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Bottlenose dolphins {Tursiops truncatus) produce a wide variety of sounds but 

little is known about the function and organization of their vocal repertoires. This 

thesis investigates several aspects of call usage and compares the biological 

validity of classification methods for dolphin whistles. Passive acoustic 

localisation methods were used to identify which animal produced a sound.

Observations of captive dolphins in the Zoo Duisburg, Germany, showed that 

signature whistles are almost only used when the group was split up, but not if all 

animals swam in together in the same pool. This finding supported the hypothesis 

that signature whistles are cohesion calls. Whistles fi'om these observations were 

used to compare whistle classification conducted by eye with three computer 

methods using different similarity measures. Only the human observer 

classification was able to recognize whistle types that were used in a context- 

specific way by the animals confirming the power of this common classification 

method.

Copying of signature whistles and whistle matching between animals was rare in 

captivity. However, observations of whistle interactions in the Moray Firth, 

Scotland, showed that wild dolphins do not tend to interact vocally in general, but 

that whistle matching was more frequent than expected by chance. Whistle 

matching in captivity was rare. Sound pressure measurements of dolphin whistles 

in the wild showed that source levels can reach up to 169 dB re 1 pPa and that the 

active space of a dolphin whistle can range up to 38 Ion. Finally, observations of 

foraging in wild dolphins revealed that they produce low frequency braying 

sounds in this context. Other dolphins would rapidly approach the caller in 

response to a bray. However, it is not clear whether brays function to attract 

conspecifics or manipulate prey behaviour.



Chapter 1

General Introduction

The communication of dolphins has been studied since the first specimens were 

caught and held in captivity. McBride & Hebb (1948) first described the 

behaviour of captive bottlenose dolphins {Tursiops truncatus). Lilly & Miller 

(1961a, b) were the first to use a sonagraph to investigate dolphin sounds and to 

look at the contexts of sound production. Both they and Dreher & Evans (1964) 

were the first to try to describe the species repertoire. Both teams thought that 

dolphin communication was very complex and comparable to human language. 

Dreher and Evans in particular compared its theoretical information content to that 

of human language and concluded that the two systems are similar. Also early on, 

Bastian (1967) trained two bottlenose dolphins successfiilly to cooperate in a task 

that required acoustic information transmission. Whether this transmission was a 

communicative act or was achieved by eaves-dropping on écholocation or gaining 

information from splashing sounds was not clear.

Other researchers focussed more on the biology of dolphin communication itself 

rather than trying to establish a linlc between humans and dolphins. Continuous 

research by Caldwell and Caldwell showed that bottlenose dolphins use 

individually specific signature whistles that could be used in individual 

recognition and group cohesion (Caldwell & Caldwell 1965, 1968; Caldwell et al. 

1990). Later work by Sayigh et al. (1990) showed that these whistles remain 

stable for up to at least 12 years. However, at around the same time, Tyack 

(1986b) found that dolphins also copy each other’s stereotyped whistles, which 

casts doubt on the idea that signature whistles could be used for individual 

recognition. Furthennore, he and Sayigh presented evidence that these whistles 

were learned (Tyack & Sayigh 1997). These findings have led some people to 

doubt the signature whistle hypothesis (McCowan & Reiss 1995a, 1997).
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If we compare the number of scientific publications on dolphin communication 

with those on the communication of other animals it becomes evident that we are 

only at the beginning of this field despite the fact that it started in the 1940’s. The 

main reason for the scarcity of papers is the difficulty one faces if dolphins ai e to 

be studied. They are very mobile and difficult to follow in the water and their 

sound production does not involve any visible motor behaviours that indicate who 

is calling. Sound production occurs internally and the resulting sounds are 

transmitted through the tissue of the animal. Techniques that can be used to 

identify a caller despite these difficulties are laborious and have hardly been 

applied to the study of dolphin commimication.

The aim of this thesis is to further our understanding of dolphin communication 

by applying such techniques in captivity and in the wild. Each chapter is written 

so that it can be read without much reference to the others. Thus, each has its own 

separate introduction and discussion. Chapter 2 is a review of the relevant 

knowledge we have on dolphin communication. It explains some of the 

implications of the cun-ent theories on the evolution of vocal learning and 

individual recognition in dolphins. Thus, it provides the theoretical background 

for the following chapters. In Chapter 3 I investigated whether signature whistles 

are used in group cohesion and individual recognition. Even though this has long 

been suspected this is the first study that gives evidence for this possibility by 

investigating the context specificity of signature whistle use. Chapter 4 compares 

different methods of whistle classification. It shows that computer methods 

currently used on the sounds of dolphins and other animals were unable to reliably 

identify signature whistles. However, signature whistle types defined by humans 

were used in a context-specific way by the dolphins, confirming their biological 

importance. Chapter 5 investigates whether bottlenose dolphins use whistle 

matching in the wild more than expected by chance. This is an important point 

since matching could counteract individual recognition by signature whistles. In 

Chapter 6 1 present source levels of bottlenose dolphin whistles in the wild. This 

gives information on the theoretical range over which dolphins could use whistles 

to communicate and also gives evidence that dolphins face more background 

noise in the frequency band used for their communication than most terrestrial
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animals. Finally, in Chapter 7 I document the use of dolphin brays in feeding 

events and their effect on other individuals in the area. Researchers have largely 

concentrated on whistles, but dolphins produce a wide variety of sounds and these 

are also likely to be used in communication. But, even though braying attracted 

other dolphins, the acoustic features of brays suggest that they might be used to 

modify prey behaviour. Chapter 8 is a general discussion and conclusion in which 

I focus mainly on the further questions I consider most pressing in the study of 

dolphin communication and suggest ways of answering them.



Chapter 2

Origins and implications of vocal learning in bottlenose dolphins

Introduction

Before we can study functional aspects of social learning it must be established 

first that a behaviour pattern is learned and second that it is learned socially. The 

investigation of social learning in communication systems requires only the first 

step. If learning takes place it can only be social since communication can only 

occur between individuals. Social learning can affect animal communication in 

three different ways. The two more common ones are through changes in 

comprehension (i.e. learning to understand the contexts with which a particular 

call is associated), and changes in usage (i. e. learning when to use a call). These 

forms of learning have also been described as contextual learning (Janik & Slater 

1997). A rarer forni of social learning in animal communication is vocal learning. 

This teim describes the process whereby an individual modifies its acoustic 

signals in form in relation to those of another individual. It can result either in 

matching signals or in distinct differences arising between individuals. Contextual 

learning that is related to communication has been found in many mammalian 

species (Salzinger & Waller 1962; Molliver 1963; Lilly 1965; Myers et al. 1965; 

Schusterman & Feinstein 1965; Bumstein & Wolff 1967; Lai 1967), but only a 

few studies have shown vocal learning.

In mammals, primates have been the main focus of research on vocal learning. 

This is partly because vocal learning is a prerequisite for language acquisition in 

humans, and compai ative studies have tried to investigate the evolution of vocal 

learning by looking at non-human primates. However, despite extensive research 

efforts by primatologists, no convincing evidence for vocal learning in non-human 

primates could be found (Janik & Slater 1997). Given this, some authors assume 

that among mammals vocal learning is more or less unique to humans (Jurgens
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1992; Meltzoff 1996). However, studies from as far back as 1972 have 

demonstrated clearly that some mammals are capable of vocal learning. Caldwell 

& Caldwell (1972) described vocal learning in a captive bottlenose dolphin 

{Tursiops truncatus), results confirmed later in a more detailed study by Richards 

et al. (1984). All individuals within a humpback whale {Megaptera novaeangliae) 

population change their song in synchrony in a way that can only be explained if 

vocal learning is involved (Guinee et al. 1983; Payne & Payne 1985). Harboui* 

seals {Phoca vitulina) are capable of imitating human speech (Ralls et al. 1985) 

and infants of greater horseshoe bats {Rhinolophus ferrumequinum) adjust the 

main frequency of their écholocation calls to that of their mother by vocal learning 

(Jones & Ransome 1993).

Unfortunately we loiow very little about the adaptive significance of vocal 

learning in these cases. In the greater horseshoe bat vocal learning seems to be 

important for mother-infant recognition, but, it is not clear what other contexts 

might be affected by their vocal learning skills. Humpback whales and harbour 

seals show singing behaviour, in which males produce repetitive sequences of 

sounds over long time periods during the breeding season suggesting convergent 

evolution with the songs of songbirds. Of those mammals that show vocal 

learning dolphins are the most similar to primates in their social behaviom*. They 

do not produce songs but use their sounds extensively in social interactions within 

complex social groups. Experimental studies have shown that their cognitive 

abilities rival those of the great apes and they may even exceed them in the 

processing of grammatical infomiation (Herman et al. 1993). However, unlike 

non-human primates, they rely almost entirely on the acoustic channel for their 

communication and they ai e capable of vocal learning. In this chapter I will 

evaluate what role vocal learning played in the evolution of cetaceans and what 

implications it had once it evolved. But to consider hypotheses about the origins 

and implications of vocal learning for my study species we need first to look at 

current knowledge about the social stmcture and vocal communication of 

bottlenose dolphins.
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The social structure of bottlenose dolphins

Bottlenose dolphins can be found in groups of one to several hundred animals.

The average group size lies between 3 and 30 individuals (reviewed in Wells et al. 

1980). In some areas group size is slightly larger in deep water (Wiirsig 1978), but 

average group size does not seem to vary significantly between coastal and 

pelagic areas. However, groups of several hundred individuals can only be found 

in the open ocean (Scott & Chivers 1990). The waters off southern Africa present 

a notable exception, as average group size there was 140.3 animals in coastal 

areas (Saayman et al. 1973). Differences in group size may be related to 

environmental factors that influence group structure. Dusky dolphins 

{Lagenorhynchus obscurus), for example, show different group sizes in different 

coastal habitats (Wiirsig et al. 1991). However, differences in average group sizes 

or individual association coefficients between studies can also be caused by 

different definitions of what a group is and one has to be careful comparing data 

from different studies.

