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Abstract

We introduce a theory of contractive Markov systems (CMS) which provides a unifying 
framework in so-called "fractal" geometry. It extends the known theory of iterated 
function systems (IFS) with place dependent probabilities [1][8 ] in a way that it also 

covers graph directed constructions of "fractal" sets [18]. Such systems naturally 
extend finite Markov chains and inherit some of their properties.

In Chapter 1, we consider iterations of a Markov system and show that they preserve 

the essential structure of it.

In Chapter 2, we show that the Markov operator defined by such a system has a
unique invariant probability measure in the irreducible case and an attractive prob-

\

ability measure in the aperiodic case if the restrictions of the probability functions 
on their vertex sets are Dini-continuous and bounded away from zero, and the sys­
tem satisfies a condition of a contractiveness on average. This generalizes a result 
from [1]. Furthermore, we show that the rate of convergence to the stationary state 
is exponential in the aperiodic case with constant probabilities and a compact state 

space.

In Chapter 3, we construct a coding map for a contractive Markov system.

In Chapter 4, we calculate Kolmogorov-Sinai entropy of the generalized Markov shift.

In Chapter 5, we prove an ergodic theorem for Markov chains associated with the 
contractive Markov systems. It generalizes the ergodic theorem of Elton [8].
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Introduction

The study of Markov processes on metric spaces associated with a random iteration 

of maps has a long history which can be traced back to a paper of Onicescu and 

Mihoc [19]. The reader is referred to Kaijser [14], Barnsley et al. [1] and Stenflo [21 ] 

for historical reviews.

Our work can be seen as a continuation of works of Barnsley et al. [1] and Elton [8], 

which were motivated by computer modelling of "fractal" measures. This addresses a 

heuristic question "What is the most general randomly driven finite mechanical struc­

ture on a metric space which determines a Markov operator with a unique invariant 

Borel probability measure?".

If the metric space is finite, then one would immediately think about a directed graph 

with probability weights which determines a stochastic matrix - the only possible 

Markov operator in this case. A good candidate for such a mechanical structure 

handleable by a computer in a general case is a finite family of Lipschitz maps (iue)e<= e 

on the metric space with some probability functions (pe)e^E (i.e. Pe{x ) >  0 for every 

e G E  and Y2eeEPe(x ) ~   ̂ f°r x )- The Markov operator which arises from it has

1
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the following form

U f  :=  £ > . /  o we for all Borel measurable functions / .
eeB

Obviously, for any Borel subset B , U1b (x ) defines a transition probability from the 

point x  into the set B. Such systems have been employed for modelling different 

Markov processes long before (see the literature above) and were rediscovered by 

Hutchinson [12] (though he considered only constant probability functions) for con­

structions of so-called self-similar or "fractal" sets and measures supported by them. 

Such systems in a general setting were studied by Barnsley et al. [1] and Elton [8 ]. 

However, as we will see further (Remarks 2.1.1), their setting does not extend the case 

of a finite metric space, which is already very well understood. Related to the con­

structions of "fractal" sets, Mauldin and Williams [18] introduced a finite mechanical 

structure which generalizes that used by Hutchinson and extends what is known on 

finite metric spaces. It is called a graph-directed construction.

We introduce a theory of systems which unifies those studied by Barnsley et al. and 

Elton with the graph-directed constructions. •

The theory does not claim to provide the most general model concerning its prob­

abilistic phenomenon, since there is a general theory of "dependence with complete 

connections" [13] which aims at that. However, as far as the author is aware, none of 

the probabilistic results presented here are covered by the existing theory.

Notation

We use the following notation.
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(.K , d) is a metric space. All the following spaces of functions on K  are real. Lip(K) 

denotes the space of all Lipschitz functions, C c(K )  denotes the space of all continuous 

functions with compact support, C b (K ) denotes the space of all bounded continuous 

functions, C (K )  denotes the space of all continuous functions, C °(K ) denotes the 

space of all bounded Borel measurable functions. For a map u defined on K  and Q C 

K ,  u \q  denotes the restriction of u on Q. For /  €  C b(K ) ,  | | / | |  is the supremum norm 

of / ,  and j|/||<3 denotes the supremum norm of J \ q  for Q C K . P (K ) denotes the set 

of all Borel probability measures on K , 5X is a Dirac probability measure concentrated 

on x , means "converges weakly* (weakly) to". We use the abbreviation "iff" for 

"if and only if".



Chapter 1 

Markov systems

1.1 Main definitions

Let K i,K 2) •••) K n  be a partition of a metric space K  into non-empty Borel subsets 

(we do not exclude the case N  =  1). Furthermore, for each i E {1 ,2 ,..., N }, let

wn, wi2, ..., wiL. : Ki — > K

be a family of Borel measurable maps such that for each j  E {1 ,2 ,..., Li] there exists 

n E {1 ,2 ,..., IV} such that (Ki) C  K n (Fig. 1). Finally, for each % E {1 ,2 ,..., N }, 

let

Pn,Pi2, PiLi : Ki — » M+, ■

be a family of positive Borel measurable probability functions (associated with the 

maps), i.e. ptj >  0 for all j  and Y^jLiPij(x ) — 1 f°r all x  E IQ. ■

4
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K 2 N  =  3

Fig. 1

Remark 1.1.1. (i) Case N  — 1 covers the framework from [lj and [8 ].

(u) In the following, all probability functions Pij can be seen to be extended on the 

whole space by zero, and all maps Wij can be seen to be extended on the whole space 

arbitrarily. These extensions are necessary for the definition of the Markov operator 

U rather than for the definition of its adjoint U* (see Definition 1.1.4). This is another 

way to see how the framework from [1] and [8] can be embedded into ours.

In any arrangement of the maps, a structure of a directed (multi)graph is easily 

recognized.

D efinition 1.1.1. We call the set V  :=  {1 ,..., N } the set of.vertices and the subsets 

K i , ..., I<n are called the vertex sets. Further, we call the set

E  :=  {(i,7ii) : i e  { 1, ...,1V}, 7̂  e  {1, ...,£<}}

the set of edges and we use the following notations:

Pe  :=  Pin and we :=  win for e :=  (z, n) € E.
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Each edge is provided with a direction (an arrow) by marking an initial vertex through 

the map

i : E  — > V 

0 »  >— ♦ j .

The terminal vertex t(j, n) £ V  of an edge (j, n) £ E  is determined by the corre­

sponding map through

(̂C7)^)) ’=   ̂  ̂ C^i)

We call the quadruple G (V, E ,i,t )  cl directed (multi)graph or digraph. A sequence 

(finite or infinite) (..., e_i, eo, e i , ...) of edges which corresponds to a walk along the 

arrows of the digraph (i.e. t(ejt) =  i{ek+1)) is called a path.

D efinition 1.1.2. We call the family M  \= (ifye), weipe) e(_E a Markov system, and 

we call the family without probabilities, (ATi(e), we) eg£;) a topological Markov system.

D efinition 1.1.3. A Markov system is called irreducible iff its directed graph is 

irreducible, i.e. there is a path from any vertex to any other. An irreducible Markov 

system is said to have a period d iff its directed graph has a period d, i.e. the set of 

vertices can be partitioned into d non-empty subsets f2i, ^ 2 ,..., such that

i(e) £ Pli =r* t{e) £ f^i+i mod d

for all e £ E  and d is the largest with such property. An irreducible Markov system 

with period 1 is called aperiodic.

D efinition 1.1.4. We define the Markov operator on £ °(K )  associated with the 

Markov system by

u f  .=  Y , p > f ow ° for a»  / e  C°(K )
e&E
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and its adjoint operator on P (K )  by

U *v{f) :=  J  U (f)du  for all /  £ £ °(K )  and v £ P {K ).

D efinition 1.1.5. We say a probability measure (i is an invariant probability measure 

of the Markov system iff it is a stationary initial distribution of the associated Markov 

process, i.e.

t /V  =  fa.

As in the case of a finite Markov chain, it is very useful to represent a Markov chain 

associated with a Markov system as a sequence of random variables defined on the 

product space of infinitely many copies of E.

D efinition 1.1.6. Set

S :=  E z :=  {(•••» cf—i, o 'o ,cri,...):cr i£E , i £ Zi}

and

£+ :=  EN :=  {{a u cr2, ...) : <r, £ E t i £ N} .

We call E+ the future of E. Consider II and E+ provided with the product topology. 

Further, set

•' ^ Y . o"m =  eJTl)o'7n-\-\ — ...,crn — for all integers m Y: ci

and

i[ex, ..., en]+ :=  {a  £ £ + : cri — e1} cr2 =  e2, ..., an =  en}  for all n £ N.

W e call m[em, ..., en] and i [e i , ..., en]+ thin cylinder sets. Now, for any x  £ K  and 

x[ei, .. . ,e n]+ C E + , define

Px ( i [e i ,..., en]+ ) :=  pei(x)pe2 (weix) ...pBn (w&n_x o ... o weix) .



CHAPTER 1. M ARKOV SYSTEMS 8

Then Px extends uniquely to a Borel probability measure on E+ . Finally, for any 

x  £ K  and k £ N, set

Zk(a) :=  wffk o u;(Tfc_ 1 o ... o u;CTl(cc) for all a £ E+.

It is easy to check that the sequence of random variables (Zk)kGN with respect to the 

measure Px represent the Markov process, associated with the CMS, with the initial 

distribution 5X. Moreover, obviously

Ukf{x )  =  J  f o  ZkdPx for all x  £ I< J  £ CB{I<) and k £ N.

1.2 Iterations of a Markov system

In contrast to the trivial case of finite Markov chains, here can be considered the 

following iterations of a Markov system.

D efinition  1 .2 .1 . Let M  :=  ( K (iV ij )jeJ. , {pij)je ĵ J  ̂ be a Markov system. Set 

:=  I<i, :=  Wij, pVj :=  Pij for all i £ 7° / ,  j  G J° J and

M °  :=  M .

Let the n-th iteration of M. be defined by a Markov system

M• := (jq>,

for some n £ N U {0 }. First, we define the vertex sets of the n +  1-iteration A4n+1 by 

forming lumps of intersecting subsets wfj ( i f f ) , i £ I n, j  £ Jf.
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That can be done by the following algorithm:

1. Order the set of edges En :=  { ( i j )  : i E I nJ  G J f }  arbitrarily, say

E n =  { e u ...,ek}, k e  N.

2. For each s =  1 , k, construct recursively a set Hfc(s) C K  by setting

^o(s) :=  wCs ( / ,Q(es))

and

,(s) :=  S m_ i(s )  U Am(s), where

w em » i f  ^ m - l ( ' S )  C\ W Cm ( l f j ( e m) )  7^

0 , else

for all m =  l , ..., k.

3. Set

{/>Q*+1|j 6  / n+1}  :=  { 3 * ( l ) , . . . , 3 * ( f c ) }

by an arbitrary counting (without distinguishing the same elements in the right set).

Finally, we define on each vertex set K™+1, i € I n+1, the family of maps and prob­

ability functions. For each i <E I n+1, there exists a unique index i G In such that
R n+l c  R U' Define

lEM1 :=  w?.

and

p nM  : =  p ? Kn+1 for all j  € J?

So, JT+1 :=  JT\ Through it, M n+l is well-defined up to the indices.
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Exam ple 1.2.1. The Fig. 2 shows the 1-st iteration of the Markov system from Fig. 

1. '

P roposition  1 .2 .1 . A measure is invariant w.r.t. a Markov system iff it is invariant 

w. r. t. one of its iterations.

Remark 1.2.1. Trivially in the case of finite Markov chains, such iterations do not 

change anything in the structure. It is known that the essential structure is preserved 

by such iterations in a general case as well. The directed graph associated with an 

iteration of a Markov system is exactly that obtained from the original directed graph

is not difficult to see that the shifts of finite type defined by two directed graphes 

where one is obtained from the other by state-splitting are conjugate. It means, in 

particular, that such iterations of an irreducible Markov system produce irreducible 

Markov systems with the same period. If we decide to label the edges of the directed 

graph of an iteration of a Markov system simply by giving them the names of the

Fig. 2

P r o o f . Obvious by the definition of the iterations. □

by a procedure which is known in symbolic dynamics as state-splitting (see [17]). It
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maps of the original Markov system to which they correspond, then each iteration 

produces a softc system, but not a proper one because it defines the same sub-shift 

space as the original directed graph. And the difference between them is only in what 

we consider as separate vertex sets.

Lem m a 1 .2 .2 . Suppose (Aj(e)) we,pe) e(_E is an irreducible Markov system with an 

invariant probability measure p. Then p (Ki) >  0 for all i =  1,..., N.

P r o o f . Let i0 G V  such that p (K io) >  0. Let j  G V  such that there is an edge 

eo from io to j .  Since all probability functions are positive on their vertex sets,

it follows that p (K j) >  0. Now, let jo G V be arbitrary. Then, by the irreducibility, 

there is a path from io to jo in G. Therefore, we see, through a finite repetition of

f K., , Pe0dp >  0. Then, by

^ (K j) =

the above argument, that p ( K j 0) >  0. □



Chapter 2 

Contractive Markov systems

In this chapter we assume that (K , d) is a metric space in which sets of finite diameter 

are relatively compact. It implies that (if, d) is a complete locally compact separable 

metric space.

2.1 Introduction

If we try to represent a Bernoulli process on a finite state space, say {l ,... , iV }, as 

a Markov process arising from a Markov system, then we find that the underlying 

Markov system consists of N  contractive maps, each of them maps the whole space 

N } on a single point, and some constant probability functions corresponding 

to them. Any other Markov chain on this state space can be obtained by changing 

only the probability functions. It turns out that the contractiveness of the maps has 

deep roots.

