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Abstract

We investigate the structure of the monoid of endomorphisms of the ordered
set (Q, <) of rational numbers. We show that for any countable linearly ordered
set €2, there are uncountably many maximal subgroups of End(Q, <) isomorphic to
the automorphism group of 2. We characterise those subsets X of Q that arise as a
retract in (Q, <) in terms of topological information concerning X. Finally, we estab-
lish that a countable group arises as the automorphism group of a countable linearly
ordered set, and hence as a maximal subgroup of End(Q, <), if and only if it is free
abelian of finite rank.

1 Introduction

The linearly ordered set (Q, <) of rational numbers has been observed to have a number
of interesting properties. From the model theory point of view, (Q,<) is the Fraissé
limit of the class of finite linearly ordered sets. In addition, the automorphism group
of (Q, <) is highly homogeneous as a permutation group on Q and it is oligomorphic (see,
for example, [1, Section 9.3]). In this paper, we present an investigation into the structure
of the endomorphism monoid of (Q, <). This continues our work begun in [3], where we
examined the endomorphism monoid of the random graph and other related relational
structures that arise as Fraissé limits of various types of finite graph. The content of this
paper then presents the beginnings of a counterpart within the study of the monoid of
endomorphisms of (Q, <) to the literature on its automorphism group.

Our main result (Theorem A below) is to describe the groups that arise as maximal
subgroups of the endomorphism monoid of (Q,<). The identity element in each such
maximal subgroup G is an idempotent endomorphism f of (Q,<) and the group G is
then equal to the group s7-class of f. We identify the group G, up to isomorphism,
from the structure of the image of f (see Lemma 2.3 below). It is therefore important to
identify which linearly ordered sets arise as retracts (that is, the image of an idempotent
endomorphism) in (Q, <) and, within the first author’s thesis [12], the original proof of
Theorem A relied upon a precise description of such retracts as subsets of QQ. Recently,
Kubis$ [11] has studied retracts of Fraissé limits in wider generality and he establishes the
following theorem.

Theorem 1.1 (Kubis, [11, Corollary 3.24]) Every countable linearly ordered set is
order-isomorphic to an (increasing) retract of the set of rational numbers.
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(“Increasing” in this statement merely refers to the fact that Kubis uses the term “in-
creasing map” for what we call an order-preserving map.) We shall use this result of
Kubis throughout Section 3 and it will enable us to present considerably shorter proofs
than otherwise possible, essentially because we can always start with some endomorphism
of (Q, <) with image order-isomorphic to some particular linearly ordered set.

Our main result is the following where we describe the groups arising as the maximal
subgroups of End(Q, <). There are some obvious restrictions on such groups: they must
act as automorphisms on the image of the corresponding retract; i.e., they must be an
automorphism group of some linearly ordered set. In the theorem, we observe that this
is the only restriction. Moreover, we also show that each group occurs uncountably many
times as a maximal subgroup of End(Q, <). (Note that the trivial group occurs as the
group J#-class of many idempotent endomorphisms including all those with finite image.)

Theorem A (i) LetQ be a countable linearly ordered set. Then there exist 280 distinct
regular 9-classes of End(Q, <) whose group s -classes are isomorphic to Aut Q.

(ii) There is one countable regular Z-class Dy of End(Q, <). This Dq consists of the
(idempotent) endomorphisms with image of cardinality 1 and every J¢-class in Dy
is a group J¢-class isomorphic to the trivial group.

All other regular 9-class of End(Q, <) contain 280 distinct group .5 -classes.

Green’s relations are used to describe the structure of a semigroup. We describe
them in more detail in Section 2 below. The Z-relation is the coarsest of those that we
consider, while Z-classes are refined into .Z- and #-classes. Finally 7 = ZNZ%Z. Maximal
subgroups of a monoid are found as the group J¢-classes within reqular Z-classes and
the idempotent elements within these classes play the role of the identity element in each
maximal subgroup.

The strategy for proving Theorem A is quite similar to the corresponding theorems
for Fraissé limits of graphs in [3]. We shall construct uncountably many linearly ordered
sets Bx with trivial automorphism group that we “attach” to the linearly ordered set 2
in such a way that the result has automorphism group isomorphic to that of 2. There
are two differences to note. The first is that the construction of the ordered set %% is
relatively delicate, whereas the graph Ly, with trivial automorphism group in [3] is quite
easy to build. On the other hand, having constructed %%, the use of Kubis’s result makes
it now straightforward to find an idempotent endomorphism with specified image.

We shall also establish further structural information concerning the endomorphism
monoid of (Q, <) and its elements, as follows:

e We determine the number of #- and .Z-classes in each Z-class and observe that this
depends upon the cardinality of the image of any endomorphism within the Z-class
(Theorems 3.7 and 3.9).

e If an endomorphism has finite image then it is a regular element of End(Q, <) (Propo-
sition 3.8), while non-regular endomorphisms can be constructed with certain types
of infinite image (Theorem 3.10) from which it follows there are uncountably many
non-regular Z-classes (Corollary 3.11).

Note that the first of these sets of observations applies to all Z-classes in End(Q, <),
which stands in contrast to our work in [3], where we established similar results for all
reqular Z-classes in the endomorphism monoid of the random graph and constructed some
examples of non-regular Z-classes with uncountably many %- and .Z-classes.



Kubié’s result states that every countable linear ordered set is isomorphic to the image
of some idempotent endomorphism of (Q, <). There is still the question of which subsets
of Q actually arise as the image of an idempotent endomorphism. This is the content of
the second theorem we state in this Introduction, where we characterise precisely which
subsets are the images of idempotent endomorphisms. This theorem was used in the
original proof of Theorem A as it appeared in [12]. Although no longer needed for the
proofs in Section 3, this characterisation still seems to be of interest, particularly in the
context of Theorem 1.1 quoted above from [11].

To state the theorem, we need the following concept. If A is a subset of Q, define a
symmetric relation ~ on A as follows. If a,b € A with a < b, define a ~ b if ¢ € A for
all ¢ satisfying a < ¢ < b. It is straightforward to verify that ~ is an equivalence relation
on A. We shall call the equivalence classes of A under this relation the mazimal intervals
of A. Indeed, it follows from the definition that every equivalence class of ~ is an interval
(as defined in Section 2 below) contained within A and if J is any interval contained in A
then a ~ b for all a,b € J and hence J is contained within one of the equivalence classes.

Theorem B Let X be a subset of Q. Then there is an idempotent endomorphism
of (Q,<) with image equal to X if and only if no maximal interval within Q \ X is
closed (in the topology on Q induced from the Euclidean topology on R).

Finally, we consider the question of which groups can arise as the automorphism group
of a countable linearly ordered set; that is, which groups can arise as the maximal subgroup
of End(Q, <). In the case of graphs, it is known by Frucht’s Theorem [5], together with
the extension to infinite groups by de Groot [2] and Sabidussi [13], that every countable
group arises as the automorphism group of a countable graph. In the case of linearly
ordered structures, it is easily determined from the definition that there can be no non-
trivial elements of finite order within the automorphism group of a linearly ordered set.
On the other hand, such automorphism groups can, of course, be rather complicated. As
an example, Aut(Q, <) is an uncountable non-abelian group. Although we do not find a
characterisation of all such groups (and it is unlikely that one exists), we do show that
the structure of a countable group that arises as the automorphism group of a countable
linearly ordered set is considerably constrained as the following theorem indicates.

Theorem C Let (2, <) be a countable totally ordered set and assume that Aut(Q, <) is
countable. Then Aut(f2, <) is a free abelian group of finite rank.

The structure of this paper is as follows. In Section 2, we introduce all the basic
notation and terminology that we require when discussing linearly ordered sets. We also
recall the semigroup theory that we require, including stating results from our previous
paper [3] that we use. Section 3 contains information about the structure of End(Q, <).
We prove Theorem A and establish the results concerning the .Z- and Z-classes in this
monoid. Sections 4 and 5 are devoted to the proofs of Theorems B and C, respectively.

2 Preliminaries and notation

A relational structure is a pair I' = (V, ) consisting of a non-empty set V' and a sequence
E = (F;)ier of relations on V. All the examples in this paper of relational structure
will involve binary relations F; and will mostly be linearly ordered sets (V,<), which is
where < is a reflexive, transitive and anti-symmetric relation on V' such that for every
pair u,v € V either u < v or v < u. In view of this, throughout we shall refer only to
binary relations below although some definitions could be made in greater generality.



If T = (V,(FE;)icr) and A = (W, (F;);er) are relational structures (with relations in-
dexed by the same set I), a homomorphism f:T' — A is a map f: V — W such that
(uf,vf) € F; whenever (u,v) € E;. In the case of linearly ordered sets, we shall also use
the term order-preserving map as a synonym for homomorphism. Thus, if I' = (V<)
and A = (W, <) are linearly ordered sets, a map f: V' — W defines a order-preserving
map I' - A if u < v in ' implies uf < vf in A. Note here that we are following the
convention of writing maps on the right so that the image of a point v € V under a map
is denoted by vf. The image of a order-preserving map f: (V,<) — (W, <) is the linearly
ordered set (V f, <) induced on the set of image values of f. The kernel of f is the equiv-
alence relation { (u,v) € V. xV |uf =vf}. For each image value x of f, the associated
kernel class is the preimage rf~! = {v €V | vf = 2} and this is, of course, one of the
equivalence classes defined by the kernel.

