters 4, 630–633.

Baillie, S. R. & Green, R. E. (1987). The importance of variation in recovery

rates when estimating survival rates from ringing recoveries. Acta Ornitho-

logica 23, 41–60.

Baker, J. D. & Thompson, P. M. (2007). Temporal and spatial variation in

age-specific survival rates of a long-lived mammal, the Hawaiian monk seal.

Proceedings of the Royal Society of London: Series B 274, 407–415.

Barry, S. C., Brooks, S. P., Catchpole, E. A. & Morgan, B. J. T. (2003). The

analysis of ring-recovery data using random effects. Biometrics 59, 54–65.

Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances.

By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter

to John Canton, M. A. and F. R. S. Philosophical Transactions of the Royal

Society of London 53, 370–418.

Beissinger, S. R. & McCullough, D. R. (eds.) (2002). Population Viability

Analysis. Chicago: University of Chicago Press.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. New

York: Springer-Verlag.

143



144 References

Besbeas, P., Borysiewicz, R. S. & Morgan, B. J. T. (2008). Completing the

ecological jigsaw. In Modeling Demographic Processes in Marked Populations,

vol. 3 of Environmental and Ecological Statistics Series, eds. D. L. Thomson,

E. G. Cooch & M. J. Conroy, pp. 515–542.

Besbeas, P. & Freeman, S. N. (2006). Methods for joint inference from panel

survey and demographic data. Ecology 87, 1138–1145.

Besbeas, P., Freeman, S. N. & Morgan, B. J. T. (2005). The potential of

integrated population modelling. Australian and New Zealand Journal of

Statistics 47, 35–48.

Besbeas, P., Freeman, S. N., Morgan, B. J. T. & Catchpole, E. A. (2002). In-

tegrating mark-recapture-recovery and census data to estimate animal abun-

dance and demographic parameters. Biometrics 58, 540–547.

Bjørnstad, O. N., Ims, R. A. & Lambin, X. (1999). Spatial population dynamics:

Analyzing patterns and processes of population synchrony. Trends in Ecology

and Evolution 14, 427–432.

Bonner, S. J. & Schwarz, C. J. (2004). Continuous time-dependent individ-

ual covariates and the Cormack-Jolly-Seber model. Animal Biodiversity and

Conservation 27.1, 149–155.

Borysiewicz, R. S., Morgan, B. J. T., Hénaux, V., Bregnballe, T., Lebreton,

J.-D. & Gimenez, O. (2008). An integrated analysis of multisite recruit-

ment, mark-recapture-recovery and multisite census data. In Modeling De-

mographic Processes in Marked Populations, vol. 3 of Environmental and Eco-

logical Statistics Series, eds. D. L. Thomson, E. G. Cooch & M. J. Conroy,

pp. 581–596.

Brooks, S. P. (1998). Markov chain Monte Carlo method and its application.

Journal of the Royal Statistical Society: Series D 47, 69–100.

Brooks, S. P., Freeman, S. N., Greenwood, J. J. D., King, R. & Mazzetta, C.

(2008). Quantifying conservation concern – Bayesian statistics, birds and the

red lists. Biological Conservation 141, 1436–1441.

Brooks, S. P. & Gelman, A. (1998). General methods for monitoring convergence

of iterative simulations. Journal of Computational and Graphical Statistics

7, 434–455.



References 145

Brooks, S. P., King, R. & Morgan, B. J. T. (2004). A Bayesian approach to

combining animal abundance and demographic data. Animal Biodiversity

and Conservation 27.1, 515–529.

Brownie, C., Anderson, D. R., Burnham, K. P. & Robson, D. S. (1985). Statis-

tical Inference from Band-Recovery Data – A Handbook. 2nd edn. Washing-

ton, DC: US Fish and Wildlife Service, Resource Publication 156.

Buckland, S. T., Newman, K. B., Thomas, L. & Koesters, N. B. (2004). State-

space models for the dynamics of wild animal populations. Ecological Mod-

elling 171, 157–175.

Burnham, K. P. (1993). A theory for combined analysis of ring recovery and

recapture data. In Marked Individuals in the Study of Bird Population, eds.

