
MNRAS 428, 1036–1054 (2013) doi:10.1093/mnras/sts084

The clustering of galaxies in the SDSS-III Baryon Oscillation
Spectroscopic Survey: a large sample of mock galaxy catalogues

Marc Manera,1‹ Roman Scoccimarro,2 Will J. Percival,1 Lado Samushia,1

Cameron K. McBride,3 Ashley J. Ross,1 Ravi K. Sheth,4,5 Martin White,6,7

Beth A. Reid,7† Ariel G. Sánchez,8 Roland de Putter,9,10 Xiaoying Xu,11

Andreas A. Berlind,12 Jonathan Brinkmann,13 Claudia Maraston,1 Bob Nichol,1

Francesco Montesano,8 Nikhil Padmanabhan,14 Ramin A. Skibba,11 Rita Tojeiro1 and
Benjamin A. Weaver2

1Institute of Cosmology and Gravitation, Portsmouth University, Dennis Sciama Building, Portsmouth PO1 3FX
2Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 1003, USA
3Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, I-34151 Trieste, Italy
5Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104, USA
6Departments of Physics and Astronomy, University of California, Berkeley, CA 94720, USA
7Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
8Max-Planck-Insitut für Extraterrestrische Physik, Giessenbachstrae, D-85748 Garching, Germany
9Instituto de Fisica Corpuscular, Universidad de Valencia-CSIC, E-46071 Valencia, Spain
10Institut de Cincies del Cosmos, University of Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona, Spain
11Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
12Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
13Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349, USA
14Department of Physics, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA

Accepted 2012 September 25. Received 2012 September 17; in original form 2012 April 6

ABSTRACT
We present a fast method for producing mock galaxy catalogues that can be used to com-
pute the covariance of large-scale clustering measurements and test analysis techniques. Our
method populates a second-order Lagrangian perturbation theory (2LPT) matter field, where
we calibrate masses of dark matter haloes by detailed comparisons with N-body simulations.
We demonstrate that the clustering of haloes is recovered at ∼10 per cent accuracy. We popu-
late haloes with mock galaxies using a halo occupation distribution (HOD) prescription, which
has been calibrated to reproduce the clustering measurements on scales between 30 and 80
h−1 Mpc. We compare the sample covariance matrix from our mocks with analytic estimates,
and discuss differences. We have used this method to make catalogues corresponding to Data
Release 9 of the Baryon Oscillation Spectroscopic Survey (BOSS), producing 600 mock cat-
alogues of the ‘CMASS’ galaxy sample. These mocks have enabled detailed tests of methods
and errors, and have formed an integral part of companion analyses of these galaxy data.

Key words: galaxies: haloes – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy surveys such as the Baryon Oscillation Spectroscopic Sur-
vey (BOSS; Schlegel, White & Eisenstein 2009a; Eisenstein et al.

� E-mail: marc.manera@port.ac.uk
†Hubble Fellow.

2011), WiggleZ (Drinkwater et al. 2010), the Hobby-Eberly Tele-
scope Dark Energy Experiment (HETDEX, Hill et al. 2004) and
the Dark Energy Survey1, designed to cover large areas of the sky,
are currently leading the effort to measure cosmological parameters
using the observed clustering of galaxies and quasars. In future, the
baton will be passed to projects such as eBOSS, BigBOSS (Schlegel

1 http://www.darkenergysurvey.org

C© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/428/2/1036/999629 by U
niversity of St Andrew

s user on 16 O
ctober 2018

http://www.darkenergysurvey.org


A large sample of mock galaxy catalogues 1037

et al. 2009b), Euclid (Laurejis et al. 2011) and the Large Synop-
tic Survey Telescope (LSST, Abell et al. 2009). These projects
will cover large volumes of the Universe, and observe millions of
galaxies in order to make precise measurements. BOSS aims to
determine the cosmic expansion rate H(z) with a precision of 1 per
cent at redshifts z � 0.3 and 0.6, and with 1.5 per cent at z ≈ 2.5, by
means of accurately measuring the scale of the baryon acoustic peak
(Eisenstein et al. 2011). The first steps towards this goal are pre-
sented in a companion paper (Anderson et al. 2012), which provides
the highest precision measurement of the baryon acoustic scale to
date.

Such large-scale clustering measurements require an estimate
of their joint variances in order to produce reliable cosmological
constraints. This is usually calculated in matrix form, and one could
get this matrix by running a large number of N-body simulations and
generating galaxy mocks. However, this would be computationally
very expensive and, as surveys probe increasingly larger scales,
impractical. If only a small number of realizations are used, then
the estimated covariance matrix can be very noisy. There have been
several suggestions in the literature on how to deal with this problem.

When analysing the second Sloan Digital Sky Survey (SDSS)-
II Data Release 7 (DR7) luminous red galaxies, Xu et al. (2012)
used a smooth approximation to the mock covariance matrix. This
technique involves fitting an analytic form to a covariance matrix
computed from a relatively small number of N-body galaxy mock
catalogues, using a maximum likelihood approach with a number
of underlying assumptions. This smoothing technique is critical in
the regime of a small number of mocks, but would be obsolete if a
sufficiently large number of mocks were available, requiring fewer
underlying assumptions in the estimation of the covariance matrix.

Alternatively, the lognormal model has been used to generate
large numbers of mock catalogues, from which covariance matrices
are calculated (Cole et al. 2005; Percival et al. 2010; Blake et al.
2011). Because of its simplicity this approach is fast. However, it
does not properly account for non-Gaussianities and non-localities
induced by non-linear gravitational evolution.

Another method of estimating covariances is jackknife resam-
pling, which allows errors to be estimated internally, directly from
the data (Krewski & Rao 1981; Shao & Tu 1995). It does however
require some arbitrary choices (such as the number of jackknife
regions, for example) and its performance is far from perfect (see
e.g. Norberg et al. 2009). It also will not include fluctuations on the
scale of the survey.

Analytic efforts to estimate covariance matrices directly from
theory, which go beyond a simple rescaling of the linear Gaus-
sian covariance, must deal with non-linear evolution, shot-noise,
redshift-space distortions (RSD), and the complex mapping be-
tween galaxies and matter (Hamilton, Rimes & Scoccimarro 2006;
Sefusatti et al. 2006; Pope & Szapudi 2008; de Putter et al.
2012; Sefusatti et al., in preparation). Thus, they tend to be com-
plicated and difficult to make accurate. Such techniques though
may be able to help translate matrices between cosmological
models.

In this paper, we present a new method for generating galaxy
mocks that is significantly faster than basing samples on N-body
simulation results. This follows the main ideas put forwards in the
PTHalos method of Scoccimarro & Sheth (2002), but the implemen-
tation is overall simpler and differs in some key aspects; the most
relevant being that we do not use a merger tree to assign haloes
within big cells of the density field but instead we obtain the haloes
more precisely using a halo finder. This method is fast because it
is based on a matter field generated using second-order Lagrangian

perturbation theory (2LPT), but it still allows us to include the most
important non-Gaussian corrections relevant for covariance matri-
ces described by the trispectrum.

We use this method to create 600 mock galaxies catalogues occu-
pying the volume that can accommodate the SDSS-III DR9 BOSS
CMASS sample. This sample contains 264 283 high-quality spec-
troscopic galaxy redshifts in the range of 0.43 < z < 0.7 distributed
over an angular footprint of 3 275 deg2. It has the largest effective
volume of any galaxy sample observed to date (see Anderson et al.
2012 for further details). We apply the CMASS DR9 selection func-
tion to our mock catalogues, thereby including the full effect of the
survey geometry. We thus provide the means by which statistical
errors are determined for the CMASS DR9 sample.

Notationwise, in this paper, we keep the name ‘PTHalos’ for our
implementation, and, when appropriate, we explicitly distinguish
it from the implementation of Scoccimarro & Sheth (2002). The
haloes that are obtained by the PTHalos method/code are named
PThalos (with lower case H).

This paper has two parts. First, we describe our PTHalos method
and compare (and calibrate) our PThalos with haloes from N-body
simulations from the LasDamas collaboration (McBride et al., in
preparation). In the second part, we populate the PThalos with mock
galaxies in a way that matches the CMASS sample. These mocks
have been used in several analyses of BOSS DR9 data, including
the study of systematics (Ross et al. 2012), the determination of the
baryon acoustic oscillations (BAOs) scale (Anderson et al. 2012),
RSD (Reid et al. 2012; Samushia et al. 2012), evolution of galaxy
bias (Tojeiro et al. 2012a,b), the concordance with the � cold dark
matter (�CDM) model (Nuza et al. 2012) and the full shape of
the correlation function (Sánchez et al. 2012). Note that the use of
the mocks is not limited to only providing covariance matrices. For
instance, by using mocks one can assess the level of expected chance
correlation between galaxies and systematics (e.g. Ross et al. 2012).

Galaxy PTHalos mocks will be made publicly available.2 A table
with the monopole of the correlation function and the covariance
matrix is given at the end of the paper. All log values in this paper
are in base 10.

2 OV E RV I E W O F TH E M E T H O D

Our goal is to develop a fast method for generating galaxy mocks,
such that covariance matrices can be computed accurately for galaxy
samples such as the CMASS DR9 (Anderson et al. 2012) and the
methods of analysis can be tested for bias and relative accuracy.
The basic steps in the method can be summarized as follows.

(i) Create a particle-based 2LPT matter field (as described in
Section 4).

(ii) Identify haloes using a friends-of-friends (FoF; Davis et al.
1985) halo finder with an appropriately chosen linking length. We
argue that, for the BOSS mean redshift, this linking length should be
∼0.38 times the comoving interparticle distance; see Section 6. We
name the haloes identified in the 2LPT matter field 2LPT haloes.

(iii) Assign masses to the 2LPT haloes by imposing a mass func-
tion that agrees with N-body simulations. We name the haloes with
the new masses PThalos.

(iv) Populate the PThalos with galaxies using a halo occupation
distribution (HOD) algorithm calibrated to fit the observational data.

(v) Apply the survey angular mask and galaxy redshift distribu-
tion.

2 http://www.marcmanera.net/mocks/
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We validate the first three steps by comparing our method with the
clustering of haloes in the N-body simulations whose halo abun-
dances we have matched. We then apply the final steps by calibrat-
ing the HOD to the CMASS DR9 data set. Finally, we generate
600 mocks of CMASS galaxies with DR9 geometry and redshift
selection.

The gain in runtime achieved by generating PTHalos galaxy mock
catalogues compared to creating mock catalogues from N-body sim-
ulations comes from the first step: for the particle numbers used
here, 2LPT is about three orders of magnitude faster than N-body
simulations. The time taken to make mock catalogues in PTHalos
is dominated by the subsequent steps, and thus the speedup fac-
tor at the end of the procedure is reduced to about two orders of
magnitude.

