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The ocean acoustic Lloyd's Mirror effect (LME) is produced by interference between the direct-path and 

the sea surface phase-reversed reflection of a sound as observed at a receiver. It results in a frequency-

dependent interference pattern that can be observed in a spectrogram. Many studies have found variations 

of spectral characteristics of the 20 Hz ‘regular’ fin whale call, which seem to reflect geographic 

differences. However, variability of spectral measurements may occur due to the LME. Using a bout of 

regular calls with estimated ranges, our study aimed to: 1) show and analyze differences of call features 

due to the LME; and 2) estimate the depth of the vocalizing whale. The composite spectrogram showed 

that different spectral characteristics of the calls could be identified within the same bout. We developed 

transmission loss models considering the LME for a fin whale call generated close to the surface and 

recorded at the sea bottom by an instrument. Our results suggested that some differences measured in fin 

whale calls could be related to the LME. Inference of depths of calling whale was not straightforward and 

needed to be assessed at a finer temporal scale than the full bout of calls. 
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1. INTRODUCTION
The acoustic repertoire of large cetaceans is differentiated at species and population levels, 

which can be useful for management purposes (McDonald et al., 2006). Some calls are highly 

stereotyped and are produced in repeated sequences, which aids automated sound detection. Fin 

whales produce calls between 15 and 142 Hz (Watkins et al., 1987; Hatch & Clark, 2004), but the 

most common and best studied call is the “20-Hz call” (hereafter regular call) (Hatch & Clark, 

2004). This signal is a ~1 second, downward sweeping tone between 30 and 15 Hz (Watkins et al., 

1987). Usually fin whales produce sequences of regular calls that are separated by two types of 

periods of silence: rests, which can last between 1–20 minutes, and longer gaps, lasting between 

20 minutes and 2 hours (Watkins et al., 1987; Delarue et al., 2009; Soule & Wilcock, 2012). These 

sequences form bouts that are separated by periods of silence greater than 2 hours. Other types of 

low frequency sounds, such as back-beats, can be produced within sequences (Clark et al., 2002). 

Back-beats are relatively constant in frequency (between 18 and 20 Hz) and last ~0.8 second (Clark 

et al., 2002). Several studies have found variation in some temporal (e.g., inter-call interval, call 

duration) and spectral features of the regular call (e.g. frequency bandwidth, median frequency) 

that seem to reflect geographic differences (Hatch & Clark, 2004; Delarue et al., 2009; Castellote 

et al., 2011). However, variability of call measurements may also be caused by acoustic 

interference. When a sound source emits a signal, the pressure waves can travel through both direct 

and reflected paths (in water, signals can reflect off both the seafloor bottom and sea surface). 

Depending on sea state and signal frequency, the ocean surface can generate a reflected pressure 

signal with the phase reversed by 180 degrees. The interference between the direct path and this 

surface reflected signal is called the Lloyd’s Mirror effect (hereafter LME) by analogy with optical 

interference. This results in alternating signal peaks caused by constructive interference, with 

signal nulls, caused by partial or complete cancellation. The LME is more prominent within the 

interference field, which is limited by the following ranges (Etter, 2013) that are a function of the 

source depth, ZS, receiver depth, ZR, and signal wavelength, λ: 

𝐿𝑜𝑤𝑒𝑟  𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 ≈ 2√𝑍𝑠𝑍𝑟 (1) 

𝐻𝑖𝑔ℎ𝑒𝑟  𝑟𝑎𝑛𝑔𝑒 𝑙𝑖𝑚𝑖𝑡 ≈
4𝜋 ∙ 𝑍𝑆𝑍𝑅

𝜆
(2) 