Furthermore, in our context an order-isomorphism is an isomorphism between two
ordered sets. The term order-embedding is used to refer to a map f: (V,<) — (W, <)
between two ordered sets such that v < w in (V,<) if and only if vf < wf in (W, <).
It follows from this definition that f is injective, but one should note that in the case
of linearly ordered sets (V,<) and (W, <) an injective order-preserving map is always an
order-embedding.

A linearly ordered set (V, <) will be called dense if for every pair u,v € V with u < v
there exists some w € V satisfying u < w < v. If A is a subset of V', a maximum element
of A is some v € A such that a < v for all @ € A. The concept of minimum element is
defined dually.

If I' = (V,<) is a linearly ordered set, a subset U of V' is called convez if whenever u, v
and w are points in V with u < w < v and u,v € U then necessarily w € U also. Note that
the kernel class zf ! of a point in the image of a order-preserving map f: (V, <) — (W, <)
is always convex. Other examples of convex subsets of I include intervals. We shall borrow
the standard notation used for intervals in the real line for intervals in I':

uv]={zeV]|u<z<v}
(u,v) ={zeV]|ju<z<v}

with (u,v] and [u,v) being defined similarly for points u,v € V with v < v. A further
point to observe is that if A and B are disjoint convex subsets of I', then it must be the
case that either a < b for all a € A and b € B, or that a > b for all such a¢ and b. We
shall write A < B or A > B, respectively, to indicate these situations. Similarly, we shall
use the notation a < B as a short-hand to mean that the element a satisfies a < b for all
beB.

The class of finite linearly ordered sets possesses the hereditary property, the joint
embedding property and the amalgamation property. This class therefore has a unique
Fraissé limit [4] (see, for example, [8, Theorem 6.1.2]). It is well-known that this Fraissé
limit is the ordered set of rational numbers (Q, <). Indeed, this structure is the unique
countable dense linearly ordered set with no maximum or minimum elements, in the sense
that any linearly ordered set satisfying these properties is order-isomorphic to (Q, <).

At certain points, it will be helpful to view the set of ordered rational numbers (Q, <)
as a substructure of the extended real numbers; that is, the relational structure R* =
(R U{+£o0}, <) where < denotes the usual order on R together with —oco < z < oo for
all z € R. We shall then extend the above definitions of intervals to include non-rational
endpoints. Thus, for example, if p,q € R*, we will be able to write (p, q) for the interval
in Q consisting of all rational numbers x with p < x < ¢. Note by this notation we are
always referring to a subset of Q but that the endpoints are permitted to be selected from



outside of Q. In an attempt to avoid confusion, we shall never use the interval notation
to refer to subsets of R.

Note that if p or ¢ is not rational, then some of the intervals (p, q), [p, ¢, (p, q] and [p, q)
coincide. In addition, our statement of Theorem B above refers to specific intervals in Q
as being closed in the topology induced on Q from the usual topology on R. Note that
an interval in Q is closed in this induced topology precisely when it can be written in the
form [p, q] where p,q € RU {£o00}. In particular, the open interval (p, q) is closed if and
only if p,q € R\ Q. When establishing the theorem in Section 4 below, we shall make use
of this description of closed intervals in Q.

One of the properties of the relational structure R* is that a non-empty subset A
possesses a (possibly infinite) infimum and supremum. We shall write inf A and sup 4,
as usual, to denote these elements and we shall use these mostly for subsets A of @, but
understand that in many cases inf A and sup A will be non-rational elements of R*. Using
these constructions, though, one quickly observes that if A is a convex subset of Q, then
A equals one of the intervals (p, q), [p,q), (p,q] or [p, q] where p = inf A and ¢ = sup A are
some points of R*.

Let M = EndT be the endomorphism monoid of a linearly ordered set I' = (V, <).
We say that two elements f and g of M are Z-related if f and g generate the same left
ideal (that is, M f = Mg). They are Z-related if fM = gM. Green’s J¢-relation is the
intersection of the binary relations .Z and #, and the Z-relation is the composite .Z o #
(which is also always an equivalence relation on M). The relevance of these relations
to the study of subgroups contained within the endomorphism monoid is that if e is an
idempotent in M (that is, if €2 = e) then the #-class of e is a subgroup of M [10,
Corollary 2.2.6] and, morever, the collection of maximal subgroups of M are precisely the
F-classes of idempotents of M. We use the term group 2 -class to refer to such maximal
subgroups.

The following lemma is stated in greater generality for relational structures in our
previous paper [3]. The first two parts are inherited from information concerning the
Z- and Z-classes of the full transformation monoid 7y of all maps V' — V (see [10,
Exercise 2.6.16]). Our restatement here is simply interpreting that lemma in the context
of linearly ordered sets.

Lemma 2.1 ([3, Lemma 2.3]) Let f and g be endomorphisms of the linearly ordered
set I' = (V, ).

(i) If f and g are Z-related, then V f = Vg.
(ii) If f and g are Z-related, then ker f = ker g.
(iii) If f and g are P-related, then im f and im g are order-isomorphic.

An element f in the endomorphism monoid M is said to be regular if there exists
g € M such that fgf = f. An idempotent endomorphism e is regular because e3> = e and
it is known that if f is regular, then every element in the Z-class of f is also regular [10,
Proposition 2.3.1]. As noted in [3], in the case of regular endomorphisms the implications
in Lemma 2.1 reverse.

Lemma 2.2 ([3, Lemma 2.5]) Let f and g be regular elements in the endomorphism
monoid of the linearly ordered set I' = (V,<). Then

(i) f and g are L-related if and only if Vf =Vyg.



(ii) f and g are Z#-related if and only if ker f = kerg.

(iii) f and g are P-related if and only if im f and im g are order-isomorphic.

The final fact that we require from our earlier work is that we can identify the group
J-classes in EndI' as the automorphism group of the image of endomorphisms within
the class.

Lemma 2.3 ([3, Proposition 2.6(iii)]) Let f be an idempotent endomorphism of the
linearly ordered set I' = (V,<). Then the group #-class Hy is isomorphic to the auto-
morphism group of the image of f.

3 The structure of End(Q, <)

This section is devoted to the study of the endomorphism monoid of the ordered set (Q, <)
of rational numbers. The first stage is to prove Theorem A concerning the group J#-classes
within End(Q, <). In preparation for the proof, we establish information concerning the
number of idempotent endomorphisms with specified image (Theorem 3.1) and construct
a family of linearly ordered sets with trivial automorphism group (Proposition 3.5). The
remainder of the section is then concerned with establishing our information about .Z-
and Z-classes and about non-regular Z-classes in End(Q, <).

Theorem 3.1 Let Q2 = (X, <) be any countable linearly ordered set. Then
(i) if |X| =1, there are X idempotent endomorphisms f of (Q, <) such that im f = Q;
(ii) if | X| > 1, there are 2%° idempotent endomorphisms f of (Q, <) such that im f = (.

PROOF: (i) An endomorphism with image of cardinality 1 has the form zf = ¢ for all
x € Q, where ¢ is some fixed point in Q. All such endomorphisms are idempotent and
there are countably many such maps.

(ii) Suppose | X| > 1. By Theorem 1.1, there exists an idempotent endomorphism f
of (Q,<) with im f = Q. Choose some ¢ € im f subject to the condition that ¢ is not
the maximum element of the image and let I = gf~!. Put @ = infI and 8 = supl,
which are defined elements of the extended real numbers R*. By our assumption, g <
0o. We shall define an idempotent endomorphism g, of (Q,<) as g, = {fn in terms of
certain £, € End(Q, <). The definition of the latter will depend upon the choice of the
parameter v > [, but will also be different according to whether or not 8 € Q and whether
5 lies in the interval I. The maps £ and 7 will be arranged so that n¢ is the identity map
and the image of g, is also isomorphic to 2.

Case 1: 3 ¢ Q. In this case, we first choose any v € R\ Q with with v > 3. Note that
there are uncountably many possible choices for such . Since 5 ¢ Q, necessarily a < f3,
so we may also choose some § € R\ Q satisfying o < § < 3. The intervals (4, 5), (4,7),
(8,00) and (7, 00) are all order-isomorphic to (Q, <) and so there are order-isomorphisms
01: (8,8) — (0,7) and 03: (B,00) — (7,00). Define £ to be the order-automorphism
of (Q, <) given by
x forz <6
€= 20 foro<z<p

x0y for x > 3

and 7 to be its inverse. Certainly then n¢ is the identity map on Q and I¢~! = T U (3,7)
(that is, I¢~! = (a, ) or [a, ), depending upon whether or not « € I).



Case 2: 3 € Q and B € I. In this case, consider any 7 € R with v > 5. We use an
order-isomorphism 6 from (v, 00) to (53, 00), to define ,n € End(Q, <) by

r forx<p
=<8 forf<az<y
x0 for x >~

and

x forx < p
xrn =
K z0~1  for x > .

