
Automorphism groups of linearly ordered structures and

endomorphisms of the ordered set (Q,6) of rational numbers

Jillian D. McPhee, James D. Mitchell & Martyn Quick

Mathematical Institute, University of St Andrews, North Haugh,
St Andrews, Fife, KY16 9SS, United Kingdom

July 13, 2016

Abstract

We investigate the structure of the monoid of endomorphisms of the ordered
set (Q,6) of rational numbers. We show that for any countable linearly ordered
set Ω, there are uncountably many maximal subgroups of End(Q,6) isomorphic to
the automorphism group of Ω. We characterise those subsets X of Q that arise as a
retract in (Q,6) in terms of topological information concerning X. Finally, we estab-
lish that a countable group arises as the automorphism group of a countable linearly
ordered set, and hence as a maximal subgroup of End(Q,6), if and only if it is free
abelian of finite rank.

1 Introduction

The linearly ordered set (Q,6) of rational numbers has been observed to have a number
of interesting properties. From the model theory point of view, (Q,6) is the Fräıssé
limit of the class of finite linearly ordered sets. In addition, the automorphism group
of (Q,6) is highly homogeneous as a permutation group on Q and it is oligomorphic (see,
for example, [1, Section 9.3]). In this paper, we present an investigation into the structure
of the endomorphism monoid of (Q,6). This continues our work begun in [3], where we
examined the endomorphism monoid of the random graph and other related relational
structures that arise as Fräıssé limits of various types of finite graph. The content of this
paper then presents the beginnings of a counterpart within the study of the monoid of
endomorphisms of (Q,6) to the literature on its automorphism group.

Our main result (Theorem A below) is to describe the groups that arise as maximal
subgroups of the endomorphism monoid of (Q,6). The identity element in each such
maximal subgroup G is an idempotent endomorphism f of (Q,6) and the group G is
then equal to the group H -class of f . We identify the group G, up to isomorphism,
from the structure of the image of f (see Lemma 2.3 below). It is therefore important to
identify which linearly ordered sets arise as retracts (that is, the image of an idempotent
endomorphism) in (Q,6) and, within the first author’s thesis [12], the original proof of
Theorem A relied upon a precise description of such retracts as subsets of Q. Recently,
Kubís [11] has studied retracts of Fräıssé limits in wider generality and he establishes the
following theorem.

Theorem 1.1 (Kubís, [11, Corollary 3.24]) Every countable linearly ordered set is
order-isomorphic to an (increasing) retract of the set of rational numbers.
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(“Increasing” in this statement merely refers to the fact that Kubís uses the term “in-
creasing map” for what we call an order-preserving map.) We shall use this result of
Kubís throughout Section 3 and it will enable us to present considerably shorter proofs
than otherwise possible, essentially because we can always start with some endomorphism
of (Q,6) with image order-isomorphic to some particular linearly ordered set.

Our main result is the following where we describe the groups arising as the maximal
subgroups of End(Q,6). There are some obvious restrictions on such groups: they must
act as automorphisms on the image of the corresponding retract; i.e., they must be an
automorphism group of some linearly ordered set. In the theorem, we observe that this
is the only restriction. Moreover, we also show that each group occurs uncountably many
times as a maximal subgroup of End(Q,6). (Note that the trivial group occurs as the
group H -class of many idempotent endomorphisms including all those with finite image.)

Theorem A (i) Let Ω be a countable linearly ordered set. Then there exist 2ℵ0 distinct
regular D-classes of End(Q,6) whose group H -classes are isomorphic to Aut Ω.

(ii) There is one countable regular D-class D0 of End(Q,6). This D0 consists of the
(idempotent) endomorphisms with image of cardinality 1 and every H -class in D0

is a group H -class isomorphic to the trivial group.

All other regular D-class of End(Q,6) contain 2ℵ0 distinct group H -classes.

Green’s relations are used to describe the structure of a semigroup. We describe
them in more detail in Section 2 below. The D-relation is the coarsest of those that we
consider, while D-classes are refined into L - and R-classes. Finally H = L ∩R. Maximal
subgroups of a monoid are found as the group H -classes within regular D-classes and
the idempotent elements within these classes play the role of the identity element in each
maximal subgroup.

The strategy for proving Theorem A is quite similar to the corresponding theorems
for Fräıssé limits of graphs in [3]. We shall construct uncountably many linearly ordered
sets Cx with trivial automorphism group that we “attach” to the linearly ordered set Ω
in such a way that the result has automorphism group isomorphic to that of Ω. There
are two differences to note. The first is that the construction of the ordered set Cx is
relatively delicate, whereas the graph LΣ with trivial automorphism group in [3] is quite
easy to build. On the other hand, having constructed Cx, the use of Kubís’s result makes
it now straightforward to find an idempotent endomorphism with specified image.

We shall also establish further structural information concerning the endomorphism
monoid of (Q,6) and its elements, as follows:

• We determine the number of R- and L -classes in each D-class and observe that this
depends upon the cardinality of the image of any endomorphism within the D-class
(Theorems 3.7 and 3.9).

• If an endomorphism has finite image then it is a regular element of End(Q,6) (Propo-
sition 3.8), while non-regular endomorphisms can be constructed with certain types
of infinite image (Theorem 3.10) from which it follows there are uncountably many
non-regular D-classes (Corollary 3.11).

Note that the first of these sets of observations applies to all D-classes in End(Q,6),
which stands in contrast to our work in [3], where we established similar results for all
regular D-classes in the endomorphism monoid of the random graph and constructed some
examples of non-regular D-classes with uncountably many R- and L -classes.
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Kubís’s result states that every countable linear ordered set is isomorphic to the image
of some idempotent endomorphism of (Q,6). There is still the question of which subsets
of Q actually arise as the image of an idempotent endomorphism. This is the content of
the second theorem we state in this Introduction, where we characterise precisely which
subsets are the images of idempotent endomorphisms. This theorem was used in the
original proof of Theorem A as it appeared in [12]. Although no longer needed for the
proofs in Section 3, this characterisation still seems to be of interest, particularly in the
context of Theorem 1.1 quoted above from [11].

To state the theorem, we need the following concept. If A is a subset of Q, define a
symmetric relation ∼ on A as follows. If a, b ∈ A with a 6 b, define a ∼ b if c ∈ A for
all c satisfying a 6 c 6 b. It is straightforward to verify that ∼ is an equivalence relation
on A. We shall call the equivalence classes of A under this relation the maximal intervals
of A. Indeed, it follows from the definition that every equivalence class of ∼ is an interval
(as defined in Section 2 below) contained within A and if J is any interval contained in A
then a ∼ b for all a, b ∈ J and hence J is contained within one of the equivalence classes.

Theorem B Let X be a subset of Q. Then there is an idempotent endomorphism
of (Q,6) with image equal to X if and only if no maximal interval within Q \ X is
closed (in the topology on Q induced from the Euclidean topology on R).

Finally, we consider the question of which groups can arise as the automorphism group
of a countable linearly ordered set; that is, which groups can arise as the maximal subgroup
of End(Q,6). In the case of graphs, it is known by Frucht’s Theorem [5], together with
the extension to infinite groups by de Groot [2] and Sabidussi [13], that every countable
group arises as the automorphism group of a countable graph. In the case of linearly
ordered structures, it is easily determined from the definition that there can be no non-
trivial elements of finite order within the automorphism group of a linearly ordered set.
On the other hand, such automorphism groups can, of course, be rather complicated. As
an example, Aut(Q,6) is an uncountable non-abelian group. Although we do not find a
characterisation of all such groups (and it is unlikely that one exists), we do show that
the structure of a countable group that arises as the automorphism group of a countable
linearly ordered set is considerably constrained as the following theorem indicates.

Theorem C Let (Ω,6) be a countable totally ordered set and assume that Aut(Ω,6) is
countable. Then Aut(Ω,6) is a free abelian group of finite rank.

The structure of this paper is as follows. In Section 2, we introduce all the basic
notation and terminology that we require when discussing linearly ordered sets. We also
recall the semigroup theory that we require, including stating results from our previous
paper [3] that we use. Section 3 contains information about the structure of End(Q,6).
We prove Theorem A and establish the results concerning the L - and R-classes in this
monoid. Sections 4 and 5 are devoted to the proofs of Theorems B and C, respectively.

2 Preliminaries and notation

A relational structure is a pair Γ = (V, E) consisting of a non-empty set V and a sequence
E = (Ei)i∈I of relations on V . All the examples in this paper of relational structure
will involve binary relations Ei and will mostly be linearly ordered sets (V,6), which is
where 6 is a reflexive, transitive and anti-symmetric relation on V such that for every
pair u, v ∈ V either u 6 v or v 6 u. In view of this, throughout we shall refer only to
binary relations below although some definitions could be made in greater generality.
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If Γ = (V, (Ei)i∈I) and ∆ = (W, (Fi)i∈I) are relational structures (with relations in-
dexed by the same set I), a homomorphism f : Γ → ∆ is a map f : V → W such that
(uf, vf) ∈ Fi whenever (u, v) ∈ Ei. In the case of linearly ordered sets, we shall also use
the term order-preserving map as a synonym for homomorphism. Thus, if Γ = (V,6)
and ∆ = (W,6) are linearly ordered sets, a map f : V → W defines a order-preserving
map Γ → ∆ if u 6 v in Γ implies uf 6 vf in ∆. Note here that we are following the
convention of writing maps on the right so that the image of a point v ∈ V under a map
is denoted by vf . The image of a order-preserving map f : (V,6) → (W,6) is the linearly
ordered set (V f,6) induced on the set of image values of f . The kernel of f is the equiv-
alence relation { (u, v) ∈ V × V | uf = vf }. For each image value x of f , the associated
kernel class is the preimage xf−1 = { v ∈ V | vf = x } and this is, of course, one of the
equivalence classes defined by the kernel.