Studies on bottlenose dolphin communities have revealed patterns of association 

between individuals that are characteristic of a fission-fusion society. Members of 

a community form groups of different sizes but the individual composition of 

these groups changes frequently. Detailed studies of bottlenose dolphin social 

structure at Sarasota, Florida, (Wells et al. 1987; Wells 1991) and Shark Bay, 

Australia (Smolker et al. 1992) have revealed some of the patterns underlying this 

organisation. Individual male dolphins can be found associating with different 

female groups on different days. However, in both areas males also tend to 

associate in dyads or triplets. These male alliances herd and consort with females 

for mating purposes (Comior et al. 1992a, 1996). Different alliances have been 

observed to fuse into a second-order alliance of four or more animals that took 

females from dyadic alliances (Connor et al. 1992a). Alliances between specific 

males can be extremely stable, resulting in association coefficients as high as 

those of mother and calf pairs. In some cases males have not been seen without 

their ally for over two years (Smolker et al. 1992).
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Females, on the other hand, tend to associate in matrilineal groups. Here, group 

composition seems to be much more fluid, leading to the impression of a female 

network rather than an organisation of entirely separate groups. Females give birth 

to one calf after 12 months of gestation. In Sarasota mothers and calves were 

almost always seen together until a calf reached 3-4 years of age. Association 

coefficients between mothers and calves then decreased gradually in the following 

years (Wells et al. 1987). Once they have been weaned bottlenose dolphins 

associate in subadult groups that are composed of both sexes. This lasts from 

weaning to approximately 8-12 years of age in females and to 10-15 years in 

males (Wells 1991). After that time males and females show adult association 

patterns with females returning to their matrilineal group and males starting to 

form alliances with specific individuals.

The vocal repertoire of bottlenose dolphins

Bottlenose dolphins produce various different kinds of sounds. Among these 

clicks, burst-pulsed sounds and whistles have received the most attention so far. 

Clicks are very brief, broad-band signals used for écholocation. The 

communicative value of these sounds has not yet been identified. Certain dolphin 

species, like the Hector’s dolphin {Cephalorhynchus hectori), do not produce 

whistles and use only click sounds to communicate (Dawson 1991). Bastian 

(1967) found that a bottlenose dolphin was capable of copying the lever pressing 

behaviour of a concealed conspecific that produced elaborate click trains during 

its performance. However, bottlenose dolphins are able to extract information 

from the echoes of clicks produced by conspecifics purely by eavesdropping on 

them (Xitco & Roitblat 1996). Thus, it will be a challenging task for researchers 

to distinguish between clicks used for écholocation and those emitted to 

communicate.

Burst-pulsed sounds consist of click trains with a very short interclick inteiwal, so 

that they appear somewhat tonal to the human ear. We do not know how a dolphin 

perceives such a sound and whether the distinction between clicks and burst- 

pulsed sounds has any relevance to the animal itself. There are many cases in

10
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which these sounds start with a slower click train which then accelerates to 

become a burst-pulsed sound. The reverse process can be found at the end of 

burst-pulsed sounds. However, they are usually composed of low frequency clicks 

and these are unusual in écholocation. It has been shown that they are a common 

vocalisation form in agonistic interactions (Overstrom 1983).

The best studied communication signals of bottlenose dolphins are their whistles. 

The repertoire of an individual bottlenose dolphin comprises several whistle types, 

one of which is highly stereotyped (Caldwell et al. 1990; Janik et al. 1994). 

Caldwell & Caldwell (1965) described this stereotyped whistle for the first time 

and found that it was consistent within individuals. They called these signals 

signature whistles and hypothesised that they facilitate individual recognition 

(Caldwell & Caldwell 1968). In all studies in which individuals were isolated for 

recording, the signature whistle was the primary whistle type, often accounting for 

almost 100% of all whistles (Caldwell & Caldwell 1965; Caldwell et al. 1990; 

Sayigh et al. 1990; Janik et al. 1994; Sayigh et al. 1995). However, in more varied 

contexts signature whistles can be less prevalent (Janik et al. 1994). Studies on 

repeatedly captured wild individuals have shown that the signature whistle of an 

individual can remain stable for at least 12 years (Sayigh et al. 1990). These 

results support the idea that signature whistles could be used for individual 

recognition and group cohesion, but so fai* no study has compared the vocal 

behaviour of the same individuals in separation and other contexts. Dolphins were 

either studied in isolation or in groups. In some studies bottlenose dolphins have 

been found to produce stereotyped whistles even if swimming together (Caldwell 

& Caldwell 1965; Tyack 1986b; Caldwell et al. 1990). However, these were 

individuals in unusual situations, mostly shortly after capture or medical 

procedures. If co-operating animals are exposed to novel situations, contact calls 

can be expected at higher rates since group cohesion becomes more important. 

McCowan & Reiss (1995a) could not find any signature whistles in animals that 

were undisturbed, but it is not clear whether this was an artefact of the methods 

used, since they chose to ignore differences in duration of whistles in their 

classification methods (McCowan 1995). Thus, a demonstration that signature 

whistles are only used in contexts that require a group cohesion mechanism but 

not in close proximity is still needed.

11
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Infants develop their own signature whistle in the first few months of their lives 

(Caldwell & Caldwell 1979). There is accumulating evidence that signature 

whistle development is strongly influenced by vocal learning, with the calf using 

stimuli from its acoustic environment in its own signature whistle (Tyack & 

Sayigh 1997). Vocal learning in bottlenose dolphins has been reported from 

experimental studies for clicks (Moore & Pawloski 1990), burst-pulsed sounds 

(Caldwell & Caldwell 1972), and whistles (Caldwell & Caldwell 1972; Richards 

et al. 1984). Dolphins are extremely versatile in copying new sounds and have 

been shown capable of producing copies of novel sounds at the first attempt 

(Richards et al. 1984). However, we do not Icnow yet how genetical parameters 

limit the flexibility of call ontogeny in cetaceans.

At the end of this section it is important to note that there are several other calls 

that do not fit into the three categories mentioned so far. A few examples are 

brays (dos Santos et al. 1990; dos Santos et al. 1995), low-fi*equency, narrow-band 

(LFN) sounds (Schultz et al. 1995), and pops (Connor & Smolker 1996). Like 

LFN sounds brays are low frequency and nanow band but much longer in 

duration and with many hannonics, while pops are very short, low frequency, 

broad-band signals. We know very little about the functional significance of these 

call types and further research on them is badly needed.

Origins of vocal learning in dolphins

Several hypotheses have been brought forward to explain the evolution of vocal 

learning. Janik & Slater (1997) argued that many of these seem not very likely in 

cetaceans because of the marine environment they live in. Thi ee hypotheses for 

the evolution of vocal learning in birds relate to features of the environment. The 

population identity idea assumes vocal learning to be important to maintain local 

adaptations to specific habitats (Nottebolim 1972). In comparison to most 

terrestrial environments the sea is a vast, very homogeneous habitat. Therefore 

specific local adaptations are less likely to be of importance. The habitat matching 

hypothesis suggests that vocal learning is important in matching the acoustic

12
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ti'ansmission characteristics of different habitats (Hansen 1979). However, 

differences in sound transmission characteristics between marine environments 

are a lot smaller than between terrestrial ones. Finally, the intense spéciation 

hypothesis suggests that vocal learning helps to maintain species recognition in a 

habitat where species density is high (Nottebohm 1972). This hypothesis was put 

forward for a tropical rainforest situation with hundreds of different bird species.

It is unlikely that coastal ai*eas could have supported a large number of different 

cetacean species like that at any time. Those species that were not restricted to 

coastal areas, on the other hand, did not face any spatial limits to dispersal. Thus, 

all these three hypotheses seem unlikely for cetaceans.

The most plausible hypotheses for the evolution of vocal learning in cetaceans 

refer to sexual selection and individual recognition. If the complexity of the call 

repertoire of an individual relates to its fitness this can be used to assess quality in 

mate choice or intrasexual competition. Here, sexual selection would greatly 

favour the evolution of vocal learning to enlarge an animal's repertoire and 

therefore increase its reproductive success. Many birds, for example, use song in 

mate attraction and territoiy defence (review in Catchpole & Slater 1995). In 

cetaceans both toothed whales and baleen whales show vocal learning. Singing 

behaviour can be found in baleen whales, and sexual selection could have 

favoured the evolution of vocal learning in this group. However, toothed whales 

such as dolphins do not produce song but seem to use vocal learning in other 

contexts.

Vocal learning can also facilitate individual recognition (Janik & Slater 1997). In 

most animals individual recognition is made possible by individual differences in 

voice characteristics. These are caused by differences in vocal tract morphology 

or in the neural control of sound production. Thus, they affect the production of 

all calls emitted by an individual. In some mammals individuals produce isolation 

calls. These are usually better suited for long distance communication than other 

calls but identity is encoded in voice characteristics (e.g. Lieblich et al. 1980) and 

not in the call type that is used. Such voice characteristics tend to have a higher 

variability in species that live in noisy environments than in those living in quieter 

ones (Beecher 1991; Loesche et al. 1991). An individual recognition system
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becomes more effective as the ratio between inter-individual variability and intra­

individual variability in the recognition parameter gets larger (Beecher 1991). 

However, at a certain background noise level it becomes difficult to maintain 

individual recognition with variants of the same call type even if the intra­

individual variability is very small. Noise can mask significant differences 

between calls. Masking of recognition signals could either be caused by non­

specific noise in the same frequency band or by conspecifics calling at the same 

time. Another problem for a voice based recognition system arises if voice 

characteristics are not individually specific. Vocal learning would allow an 

individual to solve such problems by incorporating a new call type specifically for 

individual recognition.

The fission-fusion structure of dolphin societies is similar to those of several 

primate species in which communication is needed to maintain bonds and 

alliances. Additionally, dolphins need an effective communication system simply 

to stay in touch with members of their current group. This becomes most obvious 

in the case of mothers and calves. In Shark Bay, Australia, non-weaned calves 

spend a considerable amount of time away from their mother, either socialising or 

on their own, and separation distances of more than 100 meters have been found 

(Smolker et al. 1993). Similar observations have been made in the Moray Firth, 

Scotland (Janik, unpub. data). Separations that leave the calf on its own are most 

likely related to the mother's feeding strategies. Adult dolphins can reach 

swimming speeds of up to 10 meters per second (Lang & Pryor 1966) and 

dispersal is possible in all tln-ee dimensions. Infants can probably not keep up with 

their mothers when they are hunting and will also save energy by staying behind. 

But calves are also vulnerable to predation and need the mother for nursing. 

Dolphins obviously cannot carry their infant or deposit it at some sort of den. 