D efinition 2.1.1 (C M S ). We call a Markov system (ifi(e), we,pe) eeE contractive 

iff it satisfies the following condition of a contractiveness on average: there exists

12
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0 <  a < 1 such that

^>^pe(x)d(we(x ),w e(y)) <  ad{x,y) for all x ,y  6  IQ and i €  { 1 , . . . ,1V} (2 .1 .1)
eeB

(it is understood here that pe’s are extended on the whole space by zero and we’s 

arbitrarily). We call a Markov chain with values in K  contractive iff it is determined 

by a contractive Markov system. We call the constant a an average contracting rate 

of the Markov system.

D efinition  2 .1 .2 . We call a function /  : (X , d) — ■» R Dini-continuous iff there is 

c >  0 such that

m * < 0 0
Jo t

where 4> is the modulus of uniform continuity of / ,  i.e.

<f>(t) \= sup{|/(®) -  f ( y )| : d(x,y) <  t, x ,y  6  X } .

It is easily seen that the Dini-continuity is weaker than the Hinder and stronger than 

the uniform continuity. There is a well known characterization of the Dini-continuity, 

which will be useful later.

Lem m a 2 .1 .1 . Let 0 <  c <  1 and b >  0. A real function f  is Dini-continuous iff

OO
<f (bcn) <  oo

n= 0

where f> is the modulus of uniform continuity of / .

PROOF. Note that in any case it holds true that
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As (j) is an increasing function,

bcn

4>(bcn+1)( l  — c) <  J
6cIl+ 1

for all n 6  N U {0 }. Hence

( l - c ) f > ( W ) <  / ^ * < f > ( W ) ( l - l ) .
f»=l o n=0

□

Remark 2.1.1. Elton in [8 ] and Barnsley et al. in [1] considered the case N  =  1 with 

Dini-continuous probability functions (pe)ee£ which are bounded away from zero, 

and Lipschitz-continuous maps (we)eeE such that the system satisfies the following 

condition of a contractiveness on average: there exists 0 <  r\ < 1 such that

d(we(x ))we(y))Pĉ  <  rid(cc,y) for all x ,y  € K. (2.1.2)
e£E

There is a widely spread view in the literature that demanding condition (2.1.2) rather 

than (2.1.1) (with N  =  1) would give a weaker assumption. However, this is not quite 

true.

The above Elton-Barnsley setup is equivalent to that with condition (2.1.1) (with 

N  — 1)  in place of (2.1.2). .

P r o o f . First, observe that the condition (2.1.1) and the boundedness away from 

zero of the probability functions (i.e. there exists <5 > 0 such that pe >  S for all 

e G E) imply that the maps {we)e£E are Lipschitz. Taking the logarithm of (2.1.2) 

and using its concavity reveals that (2 .1 .1) implies (2 .1 .2 ).

4>{t) dt <  4>(bcn)
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On the other hand, by Lemma 2.6 from [1], the Elton-Barnsley setup implies that 

there exist ?'i <  r < 1 and 0  <  q <  1 such that

' y ^pe(x)d(we(x ),w e(y))q <  rd(x, y )q for all x ,y  e  K. (2.1.3)
e&E

By performing a remetrization d(x , y) :=  d(x, y )q} which preserves the Dini-continuity 

of the probability functions, we can reduce it, without a loss of generality, to the 

condition (2 .1 .1 ). □

In [1] Barnsley et al. realized that for the proof of the attractiveness of the invariant 

probability measure the condition of a uniform boundedness away from zero for the 

probability functions can be weakened. They came up with the following condition: 

there exists <5 > 0 such that

2 3  P e ( % )P e (y )  > S2 >  0 for all x, y  6  K. (2.1.4)
e&E: d(we(x),we(y))<rd(x,y)

In fact, now conditions (2.1.4) and (2.1.3) also cover some finite Markov chains where 

some transition probabilities between the states can be zero, but still very few of 

those which are known to possess an attractive probability measure. Moreover, the 

condition (2.1.4) would not work for the Elton’s proof of the corresponding ergodic 

theorem in [8]. So, an incompleteness of their setup is obvious and there is a need for 

an extension of it. Contractive Markov systems provide it in a satisfactory way.

Remark 2.1.2. (i) A similar structure was discovered by Kaijser in setup of Random 

Systems with Complete Connections (RSCC) in [14]. However, what he calls weakly 

distance diminishing RSCC covers only aperiodic CMS’s with compact state space, 

(ii) Of course, the contractiveness of a Markov system can be weakened, just as it 

is done some times for maps, by demanding that a contraction on average happens
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eventually not after one but after a number of iterations, i.e. there exist r € N and 

0 < a <  1 such that

J  d(w<Tr...w<71x ,w (Xr...w<Tly)dPx((j) <  ad(xyy) for all x ,y  £ Ki and i 6  { 1 , . . . ,  AT},

where Px is a probability measure which represents the Markov process starting in x  

(see Def. 1.1.6). However, such systems, again just as in the case of maps, are not 

expected to exhibit a substantially new behavior, but a decrease of transparency of 

the proofs, for such systems, can be expected.

2.2 Contractive Markov systems with continuous 

probabilities

Now, we are able to prove the first theorem which shows that a CMS, under rea­

sonable topological assumptions which allow the associated Markov operator to map 

continuous functions on continuous, has some nice properties.

D efinition 2.2.1. We call the partition K\, ...,K n of K  open iff every K iy i =  1,..., N, 

is an open subset of K. Of course, it means that K  must be disconnected.

T heorem  2 .2 .1 . Suppose [Kpepw e)pe) eeE is a CMS with an average contracting 

rate 0 <  a <  1 such that the family K i , ..., K m is an open partition of K  and each pe 

is continuous on Kpe). Then:

(i) The sequence (^*fc&c)fc€N Is tight for all x  € K , i.e. for all e >  0; there exists a 

compact subset Q C K  such that U*k5x(Q ) > 1 — e for all k € N.

(ii)  The CMS has an invariant Borel probability measure p.



(Hi) The invariant probability measure p is unique iff 

1 v—•v f— 2 _J Ukg(x) —> gdp for all x  € K  and g £ Cb {K ).
n k=i J '

(iv) If the invariant probability measure is unique, then

Y j d(x , X{)dp(x) <  oo for all Xi € Ki, i =  1 , iV.
*=1 /
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P r o o f , (*) Fix x̂  £ Ki for each i =  1 , iV. Define

N

f { x )  :=  7 ;  l / f .(a;)d(a;, ®i) for all x £ K
2=1

and let C >  0 be such that

maxd (we®»(e),®t(c)) <  C'*e(EE

We show inductively that

» V ( * 0  < 1 — a

for all k £ N and all i =  1 , N. First, observe that for any i £ { 1 , N }

N

U  f ( X i) =  ' Y ^ P e ( ^ i ) f  °  W e {Xi) -  y  y p e { X i ) l K j ( w eX i ) d ( w eX U X j)  
eeE  j = 1 eeE

N

=  y  Y ]  P e ( X j ) d  ( w eXj, X t{e)) <  y p e ( X j ) C  =  C.
j — 1 eE E ,t(e)= j e£i?



Suppose U ^ f i x i )  <  C ( 1 -  afe_1) / ( l  — a) for some k. Denote by ( e i , e * . ) *  a path 

starting in X i.  Then

N

Ukf(x i)  =  y  P a f f x i ) . . . p ef f w ek_ 1 . . . w e ix i ) y 2 l K j { w ek. . . w e ix i ) d ( w ek. . . w e i x h x j ) 

(ei,...,e&)* 3=1

E  ^  ^ Pe\ (X i) '  ••Pek ••-WeiX i ) d  (lUek. . .W eiX i ,  'lUefciCj(efc))

(ei,...,efc)*

N

+ E  E  p ei ( ® i ) .. .p efc K _ x.. .W ei X i ) d  ( w  ekx i(ek)) x j )

j ~ 1 (ei ek)*,t(ek) = j

N
< ^ 2  y^K jiW e^.-.lU e.X i) ^  Pe1(xi)...pek(wek_1..,We tXi)

(e i,...,e fc_ i ) *  3=1 ek ,i(ek ) = j

Xd(wek...WeiXi,WekXj) +  C  
N

-  a yyj h<ffwek_x...v)eix i)peffx i)...pek_1{wek_i ...weixi)
(e i,...,e fc_ i ) *  j = 1

xd ('U)ek_ 1. . .W eiX i , X j )  +  C

=  aUk- lf {x i )  +  C <  a c H —  +  C  =
1 — a 1 — a

Let p :=  C / ( l  — a) and e >  0 . Then, by the above,

P >  Ukf ( x i ) =  [ f o Z £ d P Xi=  f y i ( 2 ? , * , ) ^
J J j=l

>  ^Px. ( d  (Z f\Xj) >  ^ for all j  =  1 , i v)  

for all k £ N and for a lii =  1 , N. Thus

Pxl ( d  { Z l ‘ , X j )  >  P-  for all j  =  1 , iv) <  e 

for all k £ N and for all i =  1, N . Set

N

Q *:=
3=1

CHAPTER 2. CONTRACTIVE M ARKOV SYSTEMS 18



CHAPTER 2. CONTRACTIVE M ARKOV SYSTEMS 19

where Bp/e(y) denotes the closed ball of radius p/e and center y. Then Qe is compact 

(note that, since Z% are measurable, all sets considered here are measurable) and

and let Un* be its adjoint operator on P (K ). Fix x  G K . By ([i), the sequence 

(Un*6x)neN is tight also. So, it has a subsequence Unm*5x which converges weakly* to 

a Borel probability measure, say p. By the hypothesis of the theorem, the Markov 

operator U maps continuous functions to continuous functions. Therefore, its adjoint 

operator U* is weakly* continuous. Hence,

>  1 - e

for all k € N and i =  1,..., N. As desired.

(ii) Define an operator

u* ounm*5x) ^  u*p as m -> oo.

However, since

-i J- *j

—  E  uks (x ) -  Unm9(x) < — 2lbll for all g G CB(K ).
nm tZo nm

rl,n + l

We conclude that

U*p =  p,

i.e. p  is an invariant Borel probability measure on the CMS.
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(Hi) Suppose p  is the unique invariant probability measure. Then, by the above,

1 , C
— Ukg(x ) —> gdp for all x  G K  and g G C b(K ). (2.2.1)
n &=i J '

Conversely, if (2.2.1) holds true, by Lebesgue’s Dominated Convergence Theorem, it 

implies that
, , n

-  V  U*kA ^  p  for all A G P(I<).

Again, by the weak*-continuity of U*, this implies that g  is the unique invariant Borel 

probability measure.

(iv) Fix Xi G Ki for each i =  1 , N. Let v be the Borel probability measure on I< 

given by

V(A) :=  £  5Xi(A) for all A G B (K ).
i=i

Define Jr :=  m in {/, R } for R >  0, where /  is the function from (i). Then every /r 

is a bounded continuous function on K  by the assumption of the theorem and, as in 

proof of (i),
r N

Ukf Rd u < Y , U hf { x () < N p  
J i=l

for all k G N and R >  0. Therefore,
n

:fRdv <  Npf -
J 71 k= 1

for all n G N and R >  0. By (in) and Lebesgue’s Dominated Convergence Theorem, 

this implies that

J  fRdg <  Np for all R >  0 .

By Levi’s Theorem, we conclude that

J  f  dp <  Np

as desired. □
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2.3 Contractive Markov systems with Dini- 

continuous probabilities

We intend to show here that Feller contractive Markov chains with probability func­

tions which are Dini-continuous and bounded away from zero on their vertex sets 

exhibit a mixing behavior which is similar to the finite Markov chains.

The next lemma is a generalization of Lemma 2.5 from [1].

Lemma 2.3.1. Suppose (I'fye), u!e,pe) e6S is a CMS with an average contracting rate 

0 <  a <  1 such that Pe\i<-t  ̂ is Dini-continuous for all e 6  E. Then, for every 

/  6  C c(K ), the functions (^ ra/|jci)neNU{o} are uniformly equicontinuous for all i —

PROOF. Let cj)e be the modulus of uniform continuity of pe|/ci(e) for each e 6  E. 

Note that each (f)e is non-decreasing and 4>e(t) <  1 for all t. Set

t , 0 <  t <  1 

1 , t >  1

and 6 :=  max It is clear that d> is also non-decreasing and satisfies Dini’s
e&EU{0}

condition.

Let /  6  Lip(K) and ||/|| <  1. Then there is C >  2 such that

I /O ) -  f ( y )I <  Cd(x, y) \fx, y e  K.

Set L max { L i , ..., Ljv} and
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where L V C  :=  max{L, C }. Then /?(0) =  0, and is continuous and increasing. By 

the Sublemma from [2], increasing 0 if necessary, we can assume that (3 is concave. 

Further,

ta_1
/->/ \ nt  \ L v  C  f  (f)(u) L <j)(t) . . _ / / 1\

/ J ( i )  -  fla t) =  —  J  — du >  — a ^ i a -  ! )  =
' t '

Hence

/5(at) +  £</>(£) <  /?(£) for alH > 0 .

Note that, for 0 <  t <  1,

pit) > C f ‘ ^ - d u  > C  f ‘ du =  Ct,
Jo  « Jo

and, for t >  1 , /3(t) >  P (l) >  C  >  2. Therefore, -

I /M  ~ / M l  <  P{d(x,y)) for all 6  AT.

As an induction hypothesis for some n E N, assume \Un~1f ( x ) — t/n_1/ ( 2/)|

<  fi(d (x,y)) for all x ,y  € K i , i =  1 , TV. Let rc,y 6  AT; for some i 6  { 1 , . . . ,A } .  