Furthermore, in our context an order-isomorphism is an isomorphism between two
ordered sets. The term order-embedding is used to refer to a map f : (V,6) → (W,6)
between two ordered sets such that v 6 w in (V,6) if and only if vf 6 wf in (W,6).
It follows from this definition that f is injective, but one should note that in the case
of linearly ordered sets (V,6) and (W,6) an injective order-preserving map is always an
order-embedding.

A linearly ordered set (V,6) will be called dense if for every pair u, v ∈ V with u < v
there exists some w ∈ V satisfying u < w < v. If A is a subset of V , a maximum element
of A is some v ∈ A such that a 6 v for all a ∈ A. The concept of minimum element is
defined dually.

If Γ = (V,6) is a linearly ordered set, a subset U of V is called convex if whenever u, v
and w are points in V with u < w < v and u, v ∈ U then necessarily w ∈ U also. Note that
the kernel class xf−1 of a point in the image of a order-preserving map f : (V,6) → (W,6)
is always convex. Other examples of convex subsets of Γ include intervals. We shall borrow
the standard notation used for intervals in the real line for intervals in Γ:

[u, v] = {x ∈ V | u 6 x 6 v }
(u, v) = {x ∈ V | u < x < v }

with (u, v] and [u, v) being defined similarly for points u, v ∈ V with u 6 v. A further
point to observe is that if A and B are disjoint convex subsets of Γ, then it must be the
case that either a < b for all a ∈ A and b ∈ B, or that a > b for all such a and b. We
shall write A < B or A > B, respectively, to indicate these situations. Similarly, we shall
use the notation a < B as a short-hand to mean that the element a satisfies a < b for all
b ∈ B.

The class of finite linearly ordered sets possesses the hereditary property, the joint
embedding property and the amalgamation property. This class therefore has a unique
Fräıssé limit [4] (see, for example, [8, Theorem 6.1.2]). It is well-known that this Fräıssé
limit is the ordered set of rational numbers (Q,6). Indeed, this structure is the unique
countable dense linearly ordered set with no maximum or minimum elements, in the sense
that any linearly ordered set satisfying these properties is order-isomorphic to (Q,6).

At certain points, it will be helpful to view the set of ordered rational numbers (Q,6)
as a substructure of the extended real numbers; that is, the relational structure R∗ =
(R ∪ {±∞},6) where 6 denotes the usual order on R together with −∞ 6 x 6 ∞ for
all x ∈ R. We shall then extend the above definitions of intervals to include non-rational
endpoints. Thus, for example, if p, q ∈ R∗, we will be able to write (p, q) for the interval
in Q consisting of all rational numbers x with p < x < q. Note by this notation we are
always referring to a subset of Q but that the endpoints are permitted to be selected from
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outside of Q. In an attempt to avoid confusion, we shall never use the interval notation
to refer to subsets of R.

Note that if p or q is not rational, then some of the intervals (p, q), [p, q], (p, q] and [p, q)
coincide. In addition, our statement of Theorem B above refers to specific intervals in Q
as being closed in the topology induced on Q from the usual topology on R. Note that
an interval in Q is closed in this induced topology precisely when it can be written in the
form [p, q] where p, q ∈ R ∪ {±∞}. In particular, the open interval (p, q) is closed if and
only if p, q ∈ R \Q. When establishing the theorem in Section 4 below, we shall make use
of this description of closed intervals in Q.

One of the properties of the relational structure R∗ is that a non-empty subset A
possesses a (possibly infinite) infimum and supremum. We shall write inf A and supA,
as usual, to denote these elements and we shall use these mostly for subsets A of Q, but
understand that in many cases inf A and supA will be non-rational elements of R∗. Using
these constructions, though, one quickly observes that if A is a convex subset of Q, then
A equals one of the intervals (p, q), [p, q), (p, q] or [p, q] where p = inf A and q = supA are
some points of R∗.

Let M = End Γ be the endomorphism monoid of a linearly ordered set Γ = (V,6).
We say that two elements f and g of M are L -related if f and g generate the same left
ideal (that is, Mf = Mg). They are R-related if fM = gM . Green’s H -relation is the
intersection of the binary relations L and R, and the D-relation is the composite L ◦R
(which is also always an equivalence relation on M). The relevance of these relations
to the study of subgroups contained within the endomorphism monoid is that if e is an
idempotent in M (that is, if e2 = e) then the H -class of e is a subgroup of M [10,
Corollary 2.2.6] and, morever, the collection of maximal subgroups of M are precisely the
H -classes of idempotents of M . We use the term group H -class to refer to such maximal
subgroups.

The following lemma is stated in greater generality for relational structures in our
previous paper [3]. The first two parts are inherited from information concerning the
L - and R-classes of the full transformation monoid TV of all maps V → V (see [10,
Exercise 2.6.16]). Our restatement here is simply interpreting that lemma in the context
of linearly ordered sets.

Lemma 2.1 ([3, Lemma 2.3]) Let f and g be endomorphisms of the linearly ordered
set Γ = (V,6).

(i) If f and g are L -related, then V f = V g.

(ii) If f and g are R-related, then ker f = ker g.

(iii) If f and g are D-related, then im f and im g are order-isomorphic.

An element f in the endomorphism monoid M is said to be regular if there exists
g ∈M such that fgf = f . An idempotent endomorphism e is regular because e3 = e and
it is known that if f is regular, then every element in the D-class of f is also regular [10,
Proposition 2.3.1]. As noted in [3], in the case of regular endomorphisms the implications
in Lemma 2.1 reverse.

Lemma 2.2 ([3, Lemma 2.5]) Let f and g be regular elements in the endomorphism
monoid of the linearly ordered set Γ = (V,6). Then

(i) f and g are L -related if and only if V f = V g.
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(ii) f and g are R-related if and only if ker f = ker g.

(iii) f and g are D-related if and only if im f and im g are order-isomorphic.

The final fact that we require from our earlier work is that we can identify the group
H -classes in End Γ as the automorphism group of the image of endomorphisms within
the class.

Lemma 2.3 ([3, Proposition 2.6(iii)]) Let f be an idempotent endomorphism of the
linearly ordered set Γ = (V,6). Then the group H -class Hf is isomorphic to the auto-
morphism group of the image of f .

3 The structure of End(QQQ,666)

This section is devoted to the study of the endomorphism monoid of the ordered set (Q,6)
of rational numbers. The first stage is to prove Theorem A concerning the group H -classes
within End(Q,6). In preparation for the proof, we establish information concerning the
number of idempotent endomorphisms with specified image (Theorem 3.1) and construct
a family of linearly ordered sets with trivial automorphism group (Proposition 3.5). The
remainder of the section is then concerned with establishing our information about L -
and R-classes and about non-regular D-classes in End(Q,6).

Theorem 3.1 Let Ω = (X,6) be any countable linearly ordered set. Then

(i) if |X| = 1, there are ℵ0 idempotent endomorphisms f of (Q,6) such that im f ∼= Ω;

(ii) if |X| > 1, there are 2ℵ0 idempotent endomorphisms f of (Q,6) such that im f ∼= Ω.

Proof: (i) An endomorphism with image of cardinality 1 has the form xf = q for all
x ∈ Q, where q is some fixed point in Q. All such endomorphisms are idempotent and
there are countably many such maps.

(ii) Suppose |X| > 1. By Theorem 1.1, there exists an idempotent endomorphism f
of (Q,6) with im f ∼= Ω. Choose some q ∈ im f subject to the condition that q is not
the maximum element of the image and let I = qf−1. Put α = inf I and β = sup I,
which are defined elements of the extended real numbers R∗. By our assumption, β <
∞. We shall define an idempotent endomorphism gγ of (Q,6) as gγ = ξfη in terms of
certain ξ, η ∈ End(Q,6). The definition of the latter will depend upon the choice of the
parameter γ > β, but will also be different according to whether or not β ∈ Q and whether
β lies in the interval I. The maps ξ and η will be arranged so that ηξ is the identity map
and the image of gγ is also isomorphic to Ω.

Case 1: β /∈ Q. In this case, we first choose any γ ∈ R \Q with with γ > β. Note that
there are uncountably many possible choices for such γ. Since β /∈ Q, necessarily α < β,
so we may also choose some δ ∈ R \ Q satisfying α < δ < β. The intervals (δ, β), (δ, γ),
(β,∞) and (γ,∞) are all order-isomorphic to (Q,6) and so there are order-isomorphisms
θ1 : (δ, β) → (δ, γ) and θ2 : (β,∞) → (γ,∞). Define ξ to be the order-automorphism
of (Q,6) given by

xξ =


x for x < δ

xθ1 for δ < x < β

xθ2 for x > β

and η to be its inverse. Certainly then ηξ is the identity map on Q and Iξ−1 = I ∪ (β, γ)
(that is, Iξ−1 = (α, γ) or [α, γ), depending upon whether or not α ∈ I).
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Case 2: β ∈ Q and β ∈ I. In this case, consider any γ ∈ R with γ > β. We use an
order-isomorphism θ from (γ,∞) to (β,∞), to define ξ, η ∈ End(Q,6) by

xξ =


x for x 6 β

β for β < x 6 γ

xθ for x > γ

and

xη =

{
x for x 6 β

xθ−1 for x > β.

Then by construction, ηξ is the identity map on Q and Iξ−1 = I ∪ (β, γ] (that is, Iξ−1 =
(α, γ] or [α, γ], depending upon whether or not α ∈ I).