Then by construction, n¢ is the identity map on Q and I¢~! = T U (B,4] (that is, [¢~! =
(a, 7] or [er, 7], depending upon whether or not « € I).

Case 3: 3 € Q but 8 ¢ I. Again we consider any v € R with v > . We pick
some 0 € Q with § > « and let 6;: (a,7y) — (o, 3) and 0a: (§,00) — (,00) be order-
isomorphisms. Now define &, € End(Q, <) by

T for z < «

) fora<z <y

x€ =
153 fory <z <6
z0y for x > 6
and
T for z < o
fol fora<z<g
xn =
1) forx=p

z0y' for x> .

Then 7¢ is the identity map on Q and I¢~1 = T U[3,7) (that is, I¢~! = (a,7) or [a,7),
depending upon whether or not « € I).

Using the £ and 7 just defined (depending upon, amongst other things, a choice of ),
write g, = £fn. Using the fact that f? = f and n¢ is the identity, we observe that g, is
also an idempotent endomorphism of (Q, <). As £ is surjective and 7 is injective in each
case, it follows that im g, = im fn = im f = Q. Moreover, qg; L= J¢71 and this equals
some interval J with («,v) C J C [a,7].

In conclusion, as in each case there are uncountably many choices for v, we have
constructed 280 idempotent endomorphisms g~ with image isomorphic to €. ]

We shall now embark upon the proof of our main theorem. The first step is to construct
some linearly ordered sets with trivial automorphism group.

Consider an enumeration x = () of the set Q of rational numbers. Define a set Cx
depending upon this enumeration as a set of ordered pairs of rational numbers and integers
as follows:

Cx ={(zn,i) | mneN, 0<i<n}.

We write ¢x = (Cx, <) for the linearly ordered set where < is the lexicographic order
on Cky:

(Tm, 1) < (zn,J) if and only if either x,, < x,, or both m =n and 7 < j.



Essentially this definition arranges the points in the set X,, = {(z,,7) |0<i<n} in
increasing order as indexed by ¢ and then orders the sets X,, relative to each other according
to the linear order on Q. Thus, we are in effect constructing %% from (Q, <) by replacing
each point x,, in Q by a finite chain of length n.

It is a straightforward observation, using the fact that (Q, <) is linearly ordered, to
observe that %% is also a linearly ordered set. Furthermore, we similarly deduce the
following facts.

Lemma 3.2 Consider two points (1), (Tn,j) € Cx.

(i) There are infinitely many ¢ € Cx and infinitely many d € Cx such that ¢ < (zp,,1) <
d.

(ii) If zy, < xp, then there exist infinitely many ¢ € Cx such that (xm;,,1) < ¢ < (zp,7).

(iii) For every i with 0 < i < n— 1, there exist no element ¢ € Cx such that (z,,1) < ¢ <
(xn,i+1).

Lemma 3.3 Let x = (z,,) and y = (yn) be two enumerations of Q. Then €¢x = (Cx, <)
and €y = (Cy, <) are order-isomorphic if and only if the map x,, — yn, for n € N, defines
an automorphism of the ordered set (Q,<). Specifically, if ¢ is an order-isomorphism
from 6x to Gy, then (xy,1)¢ = (yn,) for alln € N and 0 < i < n.

PROOF: Suppose ¢ is an order-isomorphism from ¢x to 4y. Then for n € N, write
Xn ={(xn,7) |0<i<n}and Y, = {(yn,?) | 0 <i<n}. We shall first observe that,
for each n € N, there exists some m with X,¢ C Y,,. Suppose, for a contradiction,
that X,,¢ ¢ Y, for all m € N. The elements (z,,%), for 0 < ¢ < n, are then mapped
into at least two different sets Y;, and so there is some value k such that (x,,k)¢ € Y,
and (x,,k + 1)¢ € Y, for distinct values m,m’ € N. Since (2, k)¢ < (zn,k + 1), it
must be the case that y, < y,s. Now by Lemma 3.2(ii), there exists ¢ € Cy satisfying
(Tn, k)¢ < ¢ < (wp,k + 1)¢. We then conclude (z,,k) < cép~' < (zn,k + 1), which
contradicts Lemma 3.2(iii).

In conclusion, there exists some m such that X,,¢ C Y,,. However, ¢! also defines an
order-isomorphism from %}, to %x and the set Y;,¢~! contains all the points from X,,. The
argument above applied to ¢! then establishes that Y;,¢~! = X,, and so X,,¢ = Y;,,. Since
X, contains precisely n points, we conclude that m = n. Since ¢ is order-preserving, it
now follows that (z,,,7)¢ = (yn,?) for all n € N and 0 < i < n, as claimed in the statement
of the lemma. Now, if x,, < x,, then it follows that (z,,,0)¢ < (x,,0)¢, so necessarily
Ym < yn. Hence we conclude that the map x,, — ¥, is indeed an automorphism of (Q, <).

Conversely, if z,, — y, is an automorphism of (Q, <), then the map (z,,7) — (yn, 1),
for 1 <7 < n and n € N, defines an order-isomorphism ¢x — %,. This completes the
proof of the lemma. O

Taking y = x in the formula for order-isomorphisms in the previous lemma yields:

Corollary 3.4 Let x = (x,) be an enumeration of Q and ¢x = (Cx,<). Then Aut % is
trivial. 0

Proposition 3.5 There exists a set P of 280 many enumerations of the set Q of rational
numbers such that €y 2 ¢y for distinct x,y € P.



PROOF: Fix one enumeration x = (x,) of the set Q. For each ¢ € N, define m; to be
the transposition (2¢ 2¢ + 1) in the symmetric group Sym(N) and, for any subset A C N,
define the involution 74 = [];c 4 mi. We shall write x74 for the enumeration (z,x,) of Q
and set P = {xm4 | ACN}. Note that, for distinct subsets A, B C N, the map given
by Tpr, F Tnzp for n € N cannot be an order-automorphism of (Q, <), since mamp is
again an involution. It then follows that the ordered sets €xr,, for A C N, are pairwise
non-isomorphic by Lemma 3.3. g

If Q = (U,<1) and A = (V,<2) are two linearly ordered sets, we can define a new
ordered set, that we shall denote by Q + A, as Q + A = (U UV, <), where we assume that
the sets U and V are disjoint and where we define the order < on U UV by v < w if
and only if one of the following conditions holds (i) v,w € U and v <; w, (ii) v,w € V
and v <9 w, or (iii) v € U and w € V. In effect, in Q + A, we are retaining the order
in both € and A but in addition are placing all points in €2 before all points in A. One
observes immediately that 2+ A is then also a linearly ordered set and is the union of two
substructures isomorphic to €2 and to A, respectively.

Proposition 3.6 Let 2 = (V, <) be any linearly ordered set.

(i) If x is any enumeration of the set Q of rational numbers, then Aut() + %) is
isomorphic to Aut (2.

(ii) If x and y are enumerations of Q, then §2+ % is order-isomorphic to 2+ 6y if and
only if €x is order-isomorphic to 6.

PROOF: (i) Recall that the set of points in 2 + %% is the union V U Cx. To simplify
notation, we shall write < for the order both on € and on €2 + %%, since they coincide
for points in the set V. We shall first, using a variation of the argument employed in
Lemma 3.3, show that if f € Aut(Q 4+ ¢%) then Vf =V and Cxf = Cx. As before, we
write X, for the subset { (z,,7) | 0 <i < n} of Cx.

Case 1: We first consider the case when Cxf C Cx. Then for each n € N, the set X,,
is mapped into Cx and the same argument as used in Lemma 3.3 shows that there exists
some m = m(n) such that X,,f C X,,. Note m > n due to the cardinality of the two sets
involved.

If m > n, there exists some ¢ € X,, \ X,,f. Pick some d € X,,. Now either df < ¢
or ¢ < df. We consider the case when ¢ < df. Now ¢ = vf for some v € VU Cx. We
use parts (i) or (ii) of Lemma 3.2, depending upon whether v € V or v € Ckx, to produce
infinitely many elements b € Cx satisfying v < b < d. Then vf < bf < df, so bf € X,
also. This is a contradiction since X,, is finite. When df < ¢, the argument is identical
(though we know immediately from the order on 2 + %% that necessarily ¢ is the image
of a point from Cx). We conclude that m(n) = n for all n € N and so our map satisfies
X,f =X, for all n € N and hence Cx f = Cx. It then follows that V f =V also.

Case 2: Suppose that Cxf € Cx. Then there exists some ¢ € Cx such that cf € V.
Then if d is any point in Cy, it satisfies ¢f < d, so that ¢ < df~'. Necessarily then
df~! € Cyx and we deduce d € Cxf. We conclude that in this case Cxf O Cyx. We then
apply the inverse of f and note that f~! is an automorphism of  + €y that satisfies
Cyxf™! C Ck. Case 1 tells us that Cxf~! = Cx and Vf~! = V. Hence Cxf = Cx and
Vf =1V, as claimed.



Now that we know Cyxf = Cx and V f = V for every automorphism f of ) 4+ %, it is
a simple matter to conclude that

Aut(Q + Gx) = AutQ x Aut 6, = Aut (Q,

with use of Corollary 3.4.