Therefore an effective communication system to keep track of each other is the 

only way to maintain mother-infant contact.

Only certain communication channels have the required properties to ensure long 

distance contact. Dolphins have a good sense of vision, but underwater visibility 

is very limited, especially in turbid, nutrient rich waters. Olfaction is a very 

important communication channel for mother-infant recognition in mammals
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(reviewed in Halpin 1991). Dolphins can detect different solutions of chemicals 

by taste, but it seems that they have no sense of smell (Nachtigall 1986). 

Furthermore, communication by chemical substances is relatively slow at long 

distances especially in water. Thus, only the acoustic channel is suited to 

individual recognition and group maintenance at longer distances for a marine 

mammal.

There are tliree different ways in which dolphins could keep track of each other 

acoustically. First, dolphins might be able to locate group members by using their 

elaborate écholocation system. However, there are several reasons why this is an 

unlikely solution. Echolocation is veiy directional, so that the animal would have 

to scan all possible directions to locate a group member. Furthermore, the blubber 

and skin of bottlenose dolphins have anechoic properties (Au 1996). The acoustic 

target strength of a dolphin is much lower than that of a fish, especially at the high 

sound frequencies that could give enough detail to distinguish between 

individuals. This makes it likely that individual recognition by écholocation is 

rather limited. Additionally, the air-filled cavities of dolphins that reflect sound 

best change shape under different water pressures. In a diving mammal these 

would not be good features for use in individual recognition.

The second possibility is simple eaves-dropping on the écholocation sounds 

produced by other group members. If these clicks are individually distinctive they 

could be used to keep track of group members. However, similar problems apply. 

Echolocation clicks are very directional. The eavesdropping animal would have to 

be in line with the écholocation target of the relevant group member. Furthermore 

dolphins do not produce clicks continuously, and this would malce position 

monitoring more difficult. High frequencies also get attenuated quickly, so that 

this system would not have a very wide range.

Finally, individuals could make their position and identity known by emitting 

individually specific recognition signals. Cmrently we do not know how large the 

active space of a dolphin whistle is but it is likely that it exceeds the range of 

dolphin écholocation since it is of much lower frequency. But why do dolphins 

not simply recognise each other by their voices without the need to learn a special
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signal? We have already seen that backgi'oimd noise can be a problem. The sea is 

a high background noise environment (Spiesberger & Fristrup 1990) that can 

mask individual differences especially over the long separation distances that can 

be found between communicating dolphins. But there is another potential problem 

that is related to diving. Individual voice characteristics are influenced by head 

morphology. Dolphins have several air sacs that are used to recycle air for sound 

production. It is likely that the shàpe of these air filled cavities in the dolphin's 

forehead influence its voice characteristics. Such cavities change shape if an 

animal is diving because of the increasing water pressure outside. Thus, not only 

the shape of these cavities but also voice characteristics might change with 

swimming depth (Tyack 1991). Indeed, Ridgway et al. (1997) showed that the 

power spectra of beluga (Delphinapterus leucas) sounds are very different 

depending on the depth at which the sound is produced. Therefore, dolphin voice 

characteristics do not seem to provide reliable information on the identity of a 

caller. Instead bottlenose dolphins seem to ensure individual recognition over long 

distances by encoding identity in a specific whistle type. The modulation of such a 

whistle is resistant to pressure changes. Vocal learning gives them the opportunity 

to develop new whistle types that can be used in this context.

This leaves us with two possible reasons for the evolution of vocal learning in all 

cetaceans if we assume that it is still used in its original context. Baleen whales 

seem to use it in the context of mate attraction and/or intra-sexual competition 

(Tyack 1986a). Toothed whales on the other hand most probably use it in 

individual recognition. It is difficult to decide which of these was the original 

context in which vocal learning evolved or whether it evolved twice within the 

cetaceans. One argument can be made to support the primacy of individual 

recognition. Baleen whales only branched off from the older toothed whales 

around 10-40 million years ago (Milinlcovitch et al. 1993). Thus, since none of the 

toothed whales has been found to show singing behaviour it could be argued that 

individual recognition was the significant factor in the evolution of vocal learning. 

However, further studies on individual recognition, especially in baleen whales, 

are needed to come to a conclusion about its role in the evolution of vocal learning 

in cetaceans.

16



Chapter 2: Origins and implications o f  vocal learning in bottlenose dolphins

Implications of vocal learning

One of the main problems for a recognition system that is based on learned signals 

is the fact that others can copy the recognition signal. Even though one bottlenose 

dolphin produces its specific signature whistle consistently if it is isolated from its 

gi'oup members, other individuals are capable of producing the same whistle. This 

can introduce a serious problem if learned signals are crucial for individual 

recognition. How does the receiver laiow which individual produced a call if it 

cannot use voice characteristics? Birds, for example, find it more difficult to 

distinguish between individuals that sing the same song type than individuals that 

sing different song types (McGregor & Avery 1986; Beecher et al. 1994a). 

However, bottlenose dolphins nevertheless seem to use learned signals in 

individual recognition.

Two questions are critical to the impact of whistle copying: Do bottlenose 

dolphins copy the signature whistles of others, and why would they do so? Tyack 

(1986b) was the first to investigate signature whistle copying. To identify which 

of the two individuals in a pool was producing a call he employed so-called 

vocalights. Vocalights consist of a microphone and amplitude sensitive light 

emitting diodes (LED’s). These devices were attached to a dolphin’s head so that 

whenever an individual produced a call its LED’s lit up. With this setup Tyack 

found that each individual produced mainly one of the two stereotyped signature 

whistles he recorded, but that approximately 25% of its whistles were copies of 

the other animal’s signature whistle. Thus, strictly speaking signature whistles are 

not individually specific. However, apart from this study on two captive 

individuals we know nothing about how this ability is used in dolphin 

communication.

There are several possible reasons why dolphins copy signature whistles. Peekes 

(1977) hypothesised that shared, learned calls can act as a password to exclude 

non-members from a group. This hypothesis depends on the fact that an individual 

cannot produce an exact copy of a call on first exposure to it. In dolphins Richards 

et al. (1984) have shown that an individual was able to produce high fidelity
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copies of novel calls immediately. It is, of course, difficult to assess whether 

another dolphin could recognise that a copy was emitted by an animal with no 

practice in producing that call. However, the cues present for such recognition 

could only lie in small parameter variations. In the previous section on the origins 

of vocal learning I discussed problems imposed on the communication system by 

background noise and changing water pressure. That discussion showed that it 

seems unlikely that an individual could discriminate between genuine and copied 

calls of the same type at a distance by listening to slight parameter differences.

This would make whistle copying a useful tool to deceive others. Floater male 

song sparrows {Melospiza melodid) for example learn to sing the shared songs of 

a neighbourhood and then insert their territory between territories of these 

neighbours. Beecher et al. (1994b) argue that the established birds are deceived in 

that they do not recognise the floater as an intmder and, thus, show less 

aggression than towards a stranger singing different songs. In dolphins there are 

several situations in which copying could be used for deception. A mother could 

be lured away from a food patch by copying her infant's whistle and in agonistic 

or territorial encounters a dolphin could pretend to be more than one individual by 

producing calls of several animals as in the Beau Geste hypothesis proposed for 

birds (Krebs 1977). Deception is likely to occur if the costs involved in being 

detected are lower than the benefits that can be achieved by the performance or if 

detection is highly unlikely. Considering the cognitive abilities of dolphins even 

tactical deception (Wliiten & Byrne 1988) seems possible. However, false signals 

can only be advantageous if they are relatively rare (Wiley 1994). If not, specific 

adaptations to counteract deception would be expected, since signature whistles 

still seem to be important in individual recognition and group cohesion. These 

issues have so far received no research attention in dolphins.

The ability to copy signature whistles may also have advantages for the 

maintenance of group cohesion. Tyack (1986b) suggested that copying another 

individual’s whistle is used to address a particular animal. In the highly fluid 

social system of bottlenose dolphins this interpretation is particularly convincing. 

Since individuals often swim within acoustic range of each other, the ability to 

address specific individuals could be used to maintain group cohesion even in
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large feeding aggregations. Also if individuals are trying to coordinate their 

movements at a distance such a system would be useful. Bottlenose dolphins have 

been found to hunt cooperatively (Hoese 1971) and adult males sometimes 

synchronise their swimming in the context of mating (Connor et al. 1992a). Tyack 

(1993) described an instance in which a female reacted selectively to the copying 

of her whistle by another female while other animals did not. Gwinner & 

Kneutgen (1962) observed similar cases in which ravens {Corvus corax) and 

white-rumped shamas {Copsychus malabaricus) used specific calls of their mates, 

which caused the partner to return to the caller. Matching another animal's calls 

can also occur in agonistic contexts and can elicit an aggressive response without 

cooperation being involved. Many song birds use song matching in such contexts 

(reviewed in Catchpole & Slater 1995). Bottlenose dolphins do not seem to use 

whistles much in aggressive interactions at close range (Overstrom 1983), but 

they could be important over longer distances.

Richards et al. (1984) trained a bottlenose dolphin to imitate specific computer 

sounds in response to different objects. They called this behaviour vocal labelling 

and suggested that dolphins use signature whistles as labels for other dolphins. 

While copying is a descriptive term, labelling suggests that the individual has a 

learned, internal representation that comiects the label and the corresponding 

object independent of the context. In observational studies it is often difficult to 

recognize whether the animal has made such a connection or whether it only 

formed a context-specific association, i.e. that the production of a specific call 

leads to a specific result. Context-specific associative learning is very common in 

animals. Gwinner & Kneutgen (1962) in their study on call copying in birds, for 

example, argued that the female bird had learned to associate her copying with a 

return response of the male. This does not require the internal connection between 

the male and its call that is required for labelling. In human language, on the other 

hand, new labels are created spontaneously and are used to communicate about 

the environment. Terrace (1985) and Wilkins & Wakefield (1995) have suggested 

that labelling behaviour may have been a first step in the evolution of human 

language. They pointed out that several animal species can be taught to use new 

labels for objects, but none shows that behaviour in its own communication 

system or uses new labels without being rewarded. Humans, on the other hand,
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Figure 2.1; Selected whistle types of bottlenose dolphin subjects previous to the start of the Reiss 

& McCowan (1993) vocal mimicry study (left two columns) and spectrograms of model whistles 
used in that study (right column). The dark lines in the left two columns represent the mean 

frequency contours of each whistle type, and vertical lines represent the standard deviations (from 

McCowan & Reiss 1995b). Contours on the left are normalized for differences in duration (x-axis) 

and the y-axis represents frequency from 0 to 20 kHz. The visual comparison between whistles on 

the left and on the right suggests that the whistles used as models in the vocal mimiciy study were 

present in the repertoires of the animals before the onset of the study. Thus, it is questionable 

whether vocal learning was demonstrated in Reiss & McCowan*s (1993) study.
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develop or copy novel sounds spontaneously to label objects often without any 

reward being involved.