Case 3: β ∈ Q but β /∈ I. Again we consider any γ ∈ R with γ > β. We pick
some δ ∈ Q with δ > γ and let θ1 : (α, γ) → (α, β) and θ2 : (δ,∞) → (β,∞) be order-
isomorphisms. Now define ξ, η ∈ End(Q,6) by

xξ =


x for x 6 α

xθ1 for α < x < γ

β for γ 6 x 6 δ

xθ2 for x > δ

and

xη =


x for x 6 α

xθ−1
1 for α < x < β

δ for x = β

xθ−1
2 for x > β.

Then ηξ is the identity map on Q and Iξ−1 = I ∪ [β, γ) (that is, Iξ−1 = (α, γ) or [α, γ),
depending upon whether or not α ∈ I).

Using the ξ and η just defined (depending upon, amongst other things, a choice of γ),
write gγ = ξfη. Using the fact that f2 = f and ηξ is the identity, we observe that gγ is
also an idempotent endomorphism of (Q,6). As ξ is surjective and η is injective in each
case, it follows that im gγ = im fη ∼= im f ∼= Ω. Moreover, qg−1

γ = Iξ−1 and this equals
some interval J with (α, γ) ⊆ J ⊆ [α, γ].

In conclusion, as in each case there are uncountably many choices for γ, we have
constructed 2ℵ0 idempotent endomorphisms gγ with image isomorphic to Ω. �

We shall now embark upon the proof of our main theorem. The first step is to construct
some linearly ordered sets with trivial automorphism group.

Consider an enumeration x = (xn) of the set Q of rational numbers. Define a set Cx

depending upon this enumeration as a set of ordered pairs of rational numbers and integers
as follows:

Cx = { (xn, i) | n ∈ N, 0 6 i 6 n } .

We write Cx = (Cx,6) for the linearly ordered set where 6 is the lexicographic order
on Cx:

(xm, i) 6 (xn, j) if and only if either xm < xn, or both m = n and i 6 j.
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Essentially this definition arranges the points in the set Xn = { (xn, i) | 0 6 i 6 n } in
increasing order as indexed by i and then orders the setsXn relative to each other according
to the linear order on Q. Thus, we are in effect constructing Cx from (Q,6) by replacing
each point xn in Q by a finite chain of length n.

It is a straightforward observation, using the fact that (Q,6) is linearly ordered, to
observe that Cx is also a linearly ordered set. Furthermore, we similarly deduce the
following facts.

Lemma 3.2 Consider two points (xm, i), (xn, j) ∈ Cx.

(i) There are infinitely many c ∈ Cx and infinitely many d ∈ Cx such that c < (xm, i) <
d.

(ii) If xm < xn, then there exist infinitely many c ∈ Cx such that (xm, i) < c < (xn, j).

(iii) For every i with 0 6 i < n− 1, there exist no element c ∈ Cx such that (xn, i) < c <
(xn, i+ 1).

Lemma 3.3 Let x = (xn) and y = (yn) be two enumerations of Q. Then Cx = (Cx,6)
and Cy = (Cy,6) are order-isomorphic if and only if the map xn 7→ yn, for n ∈ N, defines
an automorphism of the ordered set (Q,6). Specifically, if φ is an order-isomorphism
from Cx to Cy, then (xn, i)φ = (yn, i) for all n ∈ N and 0 6 i 6 n.

Proof: Suppose φ is an order-isomorphism from Cx to Cy. Then for n ∈ N, write
Xn = { (xn, i) | 0 6 i 6 n } and Yn = { (yn, i) | 0 6 i 6 n }. We shall first observe that,
for each n ∈ N, there exists some m with Xnφ ⊆ Ym. Suppose, for a contradiction,
that Xnφ * Ym for all m ∈ N. The elements (xn, i), for 0 6 i 6 n, are then mapped
into at least two different sets Ym and so there is some value k such that (xn, k)φ ∈ Ym
and (xn, k + 1)φ ∈ Ym′ for distinct values m,m′ ∈ N. Since (xn, k)φ < (xn, k + 1)φ, it
must be the case that ym < ym′ . Now by Lemma 3.2(ii), there exists c ∈ Cy satisfying
(xn, k)φ < c < (xn, k + 1)φ. We then conclude (xn, k) < cφ−1 < (xn, k + 1), which
contradicts Lemma 3.2(iii).

In conclusion, there exists some m such that Xnφ ⊆ Ym. However, φ−1 also defines an
order-isomorphism from Cy to Cx and the set Ymφ

−1 contains all the points from Xn. The
argument above applied to φ−1 then establishes that Ymφ

−1 = Xn and so Xnφ = Ym. Since
Xn contains precisely n points, we conclude that m = n. Since φ is order-preserving, it
now follows that (xn, i)φ = (yn, i) for all n ∈ N and 0 6 i 6 n, as claimed in the statement
of the lemma. Now, if xm 6 xn, then it follows that (xm, 0)φ 6 (xn, 0)φ, so necessarily
ym 6 yn. Hence we conclude that the map xn 7→ yn is indeed an automorphism of (Q,6).

Conversely, if xn 7→ yn is an automorphism of (Q,6), then the map (xn, i) 7→ (yn, i),
for 1 6 i 6 n and n ∈ N, defines an order-isomorphism Cx → Cy. This completes the
proof of the lemma. �

Taking y = x in the formula for order-isomorphisms in the previous lemma yields:

Corollary 3.4 Let x = (xn) be an enumeration of Q and Cx = (Cx,6). Then Aut Cx is
trivial. �

Proposition 3.5 There exists a set P of 2ℵ0 many enumerations of the set Q of rational
numbers such that Cx 6∼= Cy for distinct x,y ∈ P .
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Proof: Fix one enumeration x = (xn) of the set Q. For each i ∈ N, define πi to be
the transposition (2i 2i+ 1) in the symmetric group Sym(N) and, for any subset A ⊆ N,
define the involution πA =

∏
i∈A πi. We shall write xπA for the enumeration (xnπA) of Q

and set P = {xπA | A ⊆ N }. Note that, for distinct subsets A,B ⊆ N, the map given
by xnπA 7→ xnπB for n ∈ N cannot be an order-automorphism of (Q,6), since πAπB is
again an involution. It then follows that the ordered sets CxπA , for A ⊆ N, are pairwise
non-isomorphic by Lemma 3.3. �

If Ω = (U,61) and Λ = (V,62) are two linearly ordered sets, we can define a new
ordered set, that we shall denote by Ω + Λ, as Ω + Λ = (U ∪ V,6), where we assume that
the sets U and V are disjoint and where we define the order 6 on U ∪ V by v 6 w if
and only if one of the following conditions holds (i) v, w ∈ U and v 61 w, (ii) v, w ∈ V
and v 62 w, or (iii) v ∈ U and w ∈ V . In effect, in Ω + Λ, we are retaining the order
in both Ω and Λ but in addition are placing all points in Ω before all points in Λ. One
observes immediately that Ω+Λ is then also a linearly ordered set and is the union of two
substructures isomorphic to Ω and to Λ, respectively.

Proposition 3.6 Let Ω = (V,6) be any linearly ordered set.

(i) If x is any enumeration of the set Q of rational numbers, then Aut(Ω + Cx) is
isomorphic to Aut Ω.

(ii) If x and y are enumerations of Q, then Ω + Cx is order-isomorphic to Ω + Cy if and
only if Cx is order-isomorphic to Cy.

Proof: (i) Recall that the set of points in Ω + Cx is the union V ∪ Cx. To simplify
notation, we shall write 6 for the order both on Ω and on Ω + Cx, since they coincide
for points in the set V . We shall first, using a variation of the argument employed in
Lemma 3.3, show that if f ∈ Aut(Ω + Cx) then V f = V and Cxf = Cx. As before, we
write Xn for the subset { (xn, i) | 0 6 i 6 n } of Cx.

Case 1: We first consider the case when Cxf ⊆ Cx. Then for each n ∈ N , the set Xn

is mapped into Cx and the same argument as used in Lemma 3.3 shows that there exists
some m = m(n) such that Xnf ⊆ Xm. Note m > n due to the cardinality of the two sets
involved.

If m > n, there exists some c ∈ Xm \ Xnf . Pick some d ∈ Xn. Now either df < c
or c < df . We consider the case when c < df . Now c = vf for some v ∈ V ∪ Cx. We
use parts (i) or (ii) of Lemma 3.2, depending upon whether v ∈ V or v ∈ Cx, to produce
infinitely many elements b ∈ Cx satisfying v < b < d. Then vf < bf < df , so bf ∈ Xn

also. This is a contradiction since Xn is finite. When df < c, the argument is identical
(though we know immediately from the order on Ω + Cx that necessarily c is the image
of a point from Cx). We conclude that m(n) = n for all n ∈ N and so our map satisfies
Xnf = Xn for all n ∈ N and hence Cxf = Cx. It then follows that V f = V also.

Case 2: Suppose that Cxf 6⊆ Cx. Then there exists some c ∈ Cx such that cf ∈ V .
Then if d is any point in Cx, it satisfies cf < d, so that c < df−1. Necessarily then
df−1 ∈ Cx and we deduce d ∈ Cxf . We conclude that in this case Cxf ⊇ Cx. We then
apply the inverse of f and note that f−1 is an automorphism of Ω + Cx that satisfies
Cxf

−1 ⊆ Cx. Case 1 tells us that Cxf
−1 = Cx and V f−1 = V . Hence Cxf = Cx and

V f = V , as claimed.
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Now that we know Cxf = Cx and V f = V for every automorphism f of Ω + Cx it is
a simple matter to conclude that

Aut(Ω + Cx) ∼= Aut Ω × Aut Cx ∼= Aut Ω,

with use of Corollary 3.4.
(ii) This is established similarly. We observe that if φ is an isomorphism from Ω + Cx

to Ω + Cy, then we show, using the argument just used in part (i), that V φ = V and
Cxφ = Cy. It then follows that φ induces an isomorphism Cx → Cy. �

We are now able to prove our main theorem concerning the maximal subgroups of
End(Q,6) as stated in the Introduction.