(ii) This is established similarly. We observe that if ¢ is an isomorphism from Q + %%
to Q + €y, then we show, using the argument just used in part (i), that V¢ = V and
Cx¢ = Cy. It then follows that ¢ induces an isomorphism ¢x — 6y . O

We are now able to prove our main theorem concerning the maximal subgroups of
End(Q, <) as stated in the Introduction.

PROOF OF THEOREM A: (i) Let Q be any countable linearly ordered set. Let P be a set
of 2% many enumerations of Q such that €y % ¢y when x and y are distinct members
of P, as provided by Proposition 3.5. Now if x € P, then (24 % is some countable linearly
ordered set and so, by Theorem 1.1, 2 4+ %x is isomorphic to some retract of (Q, <); that
is, there is an idempotent endomorphism fx of (Q, <) such that im fx = Q + %%. Then
the J7-class of fx is

Hy, = Aut(Q + 6x) = Aut Q,

by Proposition 3.6(i). Hence each fx is an idempotent endomorphism with .7#-class iso-
morphic to the automorphism group of €.

Observe, moreover, that since 1 + 6% 2 Q + ¢ for distinct x,y € P as shown in
Proposition 3.6(ii), the Z-classes of the idempotent endomorphisms fx are distinct, using
Lemma 2.2(iii). Hence there are 2% distinct regular Z-classes of End(Q, <) with group
F-class isomorphic to Aut Q.

(ii) We make use of Theorem 3.1. Part (i) of that theorem tells us that any endomor-
phism of (Q, <) with image of cardinality 1 is idempotent, therefore regular, and the set
of all such endomorphisms forms a single Z-class Dy by Lemma 2.2(iii). If f € Dy, then
{f} is a single J#-class, again by use of Lemma 2.2, since any two endomorphisms in Dy
are #-related but no distinct pair are Z-related. Thus Hy = {f} and this is a copy of
the trivial group.

If D is any other Z-class of End(Q,<). Fix fo € D and write Q = im fy. By
Theorem 3.1(ii), there are 2%° idempotent endomorphisms f of (Q,<) with im f = Q.
Each such f belongs to D by Lemma 2.2(iii) and determine a distinct group J#-class
H; = AutQ by Lemma 2.3. This completes the proof of the theorem. O

The first paragraph of the proof of Theorem A(ii) above also establishes part (i) of our
result about the Z-classes of End(Q, <) as follows.

Theorem 3.7 Let f be an endomorphism of (Q, <) and write X = im f. Then
(i) if |X| =1, the P-class of f is a single #-class;
(ii) if |X| > 1, the Z-class of f contains 2"0 many %-classes.

PRrROOF: (ii) Assume that |X| > 1. Our argument is similar to that which establishes
part (ii) of Theorem 3.1 above. Indeed, choose ¢ € X that is not the maximum element
of X, put I = ¢f~', a =infl and 8 = supI. Choose 7 to be a suitable real number
with v > 8 and then define maps & and 1 by the same formulae (depending upon whether
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B € Q and whether 8 € I) as found in the proof of Theorem 3.1. Then, as noted before,
né is the identity map on Q and (a,v) C I¢~! C [, 7).

Now the map &f is Z-related to f in view of the formula n£f = f. Note that the
kernel class of all points in Q that map to q under ¢ f equals g(£f)~! = I€~1, whose form
is as described above. Thus as 7 varies, we obtain 2% endomorphisms in the Z-class of f
that are not Z-related to each other because they have distinct kernels. ([l

Proposition 3.8 Let f be any endomorphism of (Q,<). If im f is finite, then f is
regular.

PrROOF: Let X = im f and 1, o, ..., x, be the distinct image values of f. Choose
q; € x;f ! for each i. There is an automorphism g of (Q, <) satisfying x;g = ¢; for each i.
Then g € End(Q, <) and fgf = f. Hence f is regular. O

Theorem 3.9 Let f be an endomorphism of (Q, <) and write X = im f. Then
(i) if X is finite, the P-class of f contains Xy many .£-classes;

(ii) if X is infinite, the P-class of f contains 2% many .Z-classes.

PRrOOF: (i) First note that if X is finite, then f is regular by Proposition 3.8 and, indeed,
by Lemma 2.2(iii), another endomorphism g is Z-related to f if and only if |im g| = |X|.
Given two endomorphisms g and h with images of the same cardinality, they are .Z-related
if and only if their images are equal (in addition to being isomorphic). There are countably
many choices for a subset of Q of a particular finite cardinality and hence the Z-class of f
contains countably many .Z-classes.

(ii) Now suppose that X is infinite. We divide into two cases:

(a) Either X contains an infinite sequence (z,,) of points such that, for each n, x, is

the maximum member of X \ {z1,z2,...,2n_1},

(b) or there are finitely many points 1, x2, ..., 2, in X such that z; is the maximum
member of X \{z1,z2,...,z;—1} and such that X\ {z1,x9,...,2,} has no maximum
member.

(When X has no maximum element, we are in Case (b) with n = 0.)

Suppose then that we are in Case (a). Put Y = X \ {z1,22,...} and let o = supY.
If Y is empty, take a = —oco. Note then that o < z, < z,-1 for all n. Now pick any
rational number ¢; > « and, having chosen ¢1, qo, ..., gn—1, pick any rational number g,
satisfying o < gn < gn—1. There are 2% many ways of choosing the resulting sequence
d = (qn). Now («,00) is order isomorphic to @ and hence there is an order-preserving
bijection { = &4 from (@, 00) to itself that maps x,, to g, for each n € N. Extend this to
an automorphism & of (Q, <) by defining z§ = x for all x < a. Then f¢ is Z-related to f
and im f§€ = X& = Y U{q,q,...}. Consequently, by Lemma 2.1(i), all such f¢ lie in
different .Z-classes and we have established the claimed result in this case.

We now turn to Case (b). Put Y = X \ {x1,292,...,2,} and let « = supY. (In
this case, necessarily Y is non-empty.) Note, by assumption, o ¢ X. Choose any real
number § with 8 < a. Since the intervals (—oo,«) and (—o0, 3) are order-isomorphic,
there is an order-isomorphism 6: (—oo, @) — (—o0, §). Pick any rational number  with
a < v < x,. Then define &, € End(Q, <) by

xgz{xﬂ fr<a

z ifzx>a«
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and
2071 ifx < p
= f<z<y
x if x> 7.

Then x;én = x; for ¢ = 1, 2, ..., n, since each z; > v, while &7 is the identity map
on Y. We therefore conclude fén = f. It follows that f¢ and f are Z-related. Moreover,
im f§ = X§ =YOU{x,22,...,2,} and supYh = . Hence, as § is permitted to vary
through {8 € R | B < o}, we obtain 280 endomorphisms in the Z-class of f, all of which
belong to distinct .Z-classes by Lemma 2.1(i). This completes the proof. O

The following result provides a condition that is sufficient for producing non-regular
endomorphisms. It is phrased in terms of the infimum and supremum of a subset of Q.
We remind the reader that these are well-defined members of R* and might not necessarily
be rational numbers in general.

Theorem 3.10 Let X be a subset of Q with the property that X has a partition into two
disjoint subsets X = X_UX, where X_ < X, and such that « = sup X_ and § = inf X
do not belong to X. Then there exists a non-regular endomorphism f of (Q, <) such that
the image of f is order-isomorphic to the substructure (X, <).

PrROOF: We make a number of reductions. The first is to observe that we can assume
that X is the image of an endomorphism of (Q, <). Indeed, by Theorem 1.1, there is an
(idempotent) endomorphism g of (Q, <) with image isomorphic to X. Write Y = im g and
denote by ¢ the order-isomorphism from (X, <) to (¥, <). Let Y_ = X_¢ and Y} = X ¢.
Put v = supY_. If it were the case that v € Y, then v = x¢ for some © € X. This
element z cannot be a member of X _, since z would then be the maximum element of X_,
contradicting the assuming that sup X_ ¢ X. Consequently, © € X, and by assumption
inf X, < . In particular, there exists some y € X with inf X, <y < z. Then y¢ is a
point in Y, satisfying z < y¢ < y for all z € Y_, which contradicts the definition of v as
the supremum of Y_. We conclude, by symmetry, that neither sup Y_ nor inf Y, belong
to Y. In conclusion, we can now replace X by Y and hence assume that X is the image
of the endomorphism g.

Our second reduction is to show that we can assume o = 3. Indeed, there is an order-
isomorphism 6: (3,00) — («@,00) and we can define a new endomorphism ¢ of (Q, <)
by

, {a:g ifxge X_
xg =
xgd ifxge X,.

The image of ¢’ is order-isomorphic to X and is the disjoint union of X_ and X, 6. The
infimum of X6 is also . We may therefore replace g by the endomorphism ¢’ and hence
assume that o = 3.

In summary, there is an endomorphism g of (Q, <) such that the image img = X is
a disjoint union X = X_ U X, with X_ < X, and supX_ = inf X; = o ¢ X. Pick
any real number 0 < . There is an order-isomorphism §: (—o0,a) — (—00,d) and we
extend this to an endomorphism of (Q, <) by also defining z§ = = for all x > . As £ is
an order-embedding, we conclude that g¢ € End(Q, <) and im(g¢) = X¢ = X. We shall
show that f = g£ is not regular.