J.-D. Lebreton & P. M. North, pp. 199–213. Basel: Birkhäuser Verlag.
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(2000). Temporal variation in fitness components and population dynamics

of large herbivores. Annual Review of Ecology and Systematics 31, 367–393.

Gaillard, J.-M. & Yoccoz, N. G. (2003). Temporal variation in survival of

mammals: A case of environmental canalization? Ecology 84, 3294–3306.

Gaston, A. J. & Smith, J. L. (2001). Changes in oceanographic conditions

off northern British Columbia (1983-1999) and the reproduction of a marine

bird, the ancient murrelet (Synthliboramphus antiquus). Canadian Journal

of Zoology 79, 1735–1742.

Gauthier, G., Besbeas, P., Lebreton, J.-D. & Morgan, B. J. T. (2007). Popu-

lation growth in snow geese: A modeling approach integrating demographic

and survey information. Ecology 88, 1420–1429.

Gelman, A. (1996). Inference and monitoring convergence. In Markov Chain

Monte Carlo in Practice, eds. W. R. Gilks, S. Richardson & D. J. Spiegelhal-

ter, pp. 131–143. Boca Raton, Florida: Chapman & Hall/CRC.



150 References

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical

models. Bayesian Analysis 1, 515–534.

Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. (2003). Bayesian Data

Analysis. 2nd edn. London: Chapman & Hall/CRC.

Gelman, A., Roberts, G. O. & Gilks, W. R. (1996). Efficient Metropolis jumping

rules. In Bayesian Statistics 5, eds. J. M. Bernado, J. O. Berger, A. P. Dawid

& A. F. M. Smith, pp. 599–608. New York: Oxford University Press.

Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using

multiple sequences. Statistical Science 7, 457–472.

Gimenez, O., Bonner, S. J., King, R., Parker, R. A., Brooks, S. P., Jamieson,

L. E., Grosbois, V., Morgan, B. J. T. & Thomas, L. (2008). WinBUGS for

population ecologists: Bayesian modeling using Markov chain Monte Carlo.

In Modeling Demographic Processes in Marked Populations, vol. 3 of Envi-

ronmental and Ecological Statistics Series, eds. D. L. Thomson, E. G. Cooch

& M. J. Conroy, pp. 885–918.

Goodman, D. (2004). Methods for joint inference from multiple data sources for

improved estimates of population size and survival rates. Marine Mammal

Science 20, 401–423.

Gould, W. R. & Nichols, J. D. (1998). Estimation of temporal variability in

survival in animal populations. Ecology 79, 2531–2538.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation

and Bayesian model determination. Biometrika 82, 711–732.

Grosbois, V., Gimenez, O., Gaillard, J.-M., Pradel, R., Barbraud, C., Clobert,

J., Møller, A. P. & Weimerskirch, H. (2008). Assessing the impact of climate

variation on survival in vertebrate populations. Biological Reviews 83, 357–

399.

Grosbois, V., Harris, M. P., Anker-Nilssen, T., McCleery, R. H., Shaw, D. N.,

Morgan, B. J. T. & Gimenez, O. (2009). Modelling survival at multi-

population scales using mark-recapture data. Ecology 90, 2922–2932.

Grosbois, V., Henry, P.-Y., Blondel, J., Perret, P., Lebreton, J.-D., Thomas,

D. W. & Lambrechts, M. M. (2006). Climate impacts on mediterranean blue

tit survival: An investigation across seasons and spatial scales. Global Change

Biology 12, 2235–2249.



References 151

Grøtan, V., Sæther, B.-E., Engen, S., Solberg, E. J., Linnell, J. D. C., Ander-

sen, R., Brøseth, H. & Lund, E. (2005). Climate causes large-scale spatial

synchrony in population fluctuations of a temperate herbivore. Ecology 86,

1472–1482.

Halley, D. J. & Harris, M. P. (1993). Intercolony movement and behaviour of

immature guillemots Uria aalge. Ibis 135, 264–270.

Halley, D. J., Harris, M. P. & Wanless, S. (1995). Colony attendance patterns

and recruitment in immature common murres (Uria aalge). The Auk 112,

947–957.

Harris, M. P. (1989). Variation in the correction factor used for converting

counts of individual guillemots Uria aalge into breeding pairs. Ibis 131,

85–93.