Very little is known about the mechanisms of whistle copying or possible 

labelling in dolphins. Reiss & McCowan (1993) investigated labelling behaviour 

in dolphins experimentally. They reported that bottlenose dolphins spontaneously 

produced whistles that have been presented to them during presentations of 

different objects. These whistles were later also heard when the animals were 

allowed to manipulate these objects in their tank without any further reward heing 

given by the experimenters. However, in studies such as this it can be difficult to 

determine whether a call is newly learned or was in an animal's repertoire before. 

Reiss & McCowan (1993) reported that the whistles used were novel to the 

animals. However, the spontaneous whistles produced by their study animals 

while manipulating objects were remarkably similar to contours in their baseline 

data from the same individuals before onset of their vocal mimicry study (Fig. 

2.1). Bottlenose dolphins can shift the ftequncy band which a whistle contour lies 

in (Richards et al. 1984), so that differences in the absolute frequency of contours 

seems less important. Therefore it is still not clear whether bottlenose dolphins 

use novel sounds spontaneously to label objects. The social system of bottlenose 

dolphins and the large number of individuals each interacts with would make a 

complex labelling system advantageous. However, further studies on the contexts 

of call copying are needed to decide what mechanisms might be involved.

Conclusions

We have seen that individual recognition was a likely selection pressure for the 

evolution of vocal learning in dolphins. Since they are limited to acoustic signals 

for communication due to the properties of their environment and their high 

mobility, this puts special selection pressures on their communication system. It 

may have led not only to the development of learned recognition calls, but 

possibly also to the usage of copies of these calls to address specific individuals.
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The evolution of vocal learning seems to be a crucial event in the phytogeny of 

odontocetes and probably greatly facilitated their development into the social, 

highly mobile, aquatic predators they are today. Inevitable separations of mothers 

and infants while feeding on fast fish are not a problem if identity and position 

information can be transmitted reliably between them. This allows for a prolonged 

nursing phase and frees the mother from providing a massive amount of resources 

to her offspring in a very short time as is the case in other marine mammals such 

as many phocid seals (reviewed in Trillmich 1996).

A long nm'sing phase also gives the infant time to acquire many of its abilities by 

learning. In societies where cooperation and/or social learning occur, it is possible 

to invade new habitats rapidly by exploiting food sources that otherwise would 

not be available (e.g. Byrne 1995; Terkel 1996). Bottlenose dolphins seem to have 

made extensive use of this possibility. They can be found world-wide in almost all 

marine habitats and have adopted a generalist feeding stiategy displaying a wide 

variety of feeding methods, e.g. using a sponge as a tool to chase fish from the 

bottom (Smolker et al. 1997), herding fish on to a beach and then feeding on them 

by beaching themselves (Hoese 1971), digging for fish in the bottom by burying 

themselves (Rossbach & Herzing 1997) and, possibly in association with false 

killer whales {Pseudorca crassidens), causing sperm whales {Physeter 

macrocephalus) to defecate or regurgitate and then feeding on half digested food 

items (Palacidos & Mate 1996). These techniques usually occur in only one 

population or group of dolphins and are apparently not part of the whole species’ 

repertoire. There also is some evidence for teaching of feeding strategies in the 

largest dolphin species, the killer whale (Orcinus orca) (Guinet & Bouvier 1995). 

A long nursing phase allows the young to gather information on feeding 

techniques as well as about the social structure of the community.

We still know very little about how dolphins use sounds socially. It is likely that 

vocal learning affects many other aspects of communication in addition to the 

individual recognition system. Maintaining complex social relationships requires 

complex communication. Any form of cooperation or coordinated behaviour 

would require extensive transmission of information. Again, due to the lack of 

visual contact position information is probably one of the most important, but
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other referential information is required as well if a specific behaviour has to be 

performed in synchrony. A good example is in cooperative hunting strategies. 

Lions {Panthera led) (Stander 1992) and chimpanzees {Pan troglodytes) (Boesch 

1994) rely heavily on visual information to coordinate their behaviour during 

cooperative hunts. In dolphins all this information would have to be transmitted 

acoustically. They show coordinated behaviours in feeding contexts (Hoese 1971) 

and between males in alliances (Connor et al. 1992b). However, we Icnow little 

about how such coordination is achieved. To understand the role that vocal 

learning might have played in the evolution of sociality we need to investigate, 

first, the extent to which non-communicative sounds like swimming noises or 

sounds produced for écholocation are used to acquire information that is not 

available through vision and, second, how communication sounds are used to 

transmit information that is needed to cooperate in a particular behaviour.
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Chapter 3

Context-specific use suggests that bottlenose dolphin signature 

whistles are cohesion calls*

Introduction

All mobile species in which associating with particular conspecifics is 

advantageous need a mechanism for maintaining group cohesion. This is 

particularly obvious in animals where mothers and their dependent offspring 

frequently separate (e.g. during foraging trips). But even among adults it can be at 

a premium. Group living animals in which social bonds exist need to be able to 

locate specific pai*tners or must simply stay in their social group. There are two 

possible ways to locate an individual after separation. Firstly, spatial cues can be 

used to find the location where the last interaction occurred. However, this 

method becomes less and less reliable as mobility or local population density 

increases. The second possibility is the development of a recognition system, 

based on cues given out by one individual that another can home in on. Like many 

other signals recognition signals give not only information on the identity but also 

the location of an individual. Both of these are important for the maintenance of 

group cohesion.

Individual recognition of vocal signals is often possible from general voice 

characteristics that affect any of the calls produced by an animal (Cheney & 

Seyfarth 1980, 1988; Lind et al. 1996; Rendall et al. 1996). Individual variation in 

such characteristics is higher in species that live in noisy environments than in 

those living in quieter ones (Beecher 1991). Cliff swallow (Hirundo pyrrhonota) 

chicks, for example, show higher inter-individual variability in their begging calls 

than bam swallow {Hirundo rustled) chicks (Loesche et al. 1991). Unlike bam

*  This chapter is accepted fo r  publication in "Animal Behaviour” with P. J. B. Slater as coauthor,
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swallows, cliff swallows nest in dense colonies where a lot of background noise is 

created by conspecifics. However, if  animals live in high background noise and 

are veiy mobile genetic differences in vocal tract morphology that cause 

differences in voice characteristics could become insufficient to assure individual 

recognition, and specialised signals may be necessary.

Research on captive and temporaiily captured wild bottlenose dolphins {Tursiops 

truncatus) has shown that each individual uses its own distinct, stereotyped 

signature whistle if it is isolated from conspecifics (Caldwell & Caldwell 1965; 

Caldwell et al. 1990; Sayigh et al. 1990; Janik et al. 1994). Researchers have 

distinguished between signature whistles by looking at their frequency contours 

which is the unique modulation pattern of the fundamental frequency of the 

whistle. With this method it has been shown that signature whistles remain stable 

for up to at least 12 years (Sayigh et al. 1990). Caldwell et al. (1972) also showed 

that a bottlenose dolphin can be trained to distinguish between different signature 

whistles. Caldwell & Caldwell (1968) were the first to hypothesize that these 

whistles could be important for individual recognition and group cohesion. 

Recognition or isolation calls of other animal species often show a remarkable 

similarity in their overall contour in all individuals if compared to the variability 

of contours found in just one individual’s call repertoire (e.g. Lieblich et al. 1980; 

Beecher et al. 1981; Stoddard & Beecher 1983). In contrast, dolphin signature 

whistles are unique frequency contours that are as dissimilar between individuals 

as are different non-signature whistles in an individual’s repertoire. Unlike 

recognition calls of other animals they look like completely different whistle types 

to the human eye. Such increased variability in whistles used for recognition by 

different individuals increases their resistance against interference tremendously 

(Beecher 1991). In contrast to the recognition calls of most other mammals, the 

development of signature whistles is influenced by vocal learning (Tyack & 

Sayigh 1997). Vocal learning is a relatively rare ability among mammals and it 

has been hypothesized that its evolution in dolphins was closely connected to the 

constraints imposed on signature whistles by the marine environment (Janik & 

Slater 1997). In a marine environment, not only high background noise levels but 

also changing water pressure on the sound production apparatus can conceal 

differences in voice characteristics that would otheiwise identify the caller (Tyack
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1997). Vocal learning most likely evolved at the time when cetaceans re-entered 

this environment and enabled each individual dolphin to develop its own 

unambiguous signature whistle type.

However, even though individual recognition and group cohesion are considered 

the most likely functions of signature whistles today, there are some problems 

with this idea. Vocal learning, for example, influences more than just signature 

whistle development in infants. The ability is present throughout the dolphin's life 

and adult bottlenose dolphins can produce copies of novel sounds at the first 

attempt (Richards et al. 1984; Sigurdson 1993). Tyack (1986b) studied whistle 

usage in two captive bottlenose dolphins and found that they frequently produced 

each other's stereotyped whistles. He hypothesized that these whistles represented 

the subjects' signature whistles and that whistle copying could be used to address 

a specific individual in a group. But this copying ability could also work against 

individual recognition. If several animals produce the same signature whistle, then 

individual recognition could not work assuming that voice characteristics are not 

reliable indicators of identity. If signature whistles are identification signals it still 

remains to be shown how confiision with copying individuals is avoided. Thus, to 

be able to assess the functional significance of signature whistles it is important 

first of all to investigate the contexts in which they are used.

Even though signature whistles have been studied since 1965 we still Imow 

astonishingly little about the contexts in which they are used. This is partly 

because dolphins rarely provide any visible signs of sound production. Sounds are 

produced in the head and travel directly through the tissue into the surrounding 

water (Dormer 1979). No opening of the mouth or the blowhole is required. For 

this reason, many studies have focused on isolated individuals so that caller 

identification was unproblematic. But isolation is just one very specific context 

and gives little information on whistle usage in other situations. Studies on whole 

groups of dolphins on the other hand have mostly not been able to identify the 

caller and so have given little information on the contextual usage of whistles. 