Suppose that h is an endomorphism of (Q, <) with the property that fhf = f. Since
a = sup X_ = inf Xy, there exist sequences (z;) and (y;) in X_ and X, respectively,
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converging to a. As £ is an order-isomorphism from (—oo, ) to (—00, d), we conclude that
the sequence (x;€) converges to §. Pick ¢ € Q with § < ¢ < a. There is a sequence (¢;)
in Q with ¢;g = x; for each 7. Now ¢;f = ;6 < § < q, s0 x;:&§ = ¢;f = ¢;fhf < qghf for
each i. As (z;§) converges to §, we conclude that ghgé = ghf > §. From the definition
of £ and the fact that o ¢ im g = X, we conclude ghg > a.

Similarly, there is a sequence (r;) in Q with ;g = y; for each i. Now r;f = y;€ > § > ¢,
soy; = yi& = rif = rifhf > qhf for each i. The convergence of (y;) to «, allows us to
conclude ghf < a. The definition of ¢ forces ghg < a.

Comparing the conclusions of the last two paragraphs, we now have a contradiction
and hence have established that f is indeed not regular. ]

Observe that if X is a subset of Q containing a dense interval, then it satisfies the
hypotheses of Theorem 3.10 since we can choose an irrational number « in the corre-
sponding real interval and then partition X into X_ = {z € X |z <a} and X; =
{z € X |z>a}. On the other hand, if X = (N, <), then by a similar argument to
Proposition 3.8 any endomorphism f with im f = N is regular.

Corollary 3.11 There are 280 non-regular Z-classes in End(Q, <).

PrOOF: We again make use of the ordered sets %x constructed earlier. Let P be the set
of enumerations of Q provided by Proposition 3.5. If x € P, it is possible to embed a
copy of €x as a subset Dx of (2,00), as (2, 00) is order-isomorphic to Q. Then take Xx =
(0,1) U Dx. As this set contains an interval, it satisfies the hypotheses of Theorem 3.10
with, for example, a = f = 1/4/2 and so there exists a non-regular endomorphism fx
of (Q, <) with image isomorphic to Xx.

Now if x and y are distinct enumerations in P, then Xyx 2 Xy by Proposition 3.6
combined with the property of P. Hence fx and fy are not Z-related by Lemma 2.1(iii).
Thus we do indeed have 2% non-regular Z-classes of endomorphisms of (Q, <). O

4 TImages of idempotent transformations (Theorem B)

We shall now establish Theorem B, namely that a subset X of Q arises as the image
of an idempotent endomorphism of (Q, <) if and only if no maximal interval with the
complement of X is closed.

First let f be an idempotent endomorphism of the linearly ordered set of rational
numbers (Q, <). In order to describe the image of f as a subset of Q we shall consider the
various preimages xf ! of 2 € Q. Note that zf~! is empty if 2 is not in the image of f,
while € xf~! for all € im f because f is idempotent. Define

J={zeimf|lzf ' >1}.

When f is the identity map, J = @ and im f = Q. For all other idempotent endomor-
phisms f, J is non-empty and im f is a proper subset of Q. For the following analysis,
we shall assume f is not the identity.

For each x € J, we shall define below two intervals L, and U, in Q. The definition will
depend upon the infimum and supremum of the preimage set zf~!. If inf(zf~!) # —o0,
then the set {g €im f| ¢ <z} is non-empty. When this set is non-empty and has a
maximum member, we shall define

my =max{geimf|g<xz}.
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Dually, we define

ny=min{geimf|g>z}

when this minimum element exists. These two values, when they exist, will contribute to
the definition of the intervals L, and U, as follows:

(i)

If 2! is not bounded below, necessarily xf~! contains the interval (—oo,z]. In
this case, we define L, = (—o0, z).

If zf~! is bounded below, then there are three possibilities:

(if)

(iii)

(iv)

One possibility is that inf(zf 1) is actually an image value of f. If so, then zf~! con-
tains the interval (inf(xf~!),x] and necessarily inf(zf~1) is the maximum element
of {g€im f|q < x}; that is, m; = inf(zf~1). In this case, we define L, = (my, z).

The next case is that inf(zf~!) is not an image value of f, but that the element
my =max{q €im f | ¢ < x} does exist. Necessarily, m, < inf(zf~1). In this case,
we define L, = (my,x). Note that the effect of f on points in L, varies, as follows:

= r ifinf(af ) <g<z
4= my  if my < ¢ <inf(zf~1)

and, if it is the case that inf(zf~1) € Q, then inf(zf~1)f could be either m, or z.

The final case is when inf(xf~!) is not an image value of f and there is no max-
imum element in the set M = {g€imf|qg<z}. In this case, we define L, =
[inf(zf~1), 2).

If € > 0, we first observe that there exists some ¢ € im f satisfying inf(zf™!) — e <
q < inf(xf~!). Indeed, suppose that there were no image value of f belonging to the
interval (inf(zf~1)—¢,inf(zf~1)). Chooser € Q withinf(zf~1)—e < r < inf(zf1).
Now rf # z, so rf < inf(zf~1). Since inf(zf~! is not an image value of f, our
assumption now implies that rf < inf(zf~!) — ¢ < r. Note that rf € M, so,
as the set M has no maximum element, some image value, say s € im f, satisfies
rf < s <r. Then s = sf < rf, which is a contradiction. Hence there does indeed
exist some ¢ € im f satisfying inf(xf~1) — e < ¢ < inf(zf~!). Repeated application
of this establishes that in this case there is a monotonic increasing sequence (g;) of
image values of f converging to inf(zf~1).

We make a dual set of definitions for U,:

(i)
(i)

(iii)

(iv)

If zf~! is unbounded above, then we set U, = (x, +00).

If sup(zf~!) € Q is an image value of f, then sup(zf~') = n, and we set U, =
(z,nz).
If sup(zf~!) € R\ (im f) and n, = min{q €im f | ¢ > 2} exists, then set U, =
(z,ny).

Otherwise, set U, = (z,sup(zf~1)]. In this final case, we can find a sequence of
points in im f converging to sup(zf~!).

Lemma 4.1 Let x € J. The intervals L, and U, are either empty or are intervals in Q
that are not closed and are disjoint from the image of f.
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PROOF: We consider the interval L, in the case when it is non-empty, since the argument
for U, is analogous. Since one endpoint is z € Q and = € Q \ L,, we see that L, is not
closed. We shall now show that it cannot contain a point in the image of f.

As f is order-preserving, we know that qf = z for all ¢ € (inf(xf~1), ). In particular,
no point in (inf(xf~1!),z) lies in the image of the idempotent map f. In particular, this
tells us that L, does not meet the image of f in Cases (i), (ii) or (iv) of its definition.

In Case (iii), m, is the maximum element of the image of f satisfying m, < z. Con-
sequently, L, = (m,,z) again does not meet im f. O

Lemma 4.2 Let x € J. If L, or U, is non-empty, then it is a maximal interval within

Q\ (im f).

ProoF: We deal with L, and consider each of the cases (i)—(iv) above in the definition
of this interval. The result for U, is established by a dual argument. First note that,
by Lemma 4.1, L, C Q\ (im f). We shall show that L, is a maximal interval in this
complement.

In Case (i), Ly = (—o0,x) and the endpoint z belongs to the image of f. In Cases (ii)
and (iii), L, = (mg,z) and the endpoints m, and = both belong to im f. Hence, in these
three cases, L, is a maximal interval within Q \ (im f).

In Case (iv), L, = [inf(zf1),x) where inf(zf~1) ¢ im f. We assume that inf(zf~!) <
x in order for L, # @. The endpoint z belongs to the image of f, while there is a
sequence (g;) in im f converging monotonically to inf(zf~!) from below. Hence there
cannot exist an interval I contained within Q \ (im f) that strictly contains L,. This
completes the proof. O

PROOF OF THEOREM B: Let f be any idempotent endomorphism of (Q, <), let
J={zecimf|lzf!|>1},

and for each x € J, define the sets L, and R, as described above. Our first step will be
to observe that every point in the complement of the image of f belongs to at least one
of the sets L, or R, for some x € J.

Let ¢ € Q\ (im f) and put # = ¢f. Then zf~! contains ¢, so by definition x € .J. Now
either ¢ < x or ¢ > x. We shall consider the case when ¢ < x. The definition tells us that
inf(zf~1) < ¢. We now analyse the definition of L, and split into Cases (i)-(iv) as above.
In Case (i), inf(zf~!) = —0o < gand so q € L, = (—00, 7). In Cases (ii) and (iii), the facts
that f is an order-preserving idempotent, ¢f = x and m, is the maximum image value
satisfying m, < x implies that m, < ¢ and so ¢ € L, = (my,x). Finally, in Case (iv),
we already know that inf(zf~!) < ¢, so ¢ € L, = [inf(zf1),z). Similarly, if ¢ > z,
then g € U;. In conclusion, every point ¢ not in the image of f lies in either L, or Ugyy
with ¢f € J.