3 OVERV IEW O F THE BOSS CMASS
D R 9 G A L A X I E S

BOSS, part of the SDSS-III (Eisenstein et al. 2011), is an ongoing
survey measuring spectroscopic redshifts of 1.5 million galaxies,
160 000 quasars and a various ancillary targets. BOSS uses SDSS
CCD photometry (Gunn et al. 1998, 2006) from five passbands (u,
g, r, i, z; e.g. Fukugita et al. 1996) to select targets for spectroscopic
observation.

The BOSS CMASS galaxy sample is selected with colour–
magnitude cuts, aiming to produce a roughly volume-limited sample
in the redshift range of 0.4 < z < 0.7, and results in a sample that
is approximately stellar-mass limited. These galaxies have a bias of
∼2 and most are central galaxies of haloes of 1013 M�, with a non-
negligible fraction (∼10 per cent) being satellites in more massive
haloes (White et al. 2011).

DR9 includes data taken up to the end of 2011 July. The de-
tails of the catalogue and mask used for the large-scale structure
analyses are explained in Anderson et al. (2012), and an analysis
of potential systematic effects is presented in Ross et al. (2012).
DR9 covers approximately 3344 deg2 of sky (containing 264 283
usable redshift galaxies over 3275 deg2) of which 2635 deg2 (con-
taining 207 246 galaxies) are in the Northern Galactic cap (NGC)
and 709 deg2 (containing 57 037 galaxies) are in the Southern
Galactic cap (SGC), as shown in Fig. 1. The NGC and SGC
have slightly different redshift distribution of galaxies; we show
their normalized redshift distributions, n(z), in Fig. 2. NGC and
SGC mock catalogues have been generated according to these
distributions.

Figure 1. The Northern Galactic cap (NGC) and Southern Galactic cap
(SGC) footprint of the CMASS DR9 galaxy sample.

Figure 2. Normalized redshift distribution of galaxies in the NGC (solid)
and SGC (dashed) CMASS DR9 sample.

4 SU M M A RY O F 2 L P T

Basics of Lagrangian perturbation theory

The Lagrangian description of structure formation (Buchert 1989;
Moutarde et al. 1991; Hivon et al. 1995) relates the current (or
Eulerian) position of a mass element, x, to its initial (or Lagrangian)
position, q, through a displacement vector field �(q),

x = q + �(q). (1)

The displacements can be related to overdensities by (Taylor &
Hamilton 1996)

δ(k) =
∫

d3q e−ik·q [
e−ik·�(q) − 1

]
. (2)

Analogous to Eulerian perturbation theory, LPT expands the dis-
placement in powers of the linear density field, δL,

� = � (1) + � (2) + · · · , (3)

with � (n) being nth order in δL. First order in LPT is equivalent to
the well-known Zel’dovich approximation (ZA).

The equation of motion for particle trajectories x(τ ) is

d2x
dτ 2

+ H(τ )
dx
dτ

= −∇�, (4)

where ∇ is the gradient operator in Eulerian coordinates x and τ

is conformal time. Here, � denotes the gravitational potential, and
H = dlna

dτ
= Ha denotes the conformal expansion rate. H is the

Hubble factor and a is the scale factor.
Substituting equation (1) into equation (4) and solving the equa-

tion at linear order gives the Zel’dovich (1970) approximation
(ZA),

∇q · � (1) = −D1(τ ) δ(q), (5)

where we have taken a gradient of equation (4) and used the Poisson
equation to relate � and δ(q). Here, δ(q) denotes the Gaussian
density field imposed by the initial conditions and D1(τ ) is the
linear growth factor. In equation (5) the gradient is in Lagrangian
coordinates q, while in equation (4) it is in Eulerian coordinates; the
two are related by the Jacobian of the coordinate transformation.

The solution to second order describes the correction to the ZA
displacement due to gravitational tidal effects and reads

∇q · � (2) = 1

2
D2(τ )

∑
i �=j

[
�

(1)
i,i �

(1)
j,j − �

(1)
i,j �

(1)
j,i

]
, (6)

where the comma followed by a coordinate denotes partial deriva-
tive in that direction.
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Since Lagrangian solutions up to second order are curl-free, it is
convenient to define two Lagrangian potentials φ(1) and φ(2) (� (i) =
∇qφ

(i)), so that the solution up to second order reads

x(q) = q − D1 ∇qφ
(1) + D2 ∇qφ

(2). (7)

Likewise one can solve for the velocity field, which reads

v = −D1 f1 H ∇qφ
(1) + D2 f2 H ∇qφ

(2). (8)

Here, v ≡ dx
dt

is the peculiar velocity, t denotes cosmic time, fi =
dlnDi

dlna
and D2 denotes the second-order growth factor. To better than

0.6 per cent accuracy,

D2(τ ) ≈ −3

7
D2

1(τ )	−1/143
m , (9)

for values of 	� between 0.01 and 1 (Bouchet et al. 1995).
To generate the 2LPT displacement we used an algorithm that

takes advantage of fast Fourier transforms (FFT) and is described
in detail in Scoccimarro (1998). Although this algorithm assumes
Gaussian initial conditions, it can be extended to treat non-Gaussian
initial conditions given by any factorizable primordial bispectrum
(Scoccimarro et al. 2012), and a parallel version of such code is
publicly available.3 In this paper we only consider Gaussian ini-
tial conditions, although the same procedure can be applied to the
primordial non-Gaussian case.

Compared to Scoccimarro & Sheth (2002) our implementation of
2LPT differs only in the smoothing applied to the linear density field
before constructing the Zel’dovich displacement field. To reduce the
effects of orbit crossing (where LPT breaks down), they impose a
cut-off in the linear spectrum, similar to the standard truncated ZA
(Coles, Melott & Shandarin 1993). We do not follow this approach
as, rather than using their merger tree method to identify haloes,
here we identify haloes by applying the FoF algorithm to the 2LPT
field with a modified linking length. The theoretical motivation for
the choice of linking length can be derived from the spherical col-
lapse in 2LPT dynamics (see Section 6.1). In order to preserve this
theoretical choice, we would like to change the linear density field
on smoothing scales of the order of the Lagrangian size of haloes
as little as possible, while at the same time not have excessive orbit
crossing effects for the haloes that host the galaxies we are interested
in. These competing requirements become increasingly difficult to
satisfy as the halo mass we are interested in decreases. Although
we have not done an exhaustive investigation, a smoothing window
described the linear density field Fourier amplitudes multiplied by
e−k/(4 + k)/2 (with k in h Mpc−1) works reasonably well for the halo
mass range relevant for our purposes; see Section 6. On top of this,
there is of course a sharp cut-off in the linear spectrum at the Nyquist
frequency of the particle grid used to generate the fields (with grid
size Ngrid = 1280).

LPT has been used to model BAOs (Matsubara 2008a,b; Pad-
manabhan & White 2009; Padmanabhan, White & Cohn 2009). For
a more detailed explanation of 2LPT, see Bernardeau et al. (2002,
and references therein).

5 C O S M O L O G Y A N D R E S O L U T I O N
SPECIF ICATIONS

We have produced halo and galaxy mocks using two different sets
of �CDM cosmological parameters. The first set has been chosen

3 http://cosmo.nyu.edu/roman/2LPT/ and
http://www.marcmanera.net/2LPT/

to match that of the N-body simulations we use to calibrate the
PTHalos method, while the second set has been chosen to have
values closer to those expected from observations.

LasDamas cosmology.
The fiducial parameters for this cosmology are as follows: 	m =
0.25, 	� = 0.75, 	b = 0.04, h = 0.7, σ 8 = 0.8 and ns = 1. These
parameters were used by the LasDamas collaboration4 which pro-
duced a suite of large N-body cosmological dark matter simulations
(McBride et al., in preparation). These simulations were run with
a Tree-PM code GADGET-II (Springel 2005) and a FFT grid size of
2400 points in each dimension. Each simulation covers a cubical
volume of a box size L = 2400 Mpc h−1, and has 12803 dark matter
particles. We have created PThalos mocks assuming the same cos-
mology and resolution parameters, so as to compare halo clustering
in each of the 40 N-body simulation runs, and thus calibrate our
method. As shown in Section 6, we achieve a 10 per cent accuracy
in the clustering of haloes.

WMAP cosmology.
The second �CDM cosmology that we consider has the following
parameters: 	m = 0.274, 	� = 0.726, 	b = 0.04, h = 0.7, σ 8 =
0.8 and ns = 0.95. These are the same as those used to analyse the
first semester of BOSS data (White et al. 2011) and from the fiducial
model for the Anderson et al. (2012) analysis; they are within 1σ

of the best-fitting 7-year Wilkinson Microwave Anisotropy Probe
(WMAP7) concordance cosmological model (Larson et al. 2011).

We have two simulations of 30003 particles and cubical box size
of L = 2750 Mpc h−1 with which we compare results. These simu-
lations were performed with the Tree-PM code described in White
et al. (2010), which has been compared to a number of other codes
and shown to achieve the same precision level for such simula-
tions (Heitmann et al. 2008). We use one of these simulations in
Section 6.5.

Resolution parameters.
We run 2LPT for our mocks in a cubic box of size L = 2400 Mpc h−1

with N = 12803 particles. This matches the specifications of the
LasDamas–Oriana simulations, and allows us to easily match the
Fourier phases in 2LPT runs to those of the Oriana simulations,
thus allowing a direct comparison for each realization. With these
parameters the mass resolution for the LasDamas and WMAP cos-
mologies is Mpart = 45.7 × 1010 and 50.1 × 1010 M� h−1, respec-
tively. The cubical box was matched to the CMASS DR9 geometry
as explained in Section 8.2.

6 PT H A LO S

PThalos are created in two steps. The first step is to generate a
2LPT field, as described in Section 4, which is traced by means
of a distribution of particles. Based on this field, halo positions
and raw masses are found using a FoF algorithm, which links all
pairs of particles separated by a distance d ≤ b. This algorithm
has become a standard technique and has been used extensively in
astrophysics and cosmology since Davis et al. (1985). Using the
LasDamas simulations we calibrated the FoF linking length, and
set b = 0.38 times the mean interparticle separation as the value
for generating mocks. Note that this linking length is substantially
larger than the usual choice, b = 0.2, in N-body simulations. Section
6.1 shows that this choice is motivated by 2LPT dynamics.

4 http://lss.phy.vanderbilt.edu/lasdamas/
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The second step of the method is a reassignment of halo masses.
Respecting the ordering given by the FoF number of particles, 2LPT
halo masses are changed so that the mean mass function of PThalos
matches a given fiducial mass function. The underlying understand-
ing here is that the ranking of the masses is more accurate than their
exact values, which will vary according to the definition of halo
boundaries, both in N-body simulations and 2LPT runs.