Then, since /? is increasing and concave,

Li
|u ( e t - 1/ )  (*) -  y  ( y ” - ‘ / )  (j/)| <  y > ; ( z )  | y"-‘ / K W )  -  e t - 1/K ( ! , ) ) |

i = i
Li

- p v (v )\
3=1

Li
<  ^ZPiAx)P{d{w ij{x ),u>v(y)) +  Li4>(d(xty))

3=1

<  (3{ad(x, y)) +  L(j)(d(x, y))

< /?(d(a?,2/)).

Hence, (C/71,/ 1jc*) y{o> are uniformly equicontinuous for each i =  1,..., AA
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Since Lip(K) D C c(K )  is a dense subset of (C c(K ), ||.||), the claim follows by an 

e/3-argument. . □

We will need to know more about properties of irreducible directed graphs. The 

following Lemma is a generalization of Lattice Theorem (see Theorem 4.3 in [6]).

Lemma 2.3.2 (Lattice Theorem). Let an irreducible directed graph with period d 

be given. Then for every finite path (e i,...,en) of the digraph, there exists mo >  0 

such that for all integers m >  mo there exists a closed path of the length md which 

has (e i , ..., en) as a part and starts with e\.

P r o o f .  Let A  be the set of all k E N such that there exists a closed path of the length 

k which has (e i ,..., en) as a part and starts with e\. Then A  is closed under addition. 

Since the digraph has period d, the greatest common divisor of numbers from A  is d. 

Therefore, the set A  contains all but a finite number of of positive multiples of d (see 

Theorem 1.1 of the Appendix in [6 ]). In other words, there exists m0 E N such that 

for all m > mo there exists a path of the length md which has (ei, ...,en) as a part 

and starts with e\. □

Lemma 2.3.3. Let an irreducible directed graph with the set of vertices V  and period 

d be given. Fix i E V  and let Vi be the set of all ordered pairs of vertices (a, (3) E V  x V  

which are accessible from i by paths of the same length. Then there exists r E N such 

that for each pair (a, (5) E V* i is accessible from a  and (3 by paths of the same length 

less than or equal to dr.

P r o o f .  Let (a, (3) E Vi. Then there exist paths sa and sp respectively from i to a  

and from i to (3 of the same length, say n^p. By the Lattice Theorem, there exists 

ma E N such that for all integers m >  ma there exists a closed path of the length md



CHAPTER 2. CONTRACTIVE M ARKOV SYSTEMS 24

which starts in i and has sa as a part. Analogously, there exists mp G  N such that 

for all integers m >  mp there exists a closed path of the length md which starts in i 

and has sp as a part. Set rap :=  max{ma,mp) and r := max^ p )&v.rap. Then there 

exist two closed paths of the length dr which start in i and one of them has sa as a 

part and the other has sp as a part. Hence, there exist two paths o.f the same length 

dr — nap <  dr where one of them is from a  to i and the other is from (3 to i. □

The next lemma is a generalization of Lemma 2.7 from [1]. It uses a well known 

technique of coupling, the main idea of which is to put as much mass as possible close 

to the diagonal of two processes, see [14] and [15] for more on that.

Lemma 2.3.4. Suppose {fKi(e),we,pe) e(_E is an irreducible CMS with an average con­

tracting rate 0 < a <  1 such that pe\i<i{e) is Dini-continuous and there exists 5 > 0 

such that pe\i<i{e) >  $ for all e G  E. Then:

(i) For every f  G  C c(K ),

lim IUnf(x )  — Unf(y)\ =  0 for all x ,y  G  IU and i G  {1 ,..., N }
71—KX>

and the convergence is uniform on bounded subsets.

(ii) If in addition the CMS is aperiodic, then for every f  G  C c(K )

lim |Unf{x )  — Unf(y)\ =  0 for all x ,y  G  K
71—KX>

and the convergence is again uniform on bounded subsets.

P r o o f .  Let S C  K  be bounded. We can assume S D  Ki ^  0 for all i =  1 , . . . , J V .  

Since each probability function pe is bounded away from zero on K ^e), the average 

contractiveness condition implies that each map we\jq(e) is Lipschitz. Hence, there
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exists C >  0 such that *

m axd(w eXi(e),Xt(e)) <  GeGE

for all Xi £ S fl Ki, i =  1 Let Xi,yi £ S D Ki for each i =  . Fix

i , j  £ { 1 , Set

E* :=  E + x E + =  {e  :=  (ei, ex, §2, . . . )  | (ei, e2, •..) £  S + , (ex, §2, £  S + }

and let P* ':= PXi <S> Pyj be the product measure on E*. Thus, if we define

Z n(e) :=  wen o ... o wei(xi) and Z%>(e) win o ... o wSl(yj) on E*,

then Z f^  and Z n  are independent Markov processes with initial distributions respec­

tively SXi and 5yj and Unf(x i)  — E ( f  o Z ^ ) for all /  £ C b{K ), where the expectation 

means with respect to the measure P*. Let a  >  0 and for each m  £ N let Ga,m be 

the set of all e £ E* such that

Si s.t. Z% {e),Z% (e) s  K h d ( z £ ( e ) ,Z « ( e ) )  <  a  and d ( z ? ‘ (e ),Z * (e )') > a

for all I < m.

Then (Ga>m)meN are disjoint. Further, for each n £ N, set

n

Ba,n ~S* \ |J
771= 1

Denote by Bm the a-Algebra in E* generated by Z^ , ..., Z%*, Z\3,..., Zm . Then £
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Bm. Now, fo r /  E C c(K ),

Unf ( x i) - U " f ( y j ) =  E f ( Z * < ) - E f ( z % )

=  E s [ i ( 3 ? ) - / ( 3 ? ) )
771= 1

=  E  S  [ lG „ ,m ( b  ( /  ( z * ‘ )l * U  -  B  ( /  ( z » )  1 6 m ) )
771= 1

Further, note that for n >  m

E  ( /  (Zn)\ Bm) =  ] T  P^n+A Zrn)-Pen ( w ^  O ... O We„l+1Z%)
(em+i ,...,en)

x / («)... O ... O tuem+1Z*‘ )

= U"-mf(Z%).

Therefore,

Unf(xi) -  Unf(yj)  =  E  B  [ l Go,m ( > - " 7 ( Z £ )  -  (Z % )) '
7 7 1 = 1  .

+ B  [ l s „ „ . ( / ( ^ ‘ ) - / ( ^ ) ) '  ■

Let e >  0 and choose, by Lemma 2.3.1, a  >  0 such that for all u,v  E iCz, / =  1 , N, 

d(u,v) <  o; =*> |£/"/(i0  — ^ n/M I  < 6 f°r aU n € N.

Then

IC T /fe ) -  £ /» /( to)| <  Y ,  E[ l0 „,me] +  E  [1b„,„2|!/||] <  e +  2 ||/||P* (Ba,n) .
771= 1

Thus, the proof of (ii) will be complete when we prove the following
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Sublemma 2.3.5. Suppose the CMS is irreducible and

(i) i =  j  or

(ii) the CMS is aperiodic.

Then P* (Ba,n) — * 0 as n —*■ oo for all a > 0  and the convergence is uniform on S. 

P r o o f . First, observe that

. e&E

iS P̂& {Yn1') [d (weZ 'nl , wex^e^  +  d(weX{ ^ , a?£(e))]

<  ad (Z *\xt{en)) P C

for all n G N. Therefore, for any natural numbers n2 > ni,

E { d { Z ^ x t^ 2))\Z ^) =  E [E {d {Z % ,x t̂ ) \ Z % t_ 1)\2%\

■ <  o.E[d

Repeating that we are led to

E (d (Z Z ,x «e„2))\Z £ )  <  Y L -  +  a «-"> d  .

Now, let s >  2 be the largest Lipschitz constant of the maps we\jf.(e), e G E. Then, 

for all n G N,

d (%n >x t{en)) — ^ (^en^nLl) ^en^Ken-l)) ~b <̂('tyen‘Ct(en_i)) ^(en))

<  sd (^nl_i, ^t(e„_i)) +  C* P  -a.e..

Repeating it we get

d { Z l \ x t M ) <  <  snC  P *-a .e .
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Hence

E (d(Z£> **,>,))! K< Y P*-a.e.

Set
,=  } 2 i l  

l o g j

and let 77-2 >  7711. Then

2C A
B  (d (Z S ,* «K 2))| S 3 )  < 1 ^ = ^

So, by Markov inequality,

P* (d(Z%,xKen2))> A| X£) < i  P*-a.e..

Analogously,

P* {d(Z»i,Vt(*„2))> A| Z “ ) < P*-a.e..

Since ( ^ ) ngN and ( ) are independent processes,
\ /  nGN

P* (d (Z % ,x t M ) <  A and d (Z « ,y t(e„a)) < a| Z J .Z w )  >  i  P ‘ -a.e.. 

Note that the average contractiveness condition,

^2 pe{u)d(tueu,wev) <  ad{u,v) for all i t , € A*,  i =  1 , iV,
eES

implies that for every w, u 6  Ki, i =  1 , N, there exists eo € E  such that d(weQu , Weo1') 

<  ad(n, u).

Now, in case (i), by Lemma 2.3.3, there exists r >  0 such that for any pair of vertices 

accessible from i by paths of the same length there exist paths from them to i of an 

equal length less than or equal to dr, where d is the period of the CMS. In case (ii),
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i.e. d =  1, there also exists r G N such that there are paths of length equal to r 

between any two vertices. In both these cases, it implies that

P* ( 3i s.t. Zl‘ ,Z% 6 K -1 Z ^ , Z vJ_dr) > S** P ’ -a.e.

for all n >  d r .  Therefore, by the Markov property,

P" s.t. Znl2, 'fl2 > S2dr P*-a.e.

for all 112 >  dr +  n\. Since each we\/<\(e) is Lipschitz, there exists pdr >  0 such that

max d (wedr o ... o weix^ ei), w&dr o ... o lOgj^gj)) <  p*-

for all Xi,yi G /<!* C\ S, i =  1, where the maximum is taken over all paths

(ei, ...,edr)* and (§ i , ..., e^r)* of the directed graph.

Now, choose k so large that ak (2sdrX +  pdr) <  Let n2 >  yni +  dr -f k. Then 

P* ^e„2_! =  e„2_( and d (2 £ _ „  Z®_,) <  a d i Z ^ ,  Z ^ - , - i )

for all I =  0 ,..., /c — 1 z ux^nx) >  52(fc+rfr) P*-a.e. (see Fig. 3).

vertices
i

Z n2~ k ~ d i '

- .

ni 112 — k — dr n2 — k

Fig. 3

n2 time

Then, by the above and the Markov property,

P* ( en2-i =  ens-ii d iZ Z ^ Z f̂or all

Z =  0,..., fc — 1, d{Z^2_k_dr,Xt(en2_k_dr)) <  A and 

d(ZZ_k_dr,yt(̂ _ t_ir)) < A t y ; , £ g )  > !«**♦*> P*-a.e..
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Observe that

d <  d (Z % _ki wen2_k o ... o wen2_k_dr+1x t{en̂ k_dr))  +  p *

+ d  ( ^ e tl2_ fc O . . .  O '^ e-n2_ fc_ dr+iyt(gn2_ A;_ dr) ,  ^ 2 - f c )

<  S^7 d  ( z n ^ _ k_ d r, ® t(e „2 _ * _ * • ) )  Pdr +  s  d  ( y t ( e n2 - k-dr)> ^ ^ - k - d r ^ j

P*-a.e.. Hence,

P* (d (Z * 3 * )  < ak(2sdrX +  pdr)|Z£,Zg) > j<52(*!+,lr) P*-a.e..

Thus

P* (d (Z £ , JW) >  a | z g ,Z g )  <  1 -  P*-a.e..

Now, choose a sequence of natural numbers ni,ri2, ... such that n*+i >  7 n* +  dr +  &

for all t 6  N. Then, by the above and the Markov property,
/  1 \ m—1

P* (d (Z £ , Z g )  >  a, t =  1 , . . . .m j <  ( 1  -  -S 2<-k+dr) J for all m 6  N.

Hence
/  1 \ m_1 

P* (Pa,„) < (1 -  if n >  n m.

Thus, P* (B^n) ^ 0 a s n -> o o  and convergence is uniform on S', since 7 , r, A; don’t 

depend on the choice of X{, yi € S, i =  1,..., iV. □

Definition 2.3.1. A measure y  6  -P(AT) is called £/ie attractive measure of the CMS 

iff

U*nv £  y  for all v <E P (X ). •

Note that the attractive measure is the only invariant probability measure of the 

CMS if U* is weakly* continuous, which is true if U maps continuous functions on 

continuous functions.
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Theorem 2.3.6. Suppose (Ki(e), w e , P e ) e e E  Is an irreducible CMS such that

is an open partition of K, pe\icl{c) is Dini-continuous and there exists 5 >  0 such that

Pe|jq(e) >  5 for all e G E.- Then:

(i) The CMS has a unique invariant Borel probability measure p.

(ii) If in addition the CMS is aperiodic, then

Unf (x )  —> p (f )  for all x G K  and f  G CB{K )

and the convergence is uniform on bounded subsets, i. e. p is an attractive probability 

measure.

P r o o f ,  (i) Fix x { G Ki for all i =  1, Since the sequence (U*l5x.)neN is

tight, (l /n S J L i "̂*l$ci)neN is a ŝo fight for all i — 1, ...,iV. Hence, there exists

an increasing sequence of natural numbers (rik)keN such that, for each i — 1, ...,1V, 

U*l&*i)ken convei’ges weakly* to a Borel probability measure, say //*, i.e.