For a shallow source (100 m) and an acoustic sensor at 4000 m, the lower and upper ranges 

estimated by these expressions are 1250 and 67,000 m, respectively, considering a 20 Hz 

monochromatic wave. Since the particle displacement is free at the ocean surface, the reflected 

displacement and velocity signal (which are those recorded by geophones in a seismometer) will 

have the same polarity as the direct signal, but the pressure signal recorded by a hydrophone will 

be phase-reversed. As a consequence, hydrophone and geophone recordings will show different 

interference patterns. The sea bottom also generates a reflected signal but we will not consider its 

effect. Ocean-bottom seismometers (OBS) record pressure and particle velocity at a location that 

is essentially at the sea bottom for low frequencies. Therefore, the effect of the surface reflection 

is expected to dominate. The surface reflection will affect the time and frequency structure of 

signals, thus changing the expected acoustic signal. This is evident in spectrograms where 

frequency-dependent interference patterns can be observed. Although the tendency of the LME to 

affect time/frequency measurements of acoustic signals may be detrimental to some analyses, it 

can also provide opportunities to obtain data. The LME can be used to provide an estimate of either 
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source depth or range from a receiver, if an a priori estimate of one of these variables is available. 

Using a sample of regular fin whale calls recorded by one OBS and with estimated ranges from 

the receiver, our study aimed to: 1) show and analyze differences of call features due to the LME; 

and 2) estimate the depth of the vocalizing whale. 

2. METHODS

A. RECORDING INSTRUMENTS & DATASET 

Between August 2007 and July 2008, 24 OBSs were deployed southwest of Portugal to study 

potential tsunami sources (Fig. 1). During this time, fin whale calls were also recorded, which have 

been the target of various studies (Harris et al., 2013; Matias & Harris, 2015). Depths of the 

recording instruments ranged from 1993 m to 5100 m. A description of the deployment, data 

recorded, and details about the instruments can be found in Harris et al. (2013). 

Figure 1. Location of the seismic monitoring array off southwest of Portugal. 

We only considered the regular call type in this study.  Bouts of regular fin whale calls were viewed 

as spectrograms that were calculated with TRITON (Wiggins, 2010), a software package written 

in MATLAB (Mathworks, 2010). During visual exploratory data analysis of these bouts, we 

noticed high signal-to-noise ratio calls with different spectral features. We hypothesized that these 

differences could be the result of surface interference. One bout was selected and analyzed in more 

detail (taken from OBS12, on November 9th 2007, between 01:00 and 03:00) (Fig. 2).  
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Figure 2. Spectrogram showing 01h23m19s of a fin whale bout where spectra consistent with frequency 

dependent interference patterns potentially due to LME were pronounced. The complete bout was produced 

during 3h20m. Back-beats (signals around 18 Hz) were also observed, but were not considered for the 

analysis. Spectrogram parameters: Frame size – 1024 samples, 95% overlap, Hanning window, equalized. 

B. MEASURING CALL CHARACTERISTICS 

Regular fin whale calls were identified using a modified normalized cross-correlation equation 

with a matched filter of the signal waveform (see Matias & Harris, 2015). Our detection routine 

also included the calculation of spectral cross-correlation, following the methodology of Mellinger 

& Clark (2000). A two-dimensional spectrogram synthetic kernel was constructed based on the 

sound of interest. We selected one day of the dataset when there were regular calls with high 

signal-to-noise ratio and high waveform cross-correlation values. The kernel base was derived by 

summing and averaging the spectra of these calls. The recorded time series was analyzed by its 

cross-correlation with the kernel. This produced a recognition function, which represented the 

likelihood at each point in time that the sound of interest was present. A threshold was then applied 

to both the waveform cross-correlation and the spectra function to obtain discrete detection events, 

times when the sound of interest was likely to be present. For each detection, several spectral and 

temporal features were computed based on Hatch & Clark (2004), namely frequency bandwidth, 

starting frequency, median frequency and signal duration. We assessed the variation of these 

features throughout the bout (including when the LME pattern was observed) by calculating 

derivatives of the smoothed original data. The resulting derivatives were smoothed again using an 

average smoothing method. 

