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INTRODUCTION

Platform-of-opportunity data, collected aboard in -
dustrial platforms (oil and gas, renewable energies,
seismic exploration), commercial fishing vessels
(López et al. 2004), passenger ferries (Williams et al.
2006, Kiszka et al. 2007, MacLeod et al. 2008) and by
wildlife tour operators (Hauser et al. 2006, Ingram et
al. 2007) are increasingly used in monitoring and for
mitigation schemes of marine mammals (Evans &
Hammond 2004). To date, such data remain under-
utilized because their analysis presents several chal-

lenges. Opportunistic sampling is not spatially or
tem porally randomized and may be restricted to a
particular route, certain time of the day or phase of
tide. This can lead to sparse response data and gen-
erate apparent multicollinearities between the corre-
sponding environmental data.

When the track line is predetermined by a commer-
cial design (e.g. fixed shipping routes), the distribution
of opportunistic effort may be assumed to be indepen-
dent of the target species. Relating animal sightings to
effort can then be used directly to infer relative distri-
butions (e.g. Kiszka et al. 2007, Mac Leod et al. 2008)
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and absolute densities within the confines of the area
surveyed (Williams et al. 2006). Other opportunistic
platforms, such as wildlife tour operators (examined
in the present study), determine the track line in situ,
often according to prevailing environmental condi-
tions (e.g. López et al. 2004, Hauser et al. 2006,
Ingram et al. 2007). Such platforms can collect more
accurate visual and behavioural data by diverting
from the track line to confirm species, gender or group
size (Evans & Hammond 2004), but accounting for the
response of the platform to the study animals and vice
versa can be challenging. Wildlife tour operators in
particular may change their course and speed to in-
crease the time spent in the vicinity of the animals
during each trip or to visit locations where they
believe they have a high probability of finding ani-
mals. Thus, the rate of occurrences of the species is
not necessarily proportional to observation effort.

Habitat and species distribution models often take
the form of statistical regression (Guisan & Zimmer-
mann 2000, Redfern et al. 2006, Aarts et al. 2008,
Matthiopoulos & Aarts 2010) that relate species den-
sity or occurrence to available static environmental
covariates, e.g. sea bottom depth. Often data on prey
density is lacking and the models rely on more indi-
rect explanatory variables. Distribution estimates can
be highly uncertain for species that live in dynamic
environments and have complex behaviour and life
histories, especially at finer spatial and temporal
scales. Few species have been studied in sufficient
de tail to quantify the cause and effect of their
dynamic responses to environmental change (Guisan
& Zimmermann 2000). Collecting such data can be
time consuming, while species management and
protection requires rigorous estimates of distribution
in a timely fashion.

The harbour porpoise Phocoena phocoena Linnaeus
1758 is a prime example of a species for which predic-
tive power of distribution and habitat preference has
been difficult to obtain across large spatial scales
(Embling 2008, Marubini et al. 2009, Embling et al.
2010) because both its environment and its responses
to the environment are highly variable. For example,
although harbour porpoises are known to eat a wide
variety of prey across their entire range, their diet
tends to be dominated by only 2 to 4 main prey
species in any given area (Santos & Pierce 2003, San-
tos et al. 2004). There are consistent reports of the as-
sociations of harbour porpoises with dynamic, high
productivity zones such as upwellings or high energy
coastal locations (see for example Watts & Gaskin
1985, Borges & Evans 1997, Weir & O’Brien 2000,
Johnston et al. 2005, Tynan et al. 2005, Pierpoint

2008). Such ephemeral aggregations of prey may be
particularly important for the harbour porpoise owing
to its small body reserves, cold living environment
and energetically demanding reproductive schedule
(Read & Westgate 1997, Reed et al. 2000, Read 2001,
Lockyer 2003, Johnston et al. 2005, Evans et al. 2008).

Preference for short-lived, yet predictable, oceano-
graphic features may go unnoticed in large-scale
(typically both extent and resolution are large)
 surveys that visit a given area only briefly. Such sur-
veys provide a ‘snapshot’ of the distribution, whereby
it is appropriate to average spatial conditions in an
area and assume pseudo-equilibrium between the
species and its environment (Guisan & Thuiller 2005).
Indeed, different study scales may reveal species−
environment relationships at different levels in a re-
source that is structured hierarchically in space,
where small, high density patches are nested within
large, low density patches (Wiens 1989, Embling
2008, Marubini et al. 2009). Fixed-position land ob -
ser vations have documented that harbour porpoises
swim against the prevailing current in association
with foraging sea birds at certain tidal states (Evans &
Borges 1995, Pierpoint 2008). In salmonid fishes the
trade-off between drifting food availability and swim-
ming cost results in a ‘sliding spatial niche’ across
variable flow conditions (Heggenes 1996). To under-
stand whether this also occurs in the harbour por-
poise, more temporally intensive distribution  surveys
(of relatively long duration and frequent sampling
periods) are needed at a higher spatial  resolution.

