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Abstract 

A new dinuclear Fe(II) complex with the general formula [Fe2(1,4-tpbd)(dca)4(H2O)2] (1)  (in 

which 1,4-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)benzene-1,4-diamine; dca = dicyanamide, 

[N(CN)2]
−), has been prepared under hydrothermal conditions and fully characterized by 

elemental analysis, infrared spectroscopy, X-ray diffraction, and magnetic measurements. The 

compound crystallizes in the triclinic system and P-1 space group with Z = 1 and the following 

unit cell parameters:  a = 8.165(5) Å, b = 10.236(5) Å, c = 13.105(5) Å, α = 81.421(5)◦, β = 

78.810(5)◦, γ = 72.941(5)◦, and V = 1022.2(9) Å3.   The Fe(II) ions are six-coordinated, in 

distorted octahedral fashion, by three N atoms of tpbd ligand, one water oxygen atom and two N 

atoms of two dicyanamide anions. The intra-dinuclear Fe…Fe distance via the bridged µ2-tpbd 

ligand is 8.293(8) Å. In the molecular arrangement, the combination of O-H N and C-H N 

hydrogen bonds links the title complex to form a three-dimensional supramolecular structure. 

Magnetic susceptibility measurements (2–300 K) show that 1 presents weak antiferromagnetic 

exchange between the two nearest Fe2+ ions with the coupling constant  J = –1.05 cm−1.  

 

 Graphical abstract: The χT vs. T plot for complex 1. 
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1. Introduction 

 Spin crossover (SCO) compounds are a widely studied family in which external stimuli 

like temperature, pressure or laser light irradiation (LIESST effect: Light-Induced Excited Spin-

State Trapping) can induce a transition between two spin states [1-3]. In case of 3d ions the 

proper balance between the ligand field and the pairing energy plays a crucial role for this effect 

[4]. The most intensively studied SCO compounds are based on Fe(II) (3d6), in which the 

magnetic properties can dramatically change from a paramagnetic high-spin state (HS, S = 2) to 

a diamagnetic low-spin state (LS, S = 0) [5,6].  

 The great interest in SCO complexes is associated with their potential applications as data 

storage media, molecular switches or guest dependent sensors [7-9]. Although much work has  

been published in this area there are still many problems to be solved  including, for instance, 

those involving wide hysteresis loops at room temperature [10], multi-step hysteresis [11], 

multifunctional SCO [12] and how these properties correlate with structure [13-15].    

 Aiming to contribute to the SCO magneto-chemistry, we have focused our efforts mainly 

on searching for new SCO systems based on Fe ions. For this purpose we have synthesized a 

novel dinuclear Fe(II) complex with the polypyridyl 1,4-tpbd ligand. The resulting complex 

[Fe2(1,4-tpbd)(dca)4(H2O)2] (1) unfortunately does not show the crossover effect, however, we 

believe that the synthesis of this compound represents a significant step towards obtaining the 

desired bistable complexes.  

 Here we present the synthesis, structure and magnetic properties of 1. We have also used 

the magnetic data to calculate the strength of exchange coupling between the Fe(II) ions.          
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2. Experimental  

2.1. Materials and physical measurements 

 Chemical reagents were purchased commercially and were used as received without 

further purification. Elemental analyses (C, H and N) were performed using a Perkin-Elmer 2400 

series II CHN analyzer. The ligand 1,4-tpbd (1,4-tpbd = N,N,N'N'-tetrakis(2-

pyridylmethyl)benzene-1,4-diamine) was prepared according to the literature method [16]. 

Infrared (IR) spectrum was recorded in the range 4000–500 cm-1 on a FT-IR Bruker ATR Vertex 

70 Spectrometer.  

 Magnetic susceptibility measurements of polycrystalline samples were measured over the 

temperature range 2–300 K with a Quantum Design MPMSXL7 SQUID magnetometer with 

applied magnetic field of 500 Oe. The isothermal magnetization measurements were performed 

at 2.0 K in a magnetic field range ±70 kOe. Data were corrected for the diamagnetic contribution 

calculated from Pascal’s constants [17]. 