-j nk
lim —  V  Ulf(x i)  =  p i(f)  for all /  € CB(K ) and % G {1 ,..., N }.

k—*oo m-K i=i

Since, by Lemma 2.3.4 (i), for every /  G C c(K ),

lim |Unf(x i)  — Unf(jji)| =  0 for all yi G Ki and i G { 1 , ..., iV },
n—HX>

we conclude that for every /  G C c{K )

-j ntc n

lim —  V '  Ulf ( x )  =  y > ( / ) W * )  for all x  €

Since, for every x, we deal here with convergence of Radon probability measures on

a locally compact metric space, it implies that 

,  ttfc n

lim —  V  Ulf ( x )  =  y ' f t ( / ) l j f 1(a:) for all a: € i f  and all /  e  CB(I<). (2.3.1)
1=1 i=i
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Define a linear operator Q : Cb {K ) — > Cb (K ) by
n  '

Q (f)  ■= X > ( / ) 1 *  for all /  6  Gb (K ). (2.3.2)
i—l

Then, by (2.3.1),

QU  =  Q

and therefore

Q2 =  Q. (2.3.3)

Now, by the definition of Hu U*Hi — Hi for all i =  l,...,iV . Since the CMS is

irreducible, this implies, by Lemma 1.2.2, that Hi(Kj) >  0 f°r hJ ~  1»-**>N.

Now, let /  G C b {K ) with /  >  0. Then, by (2.3.3),
n  n  / N  \ N

=  5 3 ^  j hu  =  (-Ki)
i - i  i=i \j—i J i,j=i

i.e.
N

i * ( f ) =  t o W i*  (k j) for a11 * =  x» •••> w.
j= i

Suppose there exists iq such that Hio(f) <  ^ a x^ fij(/)• Then, by the above,

A*»(jf) <  max P j(f)  for all* =  1 , . . . ,N,
l< j< N

which obviously can not be, true. Hence

Mi(/) =  P j{f)  for all i j  =  1,..., N.

Let h :=  p;i. Since /  G C b{K ) with /  >  0 was arbitrary, we conclude that all Hu 

i — 1,..., N, are equal to /i. Hence,
1 nk

lim —  V  C/*/(s) =  n (f)  ^  all rc G K  and f  6  Cs (/^). (2.3.4)Ai—>oo ^ 'K i=i
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Suppose there exists A £ P {K )  such that 17*A =  A. Then also

, nk

—  U*‘ \ =  A for all t e N ,
K i~ l

but applying Lebesgue’s Dominated Convergence Theorem to (2.3.4) implies that

Thus, A =  (i, i.e. fj, is a unique invariant Borel probability measure of the CMS.

(ii) Let x  £ K . By Theorem 2.2.1 (i), the sequence (U*nSx)neN is tight. Therefore, 

there is a subsequence (U*nk5x)keN which converges weakly* to a Borel probability 

measure, say fi, i.e. Unkf(x )  —> /z (/) (k —> oo) for all /  £ Cb (K ). Since, by Lemma

2.3.4 (ii), |Unkf(x )  — UUkf(y)\ —» 0 for all y £ K  and for all /  £ C c (K ), it follows 

that Unkf{y )  —* /.i(/) for all y E I< and /  £  Cc(K ).

Let e >  0. By the tightness of (L’*n£T)n6N, there exists a compact Q C K  such that 

U*n5x(K  \ Q ) < e  for all n £ N. Hence

for all g £ C b (K ) and all n £ N. Let /  £ C c{K ).  Since, by Lemma 2.3.1, the 

functions {Unkf\Ki)keN are equicontinuous for each i =  1 , ...,1V, by Arzela-Ascoli 

Theorem, there exists a subsequence, without loss of generality (Lrnfc/ ) A;eN, which 

converges uniformly on Q. Hence, there exists ne > 0 such that

{Z *eK \ Q } {ZfjeQ}

1 1 ^ /  -  m(/)IIq <  £ for all k >  ne.
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Thus, by the above,

\Unf ( x ) - K f ) \  =  \Un- nH U nkf - M ) ) ( * ) \

<  <\\f\\ +  r i f ) )  +  \Wnkf - r t f ) \ \ Q

<  e( l l / l l+M/)  +  l)

for all n >  n„£. Hence

Unf{x )  —* J  fd/x for all x  G K  and /  G Cc{K).

This also implies that

Unf(x )  —> J  fd/j, for all x  G K  and /  G C b {K ),

the convergence is uniform on bounded subsets by Lemma 2.3.4 (ii). By Lebesgue’s 

Dominated Convergence Theorem, we conclude that

U*nv (.I for all u G P(K).

□

Example 2.3.1. Every irreducible finite Markov chain is a contractive Markov chain 

satisfying the hypothesis of Theorem 2.3.6.

E xam ple 2.3.2. Consider for simplicity R 2 to be normed by ||.||i. Let K\ :=  [0,1] x 

[0,1], I<2 :=  [0,1] x [3 / 2 , 2] and K 3 :=  [3/2,2] x [0 , 2]. Consider the following maps
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with 'probability functions

1 3  2 1
Pi :=  P2 :=  ^ 1/0 ) P3 •= P4 :=  P5 •= l/f2-

An easy calculation shows that they define a CMS with an average contracting rate 

8 /9  on K\ U K 2 U K 3} as it is shown on Fig. 4, which satisfies the hypothesis of 

Theorem 2.3.6 (ii) and does not satisfy the hypothesis of Theorem 2.1 in [1],

I<s

w2 iu4

K i

w3

Wi

w5

K ,

1

Fig. 4

w\ contracts K\ in the x-direction, expands it in the y-direction and maps it on K 2;

w2 contracts K\ in the y-direction and maps it on I(3; w3 contracts K 3 in the x-

direction, rotates it 90° clockwise and maps it on the middle dashed rectangle in I(2;

w,i contracts I(3 in the y-direction and maps it on the upper dashed rectangle in K\;

rotates K 2 90° clockwise, contracts it and maps it on the bottom dashed rectangle 

in K\. Note that w$ is the only contractive map here.

E xam ple 2.3.3. Let G :=  (V ,E yi,t) be a finite irreducible directed (multi)graph. Let 

Eg be the set of all one-sided infinite paths a :=  (..., cr_i, <To) of G (one-sided subshift
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of finite type associated with G)  provided with the metric d(a, a') :=  2k where k is the 

smallest integer with <Ji =  <j[ for all k < i <  0. Let g be a positive, Dini-continuous 

function on Ea such that

^2  9{y) =  1 for all x e E G
yG.T~1x

where T is the right shift map on Eg - Define, for every i e  V,

Ki := {a  € S G : t(a0) =  t}

and, for every e G E,

we(a) :=  (..., (J—!, ctq, e), pe(a) :=  g (... ,a -1,a0,e) for all a G K^e).

Obviously, maps {we)e€e o,re contractions. Therefore, {Ki(e),weipe) E defines a CMS 

which satisfies the hypothesis of Theorem 2.3.6 and does not satisfy the hypothesis of 

Theorem 2.1 in [1]. Hence, Theorem 2.3.6 (ii) covers Theorem 3.1 in [2f] (there, 

it was assumed that +  n)) <  00  w^ere $ is ^ie modulus of uniform

continuity of logg w.r.t. metric d'(a,cr') — 1 / (|/c| +  1) (k is the sam,e as in the 

definition of d) which is equivalent to the Dini-continuity of g w.r.t. metric d, since 

log x  <  x — 1 ). The invariant measure of such a CMS is called a g-measure. This 

notion was introduced by M. Keane [16]. See [4], [10], [11], [22] for more on that.

2.4 Contractive Markov systems with constant 

probabilities

For many applications, it is sufficient to consider the subsets K \ , to be compact 

and each probability function pe to be constant and positive on Ki(e) (as in Example
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2 .3 .2 ). For such systems, an easy proof can be given to show that their long term 

behaviour is analogous to the finite Markov chains by using some well known facts 

about stochastic matrices. We are going to present such a proof here. In addition to 

the results in the previous section, we show here that the rate of convergence to the 

stationary state is exponential in the aperiodic case with the above assumptions.

So, let the subsets I<i,..., Km be compact and each probability function pe be constant 

and positive on K^e) and zero on the complement to K^e).

Remark 2.4.1. If N  =  1 and all maps we are contractive, then we get the case 

considered by Hutchinson [12].

Since with each edge e there is an associated probability weight pe, the directed.graph 

describes in particular a finite Markov chain with the state space V  and transition 

probabilities

ciij :=  ^ 2  pe for all i , j  E V,
eeEt i(e)=z, t(e )= j

provided that an initial probability distribution r :=  (ri, ...,77^) is given on V. Then 

the probability distribution on V  at each following time is calculated by multiplying 

the distribution at the previous time as a row vector from the left with the transition 

matrix

A :=  • . ' (2.4.1)

At this point, it is appropriate to remind ourselves of some definitions and facts about 

finite Markov chains. Good references for that are e.g. [5],[6 ].

Definition 2.4.1. (i) A finite Markov chain and its transition matrix A  are called 

irreducible iff for all i , j  6  { 1 ,..., iV} there is n e  N such that ay(n) >  0  where
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(o>ij(ri))1<ij<N An. Since aij(n) is the probability for a transition with n steps 

from i to j ,  the irreducibility means that for alH, j  € V there is always a finite path 

from i to j  in the directed graph.

(ii) An irreducible finite Markov chain and its transition Matrix are said to have 

a period d iff their directed graph has a period d, i.e. the set of vertices can be 

partitioned into d non-empty subsets Qi, O2, ..., Cld such that

i(e) G flj =>■ t(e ) G fA+i mod d,

for all e G E  and d is the largest with such property. An irreducible finite Markov 

chain with period 1 is called aperiodic.

Theorem 2.4.1. Let A be an irreducible, stochastic N  x N-matrix. Then there 

exists a unique probability vector ro such that ?'oA =  tq. Furthermore, To* > 0 for all 

i — 1 , AT. If the matrix is in addition aperiodic, then there exists A G [0,1) such 

that

||rA n — ?’o11! <  Anx(?V'o) for any probability vector r and n G N, (2.4.2) 

where ,

and A is the positive square root of the second-largest eigenvalue of the matrix AA  

where A :=  D~lAD  and D  :=  diag {roi, ...,royv} if N  >  2, or A =  0 if N  =  1.

Definition 2.4.2. A finite Markov chain with the property (2.4.2) is called histori­

cally geometrically ergodic. y ,

For a proof of Theorem 2.4.1 we refer to [6] (Theorem 3.4, p. 211).



Now, consider an equivalence relation on P (K )  given by

H v :<=$■ (J’(Ki) =  is(Ki) Vi G {1 ,..., IV}.

Let Urefl =  be ^ie partition of P (K )  which is imposed by the equivalence 

relation with the set of equivalence classes

P (K )/ „  s  R ■= | (n , . . . ,rN) e  KN : ] [ > ,  =  1, r, >  0 Vi j .
For convenience we consider R  to be normed by ||.||i,

N

H i  r  e R-
i= 1 .

Further, we define a metric L on each equivalence class Mr which generates the 

weak*-topology on it. Set

S(I<) :=  { /  G C (K ) : VI <  i <  N  Vx,y  G Ki |/ ( * )  -  f(y)\ <  d(x,y)}

and

L(/.i, v) :=  sup |fi(f)  — /-'(/) | for /x, v G Mr, r G R.
feS(i<)

Remark 2.4.2. Obviously LQu, u) >  L([a, v) for /z, v G P {K )  where L is the metric 

used by J. Hutchinson (see [12])

L(p.yv) =  sup \ M ) - v ( f ) \ ,
L ip (f)<  1

where L ip(f) is the Lipschitz constant of / .  It is well known that L generates the 

weak* topology on P (K ).

If ji and v are from different equivalence classes then L(p, v) is infinite.
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Proposition 2.4.2. L is a metric on Mr which generates the weak*-topology on it 

for every r E R, and

L(/q v) <  2maxdiam (Ki) for all g ,v  E Mri r E R.
i

Proof. Let r E R. We show first that L is finite on Mr.

Let / i ,v E Mr , /  G and Xi E Ki VI < i  <  N. Then
N

I M / ) - " ( / ) l  <
i—1

(m, ^  r) ^  [|M(1JC. /  -  ljq /(zi))|  +  H i # , /  -  W (z i ) )| ]
i=l
N

< [diam (/Q) g (Kf) +  diam (Kf) v (-K*)]
Z=1

< 2 max diam(Ki).
i

This shows that L (g } is) <  2 maxdiam (Ki).
i

By Remark 2.4.2,

L(g, u) =  0 => g  =  v.

The remaining metric properties are obvious.

Now, we verify the equivalence

gk ^  g  L (gk) g) -> 0, for /xfcj g  E Mr.

The direction “ <£=” holds true by Remark 2.4.2. For “ =>■”, let g k) g E Mr with gk ^  g. 

Suppose linifc^oo L(gk, g) ^  0. Then there are e >  0 and a subsequence, without a loss 

of generality, (gk)ken such that L (gk,g ) >  e V7c G N. Hence, there exists a sequence 

(A)fcew C S (K ) such that

W W - / * ( A ) l > f i V f e G N .  (2.4.3)
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Fix Xi E Ki for each i =  1 , N. Then the sequence (fk-fk(% i)) is equicontinuous and 

bounded on I<i for each 1 <  i <  N. By Arzela-Ascoli Theorem, it follows that there 

exist Qi E C(Ki)  for every 1 <  i <  N  and a subsequence, without loss of generality, 

(/fc)fc€N such that ]|( fk -  fk fa )) ~  9i\\i<i 0 for all i. Define g :=  E ilit fA /q  (with

an arbitrary extension of gi on K ). Then g E C (K )  and

N

2= 1

yv

Thus

MA) -  MA)I =Mr

<

i=l

AT

2— 1 2—1
TV

2=1
+ M g ) - K g )I 0

which is a contradiction to (2.4.3). □

Lem m a 2.4.3. (i) For any r E R there exists s G R such that U*p G Ms for all

p  G Mr. Thus, the operator U* defines a map T  through

T :  R  — >R

r i— * (U *fi(K i)i..., U*p(K^)), where p G Mr.

