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Abstract: Neodymium isotope data on exhalites and tuffs from the Cambrian 15	

Lemarchant volcanogenic massive sulphide (VMS) deposit provide insights into the 16	

tectonic environment of the Tally Pond group, Canada. New data from exhalites from the 17	

Lemarchant area show evolved values of εNd513 = -6.0 to -1.8, whereas the associated 18	

volcanic rocks have εNd513 of +0.4 to +1.4. The Lemarchant exhalite εNd compositions 19	

overlap the underlying Ganderian Neoproterozoic Sandy Brook Group (εNdt = -6.5 to 20	

-1.9) and Crippleback Intrusive Suite (εNdt = -5.9 to -5.2). The evolved Nd isotopic 21	

signatures suggest that the volcanic rocks of the Tally Pond group were formed upon 22	

Ganderian arc basement, which itself was possibly built upon, or proximal to, the 23	



Gondwanan Amazonian margin. Erosion of older crustal material and Tally Pond group 24	

volcanic rocks, together with coeval eruption of the volcanic rocks, released Nd-rich 25	

detritus into the water column. Uptake of eroded detrital and scavenged Nd resulted in 26	

mixed Nd sources (juvenile and evolved), which are archived in the exhalites. The results 27	

of this study are of significance not only for occurrences of exhalites within the Tally 28	

Pond group, but also have exploration implications for VMS districts globally. 29	

 30	

 31	

 32	

The Tally Pond group, central Newfoundland Appalachians, Canada, represents a 33	

volcanic belt that hosts abundant volcanogenic massive sulphide (VMS) deposits that are 34	

locally genetically associated with exhalites (Fig. 1 A-B; Franklin 1981; Lydon 1984; 35	

Swinden 1991; Squires & Moore 2004). Exhalites are metalliferous sedimentary rocks 36	

and are also described as metalliferous/hydrothermal mudstones, iron formation, tetsukiei 37	

(‘iron quartz’), tuffite, vasskis (‘Weißkies’ = ‘white sulphide’, also used for sulphidic 38	

black chert; Peter & Goodfellow 1996; Spry et al. 2000; Peter 2003; Hannington 2014). 39	

Exhalites represent a hiatus in the volcanic activity where the deposition of hydrothermal 40	

products is dominant over the abiogenic background sedimentation and/or deposition of 41	

volcaniclastic-epiclastic material (Lydon 1984). The lithogeochemical signatures of 42	

exhalites can be utilized to discriminate between predominantly hydrothermally or 43	

detritally (i.e., non-hydrothermal) derived material in exhalative rocks (Fig. 2A; Boström 44	

et al. 1972; Boström 1973; Peter 2003; Lode et al. 2016). The Lemarchant exhalites are 45	

dominated by elevated Fe/Al and Zn-Pb-Cu contents compared to detrital sedimentary 46	



rocks, and have shale-normalized negative Ce and positive Eu anomalies, indicative of 47	

deposition from high temperature (>250°C) hydrothermal fluids within an oxygenated 48	

water column, rather than being the product of predominantly detrital sedimentation (Fig. 49	

2A-B; Boström & Petersen 1969; Boström et al. 1972; Boström 1973; Sverjensky 1984; 50	

de Baar et al. 1988; German & Von Damm 2003; Peter 2003; Lode et al. 2015). 51	

 52	

The Tally Pond group, which is part of the Dunnage Zone, Newfoundland, Canada, 53	

belongs to the Cambrian (~515 Ma) to Permian (~275 Ma) Appalachian-Caledonide 54	

mountain belt that hosts numerous VMS deposits, including the past-producing Duck 55	

Pond and Boundary mines, and the precious metal-bearing Lemarchant deposit (Fig. 1A-56	

B; Williams 1979; Swinden 1988, 1991; Evans & Kean 2002; Grenne & Slack 2003; 57	

Rogers et al. 2007; van Staal & Barr 2011; Piercey et al. 2014; Hollis et al. 2015). The 58	

Tally Pond group (~513-509 Ma) volcanic rocks and related massive sulphide 59	

mineralization formed during arc rifting during the construction of the Cambrian to Early 60	

Ordovician Penobscot Arc, which is known to be built upon Ganderian Neoproterozoic 61	

(~563 Ma) arc basement of the Crippleback Intrusive Suite and the coeval Sandy Brook 62	

Group (Pollock et al. 2002; Zagorevski et al. 2007; Piercey et al. 2014). In the 63	

Neoproterozoic and Early Cambrian Ganderia was located north-west of the Gondwanan 64	

Amazonian margin (Fyffe et al. 2009; van Staal et al. 2012; Murphy et al. 2014). The 65	

Penobscot Arc represented the leading edge of Ganderia in a supra-subduction zone 66	

setting and arc rifting was initiated due to slab roll-back along this margin (Jenner & 67	

Swinden 1993; Schulz et al. 2008; Murphy et al. 2014). The basement to the Ganderian 68	

arc is not exposed; however, detrital zircon and Nd isotopic studies indicate the presence 69	



of older crustal rocks that were derived from the Gondwanan Amazonian craton (Nance 70	

et al. 2008; Schulz et al. 2008). Rifting of the Penobscot Arc led to the formation of 71	

volcanogenic massive sulphide (VMS) mineralization and associated hydrothermal 72	

sedimentary rocks of the Tally Pond group (Rogers et al. 2006; Copeland et al. 2009; 73	

Zagorevski et al. 2010; Piercey et al. 2014; Lode et al. 2016). During rifting of the 74	

Penobscot Arc there was extension, massive sulfide formation, and the genesis of 75	

exhalites that formed from the deposition from buoyant hydrothermal plumes from black 76	

smokers (Hekinian et al. 1993; Hannington et al. 1995; German & Von Damm 2003).  77	

 78	

These black smokers and associated exhalites occur where hydrothermal fluids are 79	

focused along deep synvolcanic faults in extensional settings (e.g., ocean ridges, rifted 80	

arcs, or backarc basin spreading centres; Fig. 3; Lydon 1984; Hannington et al. 2005; 81	

Gibson et al. 2007). The hydrothermal fluids consist of modified seawater, which is 82	

entrained through oceanic or rift-related continental crust, and are variably metal bearing 83	

with Fe, Mn, Cu, Pb, and Zn, as well as reduced S and Si (Von Damm 1990; German & 84	