Harris, M. P., Anker-Nilssen, T., McCleery, R. H., Erikstad, K. E., Shaw, D. N.

& Grosbois, V. (2005). Effect of wintering area and climate on the survival

of adult Atlantic puffins Fratercula arctica in the eastern Atlantic. Marine

Ecology Progress Series 297, 283–296.

Harris, M. P., Beare, D., Toresen, R., Nøttestad, L., Kloppmann, M., Dörner,

H., Peach, K., Rushton, D. R. A., Foster-Smith, J. & Wanless, S. (2007a). A

major increase in snake pipefish Entelurus aequoreus in northern European

seas since 2003: Potential implications for seabird breeding success. Marine

Biology 151, 973–983.

Harris, M. P., Frederiksen, M. & Wanless, S. (2007b). Within- and between-

year variation in the juvenile survival of common guillemots Uria aalge. Ibis

149, 472–481.

Harris, M. P., Halley, D. J. & Swann, R. L. (1994). Age of first breeding in

common murres. The Auk 111, 207–209.

Harris, M. P., Halley, D. J. & Wanless, S. (1996a). Philopatry in the common

guillemot Uria aalge. Bird Study 43, 134–137.

Harris, M. P. & Swann, R. L. (2002). Common guillemot (guillemot) Uria aalge.

In The Migration Atlas: Movements of the Birds of Britain and Ireland, eds.

C. V. Wernham, M. P. Toms, J. H. Marchant, J. A. Clark, G. M. Siriwardena

& S. R. Baillie, pp. 397–400. London: T & A. D. Poyser.



152 References

Harris, M. P. & Wanless, S. (1995). Survival and non-breeding of adult common

guillemots Uria aalge. Ibis 137, 192–197.

Harris, M. P. & Wanless, S. (2004). Common guillemot Uria aalge. In Seabird

Populations of Britain and Ireland: Results of the Seabird 2000 Census

(1998–2002), eds. P. I. Mitchell, S. F. Newton, N. Ratcliffe & T. E. Dunn,

pp. 350–363. London: T & A. D. Poyser.

Harris, M. P., Wanless, S. & Barton, T. R. (1996b). Site use and fidelity in the

common guillemot Uria aalge. Ibis 138, 399–404.

Harris, M. P., Wanless, S., Rothery, P., Swann, R. L. & Jardine, D. C. (2000).

Survival of adult common guillemots Uria aalge at three Scottish colonies.

Bird Study 47, 1–7.

Harrison, P. J., Buckland, S. T., Thomas, L., Harris, R., Pomeroy, P. P. & Har-

wood, J. (2006). Incorporating movement into models of grey seal population

dynamics. Journal of Animal Ecology 75, 634–645.

Harwood, J. & Stokes, K. (2003). Coping with uncertainty in ecological advice:

Lessons from fisheries. Trends in Ecology and Evolution 18, 617–622.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains

and their applications. Biometrika 57, 97–109.

Heath, M., Edwards, M., Furness, R., Pinnegar, J. & Wanless, S. (2009). A

view from above: Changing seas, seabirds and food sources. In Marine Cli-

mate Change Ecosystem Linkages Report Card 2009, eds. J. M. Baxter, P. J.

Buckley & M. T. Frost, Online Science Reviews. Lowestoft: MCCIP.

http://www.mccip.org.uk/elr/view

Heppell, S. S., Caswell, H. & Crowder, L. B. (2000). Life histories and elasticity

patterns: Perturbation analysis for species with minimal demographic data.

Ecology 81, 654–665.

Heubeck, M. (2004). Black-legged kittiwake Rissa tridactyla. In Seabird Popula-

tions of Britain and Ireland: Results of the Seabird 2000 Census (1998–2002),

eds. P. I. Mitchell, S. F. Newton, N. Ratcliffe & T. E. Dunn, pp. 277–290.

London: T & A. D. Poyser.

Hilborn, R. & Mangel, M. (1997). The Ecological Detective. Princeton: Prince-

ton University Press.

http://www.mccip.org.uk/elr/view


References 153

Holliday, N. P., Kennedy, J., Kent, E. C., Marsh, R., Hughes, S. L., Sherwin, T.