We have already observed, in Lemma 4.2, that the sets L, and U, are maximal intervals
in Q\ (im f) and it now follows, from the previous paragraph, that these sets are all the
maximal intervals in Q \ (im f). We have observed that these sets are not closed in
Lemma 4.1. This establishes the necessity part of Theorem B.

Conversely, suppose that X is a subset of Q and that Q \ X = (J,c;T;, where the
sets T;, for i € I, are the maximal intervals in Q \ X. Assume that the T; are not closed.
We define a map f: Q — Q as follows.

Consider one of the intervals T;. Since it cannot be expressed as a closed interval with
endpoints ¢, € RU {£oc}, it has one of the following forms:
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(i) T; = [g,r) for some ¢ and r with necessarily r € Q. In this case, define xf = r for

all x € [g,r).

(i1) T; = (q,r] for some ¢ and r with necessarily ¢ € Q. In this case, define zf = ¢ for
all z € (q,r].

(iii) T; = (gq,r) for some ¢ and r. Note that at least one of ¢ or r is rational, since
otherwise we could write T; = [g,7] contrary to the assumption that 7; is not a
closed interval. We then define f on this interval depending upon which endpoint is
rational:

{q when g € Q
zf =
r  when g ¢ Q

for all z € (¢, 7).

Finally define zf = x for all z € X. In this way, we have defined f on the whole set Q. To
verify that f is an idempotent endomorphism of (Q, <) with image equal to X, we now
proceed as follows.

First, if T; = [¢,7) is a maximal interval in Q \ X with » € Q, then r cannot belong
to another maximal interval Tj (as otherwise T; U T} would be a larger interval in Q \ X).
Hence r belongs to the set X. Similar arguments apply to the other cases in the definition
of f, so we conclude that im f = X. As a consequence, since xf = x for all x € X, it now
follows that f is idempotent.

Finally, we observe that the f is an endomorphism of (Q,<). Let z,y € Q satisfy
x < y. When z,y € X, there is nothing to establish since xf = z and yf = y. Suppose
that = € T; for some ¢ and that y € X. Let the endpoints of T; be ¢ and r with ¢ < r.
Then necessarily ¢ < r < y. Our definition for f states that xf equals one of g or r. Either
way, we know xf < r <y =yf. A similar argument applies when x € X and y € T; for
some 1.

The remaining case is when both = and y lie in one of the maximal intervals T;. If they
lie in the same maximal interval, then xf = yf. If, say, x € T; and y € T} with ¢ # j, let
the endpoints of T; and of T} be 1,71 and g2, 72, respectively. Then ¢1 < r1 < g2 < 2.
The definition of f tells us zf € {q1,m1} and yf € {q2, 2} and xf < yf follows. Hence
f is indeed an idempotent endomorphism of (Q, <) with image equal to the set X.

This completes the proof of Theorem B. O

5 Countable automorphism groups of countable linearly or-
dered structures (Theorem C)

Let 2 = (V, <) where V is a countable set and < is a linear order on V. Throughout this
section, we assume that Aut () is a countable group. Our goal in this section is to show
that this group is free abelian of finite rank.

Observe that if X is a convex subset of V', then every automorphism ¢ of (X, <) can
be extended to an automorphism of 2 by defining

3 vp forve X
v =
v forveV\X.

Thus Aut X embeds as a subgroup of Aut {2 and so our assumption implies that Aut X is
countable for every convex subset X of V. We shall use this and similar ideas throughout
our argument in this section.
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If f € Aut(, define a relation ~ on V by z ~ y if and only if xf™ < y < zf" for
some m,n € Z. (Note that ~ depends upon the automorphism f, but for simplicity of
notation we choose not to write ~ ¢ for this relation.) Then ~ is an equivalence relation
on V and we define the orbital Uy(x) (following Truss [14]) to be the equivalence class of
the point « under the relation ~. Observe that if = is fixed by f, then Uy(x) = {z}, while
if xf # x then the values z f", as n ranges through Z, are distinct and it then follows from
the definition that Uy(x) is an infinite convex subset of V.

The following contains the basic properties of orbitals that we shall need.

Lemma 5.1 Let f,g € AutQ and x € V.
(i) If xf > x, then Uy (x) is infinite and uf > u for all u € Us(x).

(ii

) If of <z, then Uy(x) is infinite and uf < u for all u € Us(x).
(ili) Up(z)g = Uy-14(9).

)

)

(iv) Only finitely many of the orbitals Us(y), as y ranges through V, are infinite.
(v) If f and g commute and Uy(x) is infinite, then Uy(x)g = Us(x).

ProOOF: (i) We have already observed that if = f # x, then the orbital U(z) is infinite.
Suppose xf > x, then zf"t! > xf™ for all n € Z. So if u € Uy (x), there exist m,n € Z
such that = f™ < u < xf™ where necessarily m < n. Then v < zf™ < uf"~™, which can
only hold if uf > u.

Part (ii) is obtained by a similar argument to (i), while part (iii) is straightforward to
establish from the definition.

(iv) Let {U; | i € I} be the set of those orbitals of f that are infinite and suppose that
I is infinite. Since the U; are pairwise disjoint and each is a convex subset of V', we can
define, for each subset ¥ of I, an automorphism fx of Q by

vf ifveU; wherei e X
vfs =

) otherwise.

Since f induces a non-identity transformation of each U;, we conclude that the fx are
distinct. Hence, as I has uncountably many subsets, we obtain a contradiction to the
assumption that Aut §2 is countable. This establishes that only finitely many of the orbitals
of f can be infinite.

(v) If f and g commute, then part (iii) of the lemma tells us that the action of g on V'
induces a permutation on the set of orbitals of f. Since only finitely many of these orbitals
are infinite and since g preserves the order on V, it must be the case that g fixes (setwise)
all the orbitals of f that are infinite. O

Lemma 5.2 Let f € AutQ), = € V and suppose that the orbital Us(x) is infinite. If
a,b € Uy(x) with a < b, then Aut(a,b) = 1.

Proor: Write B for the interval (a,b) = {veV |a<wv <b}. Since a,b € Us(x), there
exists some m € Z such that b < af™. It follows that the sets Bf*™, as k ranges over the
positive integers, are pairwise disjoint. As f is an automorphism of Q, each set Bf*™ is
order-isomorphic to B. We now have an infinite number of pairwise disjoint convex subsets
and so it follows that we can embed the Cartesian product [];2, Aut B fFm in Aut Q by
extending automorphisms defined on each of the sets Bf*™ to the whole set V. In view
of the fact that Aut {2 is countable, we deduce that Aut B = 1. O
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We are now able to establish one of our main steps along the way to proving Theorem C,
namely that the infinite orbitals Uy(z), as f ranges over all automorphisms of € and
x ranges over V, are either disjoint or are equal.

Proposition 5.3 Let f and g be automorphisms of ), x € V and suppose that both
orbitals Us(x) and Uy(x) are infinite. Then Uy(x) = Uy(x).

ProOOF: Suppose that Ug(x) # Uy(x). If f has more than one infinite orbital, replace f
by the map given by
of = {’Uf if v e Up(x),

v otherwise.

Thus, we can assume that f acts as the identity on V' \ U¢(z) and that Uy(v) = {v} for
all v € V\Uy(x). Also, replacing f by f ~1if necessary, we can assume that v f > v for all
v € Uy(x). Similarly, we can assume that g has only one infinite orbital, namely Uy(x), and
that vg > v for all v € Uy(x). We deal first with the possibility that one of these infinite
orbitals is a subset of the other. Without loss of generality, suppose Uy(x) C Uy(x). We
shall consider the possible arrangements of the points in the complement Ugy(z) \ Uy (z).

First, if there exist a,b € U such that a < Ug(x) < b, then note that f induces a non-
trivial automorphism of the interval (a,b). (Indeed, f acts non-trivially on the set Us(x)
and fixes all points in (a,b) \ Us(x).) We then obtain a contradiction since Lemma 5.2
applied to the orbital Uy(z) tells us that Aut(a,b) is trivial. Hence no such pair a and b
exists.

Therefore, if Us(x) C Uy(z), there exist points in Uy(x) greater than those in Us(x)
under the order <, or points less than those in Uy(z), but not both. The argument for
both cases is the same, so we shall assume the existence of some b € Uy(x) with Us(x) < b,
but that there is no a € Uy(z) with a < Uy(z). In this setting, note first that if it were the
case that f and g commute, then U¢(x)g = Ug(x) by Lemma 5.1(v), but this contradicts
the fact that there exists some m such that xg”™ > b. Hence f and g do not commute.

Now for each v € Uy(x), there is some n € Z satisfying vg"™ > b and so vg" & Us(x).
Equally, vg™ < x for some m € Z and so vg™ € Uy(x) since vg™ cannot satisfy vg™ <
Us(x). Then vg™ < vg", so that m < n. It follows that for every v € Uy(x) there is a
minimum integer m(v) satisfying vg™® ¢ Uy(z) and this integer has the property that
vg" € Uy(x) for all n < m(v) and vg™ ¢ Uy(x) for all n > m(v).