Von Damm 2003; Galley et al. 2007; Tivey 2007; Huston et al. 2010). The metals and 85	

other ligands are generally derived from seawater and leached from host rocks (e.g., 86	

metals, Si±S; Fig. 3; Hannington et al. 2005; Huston et al. 2011). Hydrothermal plume-87	

derived Fe-oxyhydroxides are efficient scavengers of trace metals (e.g., oxyanions such 88	

as HPO4
2-, HVO4

2-, CrO4
2-, HAsO4

2-) and rare earth elements (REE) plus Y from 89	

seawater (Mills & Elderfield 1995; Rudnicki 1995). A rifted arc environment exposes 90	

rock units of different ages, hence varying Nd isotopic signatures, which contribute 91	

detrital material to the hydrothermal matter in the exhalative sedimentary rocks due to 92	



erosional and weathering processes (Keto & Jacobson 1988; Mills & Elderfield 1995). 93	

Therefore, exhalites not only record seawater REE (including Nd) but also the diverse 94	

provenance components of the detrital sources at the time of formation, even though the 95	

detrital matter is only a minor constituent compared to the hydrothermal matter (Mills & 96	

Elderfield 1995; Peter 2003; Lode et al. 2015). 97	

 98	

By using various isotopic tracers, such as Nd isotopes, it is possible to decipher the 99	

potential sources of various components in hydrothermal sedimentary rocks. The Nd 100	

isotopic system is specifically useful for understanding the relative roles of evolved 101	

versus juvenile crust, and provides further insight into the tectonic environment and 102	

provenance of the exhalites, as it is robust and not significantly modified by diagenetic, 103	

hydrothermal, and metamorphic processes (McCulloch & Wasserburg 1978; McLennan 104	

et al. 2003). In addition, the separation of Sm-Nd in Earth’s reservoirs is particularly 105	

useful in delineating juvenile versus evolved crust and the time-integrated sources of 106	

materials in Earth materials (McCulloch & Wasserburg 1978; Rollinson 1993; McLennan 107	

et al. 2003). The Tally Pond group volcanic rocks have eNd signatures that are typically 108	

positive, whereas their basement rocks, i.e., the rifted arc rocks of the Neoproterozoic 109	

Crippleback Intrusive Suite and the bimodal volcanic rocks of the Sandy Brook Group 110	

show more evolved eNd values (McLennan et al. 1993; Rogers et al. 2006; Nance et al. 111	

2008; McNicoll et al. 2010; Piercey et al. 2014). Given the level of preservation of 112	

stratigraphy of the lithofacies in the Lemarchant deposit, including the exhalites, this 113	

deposit is an excellent location to understand the provenance of exhalites in ancient rifted 114	

arcs. Correspondingly, the Nd isotopic signatures in the exhalites may be useful in 115	



outlining their provenance and the potential contributions of local versus basement versus 116	

distal sources in their genesis. Thus, the purpose of this study is to: 1) determine the 117	

sources of Nd in the exhalites and massive sulphides of the Lemarchant deposit; and 2) 118	

because the Tally Pond group is formed upon Ganderian and possibly older basement 119	

rocks, to evaluate the relative roles of mantle and evolved crustal inputs that contributed 120	

to the Lemarchant hydrothermal sedimentary rocks using the Nd isotope compositions of 121	

exhalites. 122	

 123	

Regional Geology 124	

The Tally Pond group is located within the Central Mobile Belt, Newfoundland, Canada, 125	

which is part of the Cambrian (~515 Ma) to Permian (~275 Ma) Appalachian mountain 126	

belt (Williams 1979; Swinden 1988; Rogers et al. 2007; van Staal & Barr 2011). The 127	

Newfoundland Appalachians are divided into four tectonostratigraphical zones (from 128	

west to east): Humber, Dunnage, Gander and Avalon zones (Fig. 1A; Williams 1979; 129	

Swinden 1988, 1991). The Dunnage Zone represents the Central Mobile Belt (Williams 130	

et al. 1988; Swinden 1991; Rogers et al. 2007). These zones result from and were 131	

affected by the successive accretion of three micro-continental blocks during the Early 132	

Palaeozoic to Middle Palaeozoic (i.e., Dashwoods, Taconic orogenesis; Ganderia, Salinic 133	

orogenesis; and Avalonia, Acadian orogenesis) and related interoceanic arcs and backarcs 134	

(Swinden 1991; Zagorevski et al. 2010). In the Palaeozoic (Middle Cambrian to 135	

Ordovician), these ribbon-shaped micro-continental blocks separated from Gondwana 136	

and Laurentia, forming peri-Gondwanan and peri-Laurentian terranes and subsequently 137	

accreted to Laurentia creating the composite Laurentian margin (Rogers et al. 2007; 138	



Zagorevski et al. 2010; van Staal & Barr 2011). The Exploits Subzone represents two 139	

phases of arc-backarc formation: the Cambrian to Early Ordovician Penobscot Arc and 140	

the Early to Middle Ordovician Victoria Arc (Zagorevski et al. 2010). The Tally Pond 141	

group and its VMS deposits (Duck Pond and Boundary mines; Lemarchant deposit; Fig. 142	

1B) are hosted in the lower Victoria Lake supergroup within the Exploits Subzone, which 143	

is comprised of Cambrian to Ordovician volcanic and sedimentary rocks (Dunning et al. 144	

1991; Rogers et al. 2007; McNicoll et al. 2010; van Staal & Barr 2011). The Victoria 145	

Lake supergroup is further subdivided into six assemblages (Zagorevski et al. 2010; 146	

Piercey et al. 2014), which are bounded by faults, and are from east to west: 1) the Tally 147	

Pond group; 2) the Long Lake group; 3) the Tulks group; 4) the Sutherlands Pond group; 148	

5) the Pats Pond group; and 6) the Wigwam Pond group; the Tulks, Long Lake, and Tally 149	

Pond groups are known to host VMS deposits. These six tectonic assemblages yield U-Pb 150	

zircon ages ranging from ~513 to 453 Ma (Dunning et al. 1987; Evans et al. 1990; 151	

Dunning et al. 1991; Evans & Kean 2002; Zagorevski et al. 2007; McNicoll et al. 2010). 152	

Furthermore, the Tally Pond group is informally subdivided into the felsic volcanic rock 153	

dominated Bindons Pond formation (also referred to as Boundary Brook formation; 154	

Pollock 2004) and the mafic volcanic rock dominated Lake Ambrose formation (Rogers 155	

et al. 2006). The latter contains island arc tholeiitic basalts to andesites with eNd511 of 156	