We took an empirical approach to explore the
extent of dynamic changes in the habitat prefer-
ences of the harbour porpoise. We implemented a
regression framework for platform-of-opportunity
data and used it to dynamically predict porpoise
occurrence at a strongly tidal and topographically
complex site in southwest Wales. Visual sightings
and effort data were collected aboard a commercial
passenger boat and restructured to account for the
manoevers of the vessel in response to the sightings
of harbour porpoises.

MATERIALS AND METHODS

Data collection

Data were collected aboard the Pembrokeshire
Dive Charter rigid-inflatable boat (RIB) from 19 July
to 20 September 2007. Observations were made by
one primary observer (the same person throughout
the study period) and one secondary observer (1 of
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2 skippers, alternating). In each trip, the vessel
approached Skomer Island (51° 44’N, 5° 18’ W) from
the south side and proceeded around the island on
either the west or east side.

Sea bottom depth drops steeply from 20 to 50 m on
the west of Skomer Island (area, 2 × 4 km, Fig. 1) but
the seabed southeast of the islands is flatter and shal-
lower (~30 m). The island forms 2 narrow sounds in
the east, Little Sound and Jack Sound, in-between
another smaller island and mainland Pembrokeshire.
The sounds connect waters south of Skomer Island to
St. Brides Bay in the north, with another steep slope
just north of Jack Sound (10 to 40 m depth). Water
starts flowing north 2 h before high tide and south 2 h
before low tide. Tidal speeds frequently reach over
6 knots in the 2 sounds and the northern tip of the
island.

The island was divided into geographically distinct
sections of inshore areas (within ~1 km of the shore)
that could be identified from the boat (Fig. 1). Effort
was recorded every time a section was entered. Each
visit to a section, termed ‘effort interval’, varied in

duration. The boat manoeuvred (0 to 8 knots) within
these sections with a variable course. For every effort
interval within a section, the time of day, Beaufort
sea state, swell height, visibility and boat activity
were recorded.

Because of the slow speed and variable course of
the boat, the same individuals could be observed
repeatedly. Instead of attempting to keep track of
individuals indefinitely, we assumed that porpoises
were stationary enough to stay in the geographical
section for the duration of the effort interval. Individ-
uals were counted within the section so that we only
recorded those individuals as separate sightings that
added to the existing count of total animals in the
effort interval. Once we entered a new section, i.e.
new effort interval started, the count could start
again assuming new animals. Because the passenger
boat  often  stayed  with  the  animals,  we  could ob -
serve  animals  at  close  ranges  (<150  m)  and  for
long durations (>10 min). In situ counting of individ-
uals  was  also  made  easier  because  of  variation  in
individual  size  and  because,  atypically  for  the spe-
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Fig. 1. Skomer Island survey sections, overlaid with a grid of 150 × 150 m cells, analysed data set of visits to grid cells and the in-
tegrated surface of depth values. Red points represent the grid cell visits that included a harbour porpoise sighting and black
points represent visits with absence of sightings. Data points outside the section boundaries were assigned to the closest section
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cies,  some  individuals  carried  distinct  white  colour
patterns on their backs and flanks.

GPS data were available on vessel position, speed
and bearing for every survey minute. For each sight-
ing we also recorded time of day, geographical posi-
tion, bearing, estimated sighting distance, total num-
ber of adults and calves, animal behaviour, animal
heading and bird and ocean current associations.
Although the detection distance could be more than
200 to 300 m, sightings were not logged on GPS until
the animals were approached to within ~150 m.

Environmental data used in the analysis

No prey data were available at the required tempo-
ral scale within the study area. Indirect variables may
provide even better predictors than prey density
alone at small spatial scales and in complex topo -
graphy, especially in environments that constrain
the predator physiologically or energetically, such as
swimming in strong currents (Guisan & Zimmermann
2000, Torres et al. 2008). Indirect exploratory vari-
ables were chosen according to data availability and
relevance to the oceanographic conditions that po-
tentially affect both prey distribution and porpoise
swimming cost. Unfortunately, no data encompassing
the study area were available on current strength.

Bathymetry

The Countryside Council for Wales provided a
bathymetric surface from a multibeam survey (pixel
size, 5 × 5 m) (Longdin & Browning Ltd 2002). Miss-
ing depth values outside the range of the multibeam
survey were obtained from bathymetric elevation
and aspect surfaces (pixel size, 120 × 120 m) (n = 57,
11% of all analysed data of visits to grid cells) ob -
tained as ASCII grids via EDINA Marine Digimap
Service (©Crown Copyright / SeaZone Solutions Ltd
2008) (Fig. 1). Slope (0 to 90°) and aspect (i.e. the
azimuthal direction in which a tangent plane faces,
−180 to 180°) were calculated from a 3 × 3 pixel win-
dow from this surface (Slope and Aspect functions in
Manifold 8.0, CDA International).