Therefore the hypothesis that signature whistles are used for individual 

recognition or group cohesion still remains to be tested.
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Only two studies to date have been able to identify the caller and have looked at 

individual whistle usage in groups of dolphins at the same time. Tyack (1986b) 

developed a telemetry device, called a vocalight, attached to a dolphin's head with 

a suction cup. Light emitting diodes which lit up whenever the animal was calling 

allowed him to identify a caller. With this device Tyack showed that each of two 

captive individuals primarily produced one stereotyped whistle type, but each also 

produced the other's stereotyped whistles frequently. In the other study, McCowan 

& Reiss (1995b) looked at whistle usage in captive groups by using bubble 

streams out of the blowhole to identify the caller. Dolphins sometimes produce 

such bubble streams while vocalizing. McCowan & Reiss (1995b) could not find 

any stereotyped whistle contours likely to have been signature whistles in their 

sample. It is somewhat puzzling that these two studies had different results. There 

are three possible explanations for this discrepancy, two of which are concerned 

with the different methods used. First, it could be that bubble streams are 

associated with specific whistle types. McCowan (1995) argued that they are not, 

but, in her comparison of whistle type production with and without bubble 

streams in a captive group, the sample sizes were very small (20 and 50 whistles, 

respectively). Second, McCowan & Reiss (1995b) used a very different method to 

categorize whistles. In their method, they condensed or stretched all whistles to 

the same length and used only 20 frequency measurements to describe each 

contour, while Tyack (1986b) categorized the original whistle spectrograms by 

eye. Thus, it is difficult to compare the results of the two studies. The third 

possible reason for the discrepancy is the difference in recording context. While 

Tyack's group consisted only of the two animals that were wealing vocalights, 

McCowan & Reiss' groups were larger and undisturbed. Without further study it 

is impossible to decide which reason is responsible for the difference foimd.

In fact, such differences in the findings of studies on dolphin whistles have led 

some authors to question the claims of signature whistle studies (Herman & 

Tavolga 1980; McCowan & Reiss 1995a). Studies that have found signature 

whistles reported them to be the most common whistle type in all contexts 

investigated. But since their usage was not context-dependent, no biological 

confirmation of their existence in the natural repertoire of the animals was 

achieved. If the recognition/group cohesion hypothesis is right, signature whistles
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would mainly occur when animals were separated and out of sight of each other. 

We would also expect them to occur in novel and possibly threatening situations 

when group cohesion is of major importance for a cooperating animal like the 

bottlenose dolphin. Studies on groups of dolphins that have been recently captured 

(Caldwell & Caldwell 1968) or were exposed to novel situations like lowering of 

the water level in the pool (Caldwell et al. 1990) have, in fact, already 

demonstrated that stereotyped whistling can occur while animals are together. 

However, to date no study has compared whistle production of the same 

individuals (after they have been well habituated to captivity) both while they 

were in isolation and in a group without any human intervention.

To investigate the hypothesis that signature whistles are used to maintain group 

cohesion and are not just induced by stressful situations, this study compared 

whistle usage in a group of four bottlenose dolphins while together and in 

isolation. Additionally, I investigated the occurrence of whistle copying when 

animals were in separate pools to address the question of individual specificity.

Methods

Subjects and Facility

The study was conducted at the dolphinarium of the Zoo Duisburg in Gennany. 

The subjects were four North Atlantic bottlenose dolphins. This group consisted 

of one adult male (Playboy, 23 years old) and one adult female (Pepina, 14 years 

old), both collected in the Gulf of Mexico on different occasions several years 

previously, and one subadult male (Duphi, 7 years old) and one juvenile female 

(Delphi, 3.5 years old) both bom at the facility. They had different mothers but the 

adult male was possibly father to both of them. The adult female present in the 

pool was not the mother of either of the captive bom individuals, but was 

pregnant at the time of this study. Her calf was bom 7 months after this study was 

completed. Two connected indoor pools were used by the animals. The larger 

main pool was oval, 25 m long and 15 m wide; the smaller pool was a square with
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side lengths of 10 m and 9 m. Both pools were 5 m deep, and were connected by a 

gap 1.79 m deep and 1.23 m wide at the surface of the shared wall. Throughout 

the study all animals could use both pools at any time.

Data Collection

Data were collected over 10 days in January 1996. Each pool was equipped with a 

Dowty SSQ 904 sonobuoy hydrophone with custom built preamplifiers. Both 

hydrophones were placed at 1 m depth and output from them recorded on two 

separate channels of a Marantz CP 430 tape recorder. Both channels were set at 

the same recording level. The recording system had a frequency response from 1 

to 20 IcHz ± 3 dB (calibrated by Neptune Sonar Ltd., UK). This corresponds to the 

frequency range of whistle contours in bottlenose dolphins. I continuously noted 

the location (large or small pool) of each dolphin. Recordings were made either 

while all animals were swimming together in the main pool or whenever one 

animal swam separately from the others in one of the pools. These separations 

were not induced but occurred spontaneously in the daily behaviour of the 

animals. No recordings were made during feeding or training sessions. Each 

session was started after the animals had been undisturbed for at least 10 min. 

Aggressive behaviours were sampled continuously to investigate whether 

separations were induced by aggressive interactions. Behaviours sampled 

corresponded to those investigated by Samuels & Gifford (1997). Observations 

were made from an elevated point 15 m from the pool.

Data Analysis

Frequency spectrograms of all recorded whistles were calculated using SIGNAL 

software (Engineering Design, Belmont); (FFT size: 1024, time resolution: 20.5 

ms, frequency resolution: 48.8 Hz, number of FFT steps: 200, weighting function: 

Hanning window). In the first step, I inspected spectrograms by eye and classified 

them into separate whistle types without knowing the context in which they were
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produced or the identity of the dolphin. Sayigh et al. (1995) demonstrated the 

validity of this method by showing that human observers agree on what whistles 

look similar to each other on a frequency spectrogram. Furthemiore, computer 

methods that have been used to classify dolphin whistles are still not able to detect 

some of the gestalt features of signature whistles and are therefore not suited to 

investigate signature whistle usage (see Chapter 4). Spectrograms were inspected 

twice. In the first run only very stereotyped whistle types were identified; in the 

second run all remaining whistles were categorized into more variable types 

which were defined by the shape of the frequency contour of a whistle (see 

results). However, to test for inter-observer reliability a subset of 104 randomly 

chosen whistle contours was classified by five additional observers (see Chapter 

4). No observer had any information on contexts of whistles or caller identity. The 

inter-observer reliability of all six observers in the classification of what they 

considered stereotyped whistles was extremely high (Kappa statistic (Siegel & 

Castellan Jr. 1988); K = 0.92, z = 22.16, P < 0.0001) and corresponded closely to 

the initial classification.

Next I used a comparison of the amplitude of each whistle on the left and the right 

channel of the tape recorder to determine which pool a whistle came from (Janik 

et al. 1994). Whistles are omnidirectional since a dolphin’s head does not focus 

low frequency sounds like whistles (Evans et al. 1964). Thus, the orientation of 

the animal has no influence on the amplitude comparison. Whistle type production 

was analysed for each individual when it was swimming on its own, for the whole 

group swimming together, and for the remaining group if one animal was 

separate. Data on aggression were analysed for each 1-min period before a 

separation occurred.
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Figure 3.1: Three randomly chosen spectrograms of each of the stereotyped whistle types; (a) 

whistle type A, signature whistle of the adult male; (b) whistle type B, signature whistle of the 

adult female; (c) whistle type C, signature whistle of the subadult male; (d) whistle types Di&2- 

Contours D1&2 almost always followed each other and made up the signature whistle of the 

juvenile female. Background noise and harmonics have been removed on all spectrograms since 

the frequency response of the recording system was not sufficient to record complete harmonics.

31



Chapter 3: Context-specific use suggests that signature whistles are cohesion calls

(a) 
201

0 I 1- - - - - - - 1- - - - - - 1- - - - - - - 1- - - - - - - 1- - - - - - 1- - - - - - - 1- - - - - - !

0 1.6 
(b)

201

0 1.6
(c)

N

I
0 1.6

(d)
20

-~AAI
0 ‘ ' ’ ' ' li6

(e)
201

0  i I I I I I I I— I

0 1.6

201

0 1.6

201

0 1.6

201

0 1.6

201

*1 1 I I I1 .(

201

0 1.6
Time (s)

20 n

1.6

201

0 1.6

201

0 1.6

201

1—I—I—I—I—1
1.6

20

OH— I— I— I— I— I— I— I— I 

0 1.6

Figure 3.2: Three randomly chosen spectrograms of each of the more variable whistle types: (a) 

whistle type RISE; (b) whistle type WAVE; (c) whistle type U-SHAPE; (d) whistle type SINE; (e) 

whistle type FALL. Background noise and harmonics have been removed on all spectrograms (see 

Fig. 3.1).
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Results

Whistle Classification

All 2472 whistles were categorized into whistle types A, B, C, Di, D2 , RISE, 

WAVE, SINE, U-SHAPE, FALL and RESIDUAL (Figs. 3.1 and 3.2). Types A,

B, C, Di, and Dg were the stereotyped whistle types identified in the first scan of 

the spectrograms. Figure 3.1 shows example spectrograms for each of these 

stereotyped whistle types. The classification of non-stereotyped whistles followed 

that of Tyack (1986b) and Janik et al. (1994).

For further analysis all types that occurred at least 80% of the time in close 

sequence (less than 500 ms apart) were considered one whistle. Such multi-loop 

whistles have been described before and seem to represent one unit in the 

repertoire of a dolphin (Caldwell et al. 1990; Sayigh et al. 1990,1995). The multi­

loop whistles found were types A, C, and D (Fig. 3.1). In types A and C two very 

similar contours followed each other, while in type D the two contours were 

different (Di followed by D2). Only 40 out of the 394 contours that made up type 

A in the total whistle sample of 2472 whistles recorded for this study occurred on 

their own. In type C it was 53 out of 391 contours, and in type D the first contour 

occuned 54 times on its own, the second one did so three times, and the two 

occurred together on 261 occasions. None of the less stereotyped whistle types 

foimed multi-looped whistles.