+3.1 (Dunning et al. 1991; Evans & Kean 2002; Rogers et al. 2006), whereas the former 157	

contains predominantly transitional to calc-alkalic rhyolitic to dacitic rocks with eNd511 158	

of +1.8 to +2.6 (Rogers et al. 2006; McNicoll et al. 2010; Piercey et al. 2014). The 159	

Cambrian felsic volcanic rocks of the Bindons Pond formation contain inherited zircons 160	

with Neoproterozoic U-Pb ages of 563 Ma (McNicoll et al. 2010).  161	



 162	

Deposit Geology and Lithofacies 163	

The Lemarchant VMS deposit is hosted within the Bindons Pond formation and is capped 164	

by a <1 to 20 m thick layer of exhalites occurring at the contact between the bimodal 165	

volcanic rocks of the Bindons Pond and Lake Ambrose formations (Fig. 4A; Copeland et 166	

al. 2009; Fraser et al. 2012; Lode et al. 2015). These sulphide-rich exhalites extend 167	

discontinuously around the massive sulphides for one to four kilometres (Copeland et al. 168	

2009; Fraser et al. 2012; Lode et al. 2015). Three main types of exhalatives occur at the 169	

Lemarchant deposit: 1) exhalites immediately on top of massive sulphide mineralization 170	

between the felsic and mafic volcanic rocks (exhalative-massive sulphide (EMS)-type; 171	

Fig. 4A-C, G-H); 2) exhalites extending laterally outwards from mineralization, but at the 172	

same stratigraphical level and without immediate association with mineralization (felsic-173	

exhalative-mafic (FEM)-type; Fig. 4D); or 3) interflow exhalites within the hanging wall 174	

basaltic rocks (IFE-type; Fig. 4E). Interflow exhalites occur commonly within 15 metres 175	

above the massive sulphide mineralization, but are present up to 70 metres 176	

stratigraphically above the ore horizon. Crystal lithic vitric (locally vitric crystal) tuff is 177	

intercalated with the exhalites and surrounding mafic and felsic volcanic lithologies and 178	

commonly contains chloritized glass shards and locally euhedral apatite phenocrysts (Fig 179	

4F). Independent of their stratigraphical positions, the exhalites are brown to black, 180	

graphite-rich, finely laminated, and contain fine carbonaceous/organic-rich laminae that 181	

are intercalated with siliciclastic, volcaniclastic and/or amorphous kidney-shaped 182	

chert±apatite layers (Fig. 4A-C). The main sulphide phases are pyrite (framboidal, 183	

massive, and euhedral) and pyrrhotite, with minor marcasite, chalcopyrite, sphalerite, 184	



arsenopyrite and galena (Fig. 5A-C). Sphalerite commonly displays chalcopyrite disease 185	

(Fig. 5A). Contents of chalcopyrite, sphalerite, and galena increase proximal to 186	

mineralization. The sulphides occur both parallel to bedding, and in later stage, stringer-187	

like veins (Fig. 4A-E). Ba-mineral phases include barite (BaSO4; Fig. 4F), the Ba-rich 188	

feldspar celsian (BaAl2Si2O8), and a barian K-feldspar with <2wt% Ba (hyalophane or 189	

barian adularia (K,Ba)Al(Si,Al)3O8). Barite locally forms anhedral (semi-)continuous 190	

layers or occurs as bladed crystals in vugs or veins, which are often associated with 191	

bladed Ca-Fe-Mg-Mn-carbonates.  192	

 193	

All types of the Lemarchant exhalites (proximal, distal, and interflow) have variable 194	

contributions of hydrothermal (high Fe/Al and base metal values; Fig. 2A) and detrital 195	

components (lower Fe/Al and base metal values). Furthermore, they display positive 196	

shale normalized Eu anomalies and positive Ce anomalies (Fig. 2B). These signatures 197	

suggest precipitation from reduced, high-temperature (>250°C) hydrothermal vent fluids 198	

in an oxygenated water column in a hydrothermal vent proximal setting (Lode et al. 199	

2015; 2016). Deposition into an oxygenated water column in a vent proximal 200	

environment is also supported by the presence of barite in both the exhalites and 201	

associated massive sulphides, as well as the S-isotopic signatures of sulphides within the 202	

exhalites (Lode et al. 2017). The δ34S systematics (ranging from -38.8‰ to +14.4‰, with 203	

an average of ~ -12.8‰) indicate that S was predominantly biogenically-derived via 204	

microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation, 205	

and microbial disproportionation of intermediate S compounds but also from inorganic 206	

thermochemical sulphate reduction (Fig. 5A-D). The latter is more pronounced in 207	



sulphides from the proximal EMS-type Lemarchant exhalites (Fig. 5D; Lode et al. 2017). 208	

Combined detailed lithogeochemical, mineralogical, and S- and Pb-isotopic studies and 209	

the stratigraphical context of these sulphide-rich mudstones, and intimate association 210	

with massive sulphides, suggests that they are hydrothermal in origin and formed from 211	

black smoker plume fallout and true exhalites rather than detrital sedimentary rocks 212	

(Lode et al. 2015; 2016; 2017).  213	

 214	

Methodology 215	

Sampling, methods, and quality control and quality assurance (QA/QC) 216	

Samples were collected during stratigraphical mapping and drill core logging of the 217	

Lemarchant deposit from drill holes that have exhalites and include the Lemarchant Main 218	

Zone, the Northwest and 24 zones, as well as the North and South targets (Fig. 6A). 219	

Samples were taken from representative exhalite types (EMS, FEM, and IFE), tuff, and 220	

surrounding mafic and felsic volcanic units. The whole rock lithogeochemical data were 221	

previously evaluated and presented in Lode et al. (2015), including analytical methods 222	

and QA/QC for lithogeochemical data. Lithogeochemical data are reproduced here only 223	

to compare to Nd isotope results.  224	

Neodymium isotopes 225	

Twelve representative samples in total were selected for Nd isotopic determinations, 226	

including ten exhalites from the three main exhalite types and 2 tuffs that are intercalated 227	

with the exhalites (Fig. 4A-F). These samples were chosen to cover both the horizontal 228	

and vertical distributions of all exhalite types and tuff occurring in the Lemarchant area. 229	

Additionally, one least altered sample of the felsic and mafic volcanic rocks (Fig. 4G-H) 230	



were selected for analyses, and for comparison to exhalite samples. Samarium and Nd 231	

isotopic compositions were measured at Memorial University using a multicollector 232	