Tide

Measured tidal heights (accurate to 0.1 cm) were
obtained every 15 min from the Milford Haven tide
gauge (51° 42’ N, 5° 3’ W) courtesy of the British

Oceanographic Data Centre. The rate of change in
tide was calculated as –sin(2πmi /Δti) × Δhi, where mi

is the number of minutes from the previous high tide,
Δti is the time difference (in minutes) between the
high and low tide, and Δhi is the difference in tidal
height of high and low tides in the tidal cycle i. The
index can be thought of as a circular transformation
of the minutes from previous high tide weighted by
the range of tidal heights in that cycle.

Weather data

Hourly sea surface temperature (SST) readings (ac-
curate to 0.1°C), wind direction (degrees, °), wind
speed (knots) and sea level pressure (hPa) from the
Turbot bank buoy (51° 36’ N, 5° 6’ W) were provided
by the Met Office Marine Automatic Weather Station
network. Sea state was recorded in situ with the stan-
dard Beaufort scale. The swell was visually approxi-
mated to 0.5 m  resolution.

Restructuring the opportunistic data

Sections were used to partition the study area in
real time (Fig. 1). For finer spatial analysis, the effort
interval was not used as the unit of porpoise occur-
rence. Instead, a grid of 150 × 150 m squares was
overlaid on the area (Fig. 2) and GPS data within the
effort intervals were used to estimate observation
effort and presence of a sighting for each grid cell.
Each visited grid cell was marked as presence or
absence only once during a visit to a section. Grid
cells with one or more sightings were marked as
presence, and all other visited grid cells as absence.
The time stamp for each grid cell visit was taken as
the first visit to that grid cell. Using effort interval as
the unit of data restructuring ensured that there were
no duplicate presence or absence data within an
effort interval and that increased duration or number
of visits to a grid cell with sightings could not intro-
duce bias in the analysis.

Presence or absence was considered instead of the
full abundance data to reduce biases in the oppor-
tunistic platform. The boat operator responded to
porpoise sightings by changing the course and speed
of the vessel. The vessel was more likely to approach
and manoeuvre in the vicinity of a greater number of
animals foraging rather than travelling, when the
sea state was calmer, and earlier rather than later
during a trip. The vessel approached feeding gannets
Morus bassanus because harbour porpoises were
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often found to forage in association with them. Thus,
search effort for porpoises increased after their
detection, reducing the degrees of freedom in the
 relative abundance data. Restructuring the data re -

moved the effect of increased effort at
a grid cell location after detection but
not the availability bias of foraging
versus travelling porpoises.

Overview of modelling

The occurrence of a harbour por-
poise sighting in each on-effort grid
cell was modelled as a generalized ad-
ditive model (GAM) with a binary re-
sponse within the mgcv (1.4-0) library
in R (Wood 2004, 2006a, 2008). We al-
lowed for non-linear interactions in the
model structure in order to capture
any changes in preferences for one co-
variate as a function of another covari-
ate. We first modelled occurrence with
no interactions and then compared the
best model with models that included
interaction terms. Because of a large
number of possible combinations of
univariate and interaction covariates,
there was a large uncertainty in which
model structure to choose. This uncer-
tainty was addressed by weighted av-
eraging of the best models.

Model without interaction terms

Models were fitted with univariate
smooths of each candidate variable
(Table 1). The duration of the grid cell
visit was not included as an offset be-
cause the vessel could respond to the
presence of animals by staying longer
in the grid cell. It was assumed that ex-
isting animals would be detected im-
mediately after the boat moved into a
new grid cell and those animals would
not enter an empty cell after the boat.
This assumption would be violated if
porpoises avoided the vessel. We be-
lieve avoidance effects were compara-
tively small in this opportunistic sur-
vey. Harbour porpoises ap peared
habituated to the wildlife watching

RIBs (rigid-hulled inflatable boats) that visit the sur-
vey area up to 4 times a day during the summer. Most
times the engine of the vessel was turned off in the
vicinity of the animals and their behaviour could be

Fig. 2. Restructuring the opportunistic data. Vessel track locations (sampled
every minute) are shown as triangles and sighting locations of harbour por-
poises Phocoena phocoena as stars. All track data collected above vessel speed
of 12 knots were discarded. Sightings were first appended to the track loca-
tions to give presence/absence per minute of track line. The track locations
were then grouped by grid cells in each visit to a section so that the location of
the new presence/ absence point was taken as the average track location.
Therefore, in a visit to the section each grid cell was visit ed only once in the re-
structured data. Presence was defined as a visited grid cell with at least one
presence (shown in orange). Sections were used as practical boundaries (see
‘Materials and methods: data collection’) within which individual harbour por-
poises were counted; therefore, a visit to the same grid cell in different sections
could result in a double absence (in the picture), but not a double presence