2.2. Synthesis and crystal growth 

 A mixture of FeSO4.7H2O (0.2 mmol, 56 mg), 1,4-tpbd (0.1 mmol, 47 mg) and Nadca 

(0.4 mmol, 36 mg) in water–methanol (4:1 v/v, 20 mL) was heated at 453 K for 2 days in a 

sealed Teflon-lined  stainless steel vessel under autogenous pressure and then gradually cooled to 

room temperature at a rate of 10 K h-1. After the reaction vessels had cooled to ambient 

temperature, orange crystals were collected by filtration. (1) yield 33%. Elemental analysis data: 

Anal. Calc. (%) for C38H32Fe2N18O2 (M, 884.51 g/mol): C, 51.60; H, 3.65; N, 28.50. Found: C, 

51.45; H, 3.58; N, 28.87%. Main IR bands (ν/cm-1): νs(C≡N) 2168(vs); νas(C≡N)  2232(m); 

νs(C≡N) + νs(C≡N) 2296 (m). 
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2.3. X-ray Crystallographic Studies 

A single crystal study of 1 was performed at 296 K using a Bruker APEX-II diffractometer 

equipped with a CCD area detector with graphite-monochromated Mo-Kα radiation (λ = 0.71073 

Å) generated from a sealed tube source. Data collection, indexing with reduction and absorption 

corrections were performed using APEX2, SAINT and SADABS programs, respectively [18,19]. 

The structure was solved by direct methods using SHELXS-97 [20] and refined by full-matrix 

least squares on F2 with all data, using SHELXL-2014 [21]. The refinement was handled [21,22] 

as a non-merohedral twin with twin matrix (-1,0,0/ 0,-1,0/ -0.528,-0.258,1).  All H atoms were 

located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in 

geometrically idealised positions with C-H distances 0.93 Å (aromatic and pyridyl) or 0.97 Å 

(CH2) and with Uiso(H) = 1.2 Ueq(C). The H atoms bonded to the O atoms were permitted to ride 

at the positions located in difference maps, with Uiso(H) = 1.5 Ueq(O), giving O-H distances of 

0.96 Å.   Both of the two independent dca ligands were disordered over two sets of atomic sites 

having unequal occupancies in each case.  For the minor components, the bonded distances and 

the 1.3 non-bonded distances were restrained to have the same values as the corresponding 

distances in the major components, subject to S.U. values of 0.005 Å and 0.01 Å respectively. In 

addition, the anisotropic displacement parameters for pairs of partial occupancy atoms occupying 

effectively the same volume of physical space were constrained to be identical.  Subject to these 

conditions, the occupancies for the dca components containing atoms N31 and N51 refined to 

0.83(4) and 0.17(4) respectively, and those for the dca ligands containing atoms N41 and N61 

refined to 0.89(3) and 0.11(3).  The final refined twin fractions were 0.390(5) and 0.610(5). The 

crystallographic data and experimental details for structural analyses are summarized in Table 1. 
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Table 1. Crystallographic data and refinement parameters for complex 1.  

1 

Empirical formula   C38H32Fe2N18O2 
Formula weigh   884.52  
Temperature /K   296(2)  
Crystal system    triclinic 
Space group    P-1 
a /Å     8.165 (5) 
b /Å     10.236 (5) 
c /Å     13.105 (5) 
α /°     81.421 (5) 
β /°     78.810 (5) 
γ /°     72.941 (5) 
V /Å3     1022.2 (9) 
Z     1  
Dcalcd /g·cm–3    1.437 
Radiation type    Mo-Kα 
µ /mm–1    0.768 
F(000)     454  
2θmax /°                                              25.5 
Ref. coll., ind., I > 2σ(I)           15771, 3755, 3093  
Rint              0.109 
No. of parameters                            298 
GOOF                         1.092 
R1, wR2 [I > 2σ(I)]                           0.086, 0.259 
∆ρmax /e·Å    1.30 
∆ρmin /e·Å             -1.14 
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3. Result and Discussion  

3.1. Infrared Spectroscopy 

 The IR spectrum of 1 shows strong to medium absorptions in the 2296–2168 cm-1 region 

corresponding to the ν(C≡N)  stretching frequencies of the dca ligand [23]. The spectrum of the 

title compound is given as Supplementary material (Fig. S1).  