C. LME OBSERVATIONS 

To better examine the spectral differences between calls, we extracted periods of silence 

between calls and plotted the calls as individual waveform traces side-by-side along the time axis 

(Fig. 3).  

Figure 3. Individual trace of the waveform of each regular fin whale call of the bout (displayed vertically) 

through time. 
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We also created a composite spectrogram of the bout without the periods of silence for the vertical 

channel (Z channel) of the OBS (Fig. 4). Both the plotted waveforms and spectrogram clearly 

showed an interference pattern. Regular calls are highly stereotyped. Therefore, when they are 

produced in sequences both the waveforms and the composite spectrogram show a relatively stable 

stripe. However, call signals are changed when the surface-reflected path superimposes with the 

direct path of the call. This results in visible curved interference patterns both in the waveforms and 

spectrograms, which create a symmetrical “U” shape characteristic of the LME pattern (Hudson, 

1983). In order to compare the observed interference pattern with modelled data we manually fitted 

curves by eye to the interference observed in our composite spectrogram. These curves represented 

our interpretation of the LME pattern. We kept image dimensions as constant as possible in order 

to avoid distortions of the interference patterns.  

Figure 4. Composite spectrogram of the fin whale bout without periods of silence. Arrows show the features 

that are interpreted as LME interference patterns. Spectrogram parameters: Frame size – 256 samples, 95% 

overlap, Hanning window, not equalized. 

We then simulated the effects of surface reflection on the shape of a regular call. For this, we 

developed MATLAB code where two synthetic identical pulses were added with an increasing 

delay that could be caused by a variable depth or by a variable distance between source and receiver. 

Figure 5 shows the synthetic signals side by side and we can see a similar interference pattern to 

the one in Fig. 3. 

Figure 5. Superposition of two synthetic and identical fin whale regular calls with a decreasing delay, plotted 

side by side. Top) General pattern observed in a sequence of calls; Bottom) Zoom in to a group of calls. 
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D. SOUND SOURCE RANGE ESTIMATION 

A variety of methods have been used to estimate ranges to vocalizing whales from OBS data, 

including the single-station method (SSM) (Harris et al., 2013), multipath-based techniques 

(Wilcock, 2012) and time difference of arrival (TDOA) approaches (Dunn & Hernandez, 2009). 

Range estimates of each regular call were obtained considering the difference between the arrival 

times of the direct signal and the multipath to the same OBS. The majority of the calls within the 

bout considered for this work were close to, or outside of, the critical range of the SSM (Matias & 

Harris, 2015) so the SSM was not applicable in this case.  Multipath arrivals in this dataset had very 

small amplitudes, so we developed a methodology to enhance the signals using the seismic software 

SPW (Parallel Geoscience, 1999). The main processing steps were: i) Computation of the envelope 

of the waveforms using the Hilbert transform. This step transformed the regular call waveform into 

a smooth half-sine curve. ii) Signal filtering to enhance all envelopes with a ~0.8 s duration. iii) 

Since the direct path of the several calls of the bout were not perfectly aligned in time, we used the 

cross-correlation between each trace and a “pilot” trace to correct the small misalignments. This is 

a process identified as “residual statics” in seismic processing jargon. iv) Finally we applied an 

amplitude equalization by automatic gain control to facilitate the picking of the low amplitude 

multipaths of the regular calls. The arrival times for the direct path and multipath were picked as 

smooth continuous lines across the display (Fig. 6). The time difference between the direct path and 

multipath was converted to a range.   

Figure 6. Display of the fin whale bout by SPW after computing the trace envelope and applying a band-pass 

filter and amplitude equalization. The green trace represents the direct pick times and the pink trace 

represents the multipath pick times. 

All ranges of the fin whale calls in our dataset were well inside the range where LME was predicted 

to occur and far from the boundaries defined using Eqns. (1) and (2). 