Now consider the automorphism 6; defined by 6; = ¢’ fg~—*, which by Lemma 5.1(iii)
has a single infinite orbital, namely Uy, (zg~") = Us(z)g~", which is some subset of Uy(z)
(since Uy (x) C Uy(x) and g fixes Uy(z) setwise). If v € Uy(z), observe v € Us(z)g~* if and
only if vg" € Uy(x); that is, when i < m(v). Consequently, v8; = v whenever i > m(v)
and, by Lemma 5.1(i), v6; # v whenever ¢ < m(v).

Now if ¥ = {09, 01,09,...} is an infinite subset of N with o; < 0,41 for each i, we can
define another automorphism of 2 by

hs = 1 O, .00, 6o

(In order to make sense of this definition, recall our convention is to write maps on the
right.) If v € V' \ Uy(x), then vf; = v for all i, so we observe vl,, ...0s, = v and hence
vhy; is defined and indeed equals v for such v. On the other hand, if v € Uy(z), then there
exists some N such that o,, > m(v) for all m > N. Thus v6,,,, = v for all such m and we
conclude that

V05, ... 05,00, = V05 ... 04 05,
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for all n > N. Hence vhy, is defined for all v € Uy(x) since v, ...05, takes the same
value independent of n provided this n is large enough. In addition to having observed
that hy is well-defined, such calculations similarly show that hy € Aut Q.

Having verified that hy is defined for any (infinite) ¥ C N, we now observe that
hs, # hp for distinct ¥, 7 C N. Indeed, suppose ¥ = {o09,01,...,00-1,0.,...} and
T = {00,01,---,0r—1,Ty, ...} where, without loss of generality, o, < 7. Take u = xgk
where k = m(x) — o, — 1. Observe ug® = z™@~! € Uy(x) and ug’ ¢ Uy (z) for all i > 0.
Thus u ¢ Us(z)g~* for all i > o, so that uf; = u for all such i. Hence, for n > r,

uby,, .. .05, = uby, ... 04, and uby, ... 0.,05, ... .0 =uby ,...00.

As u € Up(x)g~7" = Uy, (x), we know uf,, # u and so we conclude uhs, # uhp, which
establishes our claim that the hy are distinct. Since Aut (2 is countable, it cannot contain
these uncountably many automorphisms hy and we have another contradiction. The other
remaining case when Uy(x) C Uy(x) is similar, which now establishes that Uy (z) is not a
subset of Uy (z) nor vice versa.

Thus there exists some a € Uy(x) and b € Uy(x) such that a ¢ Uy(x) and b ¢ Us(x).
We may assume, without loss of generality that a < Uy(x). Then, since Us(x) and Uy(x)
are convex, we observe Uyg(x) < b. Moreover we also note that the sets Us(x) \ Uy(x),
Us(x)NUqy(x) and Uy(x) \Uy(z) are all convex and satisfy Us(z)\Uy(z) < Up(x)NUy(z) <
Ug(x) \ Us(x). Suppose first that f and g commute. Then as b,z € Uy(z), there exists
some n € Z such that b < xg". However, this is impossible as g™ € Us(x) by use
of Lemma 5.1(v). Hence we it must be the case that f and ¢ do not commute. Put
h = f~lg7' fg, which is some non-identity element of Aut Q. If v € Us(x) \ Uy(x), then
vf™! < v < Uy(z) and so vf~! ¢ Uy(x) and hence vf1g7lfg = vf~lfg = vg = v.
Similarly, if vh = v for v € Ug(x) \ Ug(x). It follows that any infinite Up(y) is a subset
of Ug(z) N Uy(x). However, we have already established that this is impossible, since
a pair of non-identity automorphisms f and h cannot have infinite orbitals satisfying
Un(xz) C Ug(x). This final contradiction completes the proof of the claim: Us(x) = Uy(x).

O

Recall that a linearly order group is a group G together with a linear order < upon it
such that if g, h, k € G with h < k, then gh < gk and hg < kg. An Archimedean group is
a linearly ordered group G with the property if g,h € G satisfy 1 < g < h, there exists
n € N such that h < g".

Let f € AutQ and fix x € V such that the orbital U = Uy(x) is infinite. For
o, € AutU, define ¢ < ¢ whenever x¢ < x1p. We shall observe that this is a well-
defined linear order with respect to which Aut U is an Archimedean group.

Lemma 5.4 (i) The map &: AutU — U given by ¢ — x¢ for each ¢ € AutU is an
injective map.

(ii) The order < is a well-defined linear order on Aut U with respect to which AutU is
an Archimedean group.

PROOF: (i) Suppose ¢ and ¢ are distinct automorphisms of U. Then g = ¢¢~! can be
extended to a non-identity automorphism of Q by defining vg = v for all v € V' \ U.
By assumption some u € U is moved by g and then Uy(u) = U by Proposition 5.3. In
particular, z € Uy(u) and hence zg # x by Lemma 5.1(1)—(ii). This shows that z¢ # z1),
as is required to establish that & is injective.
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(ii) Part (i) of the lemma shows that the set of automorphisms of U is in one-one
correspondence with the subset { z¢ | ¢ € Aut U } of U and hence the order on U induces
an order on Aut U; that is, the order < defined by ¢ < 9 if and only if z¢ < x. Tt is
straightforward to verify that Aut U is a linearly ordered group with respect to <. (One
makes use of Lemma 5.1 in this verification. For example, if ¢, 9,0 € Aut U with ¢ < 1,
then z¢¢~! > x and use of Lemma 5.1(ii) shows that x0¢¥¢~! > x60. It then follows
0¢ < 01, which is one of the facts that needs to be established.)

Finally, if 1 < ¢ < 9, we extend ¢ to an isomorphism of £ and observe U = Ug(x)
by Proposition 5.3. The definition of Ug(x) then provides n € N such that x¢ < x¢", so
1 < ¢". This establishes that Aut U is an Archimedean group with respect to the order <.

0

We can now make use of the result, originally due to Holder [9], that an Archimedean
group is isomorphic to an additive subgroup of the set R of real numbers (see, for ex-
ample, [6, Theorem 4.A]). In [7, Lemma 4.21] it is noted that such a subgroup is either
cyclic or is a dense subset of R. Our current goal is to establish Proposition 5.9 below,
namely that Aut U is an infinite cyclic group, so let us assume, seeking a contradiction,
that (Aut U, <) is a dense linearly ordered set.

In Lemma 5.4 we have observed that the map & is an order-isomorphism from Aut U
to the orbit of z under the action of AutU (with the order on this orbit being that
induced from the ordered set 2). Thus {z¢ | ¢ € AutU } is a dense linearly ordered set
with no maximum or minimum element and is therefore order-isomorphic to (Q, <). This
observation is independent of the choice of representative x in U and hence every orbit
in U under the action of Aut U is order-isomorphic to (Q, <).

Lemma 5.5 If u,v € U = Uy(z) and ¢, € AutU with ¢ < 1, then there exists
0 € AutU with ugp < v8 < ui.

PROOF: By use of Lemma 5.1(ii), we observe that the hypothesis ¢ < 1 ensures that
u¢ < up. When u and v belong to the same orbit of AutU on U the claim is now
immediate since that orbit is order-isomorphic to (Q,<). Suppose that v is not in the
orbit of u under the action of Aut U and, by applying ¢! if necessary, assume that ¢ is the
identity automorphism. Thus v is a non-identity automorphism of U satisfying u < uy
and we must find 6 € Aut U with u < v8 < u.

Suppose first that v < u. We extend 1 to an automorphism of €2 by defining it to fix
all points outside the orbital U. Then Proposition 5.3 tells us that Uy(u) = Us(u) = U.
In particular, there exists some n € N such that vy™ > u. Take n to be the minimum
positive integer satisfying v¢)™ > w. Then vy" ! < u, so u < vy)™ < wp and so, in this
case, 8 = 9™ is our required automorphism.

If w < v, then since Uy(u) = U we can find some power of ¢ such that vy)™ < w.
Applying the previous paragraph to v¢™ finds n € N such that v < v¢p™*™ < u1) and
then # = ¢p™*™ is the automorphism we seek. O

Now enumerate the points in U as the sequence (x,). First consider the set Ty of
convex subsets S of U such that (i) S contains zp and (ii) S¢ is disjoint from S for
every non-identity automorphism ¢ of U. As only the identity automorphism fixes xg
(see Lemma 5.1(i)—(ii)) we conclude {zop} is a set in Ty (so To is non-empty) and it is
straightforward to verify that the union of any chain of subsets of 7g is again a member
of 7o. Hence, by Zorn’s Lemma, there is some maximal member My of Ty.

Suppose then that, for some n, we have found subsets My, My, ..., My of U such that
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® 20,%1,...,Zpn-1 € {up|ue€ MyU---UMy, ¢ €AutU }, and
e MM; is a maximal convex subset of U subject to

MigU\{ud)]uEMoU---UMi,l,qSGAutU} (1)
M;p " M; =@ for every non-identity automorphism ¢ of U. (2)

(Note that Condition (1) ensures that M; is disjoint from every translate M;¢ of a previ-
ously defined subset, with 1 < j < ¢, under some automorphism of U.)