Whistle Usage

Whistle rates per individual did not differ significantly between isolation and 

group swimming (Table 3.1; Kruskal-Wallis test: H4=6.335, NS). However, the 

distribution of whistle rates was different between contexts (Table 3.1). While the 

median whistle rate is lower in the gi oup swimming context, whistle rates of nil 

were rare. Conversely, in separations animals often did not whistle at all, except in 

a few separations when high whistle rates were apparent.
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Table 3.1; Sample sizes and whistle rates for each individual in isolation and for the group 

swimming together.

Individuals Number Total Total

of recording number

sessions time of

(min : s) whistles’̂

Percentiles of whistles 

per individual per session 

per min f

25 50 75

Adult male 38 60:55 128 0 1.73 3.67

Adult female 33 37:43 110 0 2J3 5.43

Subadult male 10 31:58 133 0 0 6.31

Juvenile female 21 47:40 238 0 2.05 9.28

Group swimming 37 219:00 714 0.13 0.79 1.54

* A further 1149 whistles were recorded from the rest of the group at times when one individual 
was separate. These have been analysed separately since they are not independent from the data of 

the isolated individual.
f  Note that percentiles describe the distribution of whistle rates from each separation or group 

swimming event. Thus, the median here is not equal to the overall whistle rate (total number of 
whistles/total recording time).

Figure 3.3 shows how whistle types were distributed between the different 

contexts. Each individual used a different stereotyped whistle type when it was 

separated from its group. The signature whistle was the most frequent whistle type 

for each individual when it was in isolation. Thus, I termed these whistles the 

signature whistles of these individuals. Type A was the signature whistle of the 

adult male (68.5% of his whistles in isolation), type B belonged to the adult 

female (31.8% of her whistles in isolation), type C to the subadult male (91.7% of 

his whistles in isolation), and type D to the juvenile female (72.7% of her whistles 

in isolation). Signature whistles were the most common whistles in the isolation 

context. However, signature whistles did not occur duiing every separation. Short 

separations often did not involve any whistling or only non-signature whistle 

types. The animals also used RISE, WAVE, SINE, U-SHAPE, FALL and 

RESIDUAL whistles when in isolation, but almost never any of the other 

individuals' signature whistles. The only two such cases were when the sub-adult

34



Chapter 3: Context-specific use suggests that signature whistles are cohesion calls

I
I

I

(a)
100

50 1
(b)

(c)
100

(d)

(e)

A B

Adult male

C D RISE WAVE SINE FALL U- RES.
SHAPE

Adult female

A B C D RISE WAVE SINE FALL U- RES.
SHAPE

Subadult male

D RISE WAVE SINE FALL U- RES.
SHAPE

Juvemle femaleI
A B C D RISE WAVE SINE FALL U- RES.

SHAPE

Group swimming

D RISE WAVE SINE FALL U- RES.
SHAPE

Whistle types

F igure 3.3; Whistle type usage in different contexts: (a) adult male in a separate pool; (b) adult 

female in a separate pool; (c) subadult male in a separate pool; (d) juvenile female in a separate 
pool; (e) all animals together in one pool. Black bars indicate signature whistle types, white bars 
are non-signature whistle types. RES. = RESIDUAL class.
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Figure 3.4: Histogram showing the percentage of signature and non-signature whistles produced 

by the three animals that remained togetlrer while a fourth animal was in a separate pool.

male produced parts of the juvenile female's signature whistle while he was in the 

separate pool (see below). The three animals that remained in the other pool 

together also used primarily their signature whistles if one animal was separated 

from them (Fig. 3.4). Of the 1149 whistles recorded from these remaining 

individuals 56% were signature whistles. Given the total lack of signature whistles 

when all four animals were in the same pool, this is a particularly striking result.

Almost all signature whistles used occurred when the whistling animal was 

separate from the rest of the group. Only 17 signature whistles were recorded 

during group swimming, representing 2.4 % of all whistles recorded in that 

context, and 10 of these occurred in two bouts of five signature whistles each. 

When all four were together in a group the animals used almost entirely non­

signature whistles. However, this is only true for undisturbed animals. I observed 

one incident in which all individuals produced almost entirely signature whistles 

while together in one pool. This happened when a feeding session was delayed. 

During this whistling bout the animals were often facing underwater windows 

where keepers were visible. This event was not part of the sample analysed in this
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study since the animals were not undisturbed at the time (several humans were 

present at the pool). However, it suggests that signature whistles are sometimes 

used in other contexts than separation.

The analysis of aggressive behaviours revealed that separations were not induced 

by aggression. Aggression in this group was rare and I observed only one case in 

which an aggressive act (a chase) preceded a 22 s separation.

Signature Whistle Copying and Whistle Matching

Signature whistle copying could only be investigated during separations since this 

was the only context in which one caller was Icnown. If the signature whistle of 

the animal in isolation was heard from the pool where the rest of the group was 

swimming it must have been copied by an animal in that pool. In the total 

recording time of 397 min and 16 seconds that one animal was separated from the 

rest of the group, only five cases of signature whistle copying were found (Fig. 

3.5). Signature whistle copying did not initiate the end of a separation and there 

was no consistent vocal response to copying. However, signature whistle copying 

only occurred after the copied whistle had been produced at least once within the 

preceding minute by the other individual. In all cases the copied whistle was also 

heard at least once in the minute after the copying from the other pool. For non­

signature whistles only direct matching of whistles could be analysed since all 

individuals used all non-signature whistle types. A matching interaction was 

defined as an individual producing the same whistle type as another one within 3 

seconds after the end of the first caller's whistle. Using the same strict criteria as 

for signature whistles I found no whistle matching involving non-signature 

whistles. However, it could be that the animals shared rarely used stereotyped 

non-signature whistles but simply did not use them in matching interactions.
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Figure 3.5: Spectrograms of all cases of signature whistle copying found in this study, (a)

Subadult male copies second loop of the juvenile's signature whistle, (b) Subadult male copies first 

loop of Juvenile’s signature whistle, (c) Animal in remaining group copies one loop of adult male's 
signature whistle, (d) Animal in the remaining group copies adult male's signature whistle twice. 

The first and the last contour were produced by animals in the remaining group, the faint contours 

in the middle were produced by the adult male. Note that these spectrograms have been produced 

from only one channel of the recording system. Whistles that are faint or seem interrupted are in 

fact complete and continuous versions of signature whistles from the other pool. Signature whistle 

produced by adult male (A), remaining group copies whistle of adult male (Acopy), whistle of 

subadult male (C), subadult male copies signature whistle of juvenile female (D%&2 copy), whistles 

of the remaining group of three(G).
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Discussion

Previous studies on dolphin whistles did not find such clear differences in whistle 

type usage between contexts as those presented here. Studies on signature whistles 

found them to be the most common whistle type in all investigated contexts 

(Caldwell et al. 1990; Janik et al. 1994), while some other studies could not find 

any highly stereotyped whistling at all (Dreher & Evans 1964; McCowan & Reiss 

1995a). This suggests the possibility that differences between studies were simply 

due to different methods (Herman & Tavolga 1980; McCowan & Reiss 1995a). 

But which methodology is appropriate to investigate whistle types? Any 

classification method for animal signals involves decisions by humans on the 

parameters to be used. Further validation is needed to find out which method 

represents the best approximation to how dolphins themselves classify whistles. 

Without any data from perception experiments one of the best methods to confirm 

the existence of a particular category found in one's data set is a test on an external 

variable (Aldenderfer & Blashfield 1984). This involves carrying out tests to 

compare the whistle types on variables that have not been used to define them (= 

external variables). In this study I followed this procedure by classifying whistles 

by eye and then looking at who used which whistle type in what context. Here, 

usage of whistles is the external variable. The results, showing that signature 

whistles occurred almost exclusively in the separation context but not in the group 

context and that they were very individually specific, confirmed that these whistle 

types are important units in the dolphin's repertoire. However, no such 

confirmation has been found for non-signature whistles in this or any other study. 

To draw conclusions on what represents a non-signature whistle type, we will 

need specific classification experiments, such as those that have been done with 

birds (Horn & Falls 1996).

The results of this study also imply that differences between previous studies have 

been caused by differences in the contexts that were investigated. Studies that 

have looked at isolated individuals (Caldwell & Caldwell 1965; Caldwell et al. 

1990; Sayigh et al. 1990; Janik et al. 1994), animals shortly after capture 

(Caldwell & Caldwell 1968; Caldwell et al. 1990), or in unusual situations like 

during a lowering of the water level in the pool (Caldwell et al. 1990), while many
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people were around the tank or while the animals were wearing telemetry devices 

(Tyack 1986b), revealed that bottlenose dolphins almost only use signature 

whistles in such contexts. On the other hand, no stereotyped whistle types were 

found in studies in which animals well habituated to captivity and not exposed to 

any human intervention were recorded without being separated (Dreher & Evans 

1964; McCowan & Reiss 1995a, b). This study applied the same whistle 

classification method to the investigation of whistle usage in both context types, 

and suggests that the difference is not based on methodological differences, but 

that signature whistles are used only in the separation context. Thus, all results 

together show that signature whistles are primarily emitted in situations when 

behaviour helping to maintain group cohesion is likely to occur.

Researchers have used various different terms to describe calls given in isolation. 

Infant calls that elicit an approach by the care giver for example have been 

described as isolation or distress calls (reviewed in Maestripieri & Call 1996). 

Cohesion or monitoring calls on the other hand are used by isolated animals but 

do not elicit an approach and seem to help an animal to stay in touch with its 

group (Fetter & Charles-Dominique 1979; Caine & Stevens 1990). The term 

contact call has been used for both of these categories (e.g. Pola & Snowdon 

1975), and there is no clear cut distinction between these two classes. Signature 

whistles could also be used by infants to elicit an approach by the mother, but this 

is not known. The results presented here, and the fact that bottlenose dolphins can 

easily distinguish between different signature whistles (Caldwell et al. 1972), 

strongly support the hypothesis that these signals are used to communicate 

identity and maintain group cohesion. Further studies are needed to investigate 

their role in other contexts.