E. LME MODELLING 

Since our fin whale acoustic dataset had a range estimate for each individual call, we used the 

LME to estimate the depth of the vocalizing whale. Considering a whale that produced sequences 

of regular calls near a smooth reflecting sea surface, the geometry of the LME is given in Fig. 7. 
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Figure 7. LME geometry with a fin whale as a sound source and the OBS as the receiver instrument. P(r,Z): 

Total amplitude of a signal at range r and received at depth Z. R1 represents the direct signal path and R2 

shows the surface-reflected path. 

The travel distances of the direct path, R1, and the surface-reflected path, R2, were calculated using 

Eq. 𝑅0 and 0 (Jensen et al., 2011): 

𝑅1 = √𝑟2 + (𝑧𝑅 − 𝑧𝑠)2 (3) 

𝑅2 = √𝑟2 + (𝑍𝑅 + 𝑧𝑠)2 (4) 

The total signal amplitude was calculated as the sum of the two sound sources. For a 

monochromatic wave, this amplitude is given by: 

𝑃(𝑟, 𝑍) =
𝑒𝑖𝑘𝑅1𝑒−𝛼𝑅1

𝑅1
+ 𝜇

𝑒𝑖𝑘𝑅2𝑒−𝛼𝑅2

𝑅2

(5) 

Where k is the wave number of a monochromatic wave of wavelength λ (Eq. (6)), 

𝑘 =
2𝜋

𝜆
(6) 

and 𝛼 is the frequency-dependent attenuation coefficient (Eq. (7)) (after Brekhovskikh & Lysanov, 

1982): 

∝ = 3.3 × 10−3  +  
0.11𝑓2

1 + 𝑓2
+

44𝑓2

4100 + 𝑓2
+ 3.0 × 10−4𝑓2  (𝑓 𝑖𝑛 𝑘𝐻𝑧) (7) 
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The symbol µ represents the reflection coefficient at the surface. For pressure signal and a perfect 

reflector µ = -1. For particle velocity signal and a perfect reflector µ = 1.  

The transmission loss (TL) due to LME as applied to a fin whale call generated close to the surface 

and recorded at the sea bottom by an OBS was calculated using Eq. (8) and considering a reference 

pressure of Pref = 1 µPa: 

𝑇𝐿(𝑟, 𝑍) = −20𝑙𝑜𝑔 (
𝑃

𝑃𝑟𝑒𝑓
) (8) 

For each trial source depth, we used Eq. (8) to compute the TL for all frequencies and ranges of 

interest and plotted the resulting synthetic spectrogram. TL models and figures were made using a 

modified version of the MATLAB code presented in Thompson (2009). The original code 

modelled TL using a regular range spacing and the altered code used our range estimates. Because 

fin whale calls have a limited frequency band, we applied a cosine taper between 18 and 24 Hz to 

generate synthetic calls. To make the figures more realistic we added some random noise to the 

modeled synthetic calls and adjusted the color scale to generate an image as close as possible to 

the observations. We developed synthetic transmission loss models for a sound source (Zs) varying 

in depth between 10 and 500 m every 10 m. In order to compare the observed LME pattern with 

the modelled data, we overlaid the curves that represented the observed LME pattern on each 

synthetic spectrogram. Depth of the vocalizing whale was estimated by a visual assessment of the 

fit between the modelled data and the observed LME pattern considering: i) the whole bout; ii) 

only the most visible part of the interference pattern; and iii) the most visible part of the 

interference pattern with altered ranges. For the first analysis we assumed that the entire bout was 

produced at a constant depth and compared the complete interference pattern with the modelled 

data. To examine if the depth estimate of the first analysis was adequate we then estimated depth 

using only the most conspicuous features of the interference pattern. The use of multipaths to 

estimate range to the calls required a large amount of manual data selection i.e., identifying 

multipath arrivals. Therefore, the estimated ranges may contain some error. We assessed the 

potential effect of such error on the results by both increasing and decreasing the estimated ranges 

by 500 m and re-running the restricted analysis.   