(ii) For allr E R

T (r) =  rA,

i.e. U*v G Mra for all v E Mr, where A is the transition matrix (2.4-1).

Proof. Let p(IU) =  v(IU) = : n  for all i =  1,..., N. We show E/*/z(J<i) =  for

all i =  1,..., AT.
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For each i 6  { 1 , N },

U*fJ,(Ki) =  l K i O W ed f i =  P e t * ( K i { e ) )

c&E is- e&E, t(e)=i
He)

which implies (i) with

(!Tr)i =  ^ 2  peTi(e) for all i =  1 ,..., N.
eSjE, t(e)=i

Thus, the map T  is linear. Applying T  to the natural basis ( e j ) ^ = i C R ,
j —th position

J.
ej := (0 , 0 , 1 , 0 , . . . ,0 ), gives

('Tej)i =  Pe =  a;i* for a11 *>3 e  {*> —>N }'
eeE, i(e)=j, t(e)=i

This shows that the representation matrix of T  is exactly the transposed matrix of 

A. Hence

T(r) =  rA  for all r € R.

□

Definition 2.4.3. We call a general Markov chain on a compact metric space K  and 

its transfer operator U* geometrically ergodic iff there exist a fixed point /to of U* 

and numbers H >  0 , A e  [0,1) such that

L (U*nv, /t0) <  \nC {v , /to) for all v 6  P {K ), n >  H  and some C(v, /t0) > 0 .

Note that the Definition 2.4.3 is consistent with the Definition 2.4.2.

Theorem 2.4.4. (i)

L([/*n/t, U*nv) <  anL(/t, v) for all /t, v e  Mr, r E R, n 6 N.
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(ii) For all r G R,

rA — r 4=^ there exists a unique p  G Mr such that U* p — p.

(in) If the matrix A is aperiodic, then there exists a probability measure po € P (K )  

such that for m large enough

L(U*mv,p0) < C ( r , r 0)\ im

where

C (r , ?’o) :=  diam(K) (x(r, rQ) +  2a-1/2) , 

r0 =  (p0(K i) ,...7p0(K N))

and

Ai :=  max{A, a} 1̂ 2

where A is the positive square root of the second-largest eigenvalue of the matrix AA  

(as in Theorem 2.4.1) if N  > 2 ,  or A =  0 if N  =  1 . In other words, the operator U* 

is geometrically ergodic.

Proof Let p, v G Mr for some r G R  and /  G S (K ). Then, for all i G { 1 , N }  and 

x ,y  G IQ,

~  Pef ° WeM  Pef ° WêCL CL x
e^E, i(e)—i e£E, i(e)= i

1 ^

<  -  > ped(we(x ),w e(ij))
a z—*

e€jE, i(e)=i

<  d(x, y),

i.e.

~YlPef ° We 6 S(K)'a „e&E
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Therefore

| { /> ( /)  -  t /V (/)|

Hence

Thus the claim in (i) follows inductively by Lemma 2.4.3.

The claim in (ii) follows from (i) by Banach’s Fixed Point Theorem and Lemma 2.4.3

because ^-equivalence classes are weakly*-closed.

Now, let the matrix A  be irreducible and aperiodic. Then by Theorem 2.4.1, there 

exists a unique fixed point ro € R  of A  and it has the following properties: ro* > 0 

for all i — 1,..., N  and there exists A £ [0,1) such that

Therefore, by (ii), the operator U* has a unique fixed point f.io £ Mro. Now, let 

v £ P (K )  be arbitrary and r £ R  such that v £ Mr. Since r0i >  0 for alH =  1,..., N, 

there exists H  £ N such that '

U*nv (Ki) >  0 for all i =  1,..., N  and n >  H.

Define a sequence (v 7l) n> H  hi Mro by

Denote by (e1}..., ek)* a path of the directed graph of length k. Then, for /  £ C (K )

||rAn — ro||i <  x (r> ?’o)An for all r £ R, n £ N.

isn ( B  n  I< i)  : =
U*nv(B  n I Q  

U*nv(Ki)
roi for all Borel B  C K  and i =  1,..., N.
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with L ip(f) <  1 and with n >  H,

w k+np (f )  -  ir* v n( f )_ Y  Pei-P ekU*niy { f  OWek O ...OWei) 

~  Y  Pei-PekVn{f °Wek ° -O W ei) (*).

Set, for an abbreviation, gei...ek '■= f  °  wefc ° ° wei — /  ° wek ° ... o iyei(a;o) for some

a;o e K. Then \gei...ek\ <  diam(K) and

(*) = ^   ̂ P e i '" P e kU  v  {get...ek) ^  '  Pe\---P ek^n (gei...ek)

N

<  Y  Pei-PekY
z=l

I  9el...tkdUm v-  ^  J
I<i 1 Ki

-  r0

(ei,...,efc)* *=a /c-.

<  Y  Pei-Pe* IM "  ~ r0||i diam(K)
(ei,...,efc)*

<  diam (K)x(r, ?o)An.

Hence

£  (7*Vn)  <  diam (K )x{r,r0)X".

Thus, by Remark 2.4.2,

L Po) < £  (lT*’+’V, £/*Vn)  +  L (y * ^ n , Po)

. < diam (K)x(r, r0)A“ + L (7*V o

By (i) and Proposition 2.4.2,

L (u * k+nu, <  diam(K) (x {rHo)^n +  2afc) .
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Now, let m G N such that [m/2] >  H  where [m/2] denotes the greatest natural 

number less than or equal to m /2. Then m — [m/2] >  m /2 and [m/2] > m /2 — 1/2. 

Therefore, by the above,

L (U*mv, no) <  diam(K) (x(r, r0) +  2a[m/2])

<  diam(K) (x { r>ro)^T Jr 2a~^~^ .

Define

and

Then

C(r, ro) :=  diam(K) (x(r, ro) +  2a 1//2)

Ai :=  max{A, a } 1̂ 2.

L (£/*mi/,/i0) <  C(r, ro)Aim.

This proves the claim in (in). □

Now, we are able to calculate a relative rate of convergence to the stationary state in 

Example 2.3.2.

E xam ple 2.4.1. By Theorem 2.4-4 (ni)> a simple calculation shows that for the CMS 

from Example 2.3.2

L {U*mu, /no) <  G(r, r0) f ° r al1 v s  P (K )>

where r =  (v(K\), ^(Kz), v(Kz)) and r0 — (4/10,3/10,3/10).



Chapter 3 

Coding map for a contractive Markov 
system

In this chapter we continue development of the theory of contractive Markov systems. 

We show here that the coding map is well defined for a contractive Markov system. 

First, we construct it with respect to an outer measure on the code space. Then we 

prove that it is also defined almost everywhere with respect to a generalized Markov 

measure if the probability functions are Dini-continuous and bounded away from zero 

on their vertex sets.

3.1 Introduction

In Chapter 2 , we introduced a theory of contractive Markov systems (CMS) which 

provides a unifying framework in so-called "fractal" geometry.

The coding map is an important tool in "fractal" geometry which allows one to 

represent a constructed set as an image of a code space under this map, that is, to code

47
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elements in this set by infinite sequences of elements of E  (e.g. n-adic coding of the set 

[0,1] or binary coding of Cantor set). Such a coding map can be easily constructed 

for any contractive Markov system if all its maps are contractive. However, some 

fundamental difficulties arise in case of a general contractive Markov system. We 

overcome these difficulties by constructing an outer measure on the code space with 

respect to which we then define the coding map.

This coding map will play an important role in next two chapters.

3.2 Construction with respect to an outer measure

Let (Ki(e),w e)pe) eeB be a contractive Markov system with the average contracting 

rate 0 < a < 1 and an invariant Borel probability measure /i. We assume K i , ..., K n 

to be any disjoint non-empty Borel subsets of a complete metric space such that 

K  :=  (Jees-^fe) closed, the set of edges E  to be finite. We do not impose any 

conditions on the directed graph.

Let E :=  {(..., e_i, eo, e i , ...) : e* e  E  Vi € Z } and S be the left shift on E. Denote by 

A  the finite <r-algebra generated by the partition {o[e] : e 6  E }  of E, and define, for 

each integer m  <  1 ,
+oo

A m :=  y  S~U ,
i=m

which is the smallest <r-algebra containing all finite cr-algebras VlLm S~lA y n >  m. 

Let x  6  K . For each integer m <  1 let P?A be the probability measure on the 

d-algebra A m given by

P?(m[emt .... e7J) -  Pem(x)Pem+1{™em W )-P e „  K n_x © ... o WGm{x))
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for all thin cylinders m[em, ..., en], n > m .

Lem m a 3.2.1. Let m <  1 and A  G A m- Then x \— » P™{A) is a Borel measurable 

function on K .

Proof. Set

V  :=  {A  G A m - K  3 x  i— ■> P™(A) Borel measurable }  .

Then, by definition of P™, V  contains all thin cylinders of the form m[em, ..., en], n >  

m , which generate A m. Furthermore, obviously it holds true that

. Ee£>,

A e V  ^  E \ A  e V  

and, for any pairwise disjoint family (An)n6N c  X>,

An € X>,
n£  N .

i.e. V  is a Dynkin-system. Hence, V  contains the Dynkin-system which is generated 

by the thin cylinders. Since the set of the thin cylinders is fl-stable, it follows that

D — A m- I—I

D efinition 3.2.1. Let u G P (K ). We call a probability measure 4?m(z/) on (E)v4 m) 

given by

:=  J  P?{A)A € A m,

the m-th lift of v.
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D efinition 3.2.2. Set

for 5 c S ,  Let v e  P (K ). We call a set function given by

the lift of p .

Lem m a 3.2.2. Let v, A G P (K ). Then

(i) $(V) is an outer measure on S.

{ii) If $ m(p) $ m(A) for all m <  0, then $(A).

Proof. It is obvious that <I>( )̂(0) =  0.

Let B\ C C S. Then C(-Bi) D C{Bf) and therefore

for all Bi C £ , i € N. We can assume that the right hand side is finite. Let e > 0. 

Then for every i € N there exists (A im) m<0 G C(Bt) such that

Now, we show

> X) -  «2 - ‘ .



CHAPTER 3. CODING M AP FOR A CONTRACTIVE M ARKOV SYSTEM 51 

Since (U S i ^Wm<o e  C (U S i Bi)> i(i follows that

/  oo \ —OO

^ E $- » ( U A
OO

^im
\ i= l  / m =0 \ i= l  /

—oo oo

rn,=0 2=1 
oo

<  5 3 $ ( i / ) (S 0 + e .
2—1

For (w), let Q(\)(B) =  0. Then for every n € N there exists (Anm)m<o € C(B) such 

that
—OO

4>m (A)(A„„) <  2“ n.
m=0

Set
OO

Dm := p| (J  f°r eacl1 m -
fc=l n>&

Then, for each m <  0,

*m(A)(X>m) < 'M A ) f U  Anm j < J 2 2~n
\n >k  J n>k

for all k >  0. Hence, $ m(A)(Dm) =  0 for all m <  0. By the hypothesis, this implies 

that

0 =  ®m(v)(D m) =  lim $ m(p) M  Anm ) >  lim sup <Lm(^) (Akm)
k~°° VnVfc J

for all m <  0. Hence
— OO

lim sup $ m{v) (Akm) =  0.
k~>°° rn=0

Thus, $ (i /) (5 ) =  0. □

We use further the following notation.
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N otation  3.2.1. Fix Xi € Ki for each i E {1 ,..., N } and set

P Z ^ H ~  ® » and * :=  *  X > <

/or ever?/ m € Z \ N.

Now, for every m  <  0 and n > m define a random variable

a i— > wan o  wan_x o  . . .  o  w{

with respect to the measure PP_^XN.

Now, we are going to prove the main lemma which enables us to define the coding 

map. The proof of it involves a kind of Borel-Cantelli argument, which was also 

used by Barnsley and Elton in [3] (they considered the case N  — 1 with constant 

probabilities). However, their key point, the reversion of the order of finite sequences 

of the maps, does not work here. That is why we first needed to construct the outer 

measure PXl...xN-

Lem m a 3.2.3. Let x^yi € Ki for each 1 <  i <  N. Then

(i)

lim =  0771—>— OO

(ii)

lim exists PXl...XN-a.e,,
m —>—OO

and by (i) l i n w ^ - o o =  limm_ _ O0 Y ^ " m Pxl...xN-a.e..
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Proof. Applying the average contractiveness condition — m  +  1 times gives 

E  jfP em(Xi(em))-P eo K ,  ° -  °  ^em(^(em)))

N

N

i.e.

1
x d(weo O ... o w em{xi(e,n) ) ,w eQ O ... O wem(yi M )) <  ci-m+1— \ ^ d {x h yi) )

i=  1

f  d (¥%■■■*", y,nb"m ) <  a“m+11 E  <*(**. »)■

So, by Markov inequality,

— 1114-1
a 2

Set Am :=  { CT e  S : i ( y r ' W , S " ” W )  > E ^ f a . ! * ) }  and

—oo —oo

^ := n  u  a m•
/=0

Then
— OO -77?d'lPXl...*N(A) < PX1..,N U An ^ E P̂ ...^(An) <

\m =l J in—I in=l

since (0 , . . . ,  0, Ai, i , . . . )  E C (U 77i°°z An) f°r all J <  0- Hence PXl...XN(A) — 0 and for 

every a G E \ A

d(Y%>"*N(<?),¥%■*"(<r)) <
2=1

for all m except finitely many. This implies (i).