Note that, given an input mass function for PThalos, a fixed 2LPT
halo mass always corresponds to the same PThalo mass. That is, the
mapping of the masses is between the mean of 2LPT realizations
of the mass function and the targeted fiducial one. In this way, the
scatter of the measured mass function between 2LPT realizations is
translated, as expected, into a scatter of the PThalos mass function.

In this paper, the PThalos realizations with the LasDamas cos-
mology use, as an input, the mass function of the LasDamas N-body
simulations. The PThalos realizations with WMAP cosmology use
as input the mass function of Tinker et al. (2008), and adopt the
definition of dark matter haloes that correspond to overdensities
200 times the mean background density.

6.1 Linking length: theoretical motivation

The appropriate FoF linking length in N-body simulations can be
estimated as follows. Given 	m and 	� one uses a fitting function
(see equation 11) to compute the virial overdensity �vir of haloes
within the spherical infall model. For the LasDamas cosmology,
�vir = 377 relative to the mean background density, at redshift
zero.

Then, assuming an isothermal profile for the dark matter halo,
one can relate the mean density of the halo to the density at the
virial radius, i.e. ρRvir = �vir/3. This density is converted to a mean
separation of particles by assuming that the density at the virial
radius is equal to that of two particles in a sphere of radius b.
For the LasDamas cosmology, this gives b = 0.156 in units of the
mean interparticle separation. For an Einstein–de Sitter cosmology,
	m = 1 and b = 0.2, which is the value most commonly used in
the literature.

Because the 2LPT dynamics does not capture the non-linear dy-
namics of virialization, it yields halo densities that consistently
differ from the N-body densities. Consequently, the FoF linking
length of 2LPT matter field, b2LPT, needs to be rescaled from the
value used in N-body simulations, bsim. The simplest rescaling is
given by

b2LPT = bsim

(
�sim

vir

�2LPT
vir

)1/3

. (10)

Both the halo virial overdensity in N-body simulations, �sim
vir ,

and its corresponding value in the 2LPT field, �sim
2LPT, are easy to

compute. For the N-body case we take the value of Bryan & Norman
(1998),

�sim
vir = (18π2 + 82(	m(z) − 1) − 39(	m(z) − 1)2)/	m(z), (11)

where

	m(z) = 	m(1 + z)3(H (0)/H (z)), (12)

which gives �vir = 244 at redshift z = 0.52. We choose this redshift
because it is the redshift at which we will compare with LasDamas
simulation outputs, and it is close to the mean redshift of the BOSS
CMASS sample, for which we want to produce galaxy mock cata-
logues.

The Lagrangian �2LPT
vir can be easily obtained from the relation

between Lagrangian and Eulerian fields, which are related by the
determinant (Jacobian) of the transformation of equation (1),

δLPT = [
Det(1 + ∂�i/∂qj )

]−1 − 1 . (13)

Having solved equations (5) and (6), and thus knowing � at
second order, this equation can be rewritten in terms of the growth
factor. Then, assuming spherical symmetry for simplicity, it reads

δ2LPT =
[

1 − δ0

3

(
D1 − δ0

3
D2

)]−3

− 1 , (14)

where δ0 is the overdensity at the initial time. Since we know from
spherical collapse in Eulerian dynamics that a halo has virialized
when its linear density fluctuation is D1δ0 = 1.686, we can predict
the 2LPT overdensity of at this same linear density to be �2LPT

vir =
δ2LPT

vir + 1 = 35.43 relative to the mean background density.
Therefore, using equation (10), we find that to conduct a robust

comparison between PThalos and N-body haloes of linking length
of b = 0.2, we need to use a linking length of b = 0.38 in the
2LPT field. It is worth emphasizing that this predicted value is
approximate. A better value can be determined by comparing the
clustering of haloes between 2LPT and N-body simulations. This
process is described in the next section, where we find that the values
around b ∼ 0.37 (including 0.38) work very well at the 10 per cent
level.

In principle, one can use spherical overdensity (SO) methods to
identify haloes instead of the FoF algorithm (Lacey & Cole 1994).
A similar procedure to that discussed in Section 6.1 could then be
used to match the SO density parameter in N-body simulations to
2LPT simulations.

6.2 Linking length: calibration with N-body simulations

In order to test the linking length that we need to use to find PThalos,
we have run a 2LPT simulation at z = 0.52 with the same Fourier
phases and amplitudes as that of one of the Oriana simulations from
the LasDamas collaboration.

We obtained haloes from the 2LPT dark matter field using dif-
ferent linking lengths close to the value given by equation (10).
The 2LPT haloes do not have a correct mass function. These haloes
become PThalos once we change the masses to match the mass
function of the N-body simulation. We then computed the cross-
power spectrum between the PThalos and the N-body matter field,
Phm,pthalos(k), and the cross-power spectrum between the N-body
haloes and N-body matter field, Phm,sim(k), where these latter haloes,
from LasDamas, were obtained with b = 0.2.

The comparison between these two spectra gives a measure of
accuracy of the bias of the 2LPT haloes. In particular, we are in-
terested in the ratio Phm,pthalos/Phm,sim since this is equivalent to the
ratio of the halo bias factors. Note that we have computed the cross-
power spectra and not the autopower spectra since in this case we
do not need to correct our estimator for shot noise.

The results are shown in Figs 3–5. Fig. 3 shows the ratio
Phm,pthalos/Phm,sim of the million most massive haloes as a func-
tion of the wavenumber k for different values of the linking length.
We see that, as we increase the linking length, the ratio of the cross-
powers decreases. There is a range of linking lengths around b ∼
0.37 for which the ratio of the bias is within 10 per cent. The pre-
dicted value b = 0.38, as computed using equation (10), is well
within this range.

The mapping between the 2LPT masses and the N-body masses
is an essential part of the PTHalos method; without it the PThalos
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Figure 3. Ratio between PTHalos and N-body halo–matter cross-power
spectra as a function of linking length, b, for the 106 most massive haloes.
From top to bottom linking length are as follows: 0.27, 0.30, 0.36,0.37,0.38
(in lighter colour), 0.39 and 0.40. N-body haloes use b = 0.2 with the
corresponding mass threshold of 3.02 × 1013 M� h−1.

correlation functions would not be close to those from the N-body
simulations. In Fig. 4, we show the mapping of the 2LPT and N-
body masses for different values of the linking length. We observe
that massive haloes have larger masses in the 2LPT field than in the
N-body simulation. This is expected, since the typical theoretical
size of the 2LPT haloes, as explained in Section 6.1, is about 3.3
times larger than the size of the same halo in the N-body simulation.
Consequently, massive haloes, having larger volumes in the 2LPT
field, would accrete into themselves the mass of the surrounding
filaments and close neighbouring haloes.

We also observe that low-mass haloes have less mass when ob-
tained in the 2LPT field than in the N-body simulation. This is also
expected. In the LPT framework some particles (the ones that would
have virialized in a halo) are displaced further than they would have
been in an N-body simulation. This effect is known as shell crossing.
Small virialized haloes are the ones most affected by shell crossing.
Because of the extra displacement some of the particles are likely to
become unbound to the 2LPT halo and therefore their mass becomes
lower in the 2LPT field than in the N-body simulation.

The sample of haloes in Fig. 3, the million most massive haloes, is
equivalent to a mass threshold of M = 3.02 × 1013 M� h−1. We are

Figure 4. Mapping of masses between 2LPT haloes and N-body haloes as a
function of linking length, b, for one realization. From top to bottom linking
length are as follows: 0.27, 0.30, 0.36, 0.37, 0.38 (in lighter colour), 0.39
and 0.40. N-body haloes use b − 0.2.

Figure 5. Ratios between PTHalos and N-body halo–matter cross-power
spectra as a function of halo mass threshold, for a linking length of b = 0.38
(2LPT) and b = 0.2 (N-body) for one realization. The halo masses are given
in Table 1.

interested now in comparing the clustering with other mass thresh-
olds. In Fig. 5, we show the ratios Phm,2Lpt/Phm,sim for range of halo
mass thresholds, and linking length b = 0.38. The corresponding
masses and colours are referenced in Table 1. Each halo sample
corresponds to the most massive N haloes in the 2LPT field, where
log (N) = 3.5, 4, 4.5, 5, 5.5, 6, 6.5. The corresponding mass of the
halo that is in the position N in the mass-ranked list of the N-body
simulation is given also in Table 1, together with the corresponding
number of particles of that halo. We have found that all these halo
samples yield clustering amplitudes that are still within 10 per cent
of those calculated from the N-body simulation.

We note that the ratio between the PThalos clustering and the N-
body haloes clustering does not change monotonically with mass.
As the mass threshold is lowered, the ratio decreases until a point
from which this trend is inverted and the ratio starts to increase. We
have no clear understanding of why this is the case. However, we
have found that the clustering of the lower mass PThalos increases
significantly if the smoothing of the initial power spectrum is not
applied, thus increasing the difference with the N-body clustering.
This seems to indicate that the FoF algorithm spuriously creates a
few number of small haloes near the most massive ones because

Table 1. The number of haloes, their mass and asso-
ciated colour. Masses of haloes in N-body simulations
as a function of their position in the mass-ranked list.
That is, given the N most massive haloes in the volume
L = (2400 Mpc h−1)3, the lower mass in the sample is
M. Masses are from one run of Oriana N-body simu-
lation at z = 0.52 and are given for the linking length
of b = 0.2. Masses are in units of 1013 M� h−1 and
are not corrected for discreteness effects. For each
halo mass we have shown in parentheses the number
of particles that halo has given our mass resolution.

log N Mass (Npart) Colour

3.5 44.3 (968) Red
4.0 30.7 (672) Light green
4.5 19.8 (432) Blue
5.0 11.7 (256) Purple
5.5 6.31 (138) Orange
6.0 3.02 (66) Cyan
6.5 1.28 (46) Dark green
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of the larger density of matter around them. We leave the detailed
study of this effect for a future work.

We will use the linking length b = 0.38, which is the theoretical
expectation, as our fiducial value in the following sections.

6.3 Variance and cross-correlation coefficients

Having set the PThalos linking length, we run 40 2LPT dark mat-
ter fields, with the same Fourier phases and amplitudes as the 40
simulations of LasDamas suite. For all of them we compute the
halo–matter cross-power spectra as in the previous section, for the
first million haloes of both PThalos and N-body haloes, and we
compute the corresponding covariance matrices:

C(ki, kj ) =
1

N − 1

N=40∑
i=1

[
P i

hm(k1) − P̄hm(k1)
] [

P i
hm(k2) − P̄hm(k2)

]
, (15)

where P̄hm is the mean power spectrum of the set of simulations.
The variance of the cross-power spectrum is defined as variance =
Var(k) = C(k, k) and the correlation coefficients of a given k1 as
Corr(k1, k) = C(k1, k)/

√
Var(k1)Var(k).