Variable        Description

Depth            Average depth of the visited grid cell, meters (m)
Slope             Slope of the sea bottom in the range of 0 to 90° calculated 
                      from a pixel window of 3 × 3 (slope function in Manifold)
Aspect           Aspect of the sea bottom in the range of −180 to 180° 
                      (aspect function in Manifold)
Height           Height of the tide, meters (m)
tideFlow        Rate of change of the tidal height in meters (m)
Sunrise          Minutes from local time of sunrise
Day                Number of days from the beginning of the year
SST                Sea surface temperature in tenths of degrees Celsius (°C)
DD                 Wind direction, degrees (°)
FF                  Wind speed, knots
MSLP            Sea level pressure in tenths of hectopascals (hPa)
SS                  Beaufort state of the sea surface, 
                      induced by the local winds (7 categories)
Swell             Swell that is not induced by the local winds

Table 1. Candidate covariates for models to predict occurrence of harbour 
porpoise in southwest Wales
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observed without disruption for extended periods of
time (varying from 10 to 60 min). The number of GPS
locations logged per cell ranged from 1 to 24, of
which 72.5% contained only one GPS location. If the
vessel followed a straight course at its average speed
(4 knots) during single visits, it would take a min i -
mum time of 70 s to cross a 150 m grid cell. Because
all of the 55 first detections were made within the first
minute of the visit to the cell, we could assume that
the likelihood of presence did not in crease with visit
duration.

In the mgcv library, the degree of smoothness (or
inversely, the complexity or wiggliness of the non-
linear relationship) of model terms is estimated as
part of model fitting. The trade-off between fit and
smoothness is controlled by the smoothing para -
meter λ. Thus, models with different degrees of free-
dom are not nested and step-wise model selection
is in appropriate. Instead, Wood (2006b) recommends
shrin k age smoothers as an alternative approach
to automated model selection. These incorporate a
shrin kage component into the smoothing penalties
that forces all the parameters of the smooth to zero
when the model finds no signal in the data. Cyclic
cubic regression splines (Wood 2006a) were fitted to
cyclic covariates, such as wind direction and minutes
from high tide, to ensure continuity of the response at
the end points of the covariate’s range.

In binary models, the unbiased risk estimator
(UBRE) can be minimized to estimate the smoothing
parameter λ and compare models (Wood 2006a). A
probit model was chosen over other link functions
be cause it explained more of the deviance and ap -
peared to retain smaller UBRE scores regardless of
whether the model included interaction terms. To
assess how well the model fitted the data, the ex -
plained deviance for binary data (Nagelkerke 1991,
Faraway 2006) was used.

Model with interaction terms

In a GAM, smooths of several covariates allow for
non-linear interaction terms. We used tensor prod-
ucts, which can be constructed of any type of low
rank smooths to represent interactions of covariates
that have been measured at different scales or quan-
tities, for example tidal height versus wind direction
(Wood 2006a,b).

Automatic selection of interaction terms was neces-
sary because there was little previous knowledge of
their relative importance. Since the data set was
rather small, only 1 or 2 products of second-order 

(2-dimensional) interactions were considered. Lati-
tude and longitude cannot have a direct causal re -
lationship with the underlying process of habitat
selection, but they may correlate spatially with envi-
ronmental variables that do. We wanted to avoid the
possibility of latitude and longitude competing in
model selection with causal covariates and we there-
fore did not include them in model selection.

We explored all 3003 models that included all the
main effects and up to 2 unique pairs of tensor prod-
ucts. Tensors were allowed to include any of the can-
didate main effects. Shrinkage smoothers were used
for automated model selection of each full model.
Therefore, no separate model runs were necessary
for models excluding each of the main effects or
either of the tensors.

Restructuring of the data did not remove the pos-
sibility of observing the same animals across sec-
tions, which might have resulted in some degree of
serial correlation. An autocorrelation structure could
not be included in the model with the shrinkage
smoothers; autocorrelation was therefore checked
after model selection. The best main effects model
and interaction model were fitted with a continuous
first-order autoregressive structure (AR1, lag = 1)
with trip as the grouping factor. This autocorrelation
structure did not improve the main effects model,
and the estimated value for the autocorrelation
parameter (φ) was small and negative (−0.034) for
the best interaction model. The best interaction
model was therefore interpreted without an auto-
correlation structure.

Average predictions from a 
confidence set of models

In situations, such as ours, where multiple models
are being considered and a large number (R) of them
are similarly supported by the data, Burnham &
Anderson (2002) recommend Akaike weights as a
relative measure of model support. The Akaike
weight for the i th model is essentially its Akaike in -
formation criterion (AIC), normalized by all the AICs
from the confidence set of R models:

(1)

where the likelihood of model gi is proportional to

and ΔAICi and ΔAICr are the differ-
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ence between the AIC of the best model and the i th
and r th model structure, respectively.

To select the confidence set of models, Burnham &
Anderson (2002) suggested a cut-off value of 0.05 for
the evidence ratios. Evidence ratios compare the
likelihood of the model gi, given the data, to the like-
lihood of the best model:

(2)

Because of the large number of explored models,
we took a more inclusive cut-off value of 0.00028 that
was determined visually as the point where the
cumulative sum of the Akaike weights, in decreasing
order, stabilized. We also included 2 models whose
UBRE scores were lower than the lowest UBRE score
in the set, but whose Akaike weights were less than
this cut-off value (Models 2 and 24 in Table 3).