Finnigan MAT 262 thermal ionization mass spectrometer (TIMS) in static and dynamic 233	

acquiring modes. Samples for Nd analyses were prepared using the methods of Fisher et 234	

al. (2011) from whole-rock powders using a multi-acid (HF, HNO3, and HCl) 235	

dissolution-evaporation process. Separation of Sm and Nd was obtained using 236	

conventional two-step column chemical methods (Fisher et al. 2011).  237	

 238	

Accuracy and precision for the Nd analyses were determined using the standards JNdi-1 239	

and BCR-2 as reference materials following methods described in Fisher et al. (2011). 240	

The JNdi-1 and BCR-2 standards have following reported values: 143Nd/144Nd = 241	

0.512115 and 143Nd/144Nd = 0.512633, respectively (Tanaka et al. 2000; Raczek et al. 242	

2003). Standards were run every 11 samples with each analytical batch. Additionally, 243	

blanks were utilized during each analytical run to test contamination; none was detected. 244	

Precision was determined using the percent relative standard deviation (%RSD) on the 245	

replicate analyses of the reference materials, and accuracy was determined using percent 246	

relative difference (%RD) from accepted values. Analyses for the Lemarchant samples 247	

have an average 0.0013 %RSD for 143Nd/144Nd and 0.00055 %RD for 143Nd/144Nd. 248	

 249	

The results herein are presented using the epsilon notation (eNd) and calculated for a 250	

formation age of 513 Ma, the U-Pb age of the host stratigraphy as reported by Dunning et 251	

al. (1991); data are presented in Table 1 and Figures 4B, 5A-B, and Figure 8. eNd513 was 252	

calculated by eNdt = (143Nd/144Ndrock,t / 143Nd/144NdCHUR,t) × 104 after Rollinson (1993) 253	



and ƒSm/Nd = [(147Sm/144Ndsample,t) / (147Sm/144NdCHUR,t) - 1] after McLennan et al. (1990). 254	

Chondrite uniform reservoir (CHUR) values utilized in this study are 143Nd/144Nd of 255	

0.512638 and a 147Sm/144Nd of 0.1967 (Hamilton et al. 1983; Rollinson 1993). Depleted 256	

mantle model ages (TDM) were calculated using depleted mantle values of 144Nd/144Nd = 257	

0.513163 and 147Sm/144Nd = 0.2137, and a decay constant of λ = 6.54 × 10-12 (Goldstein 258	

et al. 1984).  259	

Results 260	

Neodymium isotopic systematics. The Lemarchant exhalites (n = 10) have εNd513 261	

= -6.0 to -1.8 and TDM = 1.63 to 3.05 Ga (Table 1). Overall, the three types of 262	

Lemarchant exhalites (EMS = proximal; FEM = distal; IFE = interflow) have similar 263	

εNd513 values; however, the EMS-type have slightly lower εNd513 values and range from 264	

-5.6 to -4.1 with an average of -4.8; the FEM-type are less evolved and range from 265	

εNd513 = -4.0 to -3.2 with an average of -3.7; and the IFE-type has the widest range of 266	

εNd513 = -6.0 to -1.8 and average of -3.9 (Table 1; Fig. 6B, 7A-B). The Lemarchant tuff 267	

samples (n = 2) have εNd513 = -5.7 to -4.7 with an average of -5.2 and TDM = 1.75 to 268	

1.81 Ga. In εNd versus Th/Sc space the Lemarchant exhalites and tuff have Th/Sc ratios 269	

of 0.06 to 1.93 and fall between the arc andesite fields, with samples that have greater 270	

Th/Sc containing lower εNd values similar to upper crust values (Fig. 7A). These more 271	

evolved samples also trend towards the field of the 563 Ma Crippleback Intrusive Suite 272	

and Sandy Brook Group basement rocks (recalculated here at 513 Ma for comparison; 273	

Fig. 7A). The Lemarchant felsic and mafic volcanic rock measured in this study have 274	

εNd513 = +0.4 and a TDM = 1.47 Ga, and εNd513 = +1.4 and a TDM = 1.74 Ga, respectively, 275	

and plot in the field for arc rocks (Table 1; Fig. 7B). These values for the Lemarchant 276	



volcanic rocks are similar to values reported by Rogers et al. (2006) and McNicoll et al. 277	

(2010) for felsic and mafic volcanic rocks of the Tally Pond volcanic belt, including 278	

samples from the ‘Upper Block’ and the ‘Mineralized Block’ of the Duck Pond deposit 279	

(Fig. 7B).  280	

 281	

The ƒSm/Nd reflects the fractional deviation of 147Sm/144Nd from CHUR in parts per 104 282	

because of light rare earth element enrichment (i.e., lower Sm/Nd) during igneous 283	

differentiation processes (McLennan et al. 2003). Accordingly, in ƒSm/Nd-εNd space (Fig. 284	

7B) the Lemarchant exhalite and tuff samples have more evolved εNd513 values than the 285	

Lemarchant volcanic rocks, and are comparable to values reported by Rogers et al. 286	

(2006) for the Neoproterozoic Crippleback quartz monzonite and Sandy Brook Group 287	

rhyolite. However, the Lemarchant exhalite and tuff samples have ƒSm/Nd higher than the 288	

Neoproterozoic Crippleback quartz-monzonite and Sandy Brook Group rhyolite and 289	

trend towards those of the Tally Pond group volcanic rocks (Fig. 7B; McLennan et al. 290	

2003). The εNd values of the Lemarchant exhalite and tuff samples do not show any 291	

spatial variations throughout the zones of the deposit and/or with depth in the stratigraphy 292	

in the Lemarchant area (Fig. 6A-B). The TDM = 1.63 to 3.05 Ga of the Lemarchant 293	

exhalites are older than reported values for the coeval felsic volcanic rocks of the ‘Upper 294	

Block’ and ‘Mineralized Block’ at Duck Pond of 1.06 and 1.35 Ga, and 0.95 Ga, 295	

respectively (McNicoll et al. 2010), and those of the Crippleback Intrusive Suite (1.26 296	

and 1.35 Ga) and the Sandy Brook Group (1.15 to 1.34 Ga; Rogers et al. 2006; this 297	

study). 298	



Immobile element systematics : Volcanic rocks of the Tally Pond group that are 299	

associated with the hydrothermal sedimentary rocks and volcanic and igneous rocks of 300	

the Sandy Brook Group and Crippleback Intrusive Suites are shown on the immobile 301	

element Zr/Ti-Nb/Y classification diagram by Winchester and Floyd (1977) and Pearce 302	