& Berry, D. I. (2008). Sea temperature. In Marine Climate Change Impacts

Annual Report Card 2007–2008, eds. J. M. Baxter, P. J. Buckley & C. J.

Wallace, Online Scientific Reviews. Lowestoft: MCCIP.

http://www.mccip.org.uk/arc/2007/Temperature.htm

Hooge, P. N., Eichenlaub, W. & Solomon, E. K. (1999). Animal Movement

Extension to ArcView, Version 2.04 Beta. Alaska Science Center – Biological

Science Office, US Geological Survey, Anchorage, Alaska.

http://www.absc.usgs.gov/glba/gistools

Hulme, M., Jenkins, G. L., Lu, X., Turnpenny, J. R., Mitchell, T. D., Jones,

R. G., Lowe, J. A., Murphy, J. M., Hassell, D., Boorman, P. M., McDonald,

R. & Hill, S. (2002). Climate Change Scenarios for the United Kingdom: The

UKCIP02 Scientific Report. School of Environmental Sciences, University of

East Anglia, Norwich: Tyndall Centre for Climate Change Research.

Hurrell, J. W., Kushnir, Y., Ottersen, G. & Visbeck, M. (eds.) (2003). The

North Atlantic Oscillation: Climatic Significance and Environmental Impact.

Geophysical Monograph 134. Washington, DC: American Geophysical Union.

Jamieson, L. E. & Brooks, S. P. (2004). Density dependence in North American

ducks. Animal Biodiversity and Conservation 27.1, 113–128.

Jardine, D. C., How, J., Clarke, J. & Clarke, P. M. (2002). Seabirds on Colonsay

and Oronsay, Inner Hebrides. Scottish Birds 23, 1–9.

Jenouvrier, S., Caswell, H., Barbraud, C., Holland, M., Strœve, J. & Weimer-

skirch, H. (2009a). Demographic models and IPCC climate projections pre-

dict the decline of an emperor penguin population. Proceedings of the National

Academy of Sciences, USA 106, 1844–1847.

Jenouvrier, S., Thibault, J.-C., Viallefont, A., Vidal, P., Ristow, D., Mougin,

J.-L., Brichetti, P., Borg, J. J. & Bretagnolle, V. (2009b). Global climate

patterns explain range-wide synchronicity in survival of a migratory seabird.

Global Change Biology 15, 268–279.

JNCC (2009). UK seabirds in 2008: Results from the UK Seabird Monitoring

Programme.

http://www.jncc.gov.uk/page-4555

http://www.mccip.org.uk/arc/2007/Temperature.htm
http://www.absc.usgs.gov/glba/gistools
http://www.jncc.gov.uk/page-4555


154 References

Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both

death and immigration-stochastic model. Biometrika 52, 225–247.

Jüssi, M., Härkönen, T., Helle, E. & Jüssi, I. (2008). Decreasing ice coverage will

reduce the breeding success of Baltic grey seal (Halichoerus grypus) females.

Ambio 37, 80–85.

Kalman, R. E. (1960). A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME–Journal of Basic Engineering 82, 35–45.

King, R. & Brooks, S. P. (2002). Model selection for integrated recov-

ery/recapture data. Biometrics 58, 841–851.

King, R. & Brooks, S. P. (2008). On the Bayesian estimation of a closed popula-

tion size in the presence of heterogeneity and model uncertainty. Biometrics

64, 816–824.

King, R., Brooks, S. P. & Coulson, T. (2008a). Analysing complex capture-

recapture data in the presence of individual and temporal covariates and

model uncertainty. Biometrics 64, 1187–1195.

King, R., Brooks, S. P., Mazzetta, C., Freeman, S. N. & Morgan, B. J. T.

(2008b). Identifying and diagnosing population declines: A Bayesian assess-

ment of lapwings in the UK. Journal of the Royal Statistical Society: Series C

57, 609–632.

King, R., Brooks, S. P., Morgan, B. J. T. & Coulson, T. (2006). Factors

influencing Soay sheep survival: A Bayesian analysis. Biometrics 62, 211–

220.

King, R., Morgan, B. J. T., Gimenez, O. & Brooks, S. P. (2009). Bayesian

Analysis for Population Ecology. London: Chapman & Hall/CRC.