The findings on whistle copying in this study suggest that it is a relatively rare 

event. Similarly low rates of signature whistle copying in captive animals have 

been reported by Burdin et al. (1975). But, even though the results reported here 

are similar to those of some other studies, they differ markedly from what Tyack 

(1986b) found in his group of two individuals. In his study stereotyped whistling 

was high while both individuals were in the same pool, independent of whether 

they were wearing vocalights or not, and whistle copying was common. His
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subjects were also well habituated to captivity so recent capture could not have 

caused these differences. However, all his recordings were made in one day. The 

increased activity around the pool and the wearing of the vocalights could have 

influenced the vocal behaviour of his subjects. Captive dolphins can be very 

sensitive to changes in their daily routines, Bottlenose dolphins produce higher 

rates of whistles in response to novel situations (McBride & Hebb 1948; Defran & 

Pryor 1980) and this could have been a factor influencing Tyack's results. Novel 

situations might not only lead to an increase in overall whistle rates but maybe 

also to an over-representation of particular whistle types in the expressed 

repertoire. Another possible explanation could be a delay in the normal feeding 

schedule. In the present study all individuals produced almost entirely signature 

whistles while together in one pool on one occasion when a feeding session was 

delayed. Thus, while Tyack's study was the first to draw attention to the 

occurrence of signature whistle copying, it was probably not representative of 

undisturbed vocal behaviour in bottlenose dolphins.

We still loiow very little about how whistles are used in wild bottlenose dolphins. 

One has to be careful in extrapolating results from studies on captive dolphins to 

wild ones. Data from captive individuals can give us some information on 

functions of whistles, but the pattern of occurrence of signature whistles and 

signature whistle copying may be very different in the wild. This is mainly 

because certain contexts do not appear in captivity. The main differences relevant 

to this study are that there were no other dolphins within hearing distance and that 

the animals did not need to search for food. The visual range under water is low 

compared to the acoustic range. In the wild, groups spread out to feed or to 

socialize with other individuals, situations in which we would expect signatuie 

whistles to occur. However, even in a group, wild dolphins might still be in 

contact with other dolphins that are out of sight. The situation in the wild seems to 

resemble that of a communication network (McGregor & Dabelsteen 1996) in 

which individuals constantly move into and out of acoustic range of each other. 

Thus, one could expect a much higher rate of signature whistling. However, it is 

difficult to malce predictions about signature whistle occurrence in the wild since 

both announcing and concealing one's presence could be of advantage according 

to the particular context (see Chapter 2). Smolker et al. (1993) showed that
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stereotyped whistling was common during separations and reunions of wild 

mother-calf pairs and that whistling usually stopped after infants returned to their 

mothers. This also supports the individual recognition/group cohesion hypothesis. 

Among mothers and their infants the advantage of giving information on identity 

and position is clear. Among adults it is more difficult to malce predictions. There 

is a similar lack of data on the occurrence of signature whistle copying. The high 

rate of whistle copying in Tyack's (1986b) study could have been stimulated by 

the method he used for caller identification. In the present study whistle copying 

was very rare. However, if Tyack's hypothesis that copying can be used to address 

specific individuals is right, we would expect it to occur more in the wild where 

many animals are within healing range and the ability to address just one 

particular individual would be advantageous to cooperating animals. This will be 

investigated in Chapter 5. To assess other possible functions of signature whistles 

one of the next steps must be to look at how these learned cohesion signals are 

used in the wild.
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Chapter 4

Pitfalls in the categorisation of animal behaviour; a comparison of 

dolphin whistle classification methods

Introduction

A crucial step in any study of animal behaviour is division of the observed 

behaviour into separate categories. If those chosen have any relevance to the 

animal itself, a selective usage of these patterns according to some external 

variable should be observable. Examples for such a variable are a particular 

context or individual. Thus, if a category is only used in one particular context or 

by only one individual, it confirms the biological significance of this category. 

This is one of the most basic principles in animal behaviour resear ch.

All classification methods include decisions by the investigator as to what 

parameters should be considered and how they should be weighted. The most 

common approach is the classification by human observers using their pattern 

recognition abilities. There are two main problems with this method. One is the 

issue of observer bias. If a researcher wants to confirm a chosen category by an 

external variable as described above it is important to ensure that the initial 

categorization was carried out without any knowledge of when or by whom a 

behaviour pattern was produced. Martin & Bateson (1986) and Milinski (1997) 

have provided excellent reviews of this problem and how to avoid it. The other 

problem is the reproducibility of a categorisation method. Two human observers 

might weigh parameters differently in their pattern recognition and so come up 

with different categories. This problem can be avoided by using several observers 

to obtain a measure of obseiwer agreement. If agreement is high one can assume 

that the method is reproducible by others.
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One disadvantage of classifications by human observers is that threshold values 

for categorising the behaviour patterns are not clearly defined. Furthermore, 

certain small par ameter differences that might be relevant to the animal could be 

missed by the human. With recent developments in computer technology an 

increasing number of studies have started to use computers to obtain threshold 

values and look at possible subclasses of behaviour that are characterised by small 

parameter differences. This approach is very powerful if behaviour patterns can be 

separated by looking at one or more crucial parameters that are sufficient to 

describe the different behaviour types.

But is visual observation always a less adequate method? One way of using 

computers for pattern recognition is by the development of a similarity measure. 

Examples of such measures are cross-correlation coefficients or differences in 

average values like the mean sound fi*equency of a call. Another approach is the 

application of computer-based neural network systems. However, these methods 

often do not perform as well in pattern recognition as humans do (see Khanna et 

al. 1997; Lippmann 1997). Furthermore, the threshold values used to define a 

particular category are often difficult to retrieve from the program (e.g. Lehlcy & 

Sejnowski 1988). Thus, a researcher has to think carefully about what method to 

use in a study. This is particularly important with complex patterns. To date, only 

a few studies have compared different classification methods (Nowicki & Nelson 

1990; Terhune et al. 1993; Lippmann 1997). However, such studies are important 

to assess how useful a particular method is and to aid in choosing the most 

appropriate one.

In this chapter I investigate the advantages and disadvantages of three different 

methods for the classification of bottlenose dolphin {Tursiops truncatus) whistles. 

To assess how useful different methods are a baseline is needed that defines which 

behaviour types are the “right” ones, i.e. which types correspond closest to natural 

categories formed by the animal. One way of obtaining such an external validation 

of behaviour types defined by a researcher is by looking at their usage by the 

animal. If a behaviour type turns out to be used very selectively in only one 

context, it must closely resemble a natural behaviour categoiy of the animal. In 

bottlenose dolphins such a selective usage has been found for signature whistles.
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In Chapter 3 I have shown that each signature whistle was used almost exclusively 

by only one individual and only if it was isolated from other members of its 

group. Like most other studies on dolphin communication the authors used visual 

classification to define whistle types before looking at when they were used by the 

animals in their study. Thus, they were able to show that visual inspection of 

frequency spectrogiams is a valid method for recognizing at least one natural 

category in a dolphin’s whistle repertoire. In this study I take a subset of the 

whistles recorded for Chapter 3 and compare the results of three computer-based 

methods with those obtained through visual classification by human obseiwers. 

The computer based methods are a) a method developed by McCowan (1995) that 

normalises whistles in duration and uses principal component analysis and k- 

means cluster analysis, b) a comparison of cross con elation coefficients using 

hierarchical cluster analysis, and c) a comparison of average differences in 

absolute frequency that also uses hierarchical cluster analysis. The aim was to 

compare how well these computer methods could identify the signature whistle 

types already Icnown to be used almost exclusively when an individual was 

isolated, and thus validated as natural categories of behaviour.

Methods

The Whistle Sample

The sample of dolphin whistles used for this study was a subset of 104 randomly 

chosen whistles from a total of 1323 whistles recorded from four bottlenose 

dolphins in Januaiy 1996 at the Zoo Duisbui’g, Germany. The entire sample used 

in this study is shown in Fig. 4.1 and 4.2. The dolphin group consisted of an adult 

male, an adult female, a subadult male and a juvenile female. Recordings were 

made while either all animals swam together in the same pool or while one animal 

had moved into a separate pool. Recording conditions have been described in 

Chapter 3. To classify whistles into types spectrograms were calculated (FFT size: 

1024; time resolution: 20.5 ms; frequency resolution: 48.8 Hz; weighting 

function: Hanning window) and a line spectrogram of the fundamental frequency 

was extracted with the SIGNAL (Version 3.0) sound analysis software as
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described in Janik et al. (1994). This method provides a line that represents the 

contour of the fundamental frequency of the whistle. Bottlenose dolphins often 

produce multi-loop whistles in which separate whistles follow each other closely 

and occur together most of the time. For the analysis here each separate whistle 

from such multi-loop whistles was considered on its own.

Human Obseiwer Classification

All 104 line spectrograms were printed on separate sheets and five observers were 

asked to classify calls independently by their shape. All obseiwers had extensive 

experience in classifying bird sounds but no experience with dolphin sounds. No 

information on recording context or caller identity was given to them. However, 

observers were asked to pay particular attention to the possible occurrence of very 

stereotyped signals. Each observer was allowed to categorise the contours into as 

many classes as he or she thought appropriate. These types were then scanned for 

common types that could be found in the classification of all observers.

The McCowan Method

McCowan (1995) presented her own method to classify whistles. To replicate her 

method 20 frequency measurements had to be taken from each whistle contour. 

These measurements were equally distributed over the contour by dividing the 

duration of each whistle by 19 and then taking frequency measurements at every 

1/19* point of the total duration including the start and the end of the whistle. The 

resulting 20 frequency measurements were then taken as 20 variables for further 

calculations. The effect of this method is an elimination of any differences in the 

duration of whistles. All whistles are represented by the same number of 

frequency measurements and ai e, therefore, only compared by the shape of their 

contour.

In the next step these 20 frequency measurements were used to compute a Pearson 

product-moment correlation matrix. A principal component analysis on the

46



Chapter 4: A comparison o f  dolphin whistle classification methods

correlation matrix was carried out to reduce the number of collinear variables. 