(1996) in Figure 8. This plot enables to discriminate and identify rock types, 303	

independently from the degree of alteration (Winchester & Floyd 1977; Pearce 1996). 304	

The volcanic rocks from the Lemarchant deposit are subalkaline basaltic andesites, with 305	

the more felsic rocks trending towards dacite boundary, and the more mafic rocks 306	

trending towards the basalt boundary (Fig. 8). Because of the limited sample number for 307	

volcanic rocks from this study, fields from Cloutier et al. (2017) were added for felsic, 308	

intermediate, and mafic volcanic rocks from the Lemarchant deposit (Fig. 8). 309	

Additionally, samples for Tally Pond group felsic and mafic volcanic rocks, the Sandy 310	

Brook Group rhyolite and basalt and Crippleback quartz monzonite of Rogers (2004) and 311	

Rogers et al (2006) were also added for comparison. Chemically, the volcanic rocks of 312	

Lemarchant show a wide distribution, with felsic-dominated rhyolite-dacites of the 313	

Bindons Pond formation as well as intermediate andesite-basaltic andesites and mafic 314	

rocks of the Lake Ambrose formation (Cloutier et al. 2017), which is consistent with 315	

potential source rocks for the detrital constituent in the hydrothermal sedimentary rocks 316	

and regional models for the Tally Pond group (e.g., Rogers et al. 2007; Piercey et al. 317	

2014).  318	

 319	

Discussion 320	

Provenance, tectonic setting, and the role of crustal input  321	



The Tally Pond group represents the oldest magmatism of the Penobscot Arc and was 322	

developed during phases of arc rifting at the leading edge of the Ganderian margin 323	

(Rogers et al. 2006; Zagorevski et al. 2010; Piercey et al. 2014). 324	

Penecontemporaneously, further rifting on the trailing edge of Ganderia, led to the 325	

formation of the Ellsworth belt (~509-505 Ma) of coastal Maine and New Brunswick 326	

representing the separation of Ganderia from the Gondwanan Amazonian margin (Fyffe 327	

et al. 2009; van Staal et al. 2012). The volcanic rocks of the Ellsworth terrane comprise 328	

tholeiitic basalts and rhyolites with εNd500 Ma values ranging from +5.6 to +8.6, but also 329	

calc-alkaline rhyolite (R-1 Rhyolite) that yielded εNd500 Ma ~0 (Schulz et al. 2008). The 330	

latter are similar to the εNd values of felsic and mafic volcanic rock samples from the 331	

Tally Pond group (Bindons Pond and Lake Ambrose formations) of this study (εNd = 332	

+1.4 and +0.4, respectively), which are comparable with values that were previously 333	

reported for the Tally Pond group volcanic rocks (Fig. 7B; Rogers et al. 2006; Zagorevski 334	

et al. 2010). This illustrates that the Lake Ambrose formation basalts have predominantly 335	

juvenile signatures (εNd511 Ma = +3; Rogers et al. 2006 and this study), whereas Bindons 336	

Pond formation rhyolites and dacites have less juvenile values (εNd511Ma = +1.8 and +2.6) 337	

(Rogers et al. 2006; Zagorevski et al. 2010). There is a noticeable difference in εNd513 Ma 338	

values between the sedimentary and volcanic rocks of the Lemarchant deposit, however. 339	

In general, the exhalites and tuffs have lower εNd513 values ranging from −6.0 to −1.8 340	

(Fig. 7A-B), like the Sandy Brook Group rhyolite εNd513 Ma = -6.5 to -1.9, and the 341	

Crippleback Intrusive Suite εNd 513 Ma = -5.9 to -5.2 (Rogers et al. 2006). Mafic volcanic 342	

rocks are common in the Sandy Brook Group; however, no Nd isotopic data are 343	

published thus no comparison can be made to data from this study. Kerr et al. (1995) 344	



presented data for Late Precambrian mafic rocks of the Valentine Lake Pluton, which is 345	

correlative to the Crippleback Intrusive Suite, and may also represent a correlative mafic 346	

unit to the Sandy Brook Group mafic rocks (Kerr et al. 1995). The Valentine Lake Pluton 347	

mafic rocks yielded an εNd 570 Ma of +0.5 (Kerr et al. 1995). Given the similarities to 348	

Tally Pond mafic rocks, it is not possible to clearly distinguish the Late Precambrian 349	

mafic rocks from the Cambrian mafic volcanic rocks of the Tally Pond group. 350	

Considering that the exhalites, regardless of the exhalite type (proximal, distal, 351	

interflow), have negative εNdt values, contributions from mafic sources from either the 352	

Tally Pond group or underlying Sandy Brook Group appear minimal and negligible. 353	

 354	

There are a number of potential Nd sources in hydrothermal sedimentary rocks 355	

(exhalites), including seawater-derived/scavenged, detrital, and hydrothermally-derived 356	

components (Goldstein et al. 1984; Mills et al. 1993; Mills & Elderfield 1995). 357	

Scavenging of REE from seawater occurs during mixing of the hydrothermal fluids with 358	

seawater, where oxyanions (e.g., HPO4
2-, HVO4

2-, CrO4
2-, HAsO4

2-), trace elements, and 359	

rare earth elements (REE, including Nd) are scavenged from seawater onto Fe-360	

oxyhydroxides, and subsequently deposited around the hydrothermal vent site (de Baar et 361	

al. 1988; Rudnicki 1995; German & Von Damm 2003; Peter 2003). Nd isotopic 362	

signatures measured from modern seawater show a wide range that indicate that 363	

continental Nd is the predominant source of REE in modern seawater resulting in 364	

different Nd values within the main water masses/oceans (Goldstein et al. 1984; Bertram 365	

& Elderfield 1993; Tachikawa et al. 2003). Thus, exposure of crustal basement during arc 366	

rifting would bring crustally-derived evolved Nd into the ambient seawater, together with 367	



Nd derived from the broadly contemporaneously eruptions and erosion of the more 368	

juvenile Cambrian Tally Pond group volcanic rocks. Both sources of Nd would allow for 369	

scavenging of Nd that is dissolved in the water column via adsorption, or via a particulate 370	

Nd shuttle as detrital grains (e.g., detrital monazite; Wood & Williams-Jones 1994; Mills 371	