3.2. Crystal Structure Description  

 The crystal structure of the compound 1 is shown in Fig. 1. Single-crystal X-ray 

diffraction analyses reveal that 1 crystallizes in the space group P-1 with half of a [Fe2(1,4-

tpbd)(dca)4(H2O)2] dimer in the asymmetric unit. The dinuclear complex (1) consists of an 

N,N,N',N'-tetrakis(2-pyridylmethyl)benzene-1.4diamine (1,4-tpbd) component coordinated to 

two [Fe(dca)2(OH2)] units, where dca represents the dicyanamide anion [N(CN)2]
−. The 1,4-tpbd 

unit lies across a center of inversion, chosen for the reference complex as that at (½, ½, ½), so 

that the two Fe(II) centers are equivalent by symmetry.  The three N atoms at each end of the 

1,4-tpbd adopt a facial configuration, as do the dca and the water molecule.  One of two pyridyl 

N atoms is trans to the water ligand and the other is trans to one of the dca ligand, while the N 

bonded to the aryl ring is trans to the other dca ligand.  The two independent dca units are both 

disordered over two sets of atomic sites having occupancies 0.83(4) and 0.17(4) for one, and 

0.89(3) and 0.11(3) for the other.   
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Fig 1. The molecular structure of the title complex with the atom numbering scheme. Displacement 

ellipsoids are drawn at the 30% probability level, and the atoms marked 'a' are at the symmetry position (1 

- x, 1 - y, 1 - z).  For the sake of clarity, the H atoms have been omitted. 

As depicted in Fig. 2, complex 1 possesses distorted octahedral coordination geometry. Each 

Fe(II) ion is thus coordinated by three N atoms from the 1,4-tpbd ligand, one N atom from each 

of the dca ligands and one H2O molecule with bond distances ranging from 2.094(8) Å to 

2.359(7) Å, which are in good agreement with previous reported values for Fe-N and Fe-O bond 

lengths [24,25]. The bond distances to the Fe(II) center in 1 are almost all greater than 2.1 Å, and 

all are similar to the corresponding distances in the high spin complexes [26]. On the other hand 

the distances to the pyridyl N atoms in 1 are ca. 0.2 Å longer than those corresponding Fe-N 

distances in the low-spin Fe(II) complexes [27] which are closely clustered around 1.97Å. On 

this basis, we deduce from the structural metrics that at ambient temperature complex 1 adopts a 

high-spin configuration, corresponding in approximate octahedral microsymmetry to a 5T2g state. 

The Fe...Fe distance within the centrosymmetric complex is 8.293(8) Å. The strain caused by 
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1,4-tpbd chelating ligand results in a distortion of the coordination geometry from the octahedral 

ideal with observed angles between mutually cis coordination sites ranging from 72.9(3)o to 

99.7(3)o (Table 2). 

 

 

 

 

 
Fig 2. Polyhedral presentation of distorted coordination sphere around Fe(II) centers. 
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Table 2. Selected bond lengths (Å) and bond angles (°) for compound 1. 

bond lengths (Å) bond angles (°) 

Fe1-N31 2.104(8) O1-Fe1-N1 96.3(3) N11-Fe1-N31 167.1(3) 

Fe1-O1 2.135(9) O1-Fe1-N11 81.2(3) N21-Fe1-N31 90.1(3) 

Fe1-N1 2.359(7) O1-Fe1-N21 171.0(3) N41-Fe-O1 95.1(3) 

Fe1-N11 2.214(8) O1-Fe1-N31 89.3(3) N41-Fe1-N21 93.9(3) 

Fe1-N21 2.143(7) N1-Fe1-N11 72.9(3) N41-Fe1-N1 193.7(3) 

Fe1-N41 2.094(8) N1-Fe1-N21 74.9(2) N41-Fe1-N31 95.9(3) 

  N1-Fe1-N31 99.7(3) N41-Fe1-N1 160.8(3). 