3. RESULTS

A. ANALYSIS OF LME CHANGES IN CALL CHARACTERISTICS 

During the fin whale bout we interpreted an LME pattern that had three sections where there 

was a considerable change in the waveform of the regular calls: at calls #168, #260 and #350 

(approximately) (Fig. 4). Those sections corresponded to three periods of the composite 

spectrogram where the curvatures of the LME pattern occurred: ~150, 300 and 350 seconds (Fig. 

4). The smoothed derivative of the call features showed three main areas of change that coincided 

with the three sections of the LME pattern (Fig. 8). These areas were more pronounced in the 

signal quality related features. The spectral features were more variable but the smoothed 

derivative showed an accentuated change in the frequency bandwidth and median frequency. The 

large variation of the spectral features at the start and end of the bout coincided with the largest 

estimated ranges between the whale and the sensor and so is likely to be range-related.  
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Figure 8. Smoothed derivative of the features of the regular fin whale calls. All features except signal-to-

noise ratio (SNR) and frequency bandwidth (F_bdw) were scaled to fit in the same plot. Top) Signal quality 

related features: SNR – Signal-to-noise ratio; Wav_Correlation*10 – Waveform cross-correlation value 

multiplied by 10; SIGPOW/10 – Signal power divided by 10; Spec_Correlation*10 – Spectrogram correlation 

value multiplied by 10. Bottom) Spectral features: F_bdw – Frequency bandwidth; Duration*4 – Call 

duration multiplied by 4; F_Start_18 – Starting frequency, difference to 18 Hz; F_Med_18 – Median 

frequency, difference to 18 Hz. Vertical red lines represent the areas where the three curves of the 

interference pattern occurred. When the original data showed peaks the derivative is 0. When the curve of the 

derivative is positive there was an increasing tendency in the original data. If it is negative then there was a 

decreasing tendency. 

B. INFERENCE OF DEPTH OF THE VOCALIZING WHALE 

Even after the signal enhancement and additional processing treatment with the seismic 

software SPW not all multipaths of the calls could be identified. Therefore, further analysis of the 

LME was restricted to the individual traces where range could be estimated, and a new composite 

spectrogram was created (Fig. 9). Despite removing parts of the bout (e.g., Fig. 9 at 125 s), there 

was a clear symmetry in the pattern displayed (Fig. 9).  
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Figure 9. Composite spectrogram of the fin whale bout without regular calls that had no range estimate. 

White curves represent our interpretation of the LME interference pattern fitted by eye. Thick curves 

represent our most certain interpretation of the interference pattern. Dashed curve represent uncertainty in 

the continuity of the thick curve. Spectrogram parameters: Frame size – 256 samples, 95% overlap, Hanning 

window, not equalized. 

The closest synthetic transmission loss models to our observations were the ones with a source 

depth between 330 and 350 m (Fig. 10, right). Models with shallower depths did not show very 

prominent interference patterns (Fig. 10, left).  

Figure 10. TL models for the LME with a varying source depth with the interference patterns identified 

in the composite spectrogram of the fin whale calls (white lines). Left from top to bottom) transmission loss 

models for source depths of 10, 20 and 30 m respectively; Right from top to bottom) transmission loss models 

for source depths of 330, 340 and 350 m respectively. 
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DEPTH ESTIMATION USING PART OF THE BOUT WITH THE MOST VISIBLE INTERFERENCE 

In this second analysis, we estimated a vocalizing depth of ~40 m (Fig. 11, left). The model 

with an estimated depth of ~340 m no longer matched the observed lower curve (Fig. 11, right). 

Figure 11. Best visual fit obtained by comparing the most prominent part of the interference pattern 

identified in the composite spectrogram of the fin whale calls (thick white line) with a transmission loss 

model for the LME with a source depth of 40 m (left) and 340 m (right). The dashed line starting at 23 Hz 

represented part of the interference pattern that was not considered for this part of the analysis because of its 

uncertainty. 