Proof of Theorem A: (i) Let Ω be any countable linearly ordered set. Let P be a set
of 2ℵ0 many enumerations of Q such that Cx 6∼= Cy when x and y are distinct members
of P , as provided by Proposition 3.5. Now if x ∈ P , then Ω+Cx is some countable linearly
ordered set and so, by Theorem 1.1, Ω + Cx is isomorphic to some retract of (Q,6); that
is, there is an idempotent endomorphism fx of (Q,6) such that im fx ∼= Ω + Cx. Then
the H -class of fx is

Hfx
∼= Aut(Ω + Cx) ∼= Aut Ω,

by Proposition 3.6(i). Hence each fx is an idempotent endomorphism with H -class iso-
morphic to the automorphism group of Ω.

Observe, moreover, that since Ω + Cx 6∼= Ω + Cy for distinct x,y ∈ P as shown in
Proposition 3.6(ii), the D-classes of the idempotent endomorphisms fx are distinct, using
Lemma 2.2(iii). Hence there are 2ℵ0 distinct regular D-classes of End(Q,6) with group
H -class isomorphic to Aut Ω.

(ii) We make use of Theorem 3.1. Part (i) of that theorem tells us that any endomor-
phism of (Q,6) with image of cardinality 1 is idempotent, therefore regular, and the set
of all such endomorphisms forms a single D-class D0 by Lemma 2.2(iii). If f ∈ D0, then
{f} is a single H -class, again by use of Lemma 2.2, since any two endomorphisms in D0

are R-related but no distinct pair are L -related. Thus Hf = {f} and this is a copy of
the trivial group.

If D is any other D-class of End(Q,6). Fix f0 ∈ D and write Ω = im f0. By
Theorem 3.1(ii), there are 2ℵ0 idempotent endomorphisms f of (Q,6) with im f ∼= Ω.
Each such f belongs to D by Lemma 2.2(iii) and determine a distinct group H -class
Hf

∼= Aut Ω by Lemma 2.3. This completes the proof of the theorem. �

The first paragraph of the proof of Theorem A(ii) above also establishes part (i) of our
result about the R-classes of End(Q,6) as follows.

Theorem 3.7 Let f be an endomorphism of (Q,6) and write X = im f . Then

(i) if |X| = 1, the D-class of f is a single R-class;

(ii) if |X| > 1, the D-class of f contains 2ℵ0 many R-classes.

Proof: (ii) Assume that |X| > 1. Our argument is similar to that which establishes
part (ii) of Theorem 3.1 above. Indeed, choose q ∈ X that is not the maximum element
of X, put I = qf−1, α = inf I and β = sup I. Choose γ to be a suitable real number
with γ > β and then define maps ξ and η by the same formulae (depending upon whether
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β ∈ Q and whether β ∈ I) as found in the proof of Theorem 3.1. Then, as noted before,
ηξ is the identity map on Q and (α, γ) ⊆ Iξ−1 ⊆ [α, γ].

Now the map ξf is L -related to f in view of the formula ηξf = f . Note that the
kernel class of all points in Q that map to q under ξf equals q(ξf)−1 = Iξ−1, whose form
is as described above. Thus as γ varies, we obtain 2ℵ0 endomorphisms in the D-class of f
that are not R-related to each other because they have distinct kernels. �

Proposition 3.8 Let f be any endomorphism of (Q,6). If im f is finite, then f is
regular.

Proof: Let X = im f and x1, x2, . . . , xn be the distinct image values of f . Choose
qi ∈ xif

−1 for each i. There is an automorphism g of (Q,6) satisfying xig = qi for each i.
Then g ∈ End(Q,6) and fgf = f . Hence f is regular. �

Theorem 3.9 Let f be an endomorphism of (Q,6) and write X = im f . Then

(i) if X is finite, the D-class of f contains ℵ0 many L -classes;

(ii) if X is infinite, the D-class of f contains 2ℵ0 many L -classes.

Proof: (i) First note that if X is finite, then f is regular by Proposition 3.8 and, indeed,
by Lemma 2.2(iii), another endomorphism g is D-related to f if and only if |im g| = |X|.
Given two endomorphisms g and h with images of the same cardinality, they are L -related
if and only if their images are equal (in addition to being isomorphic). There are countably
many choices for a subset of Q of a particular finite cardinality and hence the D-class of f
contains countably many L -classes.

(ii) Now suppose that X is infinite. We divide into two cases:

(a) Either X contains an infinite sequence (xn) of points such that, for each n, xn is
the maximum member of X \ {x1, x2, . . . , xn−1},

(b) or there are finitely many points x1, x2, . . . , xn in X such that xi is the maximum
member of X \{x1, x2, . . . , xi−1} and such that X \{x1, x2, . . . , xn} has no maximum
member.

(When X has no maximum element, we are in Case (b) with n = 0.)
Suppose then that we are in Case (a). Put Y = X \ {x1, x2, . . . } and let α = supY .

If Y is empty, take α = −∞. Note then that α < xn < xn−1 for all n. Now pick any
rational number q1 > α and, having chosen q1, q2, . . . , qn−1, pick any rational number qn
satisfying α < qn < qn−1. There are 2ℵ0 many ways of choosing the resulting sequence
q = (qn). Now (α,∞) is order isomorphic to Q and hence there is an order-preserving
bijection ξ = ξq from (α,∞) to itself that maps xn to qn for each n ∈ N. Extend this to
an automorphism ξ of (Q,6) by defining xξ = x for all x 6 α. Then fξ is R-related to f
and im fξ = Xξ = Y ∪ {q1, q2, . . . }. Consequently, by Lemma 2.1(i), all such fξ lie in
different L -classes and we have established the claimed result in this case.

We now turn to Case (b). Put Y = X \ {x1, x2, . . . , xn} and let α = supY . (In
this case, necessarily Y is non-empty.) Note, by assumption, α /∈ X. Choose any real
number β with β < α. Since the intervals (−∞, α) and (−∞, β) are order-isomorphic,
there is an order-isomorphism θ : (−∞, α) → (−∞, β). Pick any rational number γ with
α 6 γ 6 xn. Then define ξ, η ∈ End(Q,6) by

xξ =

{
xθ if x < α

x if x > α
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and

xη =


xθ−1 if x < β

γ if β 6 x 6 γ

x if x > γ.

Then xiξη = xi for i = 1, 2, . . . , n, since each xi > γ, while ξη is the identity map
on Y . We therefore conclude fξη = f . It follows that fξ and f are R-related. Moreover,
im fξ = Xξ = Y θ ∪ {x1, x2, . . . , xn} and supY θ = β. Hence, as β is permitted to vary
through {β ∈ R | β < α }, we obtain 2ℵ0 endomorphisms in the D-class of f , all of which
belong to distinct L -classes by Lemma 2.1(i). This completes the proof. �

The following result provides a condition that is sufficient for producing non-regular
endomorphisms. It is phrased in terms of the infimum and supremum of a subset of Q.
We remind the reader that these are well-defined members of R∗ and might not necessarily
be rational numbers in general.

Theorem 3.10 Let X be a subset of Q with the property that X has a partition into two
disjoint subsets X = X−∪X+ where X− < X+ and such that α = supX− and β = inf X+

do not belong to X. Then there exists a non-regular endomorphism f of (Q,6) such that
the image of f is order-isomorphic to the substructure (X,6).

Proof: We make a number of reductions. The first is to observe that we can assume
that X is the image of an endomorphism of (Q,6). Indeed, by Theorem 1.1, there is an
(idempotent) endomorphism g of (Q,6) with image isomorphic to X. Write Y = im g and
denote by φ the order-isomorphism from (X,6) to (Y,6). Let Y− = X−φ and Y+ = X+φ.
Put γ = supY−. If it were the case that γ ∈ Y , then γ = xφ for some x ∈ X. This
element x cannot be a member of X−, since x would then be the maximum element of X−,
contradicting the assuming that supX− /∈ X. Consequently, x ∈ X+ and by assumption
inf X+ < x. In particular, there exists some y ∈ X+ with inf X+ < y < x. Then yφ is a
point in Y+ satisfying z < yφ < γ for all z ∈ Y−, which contradicts the definition of γ as
the supremum of Y−. We conclude, by symmetry, that neither supY− nor inf Y+ belong
to Y . In conclusion, we can now replace X by Y and hence assume that X is the image
of the endomorphism g.

Our second reduction is to show that we can assume α = β. Indeed, there is an order-
isomorphism θ : (β,∞) → (α,∞) and we can define a new endomorphism g′ of (Q,6)
by

xg′ =

{
xg if xg ∈ X−

xgθ if xg ∈ X+.

The image of g′ is order-isomorphic to X and is the disjoint union of X− and X+θ. The
infimum of X+θ is also α. We may therefore replace g by the endomorphism g′ and hence
assume that α = β.

In summary, there is an endomorphism g of (Q,6) such that the image im g = X is
a disjoint union X = X− ∪ X+ with X− < X+ and supX− = inf X+ = α /∈ X. Pick
any real number δ < α. There is an order-isomorphism ξ : (−∞, α) → (−∞, δ) and we
extend this to an endomorphism of (Q,6) by also defining xξ = x for all x > α. As ξ is
an order-embedding, we conclude that gξ ∈ End(Q,6) and im(gξ) ∼= Xξ ∼= X. We shall
show that f = gξ is not regular.