Koenig, W. D. (1999). Spatial autocorrelation of ecological phenomena. Trends

in Ecology and Evolution 14, 22–26.

Koons, D. N., Grand, J. B. & Arnold, J. M. (2006). Population momentum

across vertebrate life histories. Ecological Modelling 197, 418–430.

Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. (1992). Mod-

eling survival and testing biological hypotheses using marked animals: A

unified approach with case studies. Ecological Monographs 62, 67–118.



References 155

Lebreton, J.-D. & Clobert, J. (1991). Bird population dynamics, management,

and conservation: The role of mathematical modelling. In Bird Population

Studies: Relevance to Conservation and Management, eds. C. M. Perrins,

J.-D. Lebreton & G. J. M. Hirons, pp. 105–125. Oxford: Oxford University

Press.

Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. (2004). Spatial synchrony in

population dynamics. Annual Review of Ecology, Evolution, and Systematics

35, 467–490.

Link, W. A. & Barker, R. J. (2004). Hierarchical mark-recapture models: A

framework for inference about demographic processes. Animal Biodiversity

and Conservation 27.1, 441–449.

Link, W. A. & Barker, R. J. (2006). Model weights and the foundations of

multimodel inference. Ecology 87, 2626–2635.

Link, W. A. & Barker, R. J. (2009). Bayesian Inference with Ecological Appli-

cations. San Diego: Academic Press.

Loison, A., Sæther, B.-E., Jerstad, K. & Røstad, O. W. (2002). Disentangling

the sources of variation in the survival of the European dipper. Journal of

Applied Statistics 29, 289–304.

Lowe, J. A., Howard, T. P., Pardaens, A., Tinker, J., Holt, J., Wakelin, S.,

Milne, G., Leake, J., Wolf, J., Horsburgh, K., Reeder, T., Jenkins, G. L.,

Ridley, J., Dye, S. & Bradley, S. (2009). UK Climate Projections Science

Report: Marine and Coastal Projections. Exeter, UK: Met Office Hadley

Centre.

MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography.

Princeton: Princeton University Press.

Maple 9.51 (2004). Maplesoft, a division of Waterloo Maple Inc., Waterloo,

Ontario.

http://www.maplesoft.com

Maunder, M. N., Harley, S. J. & Hampton, J. (2006). Including parameter

uncertainty in forward projections of computationally intensive statistical

population dynamic models. ICES Journal of Marine Science 63, 969–979.

http://www.maplesoft.com


156 References

Mavor, R. A., Heubeck, M., Schmitt, S. & Parsons, M. (2008). Seabird Numbers

and Breeding Success in Britain and Ireland, 2006. Peterborough: Joint

Nature Conservation Committee. (UK Nature Conservation, No. 31).

Mavor, R. A., Parsons, M., Heubeck, M. & Schmitt, S. (2005). Seabird Numbers

and Breeding Success in Britain and Ireland, 2004. Peterborough: Joint

Nature Conservation Committee. (UK Nature Conservation, No. 29).

Mavor, R. A., Parsons, M., Heubeck, M. & Schmitt, S. (2006). Seabird Numbers

and Breeding Success in Britain and Ireland, 2005. Peterborough: Joint

Nature Conservation Committee. (UK Nature Conservation, No. 30).

MCCIP (2009). Summary report. In Marine Climate Change Ecosystem Link-

ages Report Card 2009, eds. J. M. Baxter, P. J. Buckley & M. T. Frost.

Lowestoft: MCCIP.

http://www.mccip.org.uk/elr

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller,

E. (1953). Equation of state calculations by fast computing machines. The

Journal of Chemical Physics 21, 1087–1092.

Millar, R. B. (2004). Sensitivity of Bayes estimators to hyper-parameters with

an application to maximum yield from fisheries. Biometrics 60, 536–542.

Millar, R. B. & Meyer, R. (2000). Non-linear state space modelling of fish-

eries biomass dynamics by using Metropolis Hastings within-Gibbs sampling.

Journal of the Royal Statistical Society: Series C 49, 327–342.

Newman, K. B. (1998). State-space modeling of animal movement and mortality

with application to salmon. Biometrics 54, 1290–1314.