The TL models calculated with altered ranges obtained for shallow source depths (up to 30 m) did 

not match the observed interference pattern. There were no significant changes in the interference 

patterns and the models with depths around 35-45 m retained the best fit (Fig. 12). 
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RANGES WITH +500 m 

ORIGINAL RANGES 

RANGES WITH -500 m 

Figure 12. Best visual fit models obtained by comparing the most prominent part of the interference pattern 

(thick white lines) with a transmission loss model for the LME with a sound source depth of 35 m (left), 40 m 

(center) and 45 m (right) and a deviation of 500 m from the original estimated ranges. The dashed line 

represented part of the interference pattern that was not considered for this part of the analysis because of its 

uncertainty. 

4. CONCLUSION
An understanding of acoustic propagation of biological signals in the ocean is crucial for 

studies of marine mammal sounds that rely on high quality and accurate characterization of the 

signals. Some characteristics associated with biological factors might be artefacts of propagation. 

For example, Premus & Spiesberger (1996) demonstrated that multipath propagation could explain 

the production of the 20-Hz doublets by fin whales in the Gulf of California. Measurement error 

might also occur due to interference caused by propagation. For example, inaccurate estimates of 

sound source levels have been related with the occurrence of LME (Charif et al., 2002). Here, 

accentuated changes in the frequency bandwidth and median frequency occurred at the same time 

as curved patterns in the spectrogram, characteristic of the “U” shape of the LME fringes. These 

results further suggest that LME can cause signal change and thus alter signal features that can be 

used to investigate spatiotemporal variation in stereotyped marine mammal vocalizations. The 
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frequency of occurrence and the extent of impact of the LME on studies that characterize signals 

of cetaceans remains unknown.  

From our initial approach of estimating the depth of the entire bout we obtained a depth of ~340m, 

which is in agreement with the current knowledge of diving behavior of fin whales but not with 

their vocal activity. Aroyan et al. (2000) argue that the depth at which baleen whales call is limited 

by the volume of air required to produce the sound, a volume which decreases with depth due to 

increasing hydrostatic pressure. Fin whales can dive up to 470 m (Panigada et al., 1999) and the 

deepest dives are typically feeding dives (Goldbogen et al., 2006). However, vocal activity of fin 

whales is thought to occur at shallower depths. Tagged fin whales off Southern California showed 

that individuals called at depths up to approximately 15-20 m (Stimpert et al., 2015). Behavioral 

descriptions from Watkins et al. (1987) reports depths of ~50 m for vocalizing whales. For the 

340m estimated vocalizing depth, we assumed a constant depth for the entire bout, which is likely 

to be an unrealistic assumption. When we estimated the depth of only the most visible interference 

pattern, the best fit model was the one with depths around 35-45 m, which is in the range of 

previously estimated vocalizing depths for fin whales. None of our models supported a depth 

between 10-30 m. 

There were sources of potential bias and uncertainty in these analyses that require discussion.  

Firstly, our transmission loss models depended on the estimated ranges of the calls. All ranges of 

the fin whale calls in our dataset were well inside the range where LME was predicted to occur 

and far from the boundaries defined using Eqns (1) and (2). A bias in the estimated ranges could 

occur because of small processing errors in the manual part of the methodology. However, our 

tests with a 500 m deviation in range showed that TL models did not change significantly. These 

results suggest that our models may tolerate some level of measurement error in the range 

estimates, though a more thorough investigation is required. Secondly, the interference curves 

were identified by eye and no quantitative model fitting routine was implemented to find the model 

with the best fit to the observed interference patterns. A more developed analysis with automated 

identification of interference curves and model fit, in addition to a review of the transmission loss 

model, will be undertaken in order to verify our results about the LME in fin whale calls and its 

use to infer the depth of vocalizing whales. 
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