Suppose that h is an endomorphism of (Q,6) with the property that fhf = f . Since
α = supX− = inf X+, there exist sequences (xi) and (yi) in X− and X+, respectively,
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converging to α. As ξ is an order-isomorphism from (−∞, α) to (−∞, δ), we conclude that
the sequence (xiξ) converges to δ. Pick q ∈ Q with δ < q < α. There is a sequence (qi)
in Q with qig = xi for each i. Now qif = xiξ < δ < q, so xiξ = qif = qifhf 6 qhf for
each i. As (xiξ) converges to δ, we conclude that qhgξ = qhf > δ. From the definition
of ξ and the fact that α /∈ im g = X, we conclude qhg > α.

Similarly, there is a sequence (ri) in Q with rig = yi for each i. Now rif = yiξ > δ > q,
so yi = yiξ = rif = rifhf > qhf for each i. The convergence of (yi) to α, allows us to
conclude qhf 6 α. The definition of ξ forces qhg < α.

Comparing the conclusions of the last two paragraphs, we now have a contradiction
and hence have established that f is indeed not regular. �

Observe that if X is a subset of Q containing a dense interval, then it satisfies the
hypotheses of Theorem 3.10 since we can choose an irrational number α in the corre-
sponding real interval and then partition X into X− = {x ∈ X | x < α } and X+ =
{x ∈ X | x > α }. On the other hand, if X ∼= (N,6), then by a similar argument to
Proposition 3.8 any endomorphism f with im f ∼= N is regular.

Corollary 3.11 There are 2ℵ0 non-regular D-classes in End(Q,6).

Proof: We again make use of the ordered sets Cx constructed earlier. Let P be the set
of enumerations of Q provided by Proposition 3.5. If x ∈ P , it is possible to embed a
copy of Cx as a subset Dx of (2,∞), as (2,∞) is order-isomorphic to Q. Then take Xx =
(0, 1) ∪ Dx. As this set contains an interval, it satisfies the hypotheses of Theorem 3.10
with, for example, α = β = 1/

√
2 and so there exists a non-regular endomorphism fx

of (Q,6) with image isomorphic to Xx.
Now if x and y are distinct enumerations in P , then Xx 6∼= Xy by Proposition 3.6

combined with the property of P . Hence fx and fy are not D-related by Lemma 2.1(iii).
Thus we do indeed have 2ℵ0 non-regular D-classes of endomorphisms of (Q,6). �

4 Images of idempotent transformations (Theorem B)

We shall now establish Theorem B, namely that a subset X of Q arises as the image
of an idempotent endomorphism of (Q,6) if and only if no maximal interval with the
complement of X is closed.

First let f be an idempotent endomorphism of the linearly ordered set of rational
numbers (Q,6). In order to describe the image of f as a subset of Q we shall consider the
various preimages xf−1 of x ∈ Q. Note that xf−1 is empty if x is not in the image of f ,
while x ∈ xf−1 for all x ∈ im f because f is idempotent. Define

J =
{
x ∈ im f

∣∣ |xf−1| > 1
}
.

When f is the identity map, J = ∅ and im f = Q. For all other idempotent endomor-
phisms f , J is non-empty and im f is a proper subset of Q. For the following analysis,
we shall assume f is not the identity.

For each x ∈ J , we shall define below two intervals Lx and Ux in Q. The definition will
depend upon the infimum and supremum of the preimage set xf−1. If inf(xf−1) 6= −∞,
then the set { q ∈ im f | q < x } is non-empty. When this set is non-empty and has a
maximum member, we shall define

mx = max { q ∈ im f | q < x } .
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Dually, we define
nx = min { q ∈ im f | q > x }

when this minimum element exists. These two values, when they exist, will contribute to
the definition of the intervals Lx and Ux, as follows:

(i) If xf−1 is not bounded below, necessarily xf−1 contains the interval (−∞, x]. In
this case, we define Lx = (−∞, x).

If xf−1 is bounded below, then there are three possibilities:

(ii) One possibility is that inf(xf−1) is actually an image value of f . If so, then xf−1 con-
tains the interval (inf(xf−1), x] and necessarily inf(xf−1) is the maximum element
of { q ∈ im f | q < x }; that is, mx = inf(xf−1). In this case, we define Lx = (mx, x).

(iii) The next case is that inf(xf−1) is not an image value of f , but that the element
mx = max { q ∈ im f | q < x } does exist. Necessarily, mx < inf(xf−1). In this case,
we define Lx = (mx, x). Note that the effect of f on points in Lx varies, as follows:

qf =

{
x if inf(xf−1) < q < x

mx if mx < q < inf(xf−1)

and, if it is the case that inf(xf−1) ∈ Q, then inf(xf−1)f could be either mx or x.

(iv) The final case is when inf(xf−1) is not an image value of f and there is no max-
imum element in the set M = { q ∈ im f | q < x }. In this case, we define Lx =
[inf(xf−1), x).

If ε > 0, we first observe that there exists some q ∈ im f satisfying inf(xf−1) − ε <
q < inf(xf−1). Indeed, suppose that there were no image value of f belonging to the
interval (inf(xf−1)−ε, inf(xf−1)). Choose r ∈ Q with inf(xf−1)−ε < r < inf(xf−1).
Now rf 6= x, so rf 6 inf(xf−1). Since inf(xf−1 is not an image value of f , our
assumption now implies that rf 6 inf(xf−1) − ε < r. Note that rf ∈ M , so,
as the set M has no maximum element, some image value, say s ∈ im f , satisfies
rf < s < r. Then s = sf 6 rf , which is a contradiction. Hence there does indeed
exist some q ∈ im f satisfying inf(xf−1) − ε < q < inf(xf−1). Repeated application
of this establishes that in this case there is a monotonic increasing sequence (qi) of
image values of f converging to inf(xf−1).

We make a dual set of definitions for Ux:

(i) If xf−1 is unbounded above, then we set Ux = (x,+∞).

(ii) If sup(xf−1) ∈ Q is an image value of f , then sup(xf−1) = nx and we set Ux =
(x, nx).

(iii) If sup(xf−1) ∈ R \ (im f) and nx = min { q ∈ im f | q > x } exists, then set Ux =
(x, nx).

(iv) Otherwise, set Ux = (x, sup(xf−1)]. In this final case, we can find a sequence of
points in im f converging to sup(xf−1).

Lemma 4.1 Let x ∈ J . The intervals Lx and Ux are either empty or are intervals in Q
that are not closed and are disjoint from the image of f .
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Proof: We consider the interval Lx in the case when it is non-empty, since the argument
for Ux is analogous. Since one endpoint is x ∈ Q and x ∈ Q \ Lx, we see that Lx is not
closed. We shall now show that it cannot contain a point in the image of f .

As f is order-preserving, we know that qf = x for all q ∈ (inf(xf−1), x). In particular,
no point in (inf(xf−1), x) lies in the image of the idempotent map f . In particular, this
tells us that Lx does not meet the image of f in Cases (i), (ii) or (iv) of its definition.

In Case (iii), mx is the maximum element of the image of f satisfying mx < x. Con-
sequently, Lx = (mx, x) again does not meet im f . �

Lemma 4.2 Let x ∈ J . If Lx or Ux is non-empty, then it is a maximal interval within
Q \ (im f).

Proof: We deal with Lx and consider each of the cases (i)–(iv) above in the definition
of this interval. The result for Ux is established by a dual argument. First note that,
by Lemma 4.1, Lx ⊆ Q \ (im f). We shall show that Lx is a maximal interval in this
complement.

In Case (i), Lx = (−∞, x) and the endpoint x belongs to the image of f . In Cases (ii)
and (iii), Lx = (mx, x) and the endpoints mx and x both belong to im f . Hence, in these
three cases, Lx is a maximal interval within Q \ (im f).

In Case (iv), Lx = [inf(xf−1), x) where inf(xf−1) /∈ im f . We assume that inf(xf−1) <
x in order for Lx 6= ∅. The endpoint x belongs to the image of f , while there is a
sequence (qi) in im f converging monotonically to inf(xf−1) from below. Hence there
cannot exist an interval I contained within Q \ (im f) that strictly contains Lx. This
completes the proof. �

Proof of Theorem B: Let f be any idempotent endomorphism of (Q,6), let

J =
{
x ∈ im f

∣∣ |xf−1| > 1
}
,

and for each x ∈ J , define the sets Lx and Rx as described above. Our first step will be
to observe that every point in the complement of the image of f belongs to at least one
of the sets Lx or Rx for some x ∈ J .

Let q ∈ Q\ (im f) and put x = qf . Then xf−1 contains q, so by definition x ∈ J . Now
either q < x or q > x. We shall consider the case when q < x. The definition tells us that
inf(xf−1) 6 q. We now analyse the definition of Lx and split into Cases (i)–(iv) as above.
In Case (i), inf(xf−1) = −∞ < q and so q ∈ Lx = (−∞, x). In Cases (ii) and (iii), the facts
that f is an order-preserving idempotent, qf = x and mx is the maximum image value
satisfying mx < x implies that mx < q and so q ∈ Lx = (mx, x). Finally, in Case (iv),
we already know that inf(xf−1) 6 q, so q ∈ Lx = [inf(xf−1), x). Similarly, if q > x,
then q ∈ Ux. In conclusion, every point q not in the image of f lies in either Lqf or Uqf
with qf ∈ J .

We have already observed, in Lemma 4.2, that the sets Lx and Ux are maximal intervals
in Q \ (im f) and it now follows, from the previous paragraph, that these sets are all the
maximal intervals in Q \ (im f). We have observed that these sets are not closed in
Lemma 4.1. This establishes the necessity part of Theorem B.