& Elderfield 1995; Rudnicki 1995; Chavagnac et al. 2005). In contrast, hydrothermal Nd 372	

is a minimal component in hydrothermal sediment, mostly because REE are in extremely 373	

low concentrations in seafloor hydrothermal fluids and initial hydrothermal Nd signatures 374	

in the hydrothermal sediment are often rapidly overprinted by Nd scavenged from 375	

seawater (Elderfield et al. 1988; Mills et al. 1993; Mills & Elderfield 1995).  376	

 377	

Considering these processes and potential Nd sources, it is noticeable that even though 378	

the Lemarchant hydrothermal sediments predominantly consist of hydrothermally-379	

derived matter (e.g., Zn-Pb-Cu-Fe-S), their Nd budget contains only minor 380	

hydrothermally-derived Nd. The dilution of hydrothermal fluids by seawater, scavenging 381	

processes, and contributions of detrital matter generally annihilates the initial 382	

hydrothermal Nd signatures in hydrothermal sediments (Mills & Elderfield 1995). In 383	

rifted arc basins, typical of that hosting the Lemarchant deposit (e.g., Cloutier et al. 384	

2017), the provenance of Nd is generally restricted and often local (i.e., Tally Pond group 385	

volcanic rocks, Crippleback Intrusive Suite and Sandy Brook Group basement rocks), 386	

such that erosion of these rocks results in locally-derived detrital Nd in the hydrothermal 387	

sedimentary rocks, as well as dissolved Nd in the water column (Figs. 9A-B, 10). The Nd 388	

in the Lemarchant exhalites was derived predominantly from scavenging and detrital 389	

matter, which explains their evolved Nd signatures; signatures that are not present in the 390	



more juvenile Tally Pond group volcanic rocks. Moreover, the Lemarchant exhalites have 391	

similar εNd513 Ma values throughout the sections of the Lemarchant Main Zone, the 392	

Northwest and 24 zones, and the North Target (Fig. 6A-B), albeit proximal Lemarchant 393	

exhalites (EMS-type) have more evolved εNd513 values than the more distal exhalites 394	

(FEM-type; Figs. 6A-B). It is suggested that the more evolved Nd signatures of the 395	

proximal exhalites represent early stages of arc-rifting, which were dominated by erosion 396	

of the rifted Neoproterozoic Ganderian (see below) and possibly older crustal basement, 397	

whereas the more distal exhalites reflect greater contributions from the continuously 398	

erupting and erosion of the more juvenile Cambrian Tally Pond group volcanic rocks 399	

(Fig. 9A-B).  400	

 401	

Significant input from crustal material is further supported by the Pb isotopic data of the 402	

Lemarchant deposit and other massive sulphide occurrences in the Tally Pond group 403	

(Swinden & Thorpe 1984; Pollock & Wilton 2001; Gill 2015; Lode et al. 2017). 404	

Volcanogenic massive sulphides and associated hydrothermal sediments have Pb sources 405	

that derive their Pb predominantly from leaching of basement rocks, which may include 406	

different reservoirs (Franklin et al. 1981; Swinden & Thorpe 1984; Tosdal et al. 1999; 407	

Ayuso et al. 2003). Lead isotopic data measured in-situ on galena hosted within sulphides 408	

in the hydrothermal sediments using secondary ion mass spectrometry (SIMS), suggested 409	

hydrothermally- and detritally-derived Pb sources (Lode et al. 2017). Especially more 410	

vent distal exhalites showed more radiogenic detritally Pb contributions, which were 411	

characterised by more radiogenic 206Pb/204Pb and 208Pb/204Pb ratios (Mills & Elderfield 412	

1995; Lode et al. 2017). These data are also consistent with derivation of Pb from 413	



juvenile to evolved sources and suggest such crust was present beneath the Tally Pond 414	

group.  415	

 416	

The Nd and Pb isotopic data from Lemarchant exhalites also provide insight into the 417	

crustal architecture and potential palaeogeographic relationships of the Lemarchant 418	

deposit and Tally Pond group within the Iapetus Ocean. For example, inherited zircons 419	

(563 Ma) in the Cambrian felsic volcanic rocks of the Tally Pond group are consistent 420	

with them having erupted from or interacted with Neoproterozoic Ganderian basement 421	

rocks (Crippleback Intrusive Suite and the coeval bimodal Sandy Brook Group; Rogers et 422	

al. 2006; Rogers et al. 2007; McNicoll et al. 2010; Zagorevski et al. 2010). Similar, 423	

Neoproterozoic (~553 Ma) inherited zircon ages are also known from rocks of the Pats 424	

Pond group (~487 Ma), which are found regionally proximal to the Tally Pond group 425	

albeit younger, and these rocks also have Mesoproterozoic (0.9-1.2 Ga) xenocrystic 426	

zircons (Zagorevski et al. 2007, Zagorevski et al. 2010). This indicates that the bimodal 427	

Pats Pond group was built near or upon Ganderian basement as the Tally Pond group 428	

(Zagorevski et al. 2010). Plutonic and gneissic boulders, as well as sedimentary rocks in 429	

the Ellsworth Formation of coastal Maine and New Brunswick, rocks 430	

penecontemporaneous with the Tally Pond group, contained small populations of 431	

Mesoproterozoic, Palaeoproterozoic, and Archean zircons up to 3.23 Ga, but with a 432	

dominant population between 1.07 to 1.61 Ga (Hibbard et al. 2007; Schulz et al. 2008; 433	

Fyffe et al. 2009; van Staal et al. 2012). These inherited zircon patterns present in the 434	

Victoria Lake supergroup and Ellsworth terrane are consistent with these rocks being 435	

built atop Ganderian basement, and are also consistent with Ganderia having originated 436	



along the Gondwanan Amazonian margin (Fyffe et al. 2009; van Staal et al. 2012). The 437	

Mesoproterozoic to Archean TDM model ages and Nd isotopic data of the Lemarchant 438	

exhalites (1.63 to 3.05 Ga) together with the detrital zircon populations and the Nd 439	

signatures of the Tally Pond group volcanic rocks, as well as of the Crippleback Intrusive 440	

Suite and Sandy Brook Group, are also consistent with an Amazonian provenance for 441	

Ganderia, and also suggests that the Tally Pond group evolved along this margin (Fig. 8; 442	

Zagorevski et al. 2007; Pollock et al. 2011; van Staal & Barr 2011; van Staal et al. 2012). 443	

 444	

Altogether, the Nd and Pb isotopic data support that older crustal basement plays a role in 445	

hydrothermal activity in the Tally Pond group, either through direct leaching (Pb), detrital 446	