If ,, is already the image of some point in My U --- U M}, under some automorphism
of U, then we need create no new subset M, at this stage. Otherwise, consider the
set Ti41 of subsets S of U\ {u¢ |ue MyU--- UMy, ¢ € AutU } such that (i) S is a
convex subset of U, (ii) z, € S, and (iii) S¢ is disjoint from S for every non-identity
automorphism ¢ of U. Again, an application of Zorn’s Lemma provides the existence of a
maximal member My in Tgiq.

In this way, we find a family (M;) of convex subsets of U, indexed by some set [
(where either I =N or I = {0,1,...,k} for some k), such that U is the disjoint union of
the sets M;¢p, for ¢ € I and ¢ € AutU, and M; is maximal among convex subsets of U
satisfying (1) and (2) above. As convex subsets of the linearly ordered set U, there is an
induced order on the sets { M;¢ | i € I, ¢ € AutU }.

Lemma 5.6 Suppose that M; ¢1 < M;,¢o for some i1,i2 € I and some ¢1,¢p2 € AutU.
Then for each j € I, there exists some 1) € Aut U with

Mi1¢1 < Mji/) < Miqug.

PROOF: Suppose first that i1 = 4. Pick v € M;, and v € M;. By Lemma 5.5, there
exists » € Aut U such that ugp; < vy < ugy. Hence, as the sets concerned are convex,
Mi1¢1 < Mjw < Mi1¢2 = Mi2¢2, as required.

It remains to deal with the case when i1 # i5. If there exists some k& € I and au-
tomorphisms 61,602 € AutU with M; ¢1 < M6y < Mibs < M;,¢p2, then the previous
paragraph can be applied to My, < Myfs and we would have established the required
result. Seeking a contradiction, let us assume that no such &, 61 and 6, exist. As a con-
sequence, we conclude that there is no § € AutU with M; ¢1 < M;,0 < M;,¢ or with
M;, ¢1 < M;,0 < M;,¢2 and that, for each k € I, there is at most one § € Aut U with
Mi1¢1 < MR < Mi2¢2-

Write K for the set of those k € I for which there exists 0 € AutU with M;, ¢1 <
M0, < M;,¢2. (So, in particular, i1,i2 € K and that 0;,, = ¢y, for m =1, 2.) Let m be
the smallest integer in K. By applying the inverse of 6,, if necessary, there is no loss of
generality in assuming that 6, is the identity map. Put S = (J,cx Mi0k, so that M, is
a proper subset of S by our assumption on 6,,. Since V' is the union of all translates M;0,
it follows that every point between M;, ¢1 and M;,¢2 lies in some M0, with k € K and
we deduce that the set S is convex. The set S is also disjoint from all translates of M; for
j < m, since each set My, for k € K satisfies (1) above, while St NS = & for every non-
identity ¢ € Aut U since each set M}, satisfies (2). We now have a contradiction to M,
being a maximal convex subset satisfying (1) and (2). This contradiction completes the
proof of the lemma. O

The property given in Lemma 5.6 will essentially characterise the structure of the
ordered set (U, <). To describe this fully, we first introduce a new relational structure.
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Let I be a countable set. We define an I-coloured linearly ordered set to be a relational
structure Q = (V, <, (R;);er) where < is a linear order on the set V' and where each R; is
a binary relation on V of the form R; = V; x V; such that V is the disjoint union of the
sets V;. Thus the sequence (R;);c; encodes an equivalence relation on V' with equivalence
classes V;, for ¢ € I, in such a way that any automorphism of €2 fixes each of the equivalence
classes setwise.

The class of finite I-coloured linearly ordered sets satisfies the hereditary property, the
joint embedding property and the amalgamation property and therefore this class possesses
a unique Fraissé limit Q; = (W, <, (R;);er). Write Wj for the equivalence class determined
by the relation R;. This structure is characterised by the following property: (W, <) is
a countable linearly ordered set without maximum or minimum elements such that for
every pair u,v € W with u < v and every ¢ € I there exists w € W; with v < w < v.
Indeed, it can be shown by a back-and-forth argument that any two countable structures
satisfying this condition are isomorphic as I-coloured linearly ordered sets (and again such
an isomorphism takes the equivalence class in the first structure indexed by i € I to that
in the second indexed by 7). We shall call this Fraissé limit the I-coloured ordered set of
rational numbers in view of the fact that (W, <) is order-isomorphic to (Q, <). In view of
this order-isomorphism, we shall rename the set W as Q, so that the I-coloured linearly
ordered set is denoted Q; = (Q, <, (R;)ier)-

Proposition 5.7 The automorphism group of the I-coloured ordered set Q; of rational
numbers is uncountable.

PRrROOF: Note that Aut Q; is non-trivial since given any ¢ € I and two points x,y € W;, a
back-and-forth argument establishes the existence of an order-isomorphism that preserves
the equivalence classes W; and maps x to y. The following argument extends this to show
in fact there are uncountably many automorphisms of Q;.

We shall write Z x Qy for the I-coloured linearly ordered set defined as follows: as an
ordered set it is the set Z x Q equipped with the lexicographic order; that is, (m,z) < (n,y)
if and only if m < n, or m = n and x < y. To colour Z x Qy, for each ¢ € I, the ith
equivalence class is Z x W; where W; is the ith equivalence class in Q;. In effect, with
Z x Qr, we are taking countably many copies of @7, placing them in sequence in terms of
the order, and then taking the ith equivalence classes in each copy of Q; together to form
a single equivalence class in Z x Q.

One observes that Z x Qy is a countable linearly ordered set with no maximum or
minimum element and that it has the property that for each u,v € Z with u < v and
all ¢ € I, there exists w € Z x W; with v < w < v. Thus, Z x Qy satisfies the defining
property of Qr so that Z x Q7 = Q; as I-coloured linearly ordered sets.

If f = (f,) is a sequence of automorphisms of the structure Q;, we can define f e
Aut(Z x Qp) by (n,z)f = (n,zf,) for each n € Z and 2 € Q. This defines an injective
map f — f from the Cartesian product [0, Aut Q; to Aut(Z x Qr). It now follows that
Aut Q7 = Aut(Z x Q) is indeed uncountable. O

We now return to the automorphism group of the orbital U = Uy(x) under our current
assumption that Aut U is order-isomorphic to some dense linearly ordered set. Recall that
we have defined a sequence M = (M;);es of convex subsets of U indexed by I. We shall use
the I-coloured ordered set Qy of rational numbers, where I is the set indexing our convex
subsets. Recall that the equivalence classes on Q associated to this relational structure are
denoted (W;)icr. Now write Q;(M) for the ordered set (S, <) where S = J;c;(W; x M;)
and the order < is the lexicographic order (that is, (z,m) < (y,n) if and only if z < y,
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or x =y and m < n). Now if ¢ € AutQ; (a colour- and order-preserving bijection of
this structure), we can define an automorphism ¢ of Q;(M) by (z,m)d = (x¢,m) for
(x,m) € S. Note that we rely upon the fact that ¢ preserves the ith equivalence class W;
when observing that ¢ is indeed a well-defined map. The following now follows from the
fact that Aut Q; is uncountable.

Corollary 5.8 The automorphism group of the ordered set Q;(M) = (S, <) is uncount-
able. 0

Let us now consider the set M = {M;¢p |i €I, ¢ € AutU } of all translates of the
sets M; under the action of the automorphism group of U and view this as an ordered
set using the order induced on these convex subsets from the order on U. We shall also
define a relation R; to be that relating the points M;¢ for ¢ € AutU, so that W; =
{M;¢ | ¢ € AutU } is the corresponding subset of M indexed by i. Since AutU has no
maximum or minimum element, the same is true of M and now Lemma 5.6 tells us that
(M, <, (R;);er) satisfies the defining property of the I-coloured ordered set Q; of rational
numbers. Thus these structures are isomorphic as I-coloured ordered sets. Returning to
our set U, we now observe that we can reconstruct this set from M by replacing each
point M;¢ by a copy of the ordered set M;. This tells us that (U, <) is order-isomorphic
to Q7(M). This now gives us the contradiction that we seek: Corollary 5.8 tells us that
Aut U is uncountable, which is contrary to our running assumption.

In conclusion, we have now established our final step towards the theorem.

Proposition 5.9 Let f € AutQ), x € V and suppose U = Uys(x) is infinite. Then
Aut U is an infinite cyclic group. O

Putting all our work together, we can now establish Theorem C.

PrOOF OF THEOREM C: Consider the set {U; | i € I} of all subsets of V' that arise as
an infinite orbital of some automorphism of 2. Proposition 5.3 tells us that these sets Uj;
are pairwise disjoint. Moreover, if f; € Aut U; for each ¢ € I, then there is an extension f
to an automorphism of €2 by

v otherwise.

{vfi if v € U; for some i € I,
vf =

Since any automorphism of Q must fix all points in V \ (UZE I UZ-), we conclude that
Aut © is isomorphic to the Cartesian product of the automorphism groups of the U;. The
countability of Aut{) combined with Proposition 5.9 tells us that I is finite and that
Aut Q = ZHI. This completes the proof of our theorem. O
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