Conversely, suppose that X is a subset of Q and that Q \ X =
⋃
i∈I Ti, where the

sets Ti, for i ∈ I, are the maximal intervals in Q \X. Assume that the Ti are not closed.
We define a map f : Q → Q as follows.

Consider one of the intervals Ti. Since it cannot be expressed as a closed interval with
endpoints q, r ∈ R ∪ {±∞}, it has one of the following forms:

15



(i) Ti = [q, r) for some q and r with necessarily r ∈ Q. In this case, define xf = r for
all x ∈ [q, r).

(ii) Ti = (q, r] for some q and r with necessarily q ∈ Q. In this case, define xf = q for
all x ∈ (q, r].

(iii) Ti = (q, r) for some q and r. Note that at least one of q or r is rational, since
otherwise we could write Ti = [q, r] contrary to the assumption that Ti is not a
closed interval. We then define f on this interval depending upon which endpoint is
rational:

xf =

{
q when q ∈ Q
r when q /∈ Q

for all x ∈ (q, r).

Finally define xf = x for all x ∈ X. In this way, we have defined f on the whole set Q. To
verify that f is an idempotent endomorphism of (Q,6) with image equal to X, we now
proceed as follows.

First, if Ti = [q, r) is a maximal interval in Q \ X with r ∈ Q, then r cannot belong
to another maximal interval Tj (as otherwise Ti ∪ Tj would be a larger interval in Q \X).
Hence r belongs to the set X. Similar arguments apply to the other cases in the definition
of f , so we conclude that im f = X. As a consequence, since xf = x for all x ∈ X, it now
follows that f is idempotent.

Finally, we observe that the f is an endomorphism of (Q,6). Let x, y ∈ Q satisfy
x < y. When x, y ∈ X, there is nothing to establish since xf = x and yf = y. Suppose
that x ∈ Ti for some i and that y ∈ X. Let the endpoints of Ti be q and r with q < r.
Then necessarily q < r 6 y. Our definition for f states that xf equals one of q or r. Either
way, we know xf 6 r 6 y = yf . A similar argument applies when x ∈ X and y ∈ Ti for
some i.

The remaining case is when both x and y lie in one of the maximal intervals Ti. If they
lie in the same maximal interval, then xf = yf . If, say, x ∈ Ti and y ∈ Tj with i 6= j, let
the endpoints of Ti and of Tj be q1, r1 and q2, r2, respectively. Then q1 < r1 6 q2 < r2.
The definition of f tells us xf ∈ {q1, r1} and yf ∈ {q2, r2} and xf 6 yf follows. Hence
f is indeed an idempotent endomorphism of (Q,6) with image equal to the set X.

This completes the proof of Theorem B. �

5 Countable automorphism groups of countable linearly or-
dered structures (Theorem C)

Let Ω = (V,6) where V is a countable set and 6 is a linear order on V . Throughout this
section, we assume that Aut Ω is a countable group. Our goal in this section is to show
that this group is free abelian of finite rank.

Observe that if X is a convex subset of V , then every automorphism φ of (X,6) can
be extended to an automorphism of Ω by defining

vφ̂ =

{
vφ for v ∈ X

v for v ∈ V \X.

Thus AutX embeds as a subgroup of Aut Ω and so our assumption implies that AutX is
countable for every convex subset X of V . We shall use this and similar ideas throughout
our argument in this section.
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If f ∈ Aut Ω, define a relation ∼ on V by x ∼ y if and only if xfm 6 y 6 xfn for
some m,n ∈ Z. (Note that ∼ depends upon the automorphism f , but for simplicity of
notation we choose not to write ∼f for this relation.) Then ∼ is an equivalence relation
on V and we define the orbital Uf (x) (following Truss [14]) to be the equivalence class of
the point x under the relation ∼. Observe that if x is fixed by f , then Uf (x) = {x}, while
if xf 6= x then the values xfn, as n ranges through Z, are distinct and it then follows from
the definition that Uf (x) is an infinite convex subset of V .

The following contains the basic properties of orbitals that we shall need.

Lemma 5.1 Let f, g ∈ Aut Ω and x ∈ V .

(i) If xf > x, then Uf (x) is infinite and uf > u for all u ∈ Uf (x).

(ii) If xf < x, then Uf (x) is infinite and uf < u for all u ∈ Uf (x).

(iii) Uf (x)g = Ug−1fg(xg).

(iv) Only finitely many of the orbitals Uf (y), as y ranges through V , are infinite.

(v) If f and g commute and Uf (x) is infinite, then Uf (x)g = Uf (x).

Proof: (i) We have already observed that if xf 6= x, then the orbital Uf (x) is infinite.
Suppose xf > x, then xfn+1 > xfn for all n ∈ Z. So if u ∈ Uf (x), there exist m,n ∈ Z
such that xfm < u < xfn where necessarily m < n. Then u < xfn < ufn−m, which can
only hold if uf > u.

Part (ii) is obtained by a similar argument to (i), while part (iii) is straightforward to
establish from the definition.

(iv) Let {Ui | i ∈ I } be the set of those orbitals of f that are infinite and suppose that
I is infinite. Since the Ui are pairwise disjoint and each is a convex subset of V , we can
define, for each subset Σ of I, an automorphism fΣ of Ω by

vfΣ =

{
vf if v ∈ Ui where i ∈ Σ

v otherwise.

Since f induces a non-identity transformation of each Ui, we conclude that the fΣ are
distinct. Hence, as I has uncountably many subsets, we obtain a contradiction to the
assumption that Aut Ω is countable. This establishes that only finitely many of the orbitals
of f can be infinite.

(v) If f and g commute, then part (iii) of the lemma tells us that the action of g on V
induces a permutation on the set of orbitals of f . Since only finitely many of these orbitals
are infinite and since g preserves the order on V , it must be the case that g fixes (setwise)
all the orbitals of f that are infinite. �

Lemma 5.2 Let f ∈ Aut Ω, x ∈ V and suppose that the orbital Uf (x) is infinite. If
a, b ∈ Uf (x) with a < b, then Aut(a, b) = 1.

Proof: Write B for the interval (a, b) = { v ∈ V | a < v < b }. Since a, b ∈ Uf (x), there
exists some m ∈ Z such that b < afm. It follows that the sets Bfkm, as k ranges over the
positive integers, are pairwise disjoint. As f is an automorphism of Ω, each set Bfkm is
order-isomorphic to B. We now have an infinite number of pairwise disjoint convex subsets
and so it follows that we can embed the Cartesian product

∏∞
k=0 AutBfkm in Aut Ω by

extending automorphisms defined on each of the sets Bfkm to the whole set V . In view
of the fact that Aut Ω is countable, we deduce that AutB = 1. �
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We are now able to establish one of our main steps along the way to proving Theorem C,
namely that the infinite orbitals Uf (x), as f ranges over all automorphisms of Ω and
x ranges over V , are either disjoint or are equal.

Proposition 5.3 Let f and g be automorphisms of Ω, x ∈ V and suppose that both
orbitals Uf (x) and Ug(x) are infinite. Then Uf (x) = Ug(x).

Proof: Suppose that Uf (x) 6= Ug(x). If f has more than one infinite orbital, replace f
by the map given by

vf̃ =

{
vf if v ∈ Uf (x),

v otherwise.

Thus, we can assume that f acts as the identity on V \ Uf (x) and that Uf (v) = {v} for
all v ∈ V \Uf (x). Also, replacing f by f−1 if necessary, we can assume that vf > v for all
v ∈ Uf (x). Similarly, we can assume that g has only one infinite orbital, namely Ug(x), and
that vg > v for all v ∈ Ug(x). We deal first with the possibility that one of these infinite
orbitals is a subset of the other. Without loss of generality, suppose Uf (x) ⊂ Ug(x). We
shall consider the possible arrangements of the points in the complement Ug(x) \ Uf (x).

First, if there exist a, b ∈ U such that a < Uf (x) < b, then note that f induces a non-
trivial automorphism of the interval (a, b). (Indeed, f acts non-trivially on the set Uf (x)
and fixes all points in (a, b) \ Uf (x).) We then obtain a contradiction since Lemma 5.2
applied to the orbital Ug(x) tells us that Aut(a, b) is trivial. Hence no such pair a and b
exists.

Therefore, if Uf (x) ⊂ Ug(x), there exist points in Ug(x) greater than those in Uf (x)
under the order 6, or points less than those in Uf (x), but not both. The argument for
both cases is the same, so we shall assume the existence of some b ∈ Ug(x) with Uf (x) < b,
but that there is no a ∈ Ug(x) with a < Uf (x). In this setting, note first that if it were the
case that f and g commute, then Uf (x)g = Uf (x) by Lemma 5.1(v), but this contradicts
the fact that there exists some m such that xgm > b. Hence f and g do not commute.

Now for each v ∈ Ug(x), there is some n ∈ Z satisfying vgn > b and so vgn /∈ Uf (x).
Equally, vgm < x for some m ∈ Z and so vgm ∈ Uf (x) since vgm cannot satisfy vgm <
Uf (x). Then vgm < vgn, so that m < n. It follows that for every v ∈ Ug(x) there is a
minimum integer m(v) satisfying vgm(v) /∈ Uf (x) and this integer has the property that
vgn ∈ Uf (x) for all n < m(v) and vgn /∈ Uf (x) for all n > m(v).

Now consider the automorphism θi defined by θi = gifg−i, which by Lemma 5.1(iii)
has a single infinite orbital, namely Uθi(xg

−i) = Uf (x)g−i, which is some subset of Ug(x)
(since Uf (x) ⊆ Ug(x) and g fixes Ug(x) setwise). If v ∈ Ug(x), observe v ∈ Uf (x)g−i if and
only if vgi ∈ Uf (x); that is, when i < m(v). Consequently, vθi = v whenever i > m(v)
and, by Lemma 5.1(i), vθi 6= v whenever i < m(v).