In the top panel of Fig. 6, we show the ratio of the variances be-
tween PTHalos and N-body simulations, for the first million haloes,
which is an equivalent mass threshold of 3.02 × 1013 M� h−1. We
can see that most points lie within 15 per cent range of the ex-
pected value at linear order, which is given by the square of the
ratio of the halo bias. This estimate comes from assuming that the
halo–matter cross-power spectrum is proportional to the halo bias,
P i

hm = bhP
i
mm, where P i

mm indicates the matter power spectrum,
and the halo bias, bh, is independent of the realization. In this ap-
proximation the variance is proportional to the square of the bias,
consequently the ratio of the variances of 2LPT and N-body simula-
tions is proportional to the ratio of the halo bias. We have computed
this ratio using the mean of the halo bias for the 40 realizations. The
ratio of one realization has been shown in Figs 3 and 5. Since the
bias of the haloes is accurate at 10 per cent, the variance is accurate
at about 20 per cent.

In the middle and bottom panels of Fig. 6, we show a comparison
between the correlation coefficients of PThalos (dashed red) and
N-body haloes (solid blue). Each line shows the estimate from the
40 realizations that have the same phases. Both are clearly similar,
showing that the PThalos preserve the same structures as the N-body
simulations.

6.4 Autocorrelation

In Fig. 7, we show the ratio between the autopower spectrum of
PThalos and the autopower of N-body haloes, where we did not
subtract a shot-noise contribution. We see that for all the mass
thresholds this ratio is well within 10 per cent. We note that there
is not a monotonic relation between the masses and the ratio of
the power spectra. Starting with the most massive haloes the ratio
decreases as the mass threshold is lowered, but this tendency is
reversed for lower mass haloes, as seen, for instance, in the lower
mass range (dark green line) in which haloes are more clustered than
the N-body haloes of equivalent mass. This reversal could be due
to a fraction of small haloes being clustered around massive ones,
probably because of the shell-crossing effects that make haloes in
2LPT less compact than in N-body simulations.

In Fig. 8, we show the ratio of the autopower spectra for one
realization of PThalos and one realization of N-body haloes from

Figure 6. Top: ratio of the cross-power variance of PTHalos and N-body
simulations for a mass threshold of 3.02 × 1013 M� h−1. The expected ratio
is shown in a solid line and a 15 per cent band range is shown in dashed lines.
Middle and bottom: comparison of correlation coefficients of N-body (solid
blue) and PTHalos (dashed red) halo–matter cross-power spectra. Middle:
k1 = 0.06. Bottom k1 = 0.201.

LasDamas with the same Fourier phases. Before doing the ratio,
a Poisson shot-noise contribution of 1/n (where n is the number
density of haloes) was subtracted from the power, as is common
under the approximation of Poisson sampling. Note, however, that
there are indications in the literature that the shot noise of haloes
is not strictly Poisson (appendix A, Smith et al. 2008). As seen in
Fig. 8 we recover a ratio within ∼20 per cent for most masses and
range of scales, which is consistent with our findings of an accuracy
of 10 per cent or less in the ratio of the bias (or equivalently of the
cross-power spectra). At small scales, for k > 0.15 h Mpc−1,
PTHalos performance decreases significantly, and the ratio of
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Figure 7. Ratios between PTHalos and N-body halo power spectra as a
function of k for different halo mass thresholds, for a linking length of b =
0.38 (2LPT) and b = 0.2 (N-body). Haloes are from one realization with the
same phases in each simulation. The correspondence between colour and
halo mass thresholds is given in Table 1. The power spectra have not been
corrected for shot noise.

Figure 8. Same as Fig. 7 but with shot-noise-corrected power spectra,
assuming Poisson noise.

powers reaches 20 per cent for some masses. In such cases the
expected difference of the variances is 40 per cent. For clarity in
Fig. 8 we do not show our results for the lower mass range; they
are similar to the haloes with M > 30.7 × 1013 M� h−1 but with
a larger scatter that would make difficult to understand the plot if
included.

In Figs 9 and 10 we show the ratio of the autopower spectra for
the mean of the 40 realizations of PThalos and an N-body halo,
with and without shot-noise correction. We show the results for the
first million haloes, which in all realizations correspond to the mass
threshold of 3.02 × 1013 M� h−1. Dashed lines show the rms range
of this measurement, which is an estimation of the scatter between
realizations.

6.5 PTHalos with WMAP cosmology

So far we have established a method to obtain haloes from a 2LPT
dark matter field, which matches the clustering of simulations at
10 per cent. We have tested the method by comparing the clus-
tering of PThalos with that of the haloes from LasDamas N-body
simulations suite.

In the rest of this paper, we use our WMAP fiducial cosmology,
which is closer to that expected from observations.

Using our PTHalos code we have generated 600 2LPT fields at
z = 0.55. PThalos were obtained using a linking length of b =

Figure 9. Ratio between PTHalos and N-body halo power spectra as a
function of k, for the mean of the 40 realizations, and mass threshold of
M = 3.02 × 1013 M� h−1, corresponding to the first million haloes in each
realization. Linking length used are b = 0.38 (2LPT) and b = 0.2 (N-body).
Dashed lines show the range of the standard deviation. The power spectra
have not been corrected for shot noise.

Figure 10. Same as Fig. 9 but with shot-noise-corrected power spectra,
assuming Poisson noise.

0.38. Note that because of the change in cosmology and redshift the
predicted linking length (see Section 6.1 for details) has changed
to b = 0.375. This is only a very small difference with our fiducial
value, which, as seen in Section 6.2, only changes the clustering
of haloes by a small amount. For these 600 runs, since we cannot
use the LasDamas mass function to set the mass of the PThalos we
instead use the general description of Tinker et al. (2008), using SO
haloes corresponding to 200 times the mean background density.
The calibration between 2LPT and PThalos masses using the Tinker
et al. (2008) mass function is shown in Fig. 12.

We do not expect the change in cosmological model to signif-
icantly affect the accuracy of the PTHalos method. Nonetheless,
we have compared the PThalos clustering with the clustering of
the N-body simulation of White et al. (2011) for haloes above
1013 M� h−1. This N-body simulation reproduces a piece of the
universe with the same cosmological parameters that we use in the
remaining of the paper. N-body haloes are identified with a FoF
algorithm with b = 0.168, but the clustering is still matched at
the 10 per cent level. This can be seen in Fig. 11 where we have
plotted the ratio of the halo power spectrum calculated from the
N-body simulation and that from the PTHalos method. The ratio
looks smoother than in the other figures because having the power
spectra evaluated at different keys, we have interpolated the values
before taking the ratio. This result in Fig. 11 shows the robustness
of the PTHalos method.
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Figure 11. The ratio between the average halo power spectrum calculated
from PTHalos simulations and the power spectrum calculated for haloes
selected from the White et al. (2011) simulation. For both we apply a mass
cut of 1013 M� h−1. Poisson shot noise (1/n) has been subtracted.

Figure 12. Calibration of mass between 2LPT haloes with WMAP cosmol-
ogy and haloes that follow Tinker et al. (2008) mass function with the same
cosmology (dashed line). The equality relation between the two masses is
shown as a dotted line.

Figure 13. Comparison of mass functions from the simulation of White
et al. (2011), assuming a friends-of-friends parameter b = 0.168, and the
Tinker et al. (2008) mass-function fitting function for haloes corresponding
to 200 times the mean background density.

For this N-body simulation we also show in Fig. 13 the mass
function of the haloes together with that of Tinker et al. 2008, which
is the mass function we used to set the masses of PThalos for our
fiducial WMAP cosmology. As expected the fit is good except at the
low-mass end where the mass resolution effects of our simulation
start to become important.

7 PO P U L AT I N G H A L O E S W I T H G A L A X I E S

7.1 Halo occupation distribution

To populate haloes with galaxies we use a HOD (Peacock & Smith
2000; Scoccimarro et al. 2001; Berlind & Weinberg 2002) functional
form with five parameters, as used by Zheng, Coil & Zehavi (2007).
In this form, the mean number of galaxies in a halo of mass M is the
sum of the mean number of central galaxies plus the mean number
of satellite galaxies, N (M) = 〈Ncen(M)〉 + 〈Nsat(M)〉, where

〈Ncen〉 = 1

2

[
1 + erf

(
logM − logMmin

σlogM

)]

〈Nsat〉 = 〈Ncen〉
(

M − M0

M1

)α

, (16)

and Nsat = 0 if the halo has M < M0. The error function character-
izes the scatter between the mass and the luminosity of the central
galaxy, and the power law in the satellite occupation term charac-
terizes the efficiency of galaxy formation on mass. The exact values
of the HOD parameters that we use were determined by fitting the
DR9 galaxy clustering data, as explained in Section 8.1. The prob-
ability of finding a central galaxy in a halo is given by Ncen, and
the number of satellites is drawn from a Poisson distribution with
mean value Nsat. In the rare event that we draw one satellite galaxy
but no central one, we treat it as a central.

7.2 Halo profile

We have distributed satellite galaxies within a halo following an
NFW density profile (Navarro, Frenk & White 1996):

ρ(r) = 4ρs

r
rs

(
1 + r

rs

)2 , (17)

where rs is the characteristic radius where the profile has a slope
of −2, and ρs is the density at this radius. The ratio between the
virial radius Rvir and the characteristic radius gives the concentration
parameter,

c = Rvir

rs

. (18)

The masses of the haloes and their concentrations are related. For
our galaxy mocks we use the relation found by Prada et al. (2012)
when fitting data from N-body simulations:

c(M, z) = B0(x)

B0(1.393)
, C(σ ′),

σ ′ = B1(x)

B1(1.393)
σ (M,x),

C(σ ′) = A

[(
σ ′

b

)c

+ 1

]
exp

(
d

σ ′2

)
, (19)

where

B0(x) = c0 + (c1 − c0)

[
1

π
arctan [α(x − x0)] + 1

2

]
,

B1(x) = 1

σ0
+

(
1

σ1
− 1

σ0

) [
1

π
arctan [β(x − x1)] + 1

2

]
, (20)

and the parameters from the N-body fit are A = 2.881, b = 1.257,
c = 1.022, d = 0.060, c0 = 3.681, c1 = 5.033, α = 6.948, x0 =
0.424, σ−1

0 = 1.047, σ−1
1 = 1.646, β = 7.386 and x1 = 0.526.

The cosmology and redshift dependence of the fit enter through
x = (	�/	m)1/3/(1 + z) and through the variance of the haloes
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of a given mass, σ (M, z). The masses in the equations above are
defined such that the mean density at the virial radius is 200 times
the critical density, to match the Tinker et al. (2008) definition.
Using the NFW we can easily move from one definition of halo
mass to another, and use each formula appropriately.