Newman, K. B., Fernández, C., Thomas, L. & Buckland, S. T. (2009). Monte

Carlo inference for state-space models of wild animal populations. Biometrics

65, 572–583.

Newton, I. (1995). Relationship between breeding and wintering ranges in

Palearctic-African migrants. Ibis 137, 241–249.

Newton, I. (1998). Population Limitation in Birds. London: Academic Press.

Nur, N., Ford, R. G. & Ainley, D. G. (1994). Computer Model of Farallon

Seabird Populations. Final Report to Gulf of the Farallones National Marine

http://www.mccip.org.uk/elr


References 157

Sanctuary. San Fransisco: US National Oceanic and Atmospheric Adminis-

tration.

http://www.prbo.org/cms/525

Nur, N. & Sydeman, W. J. (1999). Demographic processes and population

dynamic models of seabirds: Implications for conservation and restoration.

In Current Ornithology, vol. 15, eds. V. Nolan, Jr., E. D. Ketterson & C. F.

Thompson, pp. 149–188. New York: Plenum Press.

Oli, M. K. & Dobson, F. S. (2003). The relative importance of life-history

variables to population growth rate in mammals: Cole’s prediction revisited.

The American Naturalist 161, 422–440.

Ozgul, A., Armitage, K. B., Blumstein, D. T. & Oli, M. K. (2006). Spatiotem-

poral variation in survival rates: Implications for population dynamics of

yellow-bellied marmots. Ecology 87, 1027–1037.

Palmqvist, E. & Lundberg, P. (1998). Population extinctions in correlated

environments. Oikos 83, 359–367.

Paradis, E., Baillie, S. R., Sutherland, W. J., Dudley, C., Crick, H. Q. P. &

Gregory, R. D. (2000). Large-scale spatial variation in the breeding per-

formance of song thrushes Turdus philomelos and blackbirds T. merula in

Britain. Journal of Applied Ecology 37 (Supplement 1), 73–87.

Parsons, M., Mitchell, I., Butler, A., Ratcliffe, N., Frederiksen, M., Foster, S. &

Reid, J. B. (2008). Seabirds as indicators of the marine environment. ICES

Journal of Marine Science 65, 1520–1526.

Peach, W. J., Siriwardena, G. M. & Gregory, R. D. (1999). Long-term changes

in over-winter survival rates explain the decline of reed buntings Emberiza

schoeniclus in Britain. Journal of Applied Ecology 36, 798–811.

Peacock, J. A. (1983). Two-dimensional goodness-of-fit testing in astronomy.

Monthly Notices of the Royal Astronomical Society 202, 615–627.

Pledger, S., Pollock, K. H. & Norris, J. L. (2003). Open capture-recapture

models with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics 59,

786–794.

Post, E. & Forchhammer, M. C. (2002). Synchronization of animal population

dynamics by large-scale climate. Nature 420, 168–171.

http://www.prbo.org/cms/525


158 References

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1994).

Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd edn.

New York: Cambridge University Press.

Punt, A. E. & Hilborn, R. (1997). Fisheries stock assessment and decision

analysis: The Bayesian approach. Reviews in Fish Biology and Fisheries 7,

35–63.

R Development Core Team (2008). R: A Language and Environment for Statis-

tical Computing. R Foundation for Statistical Computing, Vienna, Austria.

http://www.R-project.org

Reid, J. M., Bignal, E. M., Bignal, S., McCracken, D. I. & Monaghan, P. (2004).

Identifying the demographic determinants of population growth rate: A case

study of red-billed choughs Pyrrhocorax pyrrhocorax. Journal of Animal Ecol-

ogy 73, 777–788.

Reynolds, T. J., King, R., Harwood, J., Frederiksen, M., Harris, M. P. & Wan-

less, S. (2009). Integrated data analysis in the presence of emigration and

mark loss. Journal of Agricultural, Biological and Environmental Statistics

14, 411–431.

Ringsby, T. H., Sæther, B.-E., Altwegg, R. & Solberg, E. J. (1999). Temporal

and spatial variation in survival rates of a house sparrow, Passer domesticus,

metapopulation. Oikos 85, 419–425.

Ringsby, T. H., Sæther, B.-E., Tufto, J., Jensen, H. & Solberg, E. J. (2002).