Now if Σ = {σ0, σ1, σ2, . . . } is an infinite subset of N with σi < σi+1 for each i, we can
define another automorphism of Ω by

hΣ = lim
n→∞

θσn . . . θσ1θσ0 .

(In order to make sense of this definition, recall our convention is to write maps on the
right.) If v ∈ V \ Ug(x), then vθi = v for all i, so we observe vθσn . . . θσ0 = v and hence
vhΣ is defined and indeed equals v for such v. On the other hand, if v ∈ Ug(x), then there
exists some N such that σm > m(v) for all m > N . Thus vθσm = v for all such m and we
conclude that

vθσn . . . θσ1θσ0 = vθσN . . . θσ1θσ0
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for all n > N . Hence vhΣ is defined for all v ∈ Ug(x) since vθσn . . . θσ0 takes the same
value independent of n provided this n is large enough. In addition to having observed
that hΣ is well-defined, such calculations similarly show that hΣ ∈ Aut Ω.

Having verified that hΣ is defined for any (infinite) Σ ⊆ N, we now observe that
hΣ 6= hT for distinct Σ, T ⊆ N. Indeed, suppose Σ = {σ0, σ1, . . . , σr−1, σr, . . . } and
T = {σ0, σ1, . . . , σr−1, τr, . . . } where, without loss of generality, σr < τr. Take u = xgk

where k = m(x)−σr− 1. Observe ugσr = xm(x)−1 ∈ Uf (x) and ugi /∈ Uf (x) for all i > σr.
Thus u /∈ Uf (x)g−i for all i > σr, so that uθi = u for all such i. Hence, for n > r,

uθσn . . . θσ0 = uθσr . . . θσ0 and uθτn . . . θτrθσr−1 . . . θσ0 = uθσr−1 . . . θσ0 .

As u ∈ Uf (x)g−σr = Uθσr (x), we know uθσr 6= u and so we conclude uhΣ 6= uhT , which
establishes our claim that the hΣ are distinct. Since Aut Ω is countable, it cannot contain
these uncountably many automorphisms hΣ and we have another contradiction. The other
remaining case when Uf (x) ⊂ Ug(x) is similar, which now establishes that Uf (x) is not a
subset of Ug(x) nor vice versa.

Thus there exists some a ∈ Uf (x) and b ∈ Ug(x) such that a /∈ Ug(x) and b /∈ Uf (x).
We may assume, without loss of generality that a < Ug(x). Then, since Uf (x) and Ug(x)
are convex, we observe Uf (x) < b. Moreover we also note that the sets Uf (x) \ Ug(x),
Uf (x)∩Ug(x) and Ug(x)\Uf (x) are all convex and satisfy Uf (x)\Ug(x) < Uf (x)∩Ug(x) <
Ug(x) \ Uf (x). Suppose first that f and g commute. Then as b, x ∈ Ug(x), there exists
some n ∈ Z such that b < xgn. However, this is impossible as xgn ∈ Uf (x) by use
of Lemma 5.1(v). Hence we it must be the case that f and g do not commute. Put
h = f−1g−1fg, which is some non-identity element of Aut Ω. If v ∈ Uf (x) \ Ug(x), then
vf−1 < v < Ug(x) and so vf−1 /∈ Ug(x) and hence vf−1g−1fg = vf−1fg = vg = v.
Similarly, if vh = v for v ∈ Ug(x) \ Uf (x). It follows that any infinite Uh(y) is a subset
of Uf (x) ∩ Ug(x). However, we have already established that this is impossible, since
a pair of non-identity automorphisms f and h cannot have infinite orbitals satisfying
Uh(x) ⊂ Uf (x). This final contradiction completes the proof of the claim: Uf (x) = Ug(x).

�

Recall that a linearly order group is a group G together with a linear order 6 upon it
such that if g, h, k ∈ G with h 6 k, then gh 6 gk and hg 6 kg. An Archimedean group is
a linearly ordered group G with the property if g, h ∈ G satisfy 1 < g < h, there exists
n ∈ N such that h < gn.

Let f ∈ Aut Ω and fix x ∈ V such that the orbital U = Uf (x) is infinite. For
φ, ψ ∈ AutU , define φ 6 ψ whenever xφ 6 xψ. We shall observe that this is a well-
defined linear order with respect to which AutU is an Archimedean group.

Lemma 5.4 (i) The map ξ : AutU → U given by φ 7→ xφ for each φ ∈ AutU is an
injective map.

(ii) The order 6 is a well-defined linear order on AutU with respect to which AutU is
an Archimedean group.

Proof: (i) Suppose φ and ψ are distinct automorphisms of U . Then g = φψ−1 can be
extended to a non-identity automorphism of Ω by defining vg = v for all v ∈ V \ U .
By assumption some u ∈ U is moved by g and then Ug(u) = U by Proposition 5.3. In
particular, x ∈ Ug(u) and hence xg 6= x by Lemma 5.1(i)–(ii). This shows that xφ 6= xψ,
as is required to establish that ξ is injective.
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(ii) Part (i) of the lemma shows that the set of automorphisms of U is in one-one
correspondence with the subset {xφ | φ ∈ AutU } of U and hence the order on U induces
an order on AutU ; that is, the order 6 defined by φ 6 ψ if and only if xφ 6 xψ. It is
straightforward to verify that AutU is a linearly ordered group with respect to 6. (One
makes use of Lemma 5.1 in this verification. For example, if φ, ψ, θ ∈ AutU with φ 6 ψ,
then xψφ−1 > x and use of Lemma 5.1(ii) shows that xθψφ−1 > xθ. It then follows
θφ 6 θψ, which is one of the facts that needs to be established.)

Finally, if 1 < φ < ψ, we extend φ to an isomorphism of Ω and observe U = Uφ(x)
by Proposition 5.3. The definition of Uφ(x) then provides n ∈ N such that xψ < xφn, so
ψ < φn. This establishes that AutU is an Archimedean group with respect to the order 6.

�

We can now make use of the result, originally due to Hölder [9], that an Archimedean
group is isomorphic to an additive subgroup of the set R of real numbers (see, for ex-
ample, [6, Theorem 4.A]). In [7, Lemma 4.21] it is noted that such a subgroup is either
cyclic or is a dense subset of R. Our current goal is to establish Proposition 5.9 below,
namely that AutU is an infinite cyclic group, so let us assume, seeking a contradiction,
that (AutU,6) is a dense linearly ordered set.

In Lemma 5.4 we have observed that the map ξ is an order-isomorphism from AutU
to the orbit of x under the action of AutU (with the order on this orbit being that
induced from the ordered set Ω). Thus {xφ | φ ∈ AutU } is a dense linearly ordered set
with no maximum or minimum element and is therefore order-isomorphic to (Q,6). This
observation is independent of the choice of representative x in U and hence every orbit
in U under the action of AutU is order-isomorphic to (Q,6).

Lemma 5.5 If u, v ∈ U = Uf (x) and φ, ψ ∈ AutU with φ < ψ, then there exists
θ ∈ AutU with uφ < vθ < uψ.

Proof: By use of Lemma 5.1(ii), we observe that the hypothesis φ < ψ ensures that
uφ < uψ. When u and v belong to the same orbit of AutU on U the claim is now
immediate since that orbit is order-isomorphic to (Q,6). Suppose that v is not in the
orbit of u under the action of AutU and, by applying φ−1 if necessary, assume that φ is the
identity automorphism. Thus ψ is a non-identity automorphism of U satisfying u < uψ
and we must find θ ∈ AutU with u < vθ < uψ.

Suppose first that v < u. We extend ψ to an automorphism of Ω by defining it to fix
all points outside the orbital U . Then Proposition 5.3 tells us that Uψ(u) = Uf (u) = U .
In particular, there exists some n ∈ N such that vψn > u. Take n to be the minimum
positive integer satisfying vψn > u. Then vψn−1 < u, so u < vψn < uψ and so, in this
case, θ = ψn is our required automorphism.

If u < v, then since Uψ(u) = U we can find some power of ψ such that vψm < u.
Applying the previous paragraph to vψm finds n ∈ N such that u < vψm+n < uψ and
then θ = ψm+n is the automorphism we seek. �

Now enumerate the points in U as the sequence (xn). First consider the set T0 of
convex subsets S of U such that (i) S contains x0 and (ii) Sφ is disjoint from S for
every non-identity automorphism φ of U . As only the identity automorphism fixes x0
(see Lemma 5.1(i)–(ii)) we conclude {x0} is a set in T0 (so T0 is non-empty) and it is
straightforward to verify that the union of any chain of subsets of T0 is again a member
of T0. Hence, by Zorn’s Lemma, there is some maximal member M0 of T0.

Suppose then that, for some n, we have found subsets M0, M1, . . . , Mk of U such that
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• x0, x1, . . . , xn−1 ∈ {uφ | u ∈M0 ∪ · · · ∪Mk, φ ∈ AutU }, and

• Mi is a maximal convex subset of U subject to

Mi ⊆ U \ {uφ | u ∈M0 ∪ · · · ∪Mi−1, φ ∈ AutU } (1)

Miφ ∩Mi = ∅ for every non-identity automorphism φ of U. (2)

(Note that Condition (1) ensures that Mi is disjoint from every translate Mjφ of a previ-
ously defined subset, with 1 6 j < i, under some automorphism of U .)