We have added a dispersion to the mass–concentration relation.
We use a lognormal distribution; thus the probability of a concen-
tration c for a halo of mass M is

p(c|M) = 1

c
√

2πσ 2
log c

exp

[
− log[c/c̄(M, z)]2

2σ 2
log c

]
(21)

where c̄ is the mean mass–concentration relation. Typical values of
σ log c are between 0.043 and 0.109 (Giocoli et al. 2010). We have
chosen for our mocks the value σ log c = 0.078, which is close to the
mean.

The scatter of the mass–concentration is not dependent on cos-
mological parameters (Maccio, Dutton & van den Bosch 2008).

7.3 Galaxy velocities in haloes

We assign velocities to the galaxies in haloes by using the virial
theorem, which states that the average kinetic energy of particles is
half the average of the negative potential energy, 〈v2〉 = 〈GM(r)/r〉.
This average over the dark matter particles can be expressed as an
integral of dark matter profile:

〈v2〉 =
∫ R

0 GM(r)dM∫ Rvir

0 dM
. (22)

Assuming an NFW profile, the mass inside a given radius is

M(r) = 4π

3
ρ3

s · 12

[
ln(1 + x) − x

1 + x

]
,

and therefore, the virial velocity reads

〈v2〉 = GM

Rvir
c

c
2(1+c) − ln(1+c)

1+c[
ln(1 + c) − c

1+c

]2

= GM

Rvir
c

0.5 c(1 + c) − (1 + c)ln(1 + c)

[(1 + c)ln(1 + c) − c]2

≡ GM

Rvir
F (c), (23)

where the last equality defines F(c) that we will use later. Here,
again, c denotes the concentration parameter, c = Rvir/rs, rs denotes
the characteristic NFW radius and Rvir denotes the virial radius,
defined as the radius at which the average density of the halo is �

times the mean density ρ̄, M = 4π/3R3�ρ̄. As mentioned before,
the value of � is typically taken to be 200, and we use this value
in PTHalos, but other numbers are also motivated by the spherical
collapse model and N-body simulations.

Once we have the typical velocity dispersion of a halo we assign
positions and velocities to its galaxies in the following way. If there
is only one galaxy, we place it at the centre of mass with the velocity
of the halo. If there is more than one galaxy, the first one is placed
at the centre of mass, and the others following the NFW density
profile. For these galaxies their velocities have two components:
the velocity of the halo centre of mass and a contribution from the
velocity dispersion. We take the latter to be drawn from a Gaussian
distribution with zero mean and variance equal to〈
v2

1D

〉
= 1

3

〈
v2

x + v2
y + v2

z

〉
= 1

3
〈v2〉. (24)

7.4 Redshift-space distortions

We use the velocity of galaxies to simulate the effects of RSD.
We therefore alter the positions of galaxies such that each galaxy
is set to where it would be observed in redshift-space coordinates.
To achieve this one must convert velocities into displacements by
dividing the former by H = ȧ = Ha and projecting the result along
the line of sight. The displacement �s in Mpc h−1 that corresponds
to a velocity of magnitude of

√
〈v2

1D〉 is easily computed. Since
G = 3H 2

0 /8πρcrit, ρcrit = 	0
Mρ̄, and defining the Hubble expansion

rate as H(z) ≡ H0E(z), one gets

�s = Rvir

E(z)a

√
F (c) , (25)

where F(c) has been defined in equation (23). We add the RSD along
the line of sight, rather than displacing the galaxies along a single
axes, as in the distant observer approximation implementation.

7.4.1 Extending the model

We have made several simplifying assumptions within the method
presented in this paper. In particular, many effects of the complex
relation between haloes, matter and galaxies are not included in
these mock galaxy catalogues.

We choose to model the galaxies on top of a static realization of
the matter field, which assumes that the evolution over the redshift
range is small. This will impact the clustering of matter, as well as
the associated halo masses. Although we expect this effect to be
small for the mock galaxy catalogues used in CMASS DR9 results,
we could improve on the method for future applications and model
this evolution.

For simplicity, the mocks also neglect any evolution to populat-
ing dark matter haloes, or varying the galaxy bias with redshift.
While the sampling of galaxies is adjusted to match the density as
a function of redshift (see Fig. 2), a change in number density is
likely to correspond to a variation in galaxy selection, and therefore,
the associated galaxy bias (more luminous galaxies typically cor-
respond to lower number densities and higher bias values). Again,
we expect a small impact on any CMASS DR9 results (Anderson
et al. 2012) since much of the modelling assumes an average bias
value over the redshift range, which the galaxy mocks appropriately
match.

We also did not include assembly bias effects (Sheth & Tormen
2004; Croft et al. 2011) in our mocks, but kept the concentration
parameter and HOD independent of the environment. For simplicity,
we also have set independent scatters for the number of galaxies
in a halo and the concentration parameter, even if, at a fixed halo
mass, they might be related.

Haloes in the mocks are spherical. In reality, as shown by N-
body simulations, they have a range of shapes that are correlated
to the morphology of the surrounding environment (Smith & Watts
2005 ; White, Cohn & Smith 2010; Schneider, Frenk & Cole 2012).
The mocks described in this paper included none of these effects.
In future versions, a correlation with the environment could be
introduced via the 2LPT estimation of the tidal field.

Finally, the galaxies in the mocks have no individual colours or
luminosities. One could include them by following a similar pre-
scription to one described in Skibba et al. (2006) and Skibba & Sheth
(2009) which was constrained by SDSS luminosity and colour-
dependent clustering, number densities and colour–magnitude dis-
tributions.
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8 G A L A X Y M O C K S FO R T H E C M A S S
DR9 SAMPLE

8.1 Fit to CMASS galaxies

In order to find values of HOD parameters we fit the measured
clustering of the full BOSS CMASS DR9 sample (NGC plus SGC)
with a model based on a mock realization. We choose the mock
realization for which the power spectrum is closest to the mean
of the mocks and compute, for each HOD iteration, ξ (s) with
s between 30 and 80 Mpc h−1, in an area of a quarter of the
sky, with a simple mask and a constant n(z), but including RSD.
We populate haloes below a minimum mass threshold of M =
0.47 × 1013 M� h−1, which corresponds to haloes of 10 particles.
The rest of the galaxies, which according to each HOD would be-
long to haloes with a lower mass, are placed on randomly selected
dark matter particles, of which ∼11 per cent belong to haloes. The
χ2 is computed in 14 bins in log(r), using the monopole data from
Reid et al. (2012), and with a covariance matrix that comes from
a previous version of the mocks. By fitting our HOD to the galaxy
clustering we are partially compensating for the differences be-
tween the clustering of haloes in simulations and the clustering of
PThalos.

To find values of HOD parameters that minimize χ2 we use the
simplex algorithm of Nedler & Mead (1965). We start by making
an initial guess about the values of the HOD parameters and then
construct a 5D simplex with vertices at this initial point and five
other points that resulted from stepping along each coordinate axes
with a certain step size. The algorithm finds the vertex with the worst
χ2 value and moves it by a combination of reflection, reflection
followed by expansion and multiple contractions until the value of
χ2 at that vertex is no longer the worst. The algorithm then keeps
contracting the simplex by moving the next worst vertex until the
size of the average distance from the centre of the simplex to its
vertices is smaller than a desired level of accuracy. If the χ2 surface
is unimodal this algorithm is guaranteed to find the minimum with
any desired accuracy.

Our initial guess of HOD parameters was the best-fitting set
computed using the clustering and number density of an earlier
CMASS sample (see White et al. 2011). After about 40 steps the
resulting best-fitting HOD was

log(Mmin) = 13.09,

log(M1) = 14.00,

log(M0) = 13.077,

σlogM = 0.596,

α = 1.0127. (26)

We find χ2 = 5.89 with nine degrees of freedom. In Fig. 14 we show
in black the mean number of galaxies as a function of halo mass for
our best fit. In red we show the best-fitting model of White et al.
(2011). Both agree to within the 1σ errors, and the mean number
of galaxies at a given mass, N(M), agrees better than 10 per cent
for haloes below 1014.5 M� h−1 and better than 20 per cent between
1014.5 and 1015 M� h−1.

The shadowed area in the plot denotes the masses for which we
have no haloes in the simulation. The galaxies corresponding to
those haloes have been assigned positions and velocities of ran-
domly selected dark matter particles. They form ∼25 per cent of
the total of mock galaxies. If we did not include them then we would
not have recovered a sensible HOD because we would have had to

Figure 14. Best-fitting HOD of the mocks (black solid line), with its con-
tribution split between central galaxies (dashed line) and satellite galaxies
(dotted line). Grey shadowed area shows the mass range for which galaxies
are drawn from matter particles. White et al. (2011) best HOD fit to CMASS
data is shown in red.

populate the available low-mass PThalos with far too many galaxies
in order to reduce the bias.

It is possible to set the HOD parameters of the mocks more accu-
rately by fitting both the two-point and the three-point correlation
functions, as the latter helps to break degeneracies between the
parameters (Sefusatti & Scoccimarro 2005; Kulkarni et al. 2007).
However, computing the three-point function in each step of the
fitting process is computationally very time consuming. We leave
this improvement as a possibility for future versions of the mocks.

8.2 Geometry and mask

We wish to create mocks with a geometry appropriate for the BOSS
CMASS DR9 galaxy sample, including both the NGC and the SGC,
with redshifts between 0.43 and 0.7. These are the data used in a
number of recent cosmological analyses (Anderson et al. 2012;
Nuza et al. 2012; Reid et al. 2012; Ross et al. 2012; Sánchez et al.
2012; Tojeiro et al. 2012a,b; Samushia et al. 2012). In this section
we show how we match the DR9 CMASS geometry.

The NGC and SGC regions can individually be fitted into a re-
shaped box with size L = 2.4 Gpc h−1, which is the size we adopted
for our PTHalos runs. The reshaping is achieved as follows: starting
with a cubic box of size L, we cut the xy plane as indicated in the top
panel of Fig. 15. Using the periodicity of the PTHalos simulation
we can copy or move the particles from outside the range L/2 < x +
y < 3L/2 into that same range. Thus, as shown in the second panel
from the top of Fig. 15, we can obtain a rectangular box of size
L/

√
2, 2L/

√
2, L. The last dimension is defined as the z-direction.

This technique is similar to volume remapping of Carlson & White
(2010).

With this geometry, placing our observer at (x, y, z) = (L/4,
L/4, 0) we can cover a quarter of the sky up to a distance of
L/

√
2 from the observer without repetition of the underlying matter

distribution. This is shown in the third panel from the top of Fig. 15.
For the WMAP cosmological model this distance is equivalent to
reaching a redshift z = 0.663. Note, however, that the constraint of
a maximum distance of L/

√
2 is set only because of the geometry

of the z = 0 plane. Keeping the observer in the same place, but
looking into a direction off the plane, we could map to a higher
distance without repeating the sampled volumes. Translating to
consider an angular region, the above maximum distance is only
valid if we require a full 180◦ wide view and, for example, an
opening of 126.◦87 centred on the direction ê = (x̂ + ŷ)/

√
2 would
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Figure 15. Procedure to fit the geometry of DR9 into the simulation box
using periodic boundary conditions. See text for details.

allow us to reach a distance of
√

5/8L without repetition. The actual
maximum distance achievable with any given box without repetition
will depend on the angular mask of the survey being analysed.