Model predictions were averaged across the confi-
dence set weighted by the Akaike weights wi (Burn-
ham & Anderson 2002) as

(3)

where θ̂ is the estimated probability of occurrence.
Confidence intervals and coefficients of variation
(CV) for the averaged estimates of occurrence were
obtained by using an unconditional  variance estima-
tor derived by Burnham & Anderson (2002). 95% CIs
were constructed assuming a t-multiplier:

(4)

RESULTS

A total of 540 grid cell visits were used in the analy-
ses. Of these, 55 had sightings (Fig. 1).

Model without interaction terms

The best model without interaction terms was used
as a baseline for comparison with the single best
interaction model and the model-averaged predic-
tions. The model retained depth, minutes from sun-
rise and SST (Fig. 3, Table 2) and explained 33.38%
of the deviance. Harbour porpoise occurrence on the
water surface increased in deeper waters and in the
earlier hours of daylight (Fig. 3a,b,d). Porpoises were
seen more in the middle of the observed range of
SSTs (Fig. 3c).

The single best model with 
interaction terms

Out of 3003 possible models, 52 did not converge,
probably because of their poor ability to fit the data,
and were therefore excluded from further analyses.
The best interaction model with the lowest UBRE
score (−0.501) retained depth and minutes from
 sunrise as main effects, and 2 tensor products: slope−
tidal flow and tidal height−wind speed (Model 1;
 Tables 2 & 3). This model had an AIC weight of 0.112
(Eq. 1) and accounted for 45.25% of the deviance.

As with the model without interaction terms,
the occurrence of harbour porpoises increased in
deeper waters and in the earlier hours of daylight
(Fig. 4a,b). The probability tended to be lower when
tides were flooding, particularly in regions of steep
sea bed (Fig. 4c,d). The effect of stronger winds
depended on the level of tidal height: a negative
effect occurred at medium-high tidal heights, and a
positive effect occurred at low tidal height (Fig. 4e,f).
Overall, the interaction terms improved the UBRE
scores (Table 2).

Average predictions from a 
confidence set of models

We chose a set of 33 models with evidence ratios
ranging from only 0.00028 to 0.194 with respect to
the best model (see corresponding section in ‘Materi-
als and methods’; Table 3). Together the 33 models
accounted for 23.9% of all Akaike weights.

The relative importance of each covariate was
measured by summing the Akaike weights (Eq. 3)
of all the models in which the covariate was re -
tained by shrinkage (Burnham & Anderson 2002)
(Table 4). The 4 most important covariates were
those included in the single best interaction model:
depth, minutes from sunrise, and the 2 tensor prod-
ucts, slope−tidal flow and tidal height−wind speed.
Both depth and minutes from sunrise were equally
retained (in 75.8% of the models each) and impor-
tant (relative importance for depth was 0.85, and
0.82 for minutes from sunrise). The 2 tensor prod-
ucts, by contrast, were retained only in a minority of
the cases (39.4% slope−tidal flow and 9.1% tidal
height−wind speed) but accounted for a large
amount of the Akaike weights (the relative variable
importances were 0.79 and 0.49, respectively).
Other important covariates were SST, tidal height
alone and tidal height−minutes from high tide inter-
action. Those covariates were present in more mod-
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els (45.5, 24.2 and 33.3%, respectively) than tidal
height−wind speed interaction, but accounted for
lower Akaike weights (0.21, 0.15 and 0.12, respec-
tively) (Table 4).

Averaged predicted occurrence (Eq. 3) was plotted
throughout the range of each covariate, given the
mean values for all other variables (Fig. 5). Harbour
porpoise occurrence was predicted to be more likely
at greater depths (range, 0 to 60 m), medium to low
slope values, higher tidal heights, stronger ebbing
tides or earlier in the day. The occurrence of a por-

poise sighting tended to decrease with flooding tide,
but the decrease was more pronounced (up to ¼) at
higher slope values. The SE values for this interac-
tion term were higher for extreme (low and high) fit-
ted values. The predictions of the tidal height−wind
speed term were more uncertain at higher values of
tidal height (Fig. 6d).