If xn is already the image of some point in M0 ∪ · · · ∪Mk under some automorphism
of U , then we need create no new subset Mi at this stage. Otherwise, consider the
set Tk+1 of subsets S of U \ {uφ | u ∈M0 ∪ · · · ∪Mk, φ ∈ AutU } such that (i) S is a
convex subset of U , (ii) xn ∈ S, and (iii) Sφ is disjoint from S for every non-identity
automorphism φ of U . Again, an application of Zorn’s Lemma provides the existence of a
maximal member Mk in Tk+1.

In this way, we find a family (Mi) of convex subsets of U , indexed by some set I
(where either I = N or I = {0, 1, . . . , k} for some k), such that U is the disjoint union of
the sets Miφ, for i ∈ I and φ ∈ AutU , and Mi is maximal among convex subsets of U
satisfying (1) and (2) above. As convex subsets of the linearly ordered set U , there is an
induced order on the sets {Miφ | i ∈ I, φ ∈ AutU }.

Lemma 5.6 Suppose that Mi1φ1 < Mi2φ2 for some i1, i2 ∈ I and some φ1, φ2 ∈ AutU .
Then for each j ∈ I, there exists some ψ ∈ AutU with

Mi1φ1 < Mjψ < Mi2φ2.

Proof: Suppose first that i1 = i2. Pick u ∈ Mi1 and v ∈ Mj . By Lemma 5.5, there
exists ψ ∈ AutU such that uφ1 < vψ < uφ2. Hence, as the sets concerned are convex,
Mi1φ1 < Mjψ < Mi1φ2 = Mi2φ2, as required.

It remains to deal with the case when i1 6= i2. If there exists some k ∈ I and au-
tomorphisms θ1, θ2 ∈ AutU with Mi1φ1 6 Mkθ1 < Mkθ2 6 Mi2φ2, then the previous
paragraph can be applied to Mkθ1 < Mkθ2 and we would have established the required
result. Seeking a contradiction, let us assume that no such k, θ1 and θ2 exist. As a con-
sequence, we conclude that there is no θ ∈ AutU with Mi1φ1 < Mi1θ < Mi2φ2 or with
Mi1φ1 < Mi2θ < Mi2φ2 and that, for each k ∈ I, there is at most one θ ∈ AutU with
Mi1φ1 < Mkθ < Mi2φ2.

Write K for the set of those k ∈ I for which there exists θk ∈ AutU with Mi1φ1 6
Mkθk 6 Mi2φ2. (So, in particular, i1, i2 ∈ K and that θim = φm for m = 1, 2.) Let m be
the smallest integer in K. By applying the inverse of θm if necessary, there is no loss of
generality in assuming that θm is the identity map. Put S =

⋃
k∈KMkθk, so that Mm is

a proper subset of S by our assumption on θm. Since V is the union of all translates Mjθ,
it follows that every point between Mi1φ1 and Mi2φ2 lies in some Mkθk with k ∈ K and
we deduce that the set S is convex. The set S is also disjoint from all translates of Mj for
j < m, since each set Mk for k ∈ K satisfies (1) above, while Sψ ∩ S = ∅ for every non-
identity ψ ∈ AutU since each set Mk satisfies (2). We now have a contradiction to Mm

being a maximal convex subset satisfying (1) and (2). This contradiction completes the
proof of the lemma. �

The property given in Lemma 5.6 will essentially characterise the structure of the
ordered set (U,6). To describe this fully, we first introduce a new relational structure.
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Let I be a countable set. We define an I-coloured linearly ordered set to be a relational
structure Ω = (V,6, (Ri)i∈I) where 6 is a linear order on the set V and where each Ri is
a binary relation on V of the form Ri = Vi × Vi such that V is the disjoint union of the
sets Vi. Thus the sequence (Ri)i∈I encodes an equivalence relation on V with equivalence
classes Vi, for i ∈ I, in such a way that any automorphism of Ω fixes each of the equivalence
classes setwise.

The class of finite I-coloured linearly ordered sets satisfies the hereditary property, the
joint embedding property and the amalgamation property and therefore this class possesses
a unique Fräıssé limit QI = (W,6, (Ri)i∈I). Write Wi for the equivalence class determined
by the relation Ri. This structure is characterised by the following property: (W,6) is
a countable linearly ordered set without maximum or minimum elements such that for
every pair u, v ∈ W with u < v and every i ∈ I there exists w ∈ Wi with u < w < v.
Indeed, it can be shown by a back-and-forth argument that any two countable structures
satisfying this condition are isomorphic as I-coloured linearly ordered sets (and again such
an isomorphism takes the equivalence class in the first structure indexed by i ∈ I to that
in the second indexed by i). We shall call this Fräıssé limit the I-coloured ordered set of
rational numbers in view of the fact that (W,6) is order-isomorphic to (Q,6). In view of
this order-isomorphism, we shall rename the set W as Q, so that the I-coloured linearly
ordered set is denoted QI = (Q,6, (Ri)i∈I).

Proposition 5.7 The automorphism group of the I-coloured ordered set QI of rational
numbers is uncountable.

Proof: Note that AutQI is non-trivial since given any i ∈ I and two points x, y ∈Wi, a
back-and-forth argument establishes the existence of an order-isomorphism that preserves
the equivalence classes Wi and maps x to y. The following argument extends this to show
in fact there are uncountably many automorphisms of QI .

We shall write Z×QI for the I-coloured linearly ordered set defined as follows: as an
ordered set it is the set Z×Q equipped with the lexicographic order; that is, (m,x) 6 (n, y)
if and only if m < n, or m = n and x 6 y. To colour Z × QI , for each i ∈ I, the ith
equivalence class is Z ×Wi where Wi is the ith equivalence class in QI . In effect, with
Z×QI , we are taking countably many copies of QI , placing them in sequence in terms of
the order, and then taking the ith equivalence classes in each copy of QI together to form
a single equivalence class in Z×QI .

One observes that Z × QI is a countable linearly ordered set with no maximum or
minimum element and that it has the property that for each u, v ∈ Z with u < v and
all i ∈ I, there exists w ∈ Z ×Wi with u < w < v. Thus, Z × QI satisfies the defining
property of QI so that Z×QI

∼= QI as I-coloured linearly ordered sets.
If f = (fn) is a sequence of automorphisms of the structure QI , we can define f̂ ∈

Aut(Z × QI) by (n, x)f̂ = (n, xfn) for each n ∈ Z and x ∈ Q. This defines an injective
map f 7→ f̂ from the Cartesian product

∏∞
n=1 AutQI to Aut(Z×QI). It now follows that

AutQI
∼= Aut(Z×QI) is indeed uncountable. �

We now return to the automorphism group of the orbital U = Uf (x) under our current
assumption that AutU is order-isomorphic to some dense linearly ordered set. Recall that
we have defined a sequence M = (Mi)i∈I of convex subsets of U indexed by I. We shall use
the I-coloured ordered set QI of rational numbers, where I is the set indexing our convex
subsets. Recall that the equivalence classes on Q associated to this relational structure are
denoted (Wi)i∈I . Now write QI(M) for the ordered set (S,6) where S =

⋃
i∈I(Wi ×Mi)

and the order 6 is the lexicographic order (that is, (x,m) 6 (y, n) if and only if x < y,
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or x = y and m 6 n). Now if φ ∈ AutQI (a colour- and order-preserving bijection of
this structure), we can define an automorphism φ̃ of QI(M) by (x,m)φ̃ = (xφ,m) for
(x,m) ∈ S. Note that we rely upon the fact that φ preserves the ith equivalence class Wi

when observing that φ̃ is indeed a well-defined map. The following now follows from the
fact that AutQI is uncountable.

Corollary 5.8 The automorphism group of the ordered set QI(M) = (S,6) is uncount-
able. �

Let us now consider the set M = {Miφ | i ∈ I, φ ∈ AutU } of all translates of the
sets Mi under the action of the automorphism group of U and view this as an ordered
set using the order induced on these convex subsets from the order on U . We shall also
define a relation Ri to be that relating the points Miφ for φ ∈ AutU , so that Wi =
{Miφ | φ ∈ AutU } is the corresponding subset of M indexed by i. Since AutU has no
maximum or minimum element, the same is true of M and now Lemma 5.6 tells us that
(M,6, (Ri)i∈I) satisfies the defining property of the I-coloured ordered set QI of rational
numbers. Thus these structures are isomorphic as I-coloured ordered sets. Returning to
our set U , we now observe that we can reconstruct this set from M by replacing each
point Miφ by a copy of the ordered set Mi. This tells us that (U,6) is order-isomorphic
to QI(M). This now gives us the contradiction that we seek: Corollary 5.8 tells us that
AutU is uncountable, which is contrary to our running assumption.

In conclusion, we have now established our final step towards the theorem.

Proposition 5.9 Let f ∈ Aut Ω, x ∈ V and suppose U = Uf (x) is infinite. Then
AutU is an infinite cyclic group. �

Putting all our work together, we can now establish Theorem C.

Proof of Theorem C: Consider the set {Ui | i ∈ I } of all subsets of V that arise as
an infinite orbital of some automorphism of Ω. Proposition 5.3 tells us that these sets Ui
are pairwise disjoint. Moreover, if fi ∈ AutUi for each i ∈ I, then there is an extension f
to an automorphism of Ω by

vf =

{
vfi if v ∈ Ui for some i ∈ I,

v otherwise.

Since any automorphism of Ω must fix all points in V \
(⋃

i∈I Ui
)
, we conclude that

Aut Ω is isomorphic to the Cartesian product of the automorphism groups of the Ui. The
countability of Aut Ω combined with Proposition 5.9 tells us that I is finite and that
Aut Ω ∼= Z|I|. This completes the proof of our theorem. �
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