To generate the mocks for DR9 CMASS, we first produce a
redshift shell such as that shown in the bottom panel of Fig. 15. We
then rotate the 3D coordinates to fit either the NGC or SGC angular
footprint into the box containing the redshift shell. Images of these
angular footprints are shown in Fig. 1. The extent of these masks
means that our boxes are of sufficient size that mock catalogues
containing galaxies with redshifts z < 0.7 do not suffer from any
repetition of the underlying density field.

In order to mimic the observations as closely as possible, we use
the MANGLE software (Swanson et al. 2008) to differentiate between
sectors that have different observational properties, as described in
Ross et al. (2012). The completeness in the mock galaxies is defined
slightly differently from that of the CMASS DR9 catalogues. As we
are only interested in large scales, we do not mimic the full small-
scale BOSS targeting procedure in the mocks. In particular, we
ignore the effect of missing close pairs of galaxies that result from
the fact that we cannot observe two targets closer than 62 arcsec
with the same plate; this is a physical limitation imposed by the
size of the fibres. We also ignore the effect of plate-scale angular
variations in our redshift success rate. In section 3 of Anderson
et al. (2012) two completeness measures are defined: the fraction of
objects targeted that are observed or are in a close pair, CBOSS, and
the fraction of galaxies with good redshifts, Cred. For the mocks,
we revise the definition of sector completeness such the angular
variations in galaxy density follow those in the sample with good
redshifts, ignoring close pairs. We therefore define

Cmock = Nobs

Ntarg − Nknown
, (27)

where Nobs is the number of objects observed spectroscopically by
BOSS in any sector, Ntarg is the number of target objects and Nknown

is the number that already have good-quality known redshifts. Fol-
lowing Anderson et al. (2012), the redshift completeness is defined
as

Cred = Ngal

Nobs − Nstar
, (28)

where Ngal is the number of targets within a sector, observed by
BOSS and subsequently spectroscopically classified as galaxies
with good redshifts, and Nstar is the number classified as stars. We
subsample galaxies in our mock catalogues based on the product
Cmock × Cred, i.e. we subsample based on angular fluctuations of
galaxies with good redshifts, ignoring other subtleties. The imple-
mented angular mask can be seen in Fig. 1.

As we are only interested in matching the large-scale clustering
signal we do not include small-scale holes in the survey mask such as
those due to SDSS fields with known photometric problems, objects
observed with higher priorities, bright stars and plate centres (see
Anderson et al. 2012 for details). In total these remove 5 per cent
of the mask area, as defined by overlapping tiles, and the holes
represent small angular patches that are approximately randomly
distributed. As we are only interested in large scales, the net effect
on removing such holes is equivalent to reducing the galaxy density,
rather than the volume. Consequently, we simply match the total
galaxy number after removing these regions from the CMASS DR9
galaxy catalogue.

In order to mimic the measured redshift distribution we subsam-
ple the galaxies in each PTHalos mock based on a smooth fit to
the measured redshift distribution, n(z). We do this separately for

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/428/2/1036/999629 by U
niversity of St Andrew

s user on 16 O
ctober 2018



1048 M. Manera et al.

the NGC and SGC areas, as they have slightly different redshift
distributions (see Fig. 2; Ross et al. 2012).

Using the above procedure we generated 600 PTHalos mocks
with WMAP underlying cosmology, for both NGC and SGC areas.
Note that the volumes sampled in NGC mock i and SCG mock
i will partially overlap, where 1 < i < 600 refers to the mask
number.

9 R E S U LT S F RO M T H E C M A S S D R 9 M O C K S

9.1 Correlation function monopole

We have used the Landy & Szalay (1993) estimator to calculate
the anisotropic redshift-space correlation function, ξ (s, μ), where
s is the redshift-space separation and μ is the cosine of the angle
between the galaxy pair and the line of sight:

ξ (s, μ) = DD(s, μ) − 2DR(s, μ)

RR(s, μ)
+ 1 , (29)

where D stands for the data number counts and R stands for the
random sample number counts with the same redshift distribution
and angular footprint as the data sample.

The moments of ξ (s, μ), expanded in Legendre polynomials,
contain all of the information about the correlation function. They
are given by

ξ�(s) = (2� + 1)

2

∫ 1

−1
ξ (s, μ)P�(μ)dμ. (30)

We will focus on the monopole ξ 0 and the quadrupole ξ 2 (see
below) as in linear theory they contain most of the information. We
weight pair counts based on their number density, with weights w =
(1 + n(z)Pfkp)−1 (Feldman, Kaiser & Peacock 1994), where Pfkp =
20000 h−3 Mpc3. The same applies to the power spectrum. For more
details on the weighting see Ross et al. (2012) and Anderson et al.
(2012).

In the top panel of Fig. 16 we present the mean of the monopole
of the correlation function ξ 0(s) from our mocks. The red and blue
lines show the mean of the 600 mocks using the NGC and SGC
footprint, respectively. The two means are similar as expected, and
differ only because of cosmic variance and differences in the survey
geometry. The error bars show the rms of the mocks, and thus give
an estimation of the typical dispersion between them. The errors are
smaller for the NGC because of the larger area. The DR9 CMASS
ξ 0(s) is shown as open circles.

The relative bias between the data and the mean of the NGC
mocks is shown in the bottom panel of Fig. 16. The differences
between data and mocks are consistent within the data errors on the
scales plotted.

In the top panel of Fig. 17 we present the distributions of the
values of the correlation function of the mocks for several separation
distances, in normalized units. That is, for each bin in s of the
correlation function ξ (s) one can compute its variance and express
the value of the correlation function in its units. The histogram
of the 600 values is also normalized to one. Thus if the mocks
are Gaussian this distribution should follow a normalized Gaussian
distribution. In red solid lines we show the results for the NGC
sample, and in blue dashed lines the results for the SGC sample. We
see no significant deviation from the Gaussian distribution shown
in black dotted lines, and there is no particular scale appearing to
perform worse than the others.

The values of the correlation functions at different scales are
correlated. To have a better understanding of their distribution we

Figure 16. Top: correlation function monopole ξ (s) of the NGC and SGC
mocks, respectively, shown in red and blue. The NGC footprint having larger
area has smaller errors. CMASS DR9 data are shown in open circles. Error
bars are from the 600 galaxy mock catalogues. Bottom: the relative bias
between the mocks and the data, shown for the NGC mocks.

have made a transformation of the correlation function into the basis
where the covariance matrix is diagonal. This is, we have computed
ζ j ≡ Mi, jξ i, where ξ i is the correlation function at bin i and M is the
matrix constituted by the eigenvectors of the correlation function
ordered by their eigenvalues. In the bottom panel of Fig. 17, we show
the normalized distributions of the projected correlation functions
ζ i, for different bins. Each bin has contribution from all scales, but,
in this basis, the distribution of values in each bin is independent
of the others. In red solid lines we show the results for the NGC
sample, and in blue dashed lines the results of the SGC sample. We
see no significant deviation from the Gaussian distribution shown in
black dotted lines, and, again, there is no particular scale appearing
to perform worse than the others.

To check the compatibility of the distribution of the mocks with
a Gaussian distribution, we performed a Kolmogorov–Smirnov test
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Figure 17. Top: histogram of the normalized residual counts of the correla-
tion function ξ (s) for scales s = 84, 116, 148 and 180 Mpc h−1, correspond-
ing to our bins i = 21, 29, 37 and 45. Bottom: histogram of the normalized
residual counts of the correlation function ξ (s) after being projected into the
space where the covariance is diagonal, ζ i, in the bins i = 21, 29, 37 and
45. Each bin now has contributions from all scales (see main text).

on the measured distribution function of ξ t(s) of the NGC sample.
The result depends on the range of scales used. For scales in the
range of 50 < s < 150 Mpc h−1, in 9 per cent of the cases, a
sample drawn from a Gaussian distribution with zero mean and
unit variance would appear less Gaussian than that the distribution
obtained from the 600 mocks.

9.2 Correlation function quadrupole

In Fig. 18, we show the average measurement of the quadrupole for
the NGC (red) and SGC (blue) mocks. The quadrupole measured
from the CMASS DR9 data is shown by the open circles. Error bars

show the rms of the 600 mocks. The anisotropic clustering, i.e. the
quadrupole, can be used to estimate the growth rate of structure f.

In the linear regime the expression for the RSD is (Hamilton
1992)

ξ0(s) =
(

b2
g + 2

3
bgf + 1

5
f 2

)
ξ r(s) , (31)

ξ2(s) = −
(

4

3
bgf + 4

7
f 2

) [
ξ̄ (s) − ξ r(s)

]
, (32)

where ξ r is the real-space matter correlation function normalized so
that∫ ∞

0
ξ r(s)s2ds = 1, (33)

Figure 18. Top: correlation function quadrupole ξ2(s) of the NGC and SGC
mocks, respectively, shown in red and blue. The NGC footprint having larger
area has smaller errors. CMASS DR9 data are shown in open circles. Error
bars show the rms of 600 galaxy mock catalogues. Bottom: the relative bias
between the mocks and the data, shown for the NGC mocks.
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1050 M. Manera et al.

ξ̄ is given by

ξ̄ (s) = 3

s3

∫ s

0
ξ r(s ′)s ′2ds ′, (34)

and bg is the bias of galaxies.
We have estimated values of galaxy bias bg and growth rate f

in the mocks by performing a joint fit to the measured redshift-
space monopole and quadrupole of the correlation function within
scales of 50 < s < 150 Mpc h−1. We used the standard pertur-
bation theory predictions of the real-space pairwise halo veloc-
ity statistics to model the non-linear contribution to the redshift-
space correlation function (Reid & White 2011). The fit gives
bg = 1.90 and f = 0.729. The value of the growth rate recov-
ered in this fit is very close to the value from linear theory
for our cosmological parameters, f = 0.744 (only a 2 per cent
difference).

Note that if we were to fit the quadrupole of the correlation func-
tion using only the linear theory to model the shape of the multipoles
and the linear Kaiser formula for RSD (equation 32), then the recov-
ered best value of the fit to f would be lower. This is expected due to
non-linearities, which act to decrease the redshift-space anisotropies
predicted by the Kaiser formula, even on relatively large scales
(Scoccimarro 2004).