Spatial predictions were made from the confidence
set of models and averaged across different stages of
the tidal cycle. To predict from realistic values of tidal
height and tidal flow, their observed values were

162

Model Main effects model The best interaction model

Formula s(Depth) + s(Sunrise) + s(SST) s(Depth) + s(Sunrise) + te(Slope, tideFlow) + 
te(Height, FF)

Estimated degrees of 1.00, 2.68, 2.83 1.03, 1.42, 12.22, 45.14
freedom for each covariate

UBRE / AIC −0.479 / 269.07 −0.501 / 257.36
Explained deviance 33.38% 45.25%
Autocorrelation −0.012 −0.034
Weight | 2951 models 0.0003 0.1121

Table 2. Summary of the best main effects and interaction models to predict occurrence of harbour porpoise in southwest
Wales. AIC: Akaike’s information criterion; UBRE: unbiased risk estimator; s: smooth function; te: tensor product. See Table 1 

for description of variables

Fig. 3. Component smooth functions of (a) Depth, (b) Sunrise and (c) sea surface temperature (SST) on the scale of the linear
predictor. Solid lines show the smooth estimate, and dashed lines the estimate ±2 SE. (d) 2-dimensional fitted values on the 

response scale for minutes from sunrise (Sunrise) and Depth in the best main effects model
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averaged over 2 h intervals of both the neap
and spring tidal cycle (no direct measurements of
current speeds were available) (Figs S1 to S12 in the
 Sup plement at www.int-res.com/articles/suppl/m448
p155_supp.pdf). Harbour porpoises were most likely
to be encountered at the northwest slope of the island
along the 50 m bathymetric contour during the turn
of high tide (up to 2 h after high tide, Fig. 7). During
spring tides, the probability of occurrence was higher
and extended over a longer period of time, 1 h before
and 2 h after high tide. An increase in occurrence
was predicted in deeper waters before high tide and
over a steeper sloping seabed after high tide. No
 reliable predictions could be made in deeper waters
at low tide or a turning tide, where CV values ex -
ceeded 4. Uncertainty was at its lowest in shallow,
low density areas (CV < 1) (Fig. 7, Figs S1 to S12 in
the Supplement).

DISCUSSION

We set out to predict the habitat preferences of
a highly mobile species in a dynamic en vi ron ment us-
ing temporally intensive opportunistic data. Our mo -
delling approach acknowledged the rapid changeabil-
ity of habitat quality and the fact that the measured
environmental variables were merely proxies for the
underlying drivers of harbour porpoise distribution.
Data were restructured to account for biases in oppor-
tunistic effort. Functionally flexible models were con-
structed and explored in an ex tensive search of the
model space. Uncertainty re lated to the specification
of more complex models was addressed by model av-
eraging. We compared this with less flexible (no inter-
action terms) and less robust (single model) ap-
proaches. We showed that the best interaction models
outperformed the best main effects model (Tables 2
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Model UBRE ΔAIC exp(−0.5 × ΔAIC) Weights | Weights | Evidence 
2951 models 33 models ratios

1 −0.501 0.0 1.000 0.11207 0.46952 1.00000
2 −0.496 15.4 0.000 0.00005 0.00022 0.19414
3 −0.495 3.3 0.194 0.02176 0.09115 0.09139
4 −0.492 4.8 0.091 0.01024 0.04291 0.08527
5 −0.492 6.7 0.035 0.00398 0.01666 0.07543
6 −0.492 4.9 0.085 0.00956 0.04004 0.06527
7 −0.492 7.0 0.031 0.00343 0.01435 0.06372
8 −0.491 5.2 0.075 0.00845 0.03542 0.05239
9 −0.491 5.5 0.065 0.00731 0.03064 0.04905
10 −0.491 5.5 0.064 0.00714 0.02992 0.04096
11 −0.491 7.8 0.020 0.00230 0.00962 0.03915
12 −0.490 8.6 0.013 0.00150 0.00629 0.03680
13 −0.490 8.1 0.018 0.00197 0.00827 0.03548
14 −0.490 12.0 0.002 0.00028 0.00116 0.03401
15 −0.490 5.9 0.052 0.00587 0.02460 0.03057
16 −0.490 6.0 0.049 0.00550 0.02303 0.02461
17 −0.490 8.6 0.014 0.00154 0.00644 0.02413
18 −0.490 7.8 0.020 0.00225 0.00942 0.02049
19 −0.489 11.8 0.003 0.00031 0.00131 0.02006
20 −0.489 8.6 0.013 0.00150 0.00629 0.01803
21 −0.489 6.4 0.041 0.00459 0.01923 0.01762
22 −0.489 6.5 0.039 0.00439 0.01838 0.01450
23 −0.488 6.6 0.037 0.00412 0.01728 0.01447
24 −0.488 16.4 0.000 0.00003 0.00013 0.01371
25 −0.488 6.8 0.034 0.00381 0.01597 0.01339
26 −0.488 8.5 0.015 0.00163 0.00681 0.01339
27 −0.488 7.4 0.024 0.00270 0.01133 0.01338
28 −0.487 8.5 0.014 0.00162 0.00679 0.01310
29 −0.487 7.4 0.025 0.00276 0.01156 0.00933
30 −0.486 8.6 0.013 0.00150 0.00628 0.00279
31 −0.486 8.7 0.013 0.00147 0.00615 0.00246
32 −0.486 9.3 0.009 0.00105 0.00438 0.00046
33 −0.486 8.0 0.018 0.00202 0.00846 0.00028

Table 3. Confidence set of models used to average predictions for the occurrence of harbour porpoise in southwest Wales. AIC: 
Akaike’s information criterion; UBRE: unbiased risk estimator

http://www.int-res.com/articles/suppl/m448p155_supp.pdf
http://www.int-res.com/articles/suppl/m448p155_supp.pdf
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& 3) and that covariates that were able to explain the
data but excluded from the best main effects model
could be incorporated by model averaging (Table 4).