(Pb+Nd), or via adsorption/deposition from the water column (Nd). Furthermore, trace 447	

element signatures of the Tally Pond group volcanic rocks and provenance-related 448	

immobile element systematics of the exhalites are consistent with a formation in a 449	

volcanic arc environment, such as a graben/caldera in a rifted continental arc, or an arc 450	

proximal to continental crust along the Gondwanan margin (Rogers et al. 2006; 451	

Zagorevski et al. 2010; Piercey et al. 2014). Therefore, exhalites that precipitate in a 452	

rifted arc basin/caldera setting record diverse provenance components that are useful for 453	

palaeogeographic reconstructions and provide a mechanism to elucidate the source of 454	

metals that contributed to the formation of spatially and genetically associated massive 455	

sulphides. 456	

 457	

Conclusions 458	



It is proposed that the volcanogenic massive sulphides of the Lemarchant deposit and 459	

related exhalites formed from fluids that ascended along deep synvolcanic faults in a 460	

rifted arc basin that contained Cambrian (~513-509 Ma) felsic, intermediate, and mafic 461	

volcanic rocks and was underlain by Neoproterozoic (~565 Ma) mafic and felsic volcanic 462	

rocks (Sandy Brook Group), and associated intrusive rocks (Crippleback Lake Intrusive 463	

Suite). The eruption and erosion of the Tally Pond group volcanic rocks within this rift-464	

related graben/caldera environment resulted in the addition of juvenile Nd to the basin 465	

and water column that was recorded in the exhalites that are found near massive sulphide 466	

mineralization. Furthermore, the uplift associated with arc rifting led to the erosion of the 467	

Ganderian arc rocks of the Crippleback Intrusive Suite and the coeval Sandy Brook 468	

Group resulting in the addition of evolved crustal Nd to both ambient seawater and as 469	

detrital materials. Exhalative sedimentary rocks in the Lemarchant deposit contain both 470	

Nd scavenged from seawater and from detritus and they collectively record Nd additions 471	

from both Neoproterozoic Ganderian basement and intrabasinal Tally Pond group 472	

volcanic sources. These results are also consistent with previous detrital zircon and Nd 473	

isotopic studies that suggest that unexposed older crustal basement of the Gondwanan 474	

Amazonian margin existed beneath the Ganderian arc rocks and contributed detrital Nd to 475	

the Tally Pond group and Lemarchant exhalites specifically. As the precipitating 476	

exhalites record the mixed sources, with evolved and juvenile εNd signatures, the 477	

abundance of exhalites with more evolved εNd systematics suggests that the predominant 478	

source of Nd was eroded older crustal material. However, results herein and published 479	

previously suggest that this Amazonian basement signature is not recorded significantly 480	

in the volcanic rocks of the Tally Pond group. Overall, the Nd isotopic compositions, as 481	



well as the lithogeochemical data, of the Lemarchant exhalites suggests that the 482	

Lemarchant deposit exhalites record a formation within a rifted arc environment built 483	

upon Ganderian (exposed) and Gondwanan Amazonian (unexposed) crustal basement, 484	

consistent with existing models for the Tally Pond group. 485	

 486	
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Figure Captions 928	

Fig. 1. (a) Tectonostratigraphical assemblages with the main zones of the Newfoundland 929	

Appalachians (Avalon, Gander, Dunnage, and Humber zones) and VMS occurrences 930	

within the Notre Dame and Exploits subzones. 931	

Notre Dame Subzone VMS: 1 – York Harbour; 2 – 8 - Baie Verte Belt Deposits; 9 – 12, 932	

46 – Springdale Belt Deposits; 13 – 29 Buchans-Roberts Arm Deposits. 933	

Exploits Subzone VMS: 30 – 37 - Tulks Belt Deposits; Tally Pond Group Deposits: 39 – 934	

Lemarchant; 40 – Duck Pond; 41 – Boundary; 42 – 45 – Point Leamington Belt Deposits. 935	

Modified after (Swinden, 1991) and Piercey (2007). (b) Geological map of the Tally 936	

Pond group. The Tally Pond group comprises the Lemarchant deposit and the Duck Pond 937	

and Boundary mines. Figure after Copeland (2009) and Map 2006-01 from Squires and 938	

Hinchey (2006) and Lode et al. (2017). 939	

 940	

Fig. 2. (a) Fe-Ti/Al-Fe-Mn discrimination diagram indicating a hydrothermal origin for 941	

the Lemarchant exhalites. According to their higher Al-contents, tuff samples plot 942	

predominantly towards the right-hand side of the diagram, partially outside of the 943	

hydrothermal field. Diagram after Boström (1973). (b) REE plus Y geospider plots of 944	

Lemarchant proximal, distal, and interflow exhalites of various stratigraphical levels. All 945	

samples are normalized to the post-Archean Australian shale (PAAS) of McLennan 946	

(1989). 947	

 948	

Fig. 3. Schematic illustration of the main aspects of hydrothermal circulation in 949	

extensional tectonic environments. In the recharge zone seawater is entrained through 950	



crustal and progressively heated during downward migration. Water-rock interactions 951	

lead to loss of Mg2+, SO4
2-, and OH- and H2S is generated. These reactions produce H+ 952	

and create acidic fluids that leach metals out of rocks. In the reaction zone the highest 953	

temperatures are reached and the hydrothermal fluids gain their geochemical signatures. 954	

The hot fluids rise buoyantly up along synvolcanic faults and are expelled via the 955	

hydrothermal plume into the ambient seawater. Figure modified after German and Von 956	

Damm (2003) and Gibson et al. (2007). 957	

 958	

Fig. 4. Core photographs of the main Lemarchant exhalite types and associated felsic and 959	

mafic volcanic rocks of the Bindons Pond and Lake Ambrose formations, respectively, 960	

and scanning electron microscope (SEM) image in back-scattered electron (BSE) mode 961	

of tuff intercalated with exhalite. (a) Finely laminated sulphide-rich EMS-type exhalite 962	

with cross-cutting stringer type veins and overlying massive sulphide mineralization. 963	

Section 101N, LM11-65, exhalite sample CNF30983, 160.7 m. (b) Proximal EMS-type 964	

exhalite associated with the Lemarchant Main Zone. Section 102+50N, LM10-43, 965	

CNF20976, 202.3 m. (c) Proximal EMS-type exhalite with intercalated chert-apatite 966	

layers. Section 101N, LM07-13, CNF30954, 164.7 m. (d) FEM-type exhalite associated 967	

with the Northwest Zone. Section 106N, LM08-28, CNF20986, 240.6 m. (e) Sulphide-968	

rich interflow exhalite. Section 101+25N, LM13-79, CNF25072, 169.0 m. (f) Euhedral 969	

apatite (Ap) phenocrysts in an aphanitic quartz (Qz), feldspar, and chlorite-rich matrix of 970	

a vitric crystal tuff that is intercalated with FEM-type exhalite. Other phases are chlorite 971	