Now, for part (ii) set C  :=  maxeeE d(xt(e),w e(xi(e))). Then applying the average 

contractiveness condition — m +  1 times reveals that

d ( Y S r » , Y ^ )  dP Z .*N <  « - ” +Ij E i ' « ( I 'W )‘i( % ) ' * ' ^ ) ) )
eEE

< a~m+1C.
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— 771 +  1 
2

1=0 771=1

OO
—m-4-1

So, by Markov inequality,

(  d <  a

Set Bm :=  {<r 6  S : d and

— OO *—ooB := n uB-
Then

/ —oo

p«1...,w(B) < ( U  B"*) < E a=!*
\m —l /  ?n=Z m=Z

since ( 0 , 0 ,  Btt B i-1, ...) € C (UmS for all I <  0. Hence PX1...XN(B) =  0 and for 

every a E E \ B
— OO

E  d (y-o' (<0 ■ y5:f)S to) < oo.
m—0

This implies that "* wM ) mez\N *s a Cauchy sequence for Pxl...XN-&.e. u E E, and 

so l i m ^ -o o  Y £ q"Xn exists PXl...XN- a.e.. By part (i) limm^ _ co =  hnim->-oo

CH

D efinition  3.2.3. We call

PXi...xN • E » K

a i 7 lim
771—>—OO

the coding map. By Lemma 3.2.3, FXl,..XN is defined i * 1...®JV-a.e. and FX1_XN =  Fyi_ yN
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3.3 Definition with respect to a generalized Markov 

measure

Our next aim is to show that the coding map is defined almost everywhere with 

respect to any outer measure <h(j/) if the restrictions of the probability functions on 

their vertex sets are Dini-continuous and bounded away from zero. For this, we only 

need to establish that is absolutely continuous with respect to PXi...XN in this 

case.

Lem m a 3.3.1. Let Xi 6 Ki for every 1 <  i <  N  and x E  K . Let io E  (1 ,..., N } such 

that x  E  Ki0. Then for all integers m <  0 and for all e >  0 there exist k >  m and 

B  E  A m such that P™(B) <  e and

n > k = >  d(Z^n(a )yYf^"XN(a)) <  an=%±1d (x ,x io)

for all a E  E \ B.

Proof. Fix m <  0. Applying the average contractiveness condition n — m + 1  times 

gives

E  Pem{x)...pen(wen. 1 O . . .  o  wem(x))d(wen O . . .  O Wem{x),W Sn O . . .  O Wem{xi{em))) 
Gn

<  an~m+1d(x,Xi0) ,

i.e. '

j d { Z l n, Y ^ " ) d P ?  <  an- m+1d (x ,x ia).

So, by Markov inequality,

P ?  >  a ^ d i x . x , S )  <  c T ^ .
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Set Amn :=  { a  € E : d (Z * n(<j), Y ^ - XN {cr)) > a d(z, £io) }  for m <  n and Bk 

UT>fc A n n  for /c >  to. Then

OO oo
^  P ™ ( A n n ) <  < 00.
n=m. i= l

Therefore .

^ ( n A = ° -
\k =m  J

Hence, for all e >  0  there exists k > m  such that P™(Bk) <  e and 

n >  k =$■ d(Z^n(a ) ,Y ^ " XN{a)) < a !1=̂ ±1d (x ,x iQ) 

for all g  E  £  \ Bk. □

The next lemma is a generalization of Lemma 3 in [8].

Lem m a 3.3.2. Suppose that each probability function pe\i<iM is Dini-continuous and 

there exists 5 >  0 such that pe\i<Ke) >  $ for all e E E. Let Xi E Ki for all 1 < i <  N  

and x  E K . Then P™ is absolutely continuous with respect to Pf!f^XN for all to <  0.

Proof. Fix to <  0. Let A  E Am such that Pl/f..XN ( A  =  0 and e >  0. We show 

P™(A) < e.

Let io E  {1,...,1V} such that x  E  K io. By Lemma 3.3.1, there exists ne >  m  and 

B  E  A m such that P™(B) < e/2 and

n > n e => d(Zfnn{a )O Z n 'XN(v)) < o-n̂ d { x , z i0)

for all cr E  E  \ B. Let f c be the modulus of uniform continuity of pe on K^e) for 

each e E  E  and 0 maxe(Ee  4>e- Since each pe is Dini-continuous on Ki(e), by Lemma
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2.1.1, we can choose I >  ne such that YlkLi+i^ m̂ 2d(x >xio)) <  <V2- Set

{<r e  E : Vi <  fc <  ,

:=  < if / <  n .

E, else

and Q :=  Then E \ B  C Q and therefore Px(E \ Q ) <  e/2. Now, for

^ 6  Qnt if£ <  n and (<rTO, ...}<Jn) is a path of the digraph starting in io, then

I—m+l
P<Tm(X)-P*n(™crn̂  ° -  ° WamX)

<  °  -  ° W*mXi(v,n))

1 j Pg, K - !  o ... o -  P afcK fc,! O ... O ^ mgi(qro))x n
fc=Z+l p ^ h w Q - o v i w )  '

n
h—Z+1

i  +
<f> (a k~2md (x ,x io) j

1 - 6 l—m+l

Since 112=1+1 [l +  0 (a(fc m)/2d(a;,®<0))/5 ] <  l  +  2 j ] “=l+^ ( a ^  m̂ 2d (x ,x io))/6 < 2 ,

it follows that

(1  — 6 \l~m+1 1
Pam(x)...Pan('W(Tn_1O...OW(7mx) <  2 N  ( - j -  J ~ P<Tm {Xi(am)) • • -Pan (Wan- X ° • °WffTO®i(aro) ).

If I >  n or (crTO, ...,<rn) is not a path of the digraph starting in io, then it holds trivially 

for any a G E.

Let A m be the algebra every element of which is a finite union of thin cylinders of 

the form m[em, en], n >  m. By Caratheodory construction, there exists a sequence 

(Ak)ken C A m such that A  C U&Li M  and

E  ('U ) <
k= 1 AN V 1 -  6

l—m+l
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We can write every finite union UlLi Ak as a disjoint union \Sk=i Ch of thin cylinders 

which generate A m. Let Ck — ?71[em, . . . ,e j  with m <  n. Then

P ? ( Q n C k) 

<  P™ (Qn n  Ck)

=  p am(LX ) . . .p <rn[ w (rn_ l O . . . O Wtrmx )  •

(°lll >«*•> crn) 'creQnClCk
/ f  _  § \ l~m+1 1

“  2 N  ( “ J  ^  ^ m ( ^ ( Crm) ) . . .P a n ( w (Tn_ 1 O . . .  O W a m X i { a m) )

/ -i _ x \  i-m+1
< 2iV ( — j  (Ck) .

Hence

P f(.4 ) =  i ? ( g n i ) + ^ ( A \ Q )
/  mn \

<  l i m P “  | + )c ,n Q  +
n —*oo \ ‘ I 2

U =1 /
mn e

=  lim £ / r ( C fcn Q )  +  571—*00 z  ̂ 2/o“ l “
/—777.- f * l  TTljj.. /  -j r \  I—777.+ 1 Win

<  2 W ( — j  E ^ . . . * „ ( ^ )  +  2
fc=l

< 6.

□

Theorem 3.3.3. Suppose that each probability function p e \Ki(c) is Dini-continuous 

and there exists 5 >  0 such that pe\ici(e) >  6 for all e € E. Let Xipyi 6  Ki for all 

1 <  i <  N  and i/ € P(K ).T hen the coding map FX1_XN is defined <&{v)-a.e. and 

Pxi...xN =  Fyi...yN A?(v)-a.e..
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Proof. By Lemma 3.3.2, $ m(v) is absolutely continuous with respect to P™_XN for. 

all m <  0. By Lemma 3.2.2 (ii), this implies that $(v ) is absolutely continuous with 

respect to PxX..,XN- The claim follows by Lemma 3.2.3. □

D efinition 3.3.1. We call

M  :=  4>(/x)

the generalized Markov measure, where /x an invariant Borel probability measure of 

the CMS. Denote the Borel a-algebra on E by H(E).

P roposition  3.3.4. M  is a shift invariant Borel probability measure on E.

Proof. First define a set function M  on all thin cylinders of E by

M (rn\em, ..., en]) :=  4>m(/.i)(7n[em, ..., en]).

We show that M  extends uniquely to a shift invariant Borel probability measure on 

E and

M\Am =  $ m(£x) for all m <  0 .

We only need to check that

M (m[em, ..., en]) — ^  ' M  (m[em, ..., en, en-j_i])
en+i

and that •

DI(m[em, ..., ê .])  ̂ M (m—i[em—i , em, ..., e«,]),
em— 1

the rest follows by the standard extension argument. The first equation is obvious by
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the definition of Px. For the second we need the invariance of /x.

^   ̂ M (m—i[em_i, em, ..., en])
Cm—1

=  Pem- ^ X)Pem(Wem- 1(x ) ) . . .p en(w en_ 1 O ... O (x))d fJ .(x)
e,n- 1

=  U *K P em- P e n O Wen_ x o ... o WeJ

=  P(Pem- P e n © 'Wen_ 1 O ... O We,,)

=  il<f (Jn [em,. . . ,  en]).

Now, we show that

M  =  M|e(s).

Let B  € H (E) and e >  0. Since B (E ) is the smallest <r-algebra containing all A m, 

m  <  0, it follows that for every (A m)m<o G C(B)

M ( B )  <  M  ( U  A n  j <  E  =  E  * m (ju )(4 » ).
\m< 0 /  ?rt<0 m<0

Hence M (B ) <  M (B ). On the other hand, let A  be the algebra generated by all 

thin cylinders in E. Then every A £ A  is also an element of some A 7n, m <  0 , and 

therefore M (A) > M (A ). By Caratheodory’s construction, there exists a sequence 

{Ak)ken C A  such that B C UfceN ^  and

M ( B )
fc6N

Therefore
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D efinition 3.3.2. We call the measure preserving transformation S of the probability 

space (E, 23(E), M ) a generalized Markov shift.

Now, we state explicitly the most important special case of Theorem 3.3.3.

C orollary  3.3.5. Suppose that each probability function Pe\i<i{c) is Dini-continuous 

and there exists 6 >  0 such that Pe\i<i{c) >  6 for all e €  E. Let Xi ,yi  G K{ for all 

1 <  i <  N.Then the coding map FX1_ XN is defined M-a.e. and FXl_ XN =  Fyi_VN 

M-a.e..

N otation  3.3.1. By Corollary 3.3.5, it would not be too heavy an abuse of notation 

if we denote the coding map on the measure space (£ , 23(E), M ) simply by F.



Chapter 4 

Applications of the coding map

Let (Ai(e), we,pe) eeE be a contractive Markov system with the average contracting 

rate 0 <  a < 1 and an invariant Borel probability measure /i. We assume that: 

(K , d) is a metric space in which sets of finite diameter are relatively compact and 

the family K i, ..., Kn partitions K  into non-empty open subsets; each probability 

function pe\i<i{e) is Dini-continuous and bounded away from zero by 5 >  0. Note that 

the assumption on the metric space implies that it is locall}' compact, separable and 

complete.

4.1 Main Lemma for the generalized Markov shift

We prove here what seems to be the main lemma for the generalized Markov shift 

associated with a contractive Markov system using the coding map constructed in the 

previous chapter. This lemma establishes a relation between the Markovian picture 

of a CMS studied in Chapter 2 and the dynamical picture given by the generalized 

Markov shift (Chapter 3).

62
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For the proof, we need to define some measures on the product space K  x E.

Denote by A  the finite cr-algebra generated by the partition {o[e] : e £ E }  of E and 

define, for each integer m <  1 ,
+oo

A n  : =  V  
i= m

which is the smallest cr-algebra containing all finite (7-algebras V"=m S~lA , n >  m. 

Let x  £ K . For every integer m <  1, let P™ be a probability measure on cr-algebra 

Am given by

e n ] )  =  P e m ( x ) P e m +1( w e m ( x ) ) . . . P e n ( w en_ 1 O . . .  O W e ,n { x ) )

for all thin cylinders m[em, ...,en], n  >  m. By Lemma 3.2.1, x  i— » P™(Q) is a Borel 

measurable function on K . Therefore, we can define, for every integer m <  0,

Mm(AxQ):= J
A

for all A £ B (K ) and all Q £ A m. Then Mm extends uniquely to a probability 

measure on the product cr-algebra B (K ) <g> A m with

=  J  P”' ({<r€ E : (z, cr) S Q}) d^(x)

for all O € B (K ) ® A m- Note that the set of all D £ B (K ) 0  A m for which the 

integrand in the above is measurable forms a Dynkin system which contains the set 

all rectangles A x Q, A £ B (K ), Q £ A m. As the latter is fl-stable and generates 

B (K ) 0  A m, the integrand is measurable for all D £ B (K ) 0  A m. Further, note that 

P™ ( {a e  ^ : (x >a) ^ ^ } )  — f  1 n(%, &)dP™(cr) for all D £ B (K ) 0  A m■ Therefore

J  sdMm =  J  J  s{x,cr)dP™{(j)dn(x)
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for all B (K ) 0  Mm-simple functions s. Now, let ^  be a B (K ) 0  v4.m-measurable and 

M m-integrable function on K  x E. Then the usual monotone approximation of positive 

and negative parts of ^  by simple functions and the B. Levi Theorem imply that

J  ipdMm =  J  J  'ip(x,a)dP'^{a)diJ1{x).