9.3 Power spectrum

The top panel of Fig. 19 shows the average power spectrum of the
mocks, both for the NGC and SGC footprints, compared with the
DR9 CMASS galaxy power spectrum. In the bottom panel we show
the relative bias between the data and the mocks, i.e. the square root
of the ratio between their respective power spectra. The relative bias
is within 10 per cent for scales in the range of 0.01 < k < 0.2 and
increases at very low k.

The amplitude of the power spectrum of the data is slightly higher
than the average of the mocks. Consequently, the mocks underes-
timate the errors of the amplitude of the measured power spectrum
by the same factor, as the sample limit is proportional to the power
spectrum amplitude.

1 0 C O M PA R I S O N W I T H A NA LY T I C
P R E D I C T I O N

In this section we compare the covariance matrix of the galaxy
mocks described above to a covariance matrix based on the ana-
lytical approach of de Putter et al. (2012). This approach provides
a prescription for the dark matter power spectrum covariance ma-
trix, taking into account the effects of survey geometry and us-
ing standard perturbation theory to include non-linear effects. The
resulting covariance matrix has been shown to agree well with
N-body simulations for modes k < 0.2 h Mpc−1. However, to an-
alytically describe the covariance matrix of the galaxy two-point
function, the effects of galaxy bias, RSD and shot noise need to
be taken into account in addition to the dark matter prescription.
We now describe our simplified assumptions for these ingredients
below.

Galaxy bias is assumed to be linear and scale independent, with a
value of bg = 1.9, which is the best fit to the mocks. Shot noise
due to the finite number of galaxies is incorporated following
Feldman, Kaiser & Peacock (FKP, 1994), which treats the shot
noise as Gaussian. Finally, RSD are incorporated using the ex-
pression based on linear theory and the plane-parallel approxima-

Figure 19. Top: power spectrum P(k) of the NGC and SGC mocks, respec-
tively, shown in red and blue. CMASS DR9 data are shown in open circles.
Error bars are from the 600 galaxy mock catalogues. Bottom: relative bias
between the mocks and the data, shown for the NGC mocks. The NGC
footprint has the smaller errors because of its larger area.

tion (Kaiser 1987) δg(k) → [1 + β(k̂ · n̂)2] δg(k), where β = f /bg,
with f ≡ d ln d/d ln a ≈ 	0.55

m (z) the growth factor and n̂ the line-
of-sight unit vector. On large scales, this causes a simple rescaling
of the covariance matrix by the angle average of the fourth power
of the ‘Kaiser factor’, arsd(β) ≡ 1 + 4/3β + 6/5β2 + 4/7β3 +
1/9β4, which we use to multiply the entire covariance matrix.

The final analytic model for the covariance between galaxy power
spectrum estimators in bins i and j in k−space is obtained by
symmetrizing

cgal
ij =

[
2

∫
i

d3k
vk,i

∫
j

d3k′

vk,j

∣∣∣b2
g p(k) q(k − k′) + s(k − k′)

∣∣∣2

+ b4
g cmatt,non−lin

ij

]
× arsd(β), (35)
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where vk, i is the k-volume in a bin i, p(k) is the matter power
spectrum, and

q(k) ≡ I22(k)

I22(0)
, s(k) ≡ I12(k)

I22(0)
, (36)

with Iij (k) = ∫
n̄i(r)wj (r)eik·r d3r , n̄ the selection function of the

survey and w = (1 + n̄P0)−1 the optimal FKP weight function. In
equation (35), cmatt,non−lin

ij describes the non-Gaussian matter power
spectrum covariance matrix and is given by the second and third
lines of equation (47) in de Putter et al. (2012), to which we refer
the reader for more details.

To obtain the covariance matrix of the two-point function, this
matrix is transformed applying the linear transformation between
the Feldman et al. (1994) power spectrum estimator and the Landy
& Szalay (1993) correlation function estimator.

The main caveats in the analytic method come from the simpli-
fied transformation described above between the real-space dark
matter covariance matrix and the redshift-space galaxy covariance
matrix. In reality, the galaxy bias is not linear and this affects the
non-Gaussian contribution to the covariance matrix. Moreover, the
analytic model only describes RSD at the linear level, and therefore
does not include ‘fingers of god’ effects which appear already on
weakly non-linear scales. Finally, the shot noise also contributes to
the non-Gaussian part of the covariance matrix. However, the ana-
lytic description is expected to work well in the linear regime, and
provides a reasonable estimate to compare to the numerical method
from the mocks in the range of scales of interest (35–140 Mpc h−1).

We now compare the galaxy mock covariance matrix with the
analytic estimates using the DR9 NGC footprint and assuming our
WMAP fiducial cosmology described in Section 5.

We start first with the power spectrum covariance matrix. Fig. 20
shows the normalized (to have unit diagonal) covariance matrix or
cross-correlation coefficients, C(k1, k), of the power spectrum of the
mocks (in solid blue lines) and of the analytical model (in red dashed
lines). The plots are for the values of k = 0.0624 and 0.204 h Mpc−1

but similar results are obtained when fixing k1 at other values.
The mocks have a somewhat stronger correlation amplitude than
the analytical model, which is not surprising given that non-linear
contributions from RSD and bias are not taken into account in
equation (35), as discussed above.

We now turn to configuration space. Fig. 21 shows the ratio
between the analytical values of the variance of the correlation
function and the values from the variance of the mocks, which differ
less than 10 per cent. Fig. 22 shows the eigenvalues from the mock
correlation functions (blue circles) compared with the eigenvalues
of the analytical model (red squares). Both give comparable results,
largest eigenvalues having differences at the �10 per cent level,
which increases up to 25 per cent for the fourteenth eigenvalue.

Fig. 22 also shows a comparison with the method of Xu et al.
(2012), denoted by green diamonds, which is based on fitting a
modified form of the Gaussian covariance matrix to the sample
covariance matrix from the mocks using a maximum likelihood ap-
proach. The eigenvalues of the smoothed version of the covariance
matrix are consistent at the 10 per cent level with the values of the
sample covariance from the mocks.

1 1 C O R R E L AT I O N F U N C T I O N A N D
C OVA R I A N C E M AT R I X TA B L E S

Tables 2 and 3 show, respectively, the mean monopole correlation
function and the covariance matrix of the 600 mocks each, each for
both the NGC and SGC footprints. The logarithmic binning of the

Figure 20. Correlation coefficients C(k, k1) for the power spectrum of the
mocks (in blue solid lines) compared to the analytical values (in dashed red
lines).

Figure 21. Comparison of the values of the variance of the correlation
function of the mocks as a function of scale with the analytical value of
the de Putter et al. (2012). The plot shows the ratio of the analytical value
against the mocks.

correlation function adopted matches that of Samushia et al. (2012)
and Reid et al. (2012).

Note that the 600 NGC and SGC mocks are obtained from the
same 600 primary PThalos fields. Therefore, the NGC and SGC
mocks are not truly independent. The measured correlation between
the mocks with the same seeds is however small, (3 ± 2) per cent.
Due to slight sample variation between NGC and SGC samples
(Ross et al. 2012), we adopt a different fitted n(z) for both.
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Figure 22. Eigenvalues of the normalized covariance matrix of the mocks’
correlation function (blue circles) compared to an smoothed version of it
(green diamonds) and to analytical values (red squares).

PTHalos mocks, tables of the covariance matrices and covariance
matrices with different binning will be available from the mocks
website5 after the DR9 is made public and this work is published.
Updated version of the mocks will be also hosted at this site.

1 2 C O N C L U S I O N S

In this paper we have presented a method to quickly produce large
numbers of galaxy mocks for large-scale structure analysis. The
method has five steps.

(i) Generate a dark matter particle field using 2LPT.
(ii) Obtain haloes using a FoF algorithm with an appropriate

linking length, which we have tested to be b = 0.38 times the mean
interparticle separation at redshift z ∼ 0.5.

(iii) Promote the mass of these 2LPT haloes to new PThalos
masses using a transformation that maps the mean mass 2LPT halo
mass function to the desired mass function, typically measured or
derived from simulations.

(iv) Populate the haloes with galaxies using an HOD prescription
with the HOD parameters fit to reproduce the correlation function
of the observed survey, in this case CMASS DR9 sample.

(v) Apply survey mask and galaxy selection criteria.

The time savings compared to doing mock catalogues from N-
body simulations come from the first step (where for the particle
numbers used here, 2LPT is about three orders of magnitude faster
than N-body simulations). The total time spent in making mock
catalogues in PTHalos is dominated by the subsequent steps, and
thus the speedup factor at the end of the procedure is reduced to
about two orders of magnitude.

We have tested the clustering of the PThalos generated by this
method by comparing the halo–matter cross-power spectrum of 40
PTHalos realizations with that of 40 LasDamas N-body simulations
with the same cosmology, mass resolution and Fourier phases. The
clustering is recovered to within 10 per cent level (see Fig. 5). And
the correlation coefficients show that the PThalos trace the same
structures as the N-body simulations (see Fig. 6).

We have used the LasDamas N-body simulations to test the proper
linking length value to be used with FoF haloes from 2LPT fields.
We have found that the theoretical motivated value of b ∼ 0.38

5 http://www.marcmanera.net/mocks/

(Section 6.1) is the one that performs best within the range of
values we test against an N-body simulation (Section 6.2).

We have applied our method to generate 600 galaxy mocks cat-
alogues for the DR9 BOSS CMASS galaxies. For these mocks we
have fixed the mass function of PThalos to that of Tinker et al.
(2008), for our cosmology, and set the HOD parameters by fitting
the DR9 data correlation function (see Section 8.1). In Sections 9.1,
9.3 and 9.2 we present the monopole of the correlation function,
the monopole of the power spectrum and the quadrupole of the cor-
relation function, and its comparison to the CMASS DR9 data. In
Section 11, we present the covariance matrices.

The 600 mocks were produced using a cubic box reshaped to
match BOSS DR9 geometry, separately for both NGC and SGC
footprints. RSD are included. Mocks have been used within the
BOSS collaboration in the analysis of the BAOs (Anderson et al.
2012), RSD (Reid et al. 2012; Samushia et al. 2012), clustering
of galaxies below 100 Mpc h−1 compared with simulations (Nuza
et al. 2012), systematics of CMASS DR9 galaxies (Ross et al. 2012),
bias evolution (Tojeiro et al. 2012a,b) and fit to the full shape of the
correlation function (Sánchez et al. 2012).

Finally, we have compared the covariance matrices to analytical
covariance matrices and found a good agreement with differences
less than 10 per cent for the principal eigenvalues of the covariance
of the correlation (Section 10).