(Chl) in a vein, pyrite (Py), and barite (Brt). Section 104+51N, LM08-19, CNF30957a, 972	

98.89 m. (g) Felsic to intermediate volcanic rock of the Bindons Pond formation located 973	



in the North target. Section 108N, LM11-49, 144.6 m. (h) Mafic to intermediate volcanic 974	

rock of the Lake Ambrose formation located in the North target. Section 108N, LM11-49, 975	

422.9 m. 976	

 977	

Fig. 5. (a) Detailed photomicrograph (RL = reflected light). EMS-type exhalite, sample. 978	

with euhedral pyrite (Py), sphalerite (Sp) with chalcopyrite-disease, galena (Gn), and 979	

chalcopyrite (Ccp) S-isotopic spot analyses. Section 101+25N, LM13-79, CNF25071b, 980	

186.6 m. (b) Photomicrograph (RL) of framboid-rich EMS-type exhalite with a sulphide-981	

rich vein parallel lamination. Vein sulphides consist of euhedral pyrite (Py), interstitial 982	

chalcopyrite (Ccp), and pyrrhotite (Po) and were analysed for S-isotopes. Section 105N, 983	

LM08-24ext, CNF20983, 432.8 m. (c). Photomicrograph (RL) of a FEM-type exhalite, 984	

with euhedral and massive pyrite (Py), galena (Gn) inclusions, and associated interstitial 985	

chalcopyrite (Ccp) and S isotopic results of spot analyses. Section 103+25N, LM11-59, 986	

CNF30998, 194.2 m. (d) δ34S data ranges of pyrite (Py) including marcasite, pyrrhotite 987	

(Po), arsenopyrite (Apy), chalcopyrite (Ccp), and galena (Gn) with distribution shape and 988	

95th percentile (hatched line), as well as the average (solid line). Green bar on right-hand 989	

side indicates range of δ34S values that have only biogenically-derived S sources, based 990	

on two-component mixing modelling presented in Lode et al. (2017). Grey arrows 991	

display δ34S ranges that have mixed sources. Data are subdivided into the three exhalite 992	

types: EMS, FEM, and IFE. EMS-type exhalites have more contribution of S derived 993	

from thermochemical sulphate reduction than IFE-type exhalites. FEM-type show 994	

intermediate ranges. 995	

 996	



Fig. 6. (a) Spatial distribution of εNd for the EMS-, FEM-, and IFE-type exhalites and 997	

tuff, as well as the Lemarchant felsic and mafic volcanic rock from this study. Sample 998	

data do not show any spatial variations throughout the sections and/or with depth in the 999	

stratigraphy in the Lemarchant area. 2σ error bars calculated after algorithm from Ickert 1000	

(2013). (b) Resource map of the massive sulphides of the Lemarchant Main, 24 Zone, 1001	

and Northwest Zone. Massive sulphides are projected to the surface. Modified from the 1002	

resource map of Canadian Zinc Corporation. 1003	

 1004	

Fig. 7. (a) Diagram of εNd versus Th/Sc ratio for the three main types of Lemarchant 1005	

exhalites (EMS, FEM, and IFE) and tuff. Also plotted are data from Rogers et al. (2006) 1006	

for felsic and mafic volcanic rocks of the Tally Pond group and the Crippleback/Sandy 1007	

Brook Group crustal basement rocks. Mid Ocean Ridge Basalt (MORB) field from data 1008	

from Gale et al. (2014). Arc andesite field from data from Hawkeswoth et al. (1979). All 1009	

data re-calculated for εNd513. Diagram modified after McLennan et al. (1993). (b) Plot of 1010	

ƒSm/Nd versus εNd for the EMS-, FEM-, and IFE-type exhalites and tuff, as well as the 1011	

Lemarchant felsic and mafic volcanic rock from this study. Also plotted are data from 1012	

Rogers (2004) and Rogers et al. (2006) for felsic and mafic volcanic rocks of the Tally 1013	

Pond group, a felsic volcanic rock samples from the unmineralized Upper Block at Duck 1014	

Pond and a sample from the Mineralized Block at Duck Pond from data from McNicoll et 1015	

al. (2010), and the Crippleback/Sandy Brook Group crustal basement rocks. Diagram 1016	

modified after McLennan et al. (1993). 1017	

 1018	



Fig. 8. Zr/Ti versus Nb/Y plot for volcanic rocks after Winchester and Floyd (1977) and 1019	

Pearce (1996) for the Lemarchant felsic and mafic volcanic rocks from this study and 1020	

from data from Rogers (2004) and Rogers et al. (2006). Additionally, data fields for 1021	

felsic, intermediate, and mafic volcanic rocks was added (Cloutier et al., 2017). Data 1022	

from Rogers (2004) and Rogers et al. (2006) was also used to plot the Crippleback 1023	

Lake/Sandy Brook Group crustal basement rocks. 1024	

 1025	

Fig. 9. Model displaying the Cambrian Tally Pond group with juvenile Nd signatures that 1026	

is built upon the Ganderian and Gondwanan Amazonian rifted crustal basement with 1027	

evolved Nd signatures. (a) Early stages of arc rifting with felsic volcanism and formation 1028	

of massive sulphides and genetically associated exhalites. Scavenged and detrital juvenile 1029	

and evolved Nd is archived in the exhalites resulting in mixed signatures. (b) Final stages 1030	

of arc rifting and emplacement of mafic volcanic rocks that form the hanging wall to the 1031	

Lemarchant VMS deposit. 1032	

 1033	

Fig. 10. Diagram of εNd versus age for Tally Pond group exhalite and volcanic rock 1034	

samples from this study and from Rogers (2004), Rogers et al. (2006), and McNicoll et 1035	

al. (2010). The field for Ganderian Neoproterozoic rocks is from Rogers et al. (2006). 1036	

Fields for the Mesoproterozoic Amazonian crust, the Transamazonian crust, and the West 1037	

African Craton are from Satkoski et al. (2010) and references therein. Depleted mantle 1038	

evolution curve is from dePaolo (1981). CHUR = Chondrite uniform reservoir. 1039	
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