Lem m a 4.1.1. Suppose C  :=  YaLi Ik -d (x > Xi)dp(x) <  oo for some Xi G K i, i =  

1 , N. Let i[e i,..., en] C E be a thin cylinder set. Let T  \/°l0 S'1 A . Then

Em (li[ell...,en)|̂ r) {<?) =  ^F(cr) (i[ei, e j )  for M-a.e. a G E, 

where Em {-|.) denotes conditional expectation with respect to measure M.

Proof. We can obviously assume that (e i , ..., en) is a path of the directed graph. Set 

Em :=  Vi=o SlA  for all m G Z\N. We denote further a (—?n+l)-tuple by (<jm, < J o ) *  

if M  cr0]) > 0 (i.e. (crm, ..., cr0) is a path). Then obviously

f  ,...,e„\dM

M i l h  * j i ^ » ) ( ? ) =  E  ’̂ w r h — T r r 1-**  ™l(s)

for M-a.e. d G E. Since (Em)m<0 is an increasing sequence of cr-algebras and T  is 

the smallest cr-algebra containing all J-m, it follows by Doob’s Martingale Theorem 

(e.g. see [7] p. 199) that

E m  —* E m  ( l i [e i1...,en]|*̂ r) (4 .1 .1 )

M-a.e..

Now, set

:=  wao o  . . .  o  wamx  and Ym(a) :=  wao o ... o  wamx i{(Jtn)
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for all x  6  K , a e S  and m <  0 . Further, define

1 f  d (Z *(a ),Y m(a))dM m(x,a)

X m[cr) 2_  ̂ ,~r / tv- r i\ Imtow-.o-olv0 /
(crm,...,o-o)* w  [o’m j •••> O b ])

for all d € E. Then ,

J  X mdM  =  J  d{Z^(a),Ym(a))dMm(x,a)

J  T  P<rm(x)...p„,(w<r_i ...wrmx)d(wn ...wr„ x ,w atl...w„mx i{am))d[i(x)
crm r..,cj o

*  /• ' 
a m+1 d(x) Xi)d/J,(x) =  a m+lC.

*=i ^
<

Set

n r = { O' G S ! Cir 2 C7
■}

for all m <  0 and O :=  f ] n<0 Then, by Markov inequality,

-m+l

Hence, M (Q) =  0 and

M {O m) < a —

X m(cr) —> 0 for all cr £ E \ fk

Now, for cr £ E with M  (m[crm, c r o ] )  >  0,

/  li[ei ,...,en]dM
j-> 1 / r IN

m u k ,...,<7o]) '  f w (l( l  ^

f  Pam{x)...p<T0{wa_1...wamx)pei(Z%l(cr))...pen{wen_1...weiZZl(a))dfj,{x)

f  P<rm (x).. -Pao (w*-, • ..W*mx)d/J,{x) 
- p ei{F {a))...peil(wen_1...weiF {a ))\ . (4.1.2)

Set p(rc) :=  pei (&).. .pen (w e,^• • • ̂ ei&), x  £ i f . Note that the average contractiveness 

condition and the boundedness away from zero of the probability functions (on their
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vertex sets) imply that each map we\k  e) is Lipschitz. Since each pe\i<i(c) is Dini- 

continuous, it follows that each function pek o wek_t o ... o iuei|j<i( )} 1 <  k <  n, is 

Dini-continuous. As bounded Dini-continuous functions form an algebra, p\i<i{ei) is 

also Dini-continuous. Let p be the modulus of uniform continuity of p\i<i(eiy  By the 

Sublemma from [2], there exists ip : [0 , oo) — * [0 , oo) such that ip(t) >  p(t) for all t} 

ip(t)/t is non-increasing, and ^ip{t)/tdt <  oo. Set

ua A

/3(u) :=  ——— f  dt for u >  0 . 
1 CL J t

Then (3 is continuous, concave and /5(0) =  0 . Moreover,

/3{u) > 1 — a
m dt >  _  i ) = * (0) >  , ( „ )

t 1 — a ua~

for all u >  0 . Hence, p(u) <  (3(u) for all u >  0. Therefore,

(4.1.2) <
f  P °  Z^(a)dM m(x,a )

Kx m

Mm (I< ^  771 [ ^ m >  •••) < A > ])

p o Y m(a)

<

<

f  \Po Z m(°r) ~ P °  Ym{v) | dMm(x, a)
Kx m[%r“iffo]

M m (A " X m [oVnj ...,<7q])

I  P (d (z m(d ), Ym (a))) dMm(x, a)

+  \poYm(a) -p o F (a )\

+  \poYm(a) -p o F (a )\

Kx

Mm (AT X 7n[^7n) CT0])

/  f  d (Z * (a ),Y m(d-))dMm(x,a )\

+  \poYm(cr) ~ p oF (a )\

K  X  7n [(Tju j . . .  ,<7Q ]

M m (AT x m[crm, ..., cr0]) 

=  P o X m(cr) +  \poYm(cr)-p oF (cr )\ .
\

+  \poYm(a) -p o F (a )\

Hence

| E m (liiei,...,e„]|^7i) (cr) -  Pp{a) ( i[e i,..., en])| <  f3 o X m(a) +  |pol^(cr) ~ p oF (a )\
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for M-a.e. a E  £. By Corollary 3.3.5 and the continuity of p on K , the second term 

also converges to zero M-a.e.. Thus

|Em (litd  enjl^m) M  -  Pf(c7) ( i [ e i , e „ ] ) |  -> 0 as m  - o o

for M-a.e. <7 € S. With (4.1.1), this implies that

Em ( l l[ei,...,en]l^) (cr) =  Pp(a) (i[ei, en])

for M-a.e. cr E  S. □

4.2 What is the image of the generalized Markov 

measure under the coding map?

The next proposition is the most important application of the main Lemma for the 

generalized Markov shift.

P roposition  4.2.1. If invariant probability measure p is unique, then

F (M ) p.

Proof. Let U* be the adjoint of the Markov operator associated with the CMS. It is 

sufficient to show that U *F(M ) =  F (M ), since p is the unique invariant probability 

measure. Let /  E  C b(K ). Then

U *F (M )(f) =  ^  f  pef  Q wedF(M ) =  Y ]  f  Pe o F f  o we o FdM.
e£E  J egE



Let e E E. By Theorem 2 .2.1  (iv), S H i  Ik - d(x i xi)dp{x) < oo. Therefore, by Lemma

4.1.1,

Em ( lqe] | F ) (cr) =  P f {a) (i[e]) =  pe o F {a)

for M-a.e. a E  S. Since /  o  we o  F  is bounded and .F-measurable, it follows by a well 

known property of the conditional expectation that

E m  ( l i f e ] /  ow e o F\F )  (a) = p e o F (a ) f  ow e o F (a)

for M-a.e. a E E. Hence, by the shift invariance of M,

U *F (M )(f) =  £  f  l l[e](a ) f  ow e o F(a)dM (a)
e£E  J

=  E  f  Iqe] o ow e o F  o S -'i^ d M icr)

= E / 1® w w / o w w  
=  * W ( / ) -

□
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4.3 Kolmogorov-Sinai entropy of the generalized 

Markov shift

In this section we give a further application of the main Lemma for the generalized 

Markov shift. It turns out that the coding map is the key tool for the calculation of 

the Kolmogorov-Sinai entropy of the generalized Markov shift.
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T heorem  4.3.1. Let Jim (S) be Kolmogorov-Sinai entropy of the generalized Markov 

shift associated with the contractive Markov system.

(i) If YliLi Ik . d{x, xf)dp(x) <  oo for some Xi € K i, i =  1,..., N, then

hM(S) =  -  pe log pedF(M ).
e(zE rs*(e)

(ii) I f  the invariant probability measure p is unique, then

JlM(S) =  J  Pe log Pedp.

kK*)

Proof. It is well known that Iim (S) — Iim (S~1) (e.g. Theorem 4.13 in [25]) and, by 

the Kolmogorov-Sinai Theorem (e.g. Theorem 4.17 in [25]), Jim (S~1) =  /̂ m(<S'-1 j M). 

Further, using the notion of conditional entropy (e.g. Theorem 4.3 (ix) and Theorem 

4.14 in [25]),

hM(S~\ A) =  h (  S-\/ ) .
2—1

Set V S o ^ A  Hence

hM (S) =  - J 2  [  S ( l lW | ^ ) l o g £ ( l l|til| ^ ) < i M .

By the assumption in (i), Lemma 4.1.1 implies that

E  (l^ejl F ) =  Pe o F  M-a.e.

for each e G E. Hence, with 0 log 0 =  0, we have

hM(S) — - ' Y ]  f  Pe o F log (pe O F) dM  =  f  Pe log pedF(M ).

e&E e€% i(e) ’

By the assumption in (ii), Theorem 2.2.1 (iv) and Proposition 4.2.1 imply that
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Chapter 5 

Empiricalness of the invariant 
measure of a CMS

In this chapter we prove an ergodic theorem for Markov chains associated with con­

tractive Markov systems using the coding map. It is a generalization of the ergodic 

theorem from [8 ].

5.1 Introduction

It is very important for various applications (such as image compression) to know 

whether the sequence x y waix y wa2 o waix >... "draws a picture" of the invariant 

measure of the CMS for any x £ K  and Px-a.e. a £ E+, i.e. whether

( f~)\ v K * : w*i °  -  ° w<nx  l < i < n } f /.1(B) =  lim 1------------- ---------------------------- for all open B  C K ,
n—400 77,

where {j counts the number of element in the set. In the affirmative case, such a 

statement is called a strong law of large numbers or an ergodic theorem.

71
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Remark 5.1.1. If the metric space K  is compact, then such a strong law of large 

numbers holds true for any Markov operator with the Feller property which possesses 

a unique invariant probability measure. This was proved by Breiman in 1960 (see

[6 ]). In 1987, Elton gave a proof of an ergodic theorem for IFS with place-dependent 

probabilities on a metric space in which sets of finite diameter are relatively compact. 

His proof is probabilistic in nature; it uses an argument from the general theory of 

Markov processes (see Lemma 1 in [8 ]). It is possible to generalize his proof in order 

to cover CMS as well.

Also, two other papers with similar titles should probably be mentioned here. How­

ever, the systems studied there overlap with ours only in the trivial case where N  =  1 

and the probability functions are constant. A strong law of large number proved by 

S. Grigorescu [9] allows an arbitrary index set E  with a fixed probability measure 

on it such that the system is contractive on average. Both Elton’s and Grigorescu’s 

assumptions imply that the Markov operator has an attractive probability measure. 

In this case, the generalized Markov shift is strongly mixing (see Proposition 5.2.4) 

which is an unnecessarily strong assumption for the ergodic theorem. O. Stenflo [20] 

proved an ergodic theorem for Markov processes generated by a finite family of Lips- 

chitz maps on a complete metric space which is driven randomly by an i.i.d. process 

and satisfies the average contraction condition. This generalizes the trivial setup 

where the driving process is Bernoulli. He suggests a use of such a setup (with pos­

sibly uncountably many maps) for a representation of an IFS with place dependent 

probabilities. (The reader must be aware that the driving process in the latter case 

is one with infinite memory.)



The proof of the ergodic theorem for CMS which we present here is completely an­

alytic and it also uses a representation of the Markov process, but as a factor of 

the generalized Markov shift associated with the CMS via the coding map. The 

generalized Markov measure on the shift space E makes the sequence

(Y0lYu ...) :  E — >K*

a i— ► (F (a ), F (Sa), F {S 2a ) , ...)

to a stationary stochastic process which is equivalent to the Markov process generated 

by'the CMS with the stationary initial distribution /i. We exploit it in Theorem 5.2.5. 

Case N  — 1 of it is exactly Elton’s Ergodic Theorem (see Remark 2.1.1).

5.2 Ergodic theorem for contractive Markov chains

Let {Ki(e) ,we,2De) e&E be a contractive Markov system with the average contracting 

rate 0 < a <  1 and an invariant Borel probability measure fi. We assume that: 

(K , cl) is a metric space in which sets of finite diameter are relatively compact and 

the family K \,..., partitions K  into non-empty open subsets; each probability 

function pe\i<i(e) is Dini-continuous and bounded away from zero by 5 >  0 ; the set of 

edges E  is finite and the map i : E  — * V  is surjective. Note that the assumption on 

the metric space implies that it is locally compact separable and complete.

Before we move to the ergodic theorem, we need to clear up some technical details. 

We will use the abbreviation wak wak o ... o wai for all cr G E or a € E+ . Let Px be 

the Borel probability measure on E+ as in Definition 1.1.6 for x  € K . Let v e  P (K ).
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Since x  i— * PX(Q) is Borel measurable for all Q <G B(E+) (Lemma 3.2.1), we can 

define

4>{v)(A x Q) :=  J P x(Q)dv(x)
A

for all A  G B (K ) and Q G B (E+). Then (j){y) extends uniquely to a Borel probability 

measure on K  x E+ with

4>(v)(Ft) — J  Px ({<t G E+ : (re, cr) € f i } )  du(x)

for all Ft € B (K  x E+). Note that the set of all 0  c  K  x E+ for which the integrand 

in the above is measurable forms a Dynkin system which contains all rectangles. 

Therefore, it is measurable for all Q E B (I< x E+).