The covariates with the highest relative importance
were depth, minutes from sunrise and interactions be-
tween slope−tidal flow and tidal height−wind speed
(Table 4). Of the 7 top covariates (Akaike weights
higher than 87% of the models), all but depth were
dynamic, and 4 included a tidal variable. Given the
short study period (3 mo) and limited spatial extent,
the importance and shape of response of each
variable should be interpreted in the context of fine
spatio-temporal scale and limited range of the envi-
ronmental data. Further, interpreting the predicted

occurrence of harbour porpoises on water surface as
‘habitat preference’ assumes that a constant propor-
tion of porpoises were detected across all combina-
tions of environmental conditions. Although the mod-
els were informed by observation conditions (wind,
tide, sea state, swell), the availability of porpoises for
observation on the water surface might also vary with
their own behavioural state, dive duration and swim-
ming speed (perception bias, Buckland et al. 2001).

Depth appeared to be the single most important
predictor in the data. All models in the confidence set
included depth (Table 4). Porpoises were more likely
to occur in the deeper ranges (>60 m) of the study
area, with a 3-fold difference in occurrence evident

164

Fig. 4. Component smooth functions of (a) Depth and (b) Sunrise on the scale of the linear predictor, and 2-dimensional fitted
values on (c,e) the response scale or (d,f) the link scale for the best interaction model without an autocorrelation structure.
Points in (a,b) are the partial residuals, and the points in (d,f) show the data coverage. Dashed lines in (a,b) show the smooth
estimate ± 2 SE. Grey surfaces in (c,e) show the fitted values ± SE. Paler shading indicates higher predicted value (d,f). 

See Table 1 for description of variables
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Fig. 6. (a,c) Average predictions on the response scale and (b,d) associated standard error values for interaction terms. 
See Table 1 for description of variables

Predicted
P(occurrence)

<0.005
0.05
0.10
0.20
0.30
0.40
0.50

CV
(0,1]
(0,2]
(2,3]
(3,4]
(4,50]
(50,160]

Fig. 7. Phocoena phocoena. Example spatial predictions (means and confidence interval, CV) for probability of harbour por-
poise occurrence (P[occurrence]) at 2 to 4 h after high tide during spring tide. Predictions for other phases of the tide are shown 

in Figs S1 to S12 in the Supplement at www.int-res.com/articles/suppl/m448p155_supp.pdf

http://www.int-res.com/articles/suppl/m448p155_supp.pdf
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between 20 and 50 m. Importance of depth with low
preference for shallow (<20 m) waters is consistent
with the literature (20 to 200 m on shelf waters, with
lower preference for waters exceeding 100 m) (Car-
retta et al. 2001, Northridge et al. 1995, Weir et al.
2000, Evans et al. 2003, Reid et al. 2003, Marubini et
al. 2009, Embling et al. 2010). Watts & Gaskin (1985)
suggested that the animals may in fact be actively
avoiding turbulence in shallow (<10 m) areas.

Tidal variables were present in all of the best 33
models, but no single tidal variable appeared to fully
explain the effects of tide on harbour porpoise occur-
rence (Table 4). Similarly, tidal variables are sup-
ported in the literature, but the preferred tidal phase
or speed appears to vary across studies (Johnston et
al. 2005, Pierpoint 2008, Marubini et al. 2009, Emb -
ling et al. 2010). Instead of particular tidal conditions
or depth per se, porpoises are likely to select a range
of current regimes and topography that enhance rel-
ative vorticity (Johnston et al. 2005) and concentrate
prey in available high quality patches (Borges &
Evans 1997). Including predicted or measured cur-
rent speed and direction could capture such regimes
more directly; unfortunately such data were not
available for the present study.

The data indicated preference for both medium to
low (1 to 2°) and high (3 to 5°) slope values, but the
occurrence at higher slopes was reduced by a factor
of 4 at flood tide. In the study area, this coincides with
a south-flowing tide and a turning tide from south- to
north-flowing tide. The presence of an island in the
middle of the study area may have augmented this
relationship. Wind- and tide-induced upwelling and
stirring at the steeply sloping sides of an island will
probably enhance local primary productivity, given a
sufficient life span for the feature (Arístegui et al.
1997). Islands can also act as flow obstacles that gen-
erate nutrient uplifting eddies in their wake (Arís -
tegui et al. 1997, Coutis & Middleton 2002). Johnston
et al. (2005) showed that focal regions of tagged ani-
mals tracked by satellite overlapped with localized
fronts where herring Clupea harengus and euphau -
siid zooplankton aggregate, and that a large eddy
and a frontal system extended to these areas (see also
Watts & Gaskin 1985, Read & Westgate 1997). In
Pem brokeshire, foraging hotspots in the vicinity of
islands (Pierpoint 2001, 2008) may indicate a similar
process, as was found within Mousa Sound, south-
east Shetland Islands (Borges & Evans 1997).