Asynchronous spatiotemporal demography of a house sparrow metapopula-

tion in a correlated environment. Ecology 83, 561–569.

Robinson, R. A. (2005). BirdFacts: Profiles of Birds Occuring in Britain and

Ireland (v1.24, June 2009). BTO Research Report No 407. Thetford: BTO.

http://www.bto.org/birdfacts

Robinson, R. A., Green, R. E., Baillie, S. R., Peach, W. J. & Thomson, D. L.

(2004). Demographic mechanisms of the population decline of the song thrush

Turdus philomelos in Britain. Journal of Animal Ecology 73, 670–682.

Rockwell, R. F., Cooch, E. G. & Brault, S. (1997). Dynamics of the mid-

continent population of lesser snow geese: Projected impacts of reductions

in survival and fertility on population growth rate. In Arctic Ecosystems in

Peril: Report of the Arctic Goose Habitat Working Group, ed. B. D. J. Batt,

http://www.R-project.org
http://www.bto.org/birdfacts


References 159

pp. 73–100. Washington, DC: US Fish and Wildlife Service.

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/

arcgoose/tblconts.html

Rockwood, L. L. (2006). Introduction to Population Ecology. Oxford: Blackwell.

Rodriguez, C. & Bustamante, J. (2003). The effect of weather on lesser kestrel

breeding success: Can climate change explain historical population declines?

Journal of Animal Ecology 72, 793–810.

Royle, J. A. (2008). Modeling individual effects in the Cormack-Jolly-Seber

model: A state-space formulation. Biometrics 64, 364–370.

Royle, J. A. & Dorazio, R. M. (2008). Hierarchical Modeling and Inference

in Ecology: The Analysis of Data from Populations, Metapopulations, and

Communities. San Diego: Academic Press.

Royle, J. A. & Link, W. A. (2002). Random effects and shrinkage estimation

in capture-recapture models. Journal of Applied Statistics 29, 329–351.

Sæther, B.-E. & Bakke, Ø. (2000). Avian life history variation and contribution

of demographic traits to the population growth rate. Ecology 81, 642–653.

Sæther, B.-E. & Engen, S. (2002). Including uncertainties in population via-

bility analysis using population prediction intervals. In Population Viability

Analysis, eds. S. R. Beissinger & D. R. McCullough, pp. 191–212. Chicago:

University of Chicago Press.

Sæther, B.-E., Engen, S., Islam, A., McCleery, R. H. & Perrins, C. (1998). Envi-

ronmental stochasticity and extinction risk in a population of small songbird,

the great tit. The American Naturalist 151, 441–450.

Sæther, B.-E., Grøtan, V., Engen, S., Noble, D. G. & Freckleton, R. P. (2009).

Critical parameters for predicting population fluctuations of some British

passerines. Journal of Animal Ecology 78, 1063–1075.

Sæther, B.-E., Grøtan, V., Tryjanowski, P., Barbraud, C., Engen, S. & Fulin,

M. (2006). Climate and spatio-temporal variation in the population dynamics

of a long distance migrant, the white stork. Journal of Animal Ecology 75,

80–90.

http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/arcgoose/tblconts.html
http://www.fws.gov/migratorybirds/CurrentBirdIssues/Management/arcgoose/tblconts.html


160 References

Sæther, B.-E., Lilleg̊ard, M., Grøtan, V., Filli, F. & Engen, S. (2007). Predicting

fluctuations of reintroduced ibex populations: The importance of density-

dependence, environmental stochasticity and uncertain population estimates.

Journal of Animal Ecology 76, 326–336.

Sandvik, H., Erikstad, K. E., Barrett, R. T. & Yoccoz, N. G. (2005). The effect

of climate on adult survival in five species of North Atlantic seabirds. Journal

of Animal Ecology 74, 817–831.

Schaub, M., Gimenez, O., Sierro, A. & Arlettaz, R. (2007). Use of integrated

modeling to enhance estimates of population dynamics obtained from limited

data. Conservation Biology 21, 945–955.
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Véran, S. & Lebreton, J.-D. (2008). The potential of integrated modelling in

conservation biology: A case study of the black-footed albatross (Phoebastria

nigripes). The Canadian Journal of Statistics 36, 85–98.