  N11-Fe1-N21 97.8(3)   

 

 

Molecules of the dinuclear complex (1) are linked by O-H...N hydrogen bonds (Table 3) to form 

sheets lying parallel to (011) containing centrosymmetric rings of R22(16) and R44(42) types (Fig. 

3), and these sheets are further linked by a C-H...N hydrogen bond to form a continuous three-

dimensional framework structure. 
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Fig 3. Packing diagram of complex 1, and specific hydrogen bond interactions separately in detail. 
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Table 3. Hydrogen bond lengths (Å) and angles (°) of 1. 

D-H...A D-H H...A D...A H...A 

O1-H1A...N45i 0.96 2.18 2.738(18) 116 

O1-H1A...N65i 0.96 1.96 2.64(12) 127 

O1-H1B...N35ii  0.96 1.98 2.774(19) 139 

O1-H1B...N55ii  0.96 1.85 2.73(10) 150 

C13-H13...N45iii    0.93 2.62 3.52(2) 163 

Symmetry codes: (i) –x, 2 - y, -z ; (ii) -x, 1 - y, 1 – z ; (iii) 1 + x, -1 + y, z 

 

3.3. Magnetic Properties 

Figure 4 shows the χT versus temperature plot, where the value of χT is almost constant from 

room temperature down to 100 K. On cooling further, the χT product decreases to 2.58 

emu.K.mol-1 at 2.0 K. To estimate the magnetic coupling between iron ions inside the dimer, the 

experimental data were fitted using the Heisenberg-Dirac-Van Vleck Hamiltonian: 

HSSgSSJ FeFeBFeFe )ˆˆ(ˆˆˆ
2121 ++−=Η µ   

where the first term describes the exchange coupling between iron ions and the second term 

represents the Zeeman splitting effect. The best fit is shown in Figure 4 as solid line and the 

derived parameters are J = -1.05 cm-1 and g = 2.23, assuming that the Fe(II) ions are in the high 

spin state at room temperature with SFe = 2.0. 
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Fig 4. The χT vs. T plot of 1 at H=500 Oe. The black empty circles are the measured data points. The red 

solid line stands for the best fit of χT data according to the HDVV Hamiltonian for dinuclear compounds.  

 

The negative value of J indicates a weak antiferromagnetic coupling, and the value of g was used 

to calculate free-ion contribution from two HS Fe(II) ions which amounted to 7.46 emu.K.mol-1. 

This is slightly higher than the value of χT at room temperature for compound 1 which was 

determined as 7.36 emu K mol-1. The Curie-Weiss fit of inverse susceptibility as a function of 

temperature yields Curie constant 7.44 emu.K.mol-1, close to the measured room temperature 

value of χT and the calculated free-ion contribution. The negative Weiss constant θ = -1.06 K 

confirms the antiferromagnetic character of magnetic interactions. The isothermal magnetization 

data at 2.0 K are shown in Figure 6. In a field of 70 kOe, the magnetization reaches the value of 

6.05 µB and does not reveal saturation.       
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Fig 5. Thermal variation of the inverse magnetic susceptibility χ-1 (black empty circles) with the Curie-

Weiss fit (red solid line). 

 

 

Fig 6. Field dependence of isothermal magnetization at T=2.0 K. 

 

. 
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4. Conclusions 

In summary, the centrosymmetric dinuclear compound formulated as [Fe2(1,4-

tpbd)(dca)4(H2O)2]  is reported. Synthesis, characterization, magnetic properties and its 

supramolecular 3D structure are also presented in detail. The dinuclear tpbd bridged Fe(II) 

compound displays a weak antiferromagnetic interaction between the two HS (high spin) Fe 

centers with a coupling constant J of –1.05 cm−1.  
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• A new dinuclear iron(II) complex is prepared under hydrothermal conditions. 
• The complex is characterized by spectroscopic and X-ray diffraction methods. 
• The complex crystallizes in the triclinic space group P-1. 
• Combinations of strong and weak hydrogen bonds form a 3D supramolecular structure. 
• Variable–temperature magnetic measurements showed the antiferromagnetic behavior. 