An increase in harbour porpoise occurrence at the
beginning and end of the day may be due to increas-
ing foraging effort in the day−night transition phase
or an increase in activity at night. The latter hypo -

thesis is supported by Westgate et al. (1995) and
Carlström (2005) who demonstrated activity maxima
at night, which was also revealed in neighbouring
Cardigan Bay, west Wales, by acoustic monitoring
(Pesante et al. 2008). SST explained variability in the
data better than did season. There was probably not
enough data to distinguish between SST and season
owing to the study period being confined to the sum-
mer months. Seasonal effects would have been ex -
pected to be important in late summer when harbour
porpoise numbers peak in this region (Evans et al.
2003) and in the study area where more than 20% of
our sightings included calves.

Contrary to the results from most systematic tran-
sect surveys (e.g. Evans & Hammond 2004, Tynan et
al. 2005, Embling 2008, Marubini et al. 2009), sea
state and swell did not appear to affect harbour por-
poise presence. The slower speed and responsive-
ness of the opportunistic platform to the first cues of
the animals may have enhanced detections relative
to observation conditions. The variability in detec-
tions with sighting conditions may have also been
better captured by the tidal height−wind speed inter-
action term; such interaction may reflect changes in
perception bias (Buckland et al. 2001) owing to the
behaviour of the porpoises and variability in ability to
sight the animals as a function of different levels of
tidal height and wind speed. Averaged predictions
from the interaction term showed an increased de -
tection of porpoises with wind speed at low tidal
heights and a reverse, i.e. negative effect at high
tidal heights. In shallow tidal waters in southwest
Wales, waves vary semi-diurnally so that short period
waves (those that affect sea state) respond to current
refraction over the tidal cycle (Jones 2000). In partic-
ular, it appeared that our detections in the field de -
clined rapidly when wind direction was opposite to
the direction of tidal waves.

Three important covariates were excluded from
the single best model (SST, tidal height and tidal
height−minutes from high tide). They were retained
in more models in the confidence set than the slope−
tidal flow interaction that was retained in the best
model (Table 4). This is due to the uncertainty re lated
to more complex models, and because no single
covariate could completely capture the effect of tide;
facts that highlight the need for model averaging.
Because we had a high threshold for discarding po -
tential model structures for the confidence set, we
were more inclusive in selecting models to be used in
our averaged predictions. The top 4 models had 31 to
3590 more AIC weight in predictions than the bottom
4 in the confidence set (Table 3).

168



Isojunno et al.: Harbour porpoise habitat preferences

This study shows that biologically feasible inter -
actions can be objectively selected from a set of all
possible 2-dimensional interactions, and that a large
number (>98%) of interaction terms that fail to ex -
plain data can be discarded based on this selection.
The UBRE score of the best interaction model de -
creased by 0.022 units (~12 units of AIC) from the
main effects model, and the explained deviance in-
creased from 33.4 to 45.25%. The weight of the best
main effects model was too small and UBRE was too
high to be included in the confidence set of  models.

Burnham & Anderson (2002) warned against data
dredging and recommended building the set of pos-
sible models based on biological hypotheses. How-
ever, very few cetacean species have been studied in
sufficient detail to develop specific hypotheses about
the ecological processes that determine distributions
(Redfern et al. 2006). Similarly, had we restricted our-
selves to a predetermined set of models, the lack of
previous knowledge on non-linear interactions might
have resulted in some biologically important rela-
tionships being left out. Since the same data were
used for both model specification and prediction, the
hypotheses generated by our exhaustive search
should be tested for the population from an indepen-
dent data set. This can be seen as an iterative process
of both prediction- and hypothesis-driven modelling,
as recommended by Redfern et al. (2006).

Since the AIC for GAMs in mgcv is based on an
approximation of model likelihood (Wood 2006a),
model averaging based on AIC weights might have
introduced artificial model selection uncertainty.
The confidence set was chosen so that it included
both the lowest UBRE and AIC scores (Table 3);
however, within the confidence set, the ranking of
models from the 2 criteria was not identical. For
example, the model with the second best UBRE
score had the second worst AIC score in the set.
Consequently, the importance of the retained vari-
ables (a function of the Akaike weights) in that
model was artificially reduced. These biases could
be addressed by emerging metho dologies such as
UBRE weighted  estimates.

Our results highlight the view that incorporating
flow conditions can improve model accuracy at small
spatial scales. Further research is needed to explore
the importance of flow conditions at larger scales.
The necessary temporal resolution for such dynamic
models is challenging in terms of cost and effort, but
to this end, dedicated survey data could be supple-
mented with platform-of-opportunity observations.
We have shown here that the inherent biases of such
opportunistic data can be accounted for in a robust

approach to give estimates of harbour porpoise habi-
tat preference and spatial usage.
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