Votier, S. C., Birkhead, T. R., Oro, D., Trinder, M., Grantham, M. J., Clark,

J. A., McCleery, R. H. & Hatchwell, B. J. (2008). Recruitment and survival

of immature seabirds in relation to oil spills and climate variability. Journal

of Animal Ecology 77, 974–983.

Votier, S. C., Hatchwell, B. J., Beckerman, A., McCleery, R. H., Hunter, F. M.,

Pellatt, J., Trinder, M. & Birkhead, T. R. (2005). Oil pollution and climate

have wide-scale impacts on seabird demographics. Ecology Letters 8, 1157–

1164.

Wade, P. R. (2000). Bayesian methods in conservation biology. Conservation

Biology 14, 1308–1316.

Wanless, S., Harris, M. P., Redman, P. & Speakman, J. R. (2005). Low energy

values of fish as a probable cause of a major seabird breeding failure in the

North Sea. Marine Ecology Progress Series 294, 1–8.

White, G. C. & Burnham, K. P. (1999). Program MARK: Survival estimation

from populations of marked animals. Bird Study 46 (Supplement), 120–138.

Williams, B. K., Nichols, J. D. & Conroy, M. J. (2002). Analysis and Manage-

ment of Animal Populations. San Diego: Academic Press.


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Justification
	1.2 Models for population data
	1.2.1 Modelling survival
	1.2.2 State-space models for abundance data
	1.2.3 Integrated population modelling

	1.3 Bayesian inference
	1.3.1 Bayes' Theorem
	1.3.2 Prior distributions
	1.3.3 Markov chain Monte Carlo
	1.3.4 Bayesian state-space model

	1.4 Application: common guillemots in the UK
	1.4.1 Guillemot biology
	1.4.2 Status and trends
	1.4.3 Data collection

	1.5 Thesis aims and outline

	2 Isle of May guillemot data and preliminary models
	2.1 Overview
	2.2 Count data
	2.2.1 Introduction
	2.2.2 Data and model
	2.2.3 Bayesian analysis
	2.2.4 Results
	2.2.5 Discussion

	2.3 Mark-recapture data
	2.3.1 Introduction
	2.3.2 Data and notation
	2.3.3 Analysis and results
	2.3.4 Discussion

	2.4 Productivity data
	2.4.1 Data and model
	2.4.2 Analysis and results

	2.5 Conclusions

	3 Integrated data analysis
	3.1 Introduction
	3.2 Data and modelling
	3.2.1 Count data
	3.2.2 Adult mark-recapture data
	3.2.3 Chick mark-recapture-recovery data
	3.2.4 Productivity data
	3.2.5 Integrated model

	3.3 Bayesian analysis
	3.3.1 Priors
	3.3.2 Posterior distribution
	3.3.3 Convergence and sensitivity

	3.4 Results
	3.5 Discussion

	4 Predicting population change using an integrated model
	4.1 Introduction
	4.2 Methods
	4.2.1 Modelling framework
	4.2.2 Random effects modelling of demographic rates
	4.2.3 Obtaining future population estimates
	4.2.4 Prediction scenarios
	4.2.5 Matrix population modelling

	4.3 Results
	4.3.1 Population projections
	4.3.2 Perturbation analysis

	4.4 Discussion

	5 Multi-population modelling of survival rates
	5.1 Introduction
	5.2 Data and analysis
	5.2.1 Mark-recapture-recovery data and modelling
	5.2.2 MCMC modelling of process correlations
	5.2.3 Ring-recovery location data and analysis

	5.3 Results
	5.3.1 Mark-recapture-recovery analysis
	5.3.2 Ring-recovery locations

	5.4 Discussion

	6 General discussion
	6.1 Thesis overview
	6.2 An integrated model of a seabird colony
	6.3 Integrated population predictions
	6.4 Spatiotemporal variation in survival
	6.5 Future directions

	Appendix
	A Prior specification for random effects variance parameters
	A.1 The random effects model
	A.2 Prior for underlying resighting probability
	A.3 Prior for random effects variance
	A.3.1 Simulation study
	A.3.2 Analytical methods

	A.4 Summary

	References