The mocks, and the covariance matrices of this paper, as well as
covariance matrices with other binnings will be available from the
mocks website.6
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Table 2. The monopole of the correlation function multiplied by 105, for ξ0(s) with 30 < s < 160 h−1 Mpc for the DR9 NGC and SGC mocks. Correlation
functions from PTHalos galaxy mock catalogues will be available with this and other binnings will be available at ‘http://www.marcmanera.net/mocks/’.

s Mpc/h 30.8 33.4 36.2 39.2 42.5 46.1 49.9 54.1 58.7 63.6 68.9 74.7 81.0 87.8 95.1

ξ0(s) NGC 497.07 408.22 333.79 270.19 216.45 171.90 134.90 104.60 79.56 59.34 43.06 30.87 22.05 17.49 18.11
ξ0(s) SGC 484.07 397.71 322.96 261.15 207.05 163.71 127.21 96.39 72.85 53.02 37.46 25.43 17.12 12.90 13.25

s Mpc/h 103.1 111.8 121.1 131.3 142.3 154.3

ξ0(s) NGC 19.39 15.45 6.84 −0.45 −3.77 −4.43
ξ0(s) SGC 15.59 12.36 4.23 −2.83 −6.02 −6.20

Table 3. The covariance matrix, multiplied by 105, for ξ0(s) with 30 < s < 160 h−1 Mpc, for the DR9 NGC (top) and SGC (bottom) footprint. Covariance
matrices from PTHalos galaxy mock catalogues with this and other binnings will be available at ‘http://www.marcmanera.net/mocks/’.

s Mpc/h 30.8 33.4 36.2 39.2 42.5 46.1 49.9 54.1 58.7 63.6 68.9 74.7 81.0 87.8 95.1 103.1 111.8 121.1 131.3 142.3 154.3

30.7 2.11 1.51 1.37 1.20 1.05 0.89 0.78 0.65 0.52 0.50 0.40 0.31 0.26 0.21 0.18 0.14 0.10 0.06 0.03 0.01 −0.01
33.3 1.51 1.71 1.29 1.15 1.00 0.86 0.75 0.64 0.51 0.49 0.41 0.31 0.26 0.20 0.16 0.13 0.09 0.05 0.02 −0.00 −0.01
36.1 1.37 1.29 1.50 1.12 0.98 0.84 0.75 0.64 0.53 0.48 0.43 0.33 0.28 0.23 0.19 0.15 0.11 0.08 0.06 0.03 0.01
39.1 1.20 1.15 1.12 1.27 0.96 0.84 0.73 0.61 0.52 0.49 0.44 0.32 0.28 0.23 0.19 0.16 0.12 0.09 0.06 0.03 0.01
42.4 1.05 1.00 0.98 0.96 1.10 0.85 0.74 0.64 0.56 0.52 0.44 0.35 0.30 0.25 0.22 0.18 0.14 0.09 0.06 0.05 0.02
46.0 0.89 0.86 0.84 0.84 0.85 0.96 0.72 0.64 0.55 0.50 0.43 0.34 0.30 0.25 0.21 0.18 0.13 0.09 0.06 0.04 0.02
49.8 0.78 0.75 0.75 0.73 0.74 0.72 0.81 0.64 0.57 0.52 0.46 0.38 0.32 0.27 0.23 0.19 0.15 0.11 0.08 0.06 0.04
54.0 0.65 0.64 0.64 0.61 0.64 0.64 0.64 0.71 0.56 0.51 0.43 0.36 0.31 0.26 0.22 0.18 0.14 0.11 0.07 0.06 0.05
58.5 0.52 0.51 0.53 0.52 0.56 0.55 0.57 0.56 0.64 0.53 0.46 0.38 0.33 0.27 0.24 0.19 0.16 0.12 0.10 0.08 0.06
63.5 0.50 0.49 0.48 0.49 0.52 0.50 0.52 0.51 0.53 0.59 0.49 0.41 0.36 0.30 0.26 0.21 0.17 0.12 0.10 0.08 0.07
68.8 0.40 0.41 0.43 0.44 0.44 0.43 0.46 0.43 0.46 0.49 0.54 0.44 0.38 0.33 0.28 0.23 0.18 0.13 0.11 0.09 0.08
74.6 0.31 0.31 0.33 0.32 0.35 0.34 0.38 0.36 0.38 0.41 0.44 0.47 0.39 0.33 0.28 0.23 0.18 0.13 0.11 0.08 0.08
80.8 0.26 0.26 0.28 0.28 0.30 0.30 0.32 0.31 0.33 0.36 0.38 0.39 0.42 0.35 0.30 0.25 0.20 0.16 0.13 0.10 0.09
87.6 0.21 0.20 0.23 0.23 0.25 0.25 0.27 0.26 0.27 0.30 0.33 0.33 0.35 0.38 0.33 0.28 0.22 0.17 0.14 0.11 0.10
95.0 0.18 0.16 0.19 0.19 0.22 0.21 0.23 0.22 0.24 0.26 0.28 0.28 0.30 0.33 0.36 0.30 0.25 0.19 0.16 0.13 0.10
102.9 0.14 0.13 0.15 0.16 0.18 0.18 0.19 0.18 0.19 0.21 0.23 0.23 0.25 0.28 0.30 0.31 0.26 0.20 0.17 0.14 0.11
111.6 0.10 0.09 0.11 0.12 0.14 0.13 0.15 0.14 0.16 0.17 0.18 0.18 0.20 0.22 0.25 0.26 0.27 0.22 0.18 0.15 0.12
120.9 0.06 0.05 0.08 0.09 0.09 0.09 0.11 0.11 0.12 0.12 0.13 0.13 0.16 0.17 0.19 0.20 0.22 0.23 0.19 0.15 0.12
131.1 0.03 0.02 0.06 0.06 0.06 0.06 0.08 0.07 0.10 0.10 0.11 0.11 0.13 0.14 0.16 0.17 0.18 0.19 0.21 0.17 0.14
142.1 0.01 −0.00 0.03 0.03 0.05 0.04 0.06 0.06 0.08 0.08 0.09 0.08 0.10 0.11 0.13 0.14 0.15 0.15 0.17 0.19 0.16
154.0 −0.01 −0.01 0.01 0.01 0.02 0.02 0.04 0.05 0.06 0.07 0.08 0.08 0.09 0.10 0.10 0.11 0.12 0.12 0.14 0.16 0.18

s Mpc/h 30.7 33.3 36.1 39.1 42.4 46.0 49.8 54.0 58.5 63.5 68.8 74.6 80.8 87.6 95.0 102.9 111.6 120.9 131.1 142.1 154.0

30.7 6.80 5.11 4.36 3.95 3.31 2.94 2.57 2.08 1.75 1.36 1.19 0.83 0.74 0.64 0.63 0.46 0.33 0.27 0.24 0.15 0.08
33.3 5.11 6.11 4.44 3.87 3.40 3.12 2.79 2.25 1.87 1.48 1.22 0.91 0.79 0.69 0.60 0.46 0.38 0.30 0.28 0.22 0.14
36.1 4.36 4.44 5.08 3.88 3.42 3.03 2.65 2.18 1.83 1.43 1.17 0.91 0.78 0.70 0.59 0.46 0.42 0.34 0.30 0.24 0.19
39.1 3.95 3.87 3.88 4.46 3.51 3.07 2.66 2.23 1.89 1.49 1.16 0.92 0.77 0.68 0.57 0.43 0.34 0.31 0.26 0.20 0.17
42.4 3.31 3.40 3.42 3.51 4.06 3.18 2.77 2.30 1.95 1.48 1.20 1.00 0.85 0.70 0.58 0.46 0.38 0.32 0.29 0.20 0.17
46.0 2.94 3.12 3.03 3.07 3.18 3.70 2.92 2.46 2.04 1.65 1.42 1.17 0.93 0.81 0.63 0.46 0.39 0.33 0.30 0.21 0.18
49.8 2.57 2.79 2.65 2.66 2.77 2.92 3.24 2.45 2.09 1.70 1.44 1.18 0.99 0.83 0.67 0.50 0.41 0.34 0.31 0.24 0.21
54.0 2.08 2.25 2.18 2.23 2.30 2.46 2.45 2.76 2.14 1.77 1.48 1.21 1.00 0.83 0.65 0.52 0.43 0.39 0.37 0.29 0.24
58.5 1.75 1.87 1.83 1.89 1.95 2.04 2.09 2.14 2.36 1.83 1.53 1.23 1.06 0.87 0.69 0.55 0.44 0.40 0.36 0.29 0.26
63.5 1.36 1.48 1.43 1.49 1.48 1.65 1.70 1.77 1.83 1.99 1.58 1.28 1.11 0.92 0.77 0.64 0.50 0.47 0.42 0.33 0.28
68.8 1.19 1.22 1.17 1.16 1.20 1.42 1.44 1.48 1.53 1.58 1.80 1.39 1.17 0.98 0.80 0.65 0.52 0.46 0.42 0.33 0.27
74.6 0.83 0.91 0.91 0.92 1.00 1.17 1.18 1.21 1.23 1.28 1.39 1.52 1.21 1.00 0.81 0.66 0.51 0.42 0.39 0.31 0.25
80.8 0.74 0.79 0.78 0.77 0.85 0.93 0.99 1.00 1.06 1.11 1.17 1.21 1.36 1.12 0.91 0.76 0.60 0.49 0.43 0.36 0.30
87.6 0.64 0.69 0.70 0.68 0.70 0.81 0.83 0.83 0.87 0.92 0.98 1.00 1.12 1.29 1.04 0.88 0.71 0.58 0.48 0.40 0.34
95.0 0.63 0.60 0.59 0.57 0.58 0.63 0.67 0.65 0.69 0.77 0.80 0.81 0.91 1.04 1.16 0.98 0.82 0.66 0.55 0.45 0.38
102.9 0.46 0.46 0.46 0.43 0.46 0.46 0.50 0.52 0.55 0.64 0.65 0.66 0.76 0.88 0.98 1.11 0.92 0.75 0.63 0.51 0.44
111.6 0.33 0.38 0.42 0.34 0.38 0.39 0.41 0.43 0.44 0.50 0.52 0.51 0.60 0.71 0.82 0.92 1.03 0.83 0.69 0.56 0.47
120.9 0.27 0.30 0.34 0.31 0.32 0.33 0.34 0.39 0.40 0.47 0.46 0.42 0.49 0.58 0.66 0.75 0.83 0.88 0.74 0.59 0.48
131.1 0.24 0.28 0.30 0.26 0.29 0.30 0.31 0.37 0.36 0.42 0.42 0.39 0.43 0.48 0.55 0.63 0.69 0.74 0.84 0.69 0.56
142.1 0.15 0.22 0.24 0.20 0.20 0.21 0.24 0.29 0.29 0.33 0.33 0.31 0.36 0.40 0.45 0.51 0.56 0.59 0.69 0.74 0.62
154.0 0.08 0.14 0.19 0.17 0.17 0.18 0.21 0.24 0.26 0.28 0.27 0.25 0.30 0.34 0.38 0.44 0.47 0.48 0.56 0.62 0.72
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