Now, consider the following maps:

7  : E

a

S +

(CTI. €T2 , ...)

and

 ̂ : E — > K  x E+

cr

Lem m a 5.2.1. Suppose the invariant probability measure fi is unique. Then

£(M ) =

Proof. We only need to check that

£(M ) (A x i [e i,..., en]+) =  (A  x x [e i,..., en]+)
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for all thin cylinders i[e i,..., en]+ and A  G B (K ). For such sets,

£(M ) [A  x i  [ e i , e n]+) =  M  (F _1(A) D 7 -1  (i[ei, ...,e„]+))

=  J  ilN  ,...,en]dM.
F-RA)

Let T  be the sub-cr-algebra of B (S) generated by thin cylinders of the form m [crm, < j 0], 

m e Z \ N ,  Then F -1 ^ )  € IF. By Theorem 2.2.1 (iv), the uniqueness of the invari­

ant probability measure implies that Y^iLi J/q d(x, Xi)d/u(x) <  oo. Hence, by Lemma

4.1.1,

E m ( li[ei,...,e,i] I F') =  PF{a) ( l [ el> •••> en]"*") •

Therefore,

J  Iq e i t...,en]d M  =  J  Pf(ct) ( l  [^1, . “ , d M (<j)

F-i(A ) F- 1(i4)

=  J  P , ( l [ e l , . . . , e n ] + ) d F ( M ) ( x ) .

A

By Proposition 4.2.1, uniqueness of the invariant probability measure implies that 

F (M )  =  fi. Thus,

£(M ) (A  x i  [ei, ...,en]+) =  J  Px (i[e1} ...,e7J+) dfi{x)
A

as desired. □

Lem m a 5.2.2. Let x ,y  6 Ki for some 1 <  i <  N.

( i )  F o r  e >  0  t h e r e  e x i s t  n  G N  a n d  B xy  G B  ( E + )  s u c h  t h a t  P x  ( B x y )  <  e  a n d  

k > n ^ d  ( w ak o  . . .  o  w a i ( x ) , w ak o  . . .  o  w a i ( y ) )  <  a ^ d {  x ,  y )



for all a E E+ \ Bxy. 

(ii) There exists Hxy E B (E+) such that Px (Hxy) =  1 and 

lim d(wak o  . . .  o  wai(x),w ak o  . . .  o  wat(y)) =  0
k—*oo

for all a € Hxy.

Proof. Applying the average contractiveness condition k times gives

Y  P e 1 ( x ) . . . p e k ( W efc- l  °  -  °  W ei ( x ) ) d ( l U efi O . . .  O W ei ( x ) , W Gk O . . .  O W e i ( y ) )
ei,...,ek

< akd(x, y),

i.e.

J  d(w„k o  . . .  o  wai(x), wak o ... o wai(y))dPx(a) <  akd(x, y).

So, by Markov inequality,

Px (d(wak o ... o  wai(x ),w ak o  . . .  o  wai(y)) >  a*d(x,y)^J <  a*.

Set A^f :=  |o- € E+ : d(wak o  ... o  ... ow CTl(y)) >  a%d(x,y) j  for all k E

N, B?y :=  US>_n A f  for all n G N and B xy :=  f U ,  B xy. Then

OO oo

Px (B xy)<  Px ( B ? )  <  ] T  f t  < E al
k=n k~n

for all ft <G N. Therefore, for all e >  0 there exists n £ N such that Px (B xy) <  e and 

k > n = ^ d  (wak o ... o  ^ ( a ; ) ,  w CTfc o  . . .  o  wai(y)) <  ci^d(x,y) 

for all a E \ B fy. Also, it follows that

Px (B xy) =  0
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and

l i m  d ( w ak o  . . .  o  w a i °  °  w CT1( ? / ) )  =  0

for all (7 G E + \ Bw. □

The next lemma is a generalization of Lemma 3 in [8].

Lem m a 5.2.3. Let 5 >  0 be such that pe{%) >  $ for all x E Ki(e) and e E E. Let 

x ,y  E Ki for some 1 < i  <  N. Then Px is absolutely continuous with respect to Py.

Proof. Let A e  B (E+) be such that Py(A) =  0 and e >  0. We show PX{A) <  e.

By Lemma 5.2.2 (i), there exists ne > 0 and B E B (E+) such that PX(B) <  e/2 and

k > n e => d{wak o  . . .  ow ^ ix ),™ ^  o  . . .  o  wai(y)) <  a%d(x,y)

for all a E E+ \ B. Since each pe\i<i(e) is Dini-continuous, we can choose I >  ne such 

that YfkLi(l)(ah 2̂d(x,y)) <  <5/2, where 4> is the maximum of all moduli of continuity 

of pe| jQ(e) j e E E. For every n E N, set

; |cr E E+ : d{wak o  .. . o  wai(x), wak o  .. .  o  wai(y)) <  a?d (x,y) VI <  k <  n J , 

Qn '■= if I <  n

E+, otherwise

and Q :=  (\ > i Qn- Then E+ \ B  C Q and therefore Px(E+ \Q ) <  e /2 . Now, for



CHAPTER 5. EMPIRICALNESS OF THE INVARIANT MEASURE 78

<j € Qn if I <  n and ( a i , an) is a path of the digraph starting in i, then

P f f l W - f c l V !  °  -  0 W<nX) 

< P'ri(y)-P*n(Wtrn-l ° ° W*1 y)
1 - 5 \ l

x n
/s—Z-f-1

1 +
Pak(W<rk-i O...OWaix ) ~  Pa^Wa^  O . . .  O W ^j)

Pak{w<rk̂  °  - o w aiy)

<  P * 1  (V) • ■ •Pan (% ,,„! °  . • • O W ai y)
1 - 5 l n <f> (a k»1d(xiy ))  

1 +  — ------- = -

Since Ylk=i+i t1 +  0 (a(k 1)/2d(x, y))/5] <  1 +  2 E£L<+i <f> {a{k 1)/2d(x,y))/5  <  2 , it 

follows that

pai(x)...pan(w(Tu_1 o . . , o V ) < 2
1 - 5

o . . .o w aiy).

If I >  n or (cr1} <7n) is not a path of the digraph starting in i , then it holds trivially 

for any a € E+.

Let A  be the algebra each element of which is a finite union of thin cylinders of

the form i [ e i , e n]. By the Caratheodory construction, there exists a sequence

(AOfceu C A  such that A  c  UfcLi A.& and

Each finite union U£=i Ak we can write as a disjoint union of thin cylinders
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which generate A . Let Ck ~  i [ e i , e n]. Then

Px ( Q n c k) <  P A Q nP C k)

° -  0 w<nx )
(cri,...,an):a£Qnr\Ck 

I
<  2 (y)-P<7n{Wvn-l °  -  ° W*lV)

(cri,...,cru):o-eQnnCfc

< 2(i^yp,(c*).
Hence

( mn \
P«(A) =  P .(Q n A ) +  Px(A \ Q ) < l i m  P* W C i n Q

72—>00 \ / /
\&=1 /
/  -i r\ i TTljj.

-  i l ”. g f t < c * n « + f £ ” 2 , ( - r j  g w i + f

£ < ¥ ) g w > +f
< e.

□

P roposition  5.2.4. (i) If p is a unique invariant Borel probability measure of the 

CMS, then the generalized Markov shift associated with it is ergodic.

(ii) If p, is an attractive Borel probability measure of the CMS, then the generalized 

Markov shift associated with it is strongly mixing. '

Proof. Let i[ai, and i[c i,...,cm] be two thin cylinder subsets of S. We can

assume that (a i,...,«&) and (c i,...,cm) are paths of the directed graph. Then, for
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sufficiently large n,

M  ( i [ a i , a>k] n »9_ni[ci,..., c™])

  ^  ̂ M̂  (l[fllj •••} Clfcj &i, •••) bn—kj ̂ lj m̂])
(6i

=  Pal (x)...pak(wak_1...Waix) ^  p6l (wafcz) (wbn_k_l ...WblWakx)
J (h,...,bn-k)

Pa (wbn_k...wblwakx) ...pCm (wCm_1...wClwbn_k...wblwakx) d/i(x)

=  J P ai{x)...Pak (wak_1...Waix)

u n~k (pClPc2 °  W c i - . - P c n  O roCm l o „ . o i d c1) (uv-cc) dg(x). (5.2.1)

Suppose, /i is a unique invariant Borel probability measure of the CMS. Then, by 

Theorem 2.2.1 (iii),

Therefore, l/l £ U  U"~k (PoiPca o wCl...pCm o wCm_x o , „ o i d Ci) converges pointwise to 

/  (PaPc2 °  Wei •••Pcm ° wCm_x o ... o u;Cl) dfi 3,s I ^  oo. Hence, by Lebesgue’s dominated 

convergence theorem, (5.2.1) implies that

1 '
(i[oi)-»flfe] n S '"ni[c i,...,cm]) =  M  (i[ai,...,a& ])M  (i[c i , ..., c™]).

7 1 = 1  (

By the standard extension argument (Theorem 1.17 in [25]), it follows that the gen­

eralized Markov shift associated with the CMS is ergodic.

Now, suppose that p  is an attractive Borel probability measure of the CMS, then 

Ung(x) — U*n5x(g) —* I gdp for all x  e  K  and g E Cb (K ).

J  gdp for all x E K  and g E C b(K )-
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Hence, Un~k (pciPc2 ° Wcl ---Pcm ° u>cm-i °  ••• ° wci) converges pointwise to 

f  (PciPc2 ° wc! —Pcm ° wCm_i ° ••• °  wci) dp (as n —> oo). Hence, by Lebesgue’s domi­

nated convergence theorem, (5.2.1) implies that

lim M  (i[ai, ...,ak] fl S'“ ni[c1, ...,cm]) =  M  (i[cti,..., a*]) M  ( lfa .,..., cm] ) .n—* oo

This implies (Theorem 1.17 in [25]) that the generalized Markov shift associated with 

the CMS is strongly mixing. □

Now, we prove the ergodic theorem. By Remark 2.1.1, case IV =  1 of it is exactly 

Elton’s Ergodic Theorem.

T h eorem  5.2.5 (E rgod ic T h eorem ). Suppose that p is a unique invariant Borel 

probability measure of the CMS and p (K i) > 0 for all i =  1 , ...,1V. Then for every 

x e K
1 n *
-  V  ^  M for Px-a.e. a G E+.TL

Proof. By Proposition 5.2.4 (i), the generalized Markov shift associated with the CMS 

is ergodic. Let Eg :=  {a  G E : t fa )  =  i(<7i+i) Vz € Z }. Since M ([e i,..., en]) > 0 

for every path (e i,...,en), M (Eg) =  1 by the ergodicity. Therefore, we can restrict 

ourselves on Eg.

Let /  G Cq {K ). Further, let A  be the set of all a G Eg such that the limit defining 

F (a) exists and

1 n
lim -  E  /  ° w<jk o ... o w (F  (a)) =  fd F (M ).71—>00 Ti ‘ IL—1 ^



Since F  (Ska ) =  w„k o ...ow ai (F  (cr)) for all such cr, it follows by Corollary 3.3.5 and 

Birkhoff’s Ergodic Theorem that M( A)  =  1. Applying the map £ and Proposition

4.2.1, we deduce that

lim - V / o  wak o ... o w (y) =  I fdjl
n—voo n  *—  ̂ Ik= 1 J

for all (y,cr) G £(A). By Lemma 5.2.1, .

f o m * ) ) = e M K M )  =  >  =  i.

Since <Z>(/i) is a probability measure,

1 =  0 (m)(£(A)) =  J  Px ({o- e  E+ : (x, cr) G £(A) } )  d/x(rc)

iV
=  Px ( { a  G E + : (a?,cr) G £ (A ) } )  dfi(x).

Furthermore, for each i =  1,...,1V, there exists Xi G A* such that

J  Px ({o- G E+ : (x, cr) G £ (A )}) dfi(x)
I<i

=  Pxi ({o- e  S + : (®i, (j) G £ (A ) } )

Set

Qi :=  {a  G E+ : (xh a) G f ( A ) }  

for each i =  1 , IV. Then, for every i,

1 xn ■> Z1
lim -  /  o o ... o wffl(xi) =  fdy, for all a G Qi

n—>oo n  z 'k—1 J
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and, by the above,
iv

pp*. (Qi)/*(•/<■<) = 1.
i= l
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As fi (Ki) >  0 for alH =  1 , N, this implies that Px. (Qi) =  1 for alH =  1 ,..., N.

Now, fix x  G IQ for some i G Then, by Lemma 5.2.2 (ii), there exists

Hi G B (E+) with PXi (Hi) =  1 such that

lim d (wak o ... o wai (x^, wak o ... o wai (x)) =  0
k—too

for all a G Hi. Hence

1 y*1 A f
lim -  )  f  o  w a k o  ... o io (®) =  fd / j ,ii—>oo n —* J

k= l

for all a G QjPliA. As Px. (Qi fl Hi) = 1, we deduce by Lemma 5.2.3 that Px (Qi n Hi) 

1 . As (C c (K ), ||. ||oo) is separable, it follows by an e/3—argument that

1 n  *

fc(o!) ^  F for Px-a.e. cr G £ + .
n fe=i "

□

Finally, we give an important application of the Ergodic Theorem which allows an 

empirical calculation of Kolmogorov-Sinai entropy Hm (S) of the generalized Markov 

shift associated with the CMS without explicitly knowing anything about its invariant 

measure.

We know by Theorem 4.3.1 that

hM(S) =  -  V  pe log Pedf i
J  eG E

if fi is a unique invariant Borel probability measure of the CMS. Then, by Theorem 

5.2.5, we deduce the following fact.
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C orollary 5.2.6. Suppose that p is a unique invariant Borel probability measure of 

the CMS and p (Ki) >  0 for all i =  1 , N. Then for every x  6  K

lU'i(S) =  -  lim -  V '  ( log Pe J o w<7k(x) for Px-a.e. a G £ +.71—KX) Jl * * I  Z J  Ih— 1 /
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