Only factors with an eigenvalue of greater than 1.0 were used for subsequent 

analysis. In the final step factor scores from each data set of whistles were used in 

K-means cluster analyses using BMDP (Version 1988) statistical software, the 

package used by McCowan (1995). Solutions for six to 50 clusters were 

calculated. McCowan (1995) used the cluster solution that produced the maximum 

number of non-overlapping clusters as indicated by BMDP. However, BMDP 

only indicates overlap in a two-dimensional representation of a k-dimensional 

space (Dixon et al. 1990). Thus, clusters can overlap without BMDP indicating an 

overlap, or they can overlap in the two dimensions but be clearly separate in a 

dimension not displayed. The overlap indication was therefore not considered a 

satisfactory criterion to decide which cluster solution was appropriate. Instead I 

inspected all cluster solutions for possible agreement in whistle classification with 

the other methods. All analyses were conducted using BMDP default settings 

(maximum iterations: 30) (Dixon et al. 1990).

Cross-Correlations and Cluster Analyses

Finally two different similarity measures and two different cluster analysis 

methods were compared in their usefulness for whistle classification. The first 

similarity measure was calculated by cross-correlating every contour with all 

other contours in the sample. All cross-correlation analyses were conducted using 

SIGNAL software. The XCS command in SIGNAL was used in order to perform 

cross-correlations that used a time-varying normalization. The shorter of two 

whistles had to have at least 75% of the duration of the longer whistle. This 

threshold was set arbitrarily. Otherwise the cross-correlation coefficient was set to 

nil, the value for two very different contours.

The second similarity technique also involved cross-correlating contours. The two 

contours were aligned so that the cross-correlation yielded its maximum value like 

described above, but instead of using the correlation coefficient the absolute 

difference in frequency between the two contours was calculated every 5 ms. All 

differences were added up and then divided by the number of differences
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calculated. If one whistle was longer than the other the values were added only 

over the duration of the shorter whistle. Again the shorter whistle had to have at 

least 75% of the dui ation of the longer one. If the difference in duration was larger 

the similarity value was set to 20000, the value for two very different contours in 

this comparison.

These two methods resulted in two matrices, one with a measure of similarity (the 

cross correlation coefficients) and the other one with a measure of dissimilarity 

(the average frequency difference between all pairs of whistles). Each matrix was 

used for hierarchical cluster analyses employing the SPSS (Version 6.1) statistical 

software package using the between groups average linlcage method and the 

complete linlcage method. The average linlcage method is one of the most 

commonly used clustering methods in biological sciences. It requires that a 

whistle has to be within a certain level of similarity to the average of the cluster to 

be included in that cluster. It was compared to the complete linlcage method, 

which requires that a whistle has to be within a certain level of similarity to all 

members of that cluster. This latter method should favour the formation of very 

stereotyped whistle types (Aldenderfer & Blashfield 1984). All cluster trees were 

drawn using rescaled distance measures for the branch lengths. The results were 

compared between all methods used.

Results

Signature Whistle Classification

The visual inspection method revealed that observers agreed on the classification 

of signature whistles. Five very stereotyped whistle types could be found in the 

classification of all observers (types A, B, C, Di, and D2) (Fig, 4.1, Tab 4.1). Each 

of these types was used almost exclusively by only one individual dolphin if it 

swam isolated from its group members in a previous study in which visual 

classification by one observer was used (Chapter 3). Thus, they represent the 

signature whistles in the sample. None of the whistles identified as signature 

whistles in this study was given by any other individual or outside the separation
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Figure 4.1: Line spectrograms of all signature whistles that were considered in this study. The 
number on each spectrogram is its identification number followed by a letter indicating which 

whistle type it belonged to in Chapter 3.
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number on each spectrogram is an identification number (continued on next page).
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Table 4.1: Human whistle classification. Bold numbers represent the ID numbers of 

each whistle from Figs. 4.1 and 4.2. Numbers in brackets indicate how many 

observers put the corresponding whistle into a type. No brackets indicate that all 

five observers agreed on the classification of a whistle. Whistles tliat were produced 

by only one dolphin are boxed in.

Whistle type Type A Type B Type 0 Type DI Type D2
Whiste ID 39 93 23 45 (4) 68 (2)
numbers 40 94 24 43 87 (2)

41 95 25 49 (4) 99
42 96 26 50(4) 100 (4)

51 (3) 97 27 52 101
81 (1) 98 28 53 102

29 54 (4) 103
30 55(4) 104
31 56
32 57

20 (1) 58(4)
59
60 
61 
62

64 (1) 
82 (1)

context. Whistle types D% and Dz were two parts of a multi-loop signature whistle 

used by one of the animals. They occurred together most of the time in the study 

presented in Chapter 3. In Fig. 4.1 all signature whistles from the random sample 

used in this study are shown. If only signature whistle types were considered, and 

all others were considered as a single residual class, obsei*ver agreement was 

extremely high (Kappa statistic (Siegel & Castellan Jr. 1988): K = 0.92, z = 22.37, 

P < 0.0001). The observer classification turned out to be identical with the one 

used in Chapter 3. However, Table 4.1 shows that up to two obseiwers in this 

study sometimes also included one or two other whistles in a signature whistle 

type. Type Di was split up into two types by one observer, but no additional 

whistles included with the resulting types. To be conservative only the type that 

had more whistles in it was considered in Tab. 4.1. Thus, there are a few whistles 

that only fom* observers agreed on in type Di.
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Fig. 4.3: Distribution of summed F-ratios from the McCowan method. A local peak can be found 

at k = 23. The cluster solution of that point is shown in Tab. 4.2.

The principal component analysis on the 20 frequency measures taken from each 

whistle to reproduce McGowan’s method resulted in three principal components 

with eigenvalues greater than 1.0. K-means cluster analyses on the factor loadings 

of these components revealed that this method could not identify signature 

whistles as reliably as the human observers. Only one signature whistle type (type 

A) was reliably recognised in solutions where 9 < k < 43, where k is the number 

of clusters in the k-means cluster analysis. All whistles of type C were grouped 

together in all solutions where 6 < k < 26 . However, in all cases between two and 

13 other whistles were included in the same cluster. A similar situation was found 

for types Di (found in all solutions where 12 < k < 39, but number of other 

whistles in the same cluster varied from six to 11) and D2 (found in solutions 

where 12 < k < 42, number of other whistles in the cluster from three to eight). 

Type B whistles were never all together in one cluster. The additional whistles 

found in clusters containing signature whistles were never classified as belonging 

to that cluster by human observers. They also were not produced by the respective 

individual in isolation in the study presented in Chapter 3. One method to select 

the best solution in k-means cluster analysis is a comparison of the sums of F- 

ratios (between cluster sum-of squares / within cluster sum-of-squares). The
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Table 4.2: McCowan whistle classification (k = 23). The numbers are whistle identification numbers 
(see Figs. 4.1 and 4.2). Signature whistles are printed in bold. Signature whistles belonging to one type 
have a box around diem and, if split, are connected by a curved line.

Whistle type A B C DI D2 e f g h i j k l m n o p q r s t u v
Whiste ID 39 95 23 1 11 2 7 63 8 19 33 34 5 3 10 66 14 9 17 46 77 84 89
numbers 40 96 24 15 44 4 12 68 67 72 78 37 43 18 36 91 20

41 97 25 47 65 13 38 70 83 76 80 45 64 71
42 98 26 48 99 16 93 85 90 79 81 82 88
51 5 27 49 100 21 94 87

28 50 101 22
29 52 102 69
30 53 103 86
31 54 104
32 55
35 56
74 57

58
59
60
61
62

solution that maximises the sum of the F-ratios is then selected (Nowicki &

Nelson 1990). Fig. 4.3 shows the distribution of summed F-ratios for the 

McCowan method. As the cluster number increases towards 50 clusters the 

summed F-ratio increases. However, at k = 23 a local maximum is reached. Table 

4.2 shows the classification at that point. Only two of the signature whistles (types 

A and C) that were found by the human observers were identified equally well by 

the McCowan method.

Fig. 4.4 shows the cluster tree that resulted from the analysis of the cross 

correlation coefficients with average linkage cluster analysis. It becomes clear that 

this method can only pick out one signature whistle type reliably if cut at the right 

point (type B). Other signature whistle types were either grouped together with 

many other whistles or split up into different clusters. Trees created with the two 

different cluster analysis methods were almost identical. The analysis of the
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Figure 4.4: Cluster tree of the matrix of cross-correlation coefficients. Cluster method: between group 
average linkage. Numbers are ID numbers of whistles (see Figs. 4.1 and 4.2). Signature whistles are 
printed in bold. Those belonging to one type have a box around them and, if split, are connected by a 
curved line.
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average frequency differences between whistle contours was more successful in 

identifying signature whistles (Fig. 4.5). Here four out of five signature whistles 

could be identified. However, it depended again at what distance level in the tree 

would be used to define whistle types. The appropriate level was different for 

different signature whistle types. This frequency difference method is like the 

McCowan method not suitable to identify signature whistles in a sample. Again, 

using the two different cluster analysis methods resulted in almost identical trees.

Classification of Non-Signature Whistles

Additional whistle types similar to those described in Tyack (1986b) and Janik et 

al. (1994) could be found in the classifications of the five observers, but observer 

agreement was low. Certain whistles were always grouped together in each 

observer's classification. The following triplets of whistles were always found 

together in each observer’s classification: 8-38-89, 5-72-79,18-33-36, 22-44-88 

(Fig. 4.2). However, the number of different whistles they were grouped with was 

large and varied between observers. In each case the whistles observers agreed on 

formed less than 60% of that type in each observer's category.

Of the non-signatui e whistles that showed the highest observer agreement in the 

human obseiwer classification only two (number 72 and 79) were grouped 

together by the McCowan method. The method using cross correlation 

coefficients, however, only disagreed on one of the triplets defined by the human 

observers (8-38-89) and did not group whistle number 5 with 72 and 79. Finally, 

the frequency difference method grouped some pairs of these whistles together, 

but found none of the triplets.

A comparison of the classification of non-signature whistles between the 

computer methods revealed that they also showed very little agreement between 

them. But while the McCowan method resulted in very different whistle clusters, 

some of the differences between the cross con elation coefficients and the 

frequency difference tree seemed to result from the finer resolution of the latter 

tree.
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Discussion

The results showed clearly that methods only agreed to a veiy limited extent. 

Signature whistles were identified best by human observers. This might not come 

as such a surprise since these whistle types had been defined by a human observer 

in the original study presented in Chapter 3. However, only after the whistle types 

had been defined in Chapter 3 was it found that these whistle types were used 

almost exclusively by one animal and only if  it was isolated from its group. Even 

though it is unlikely that the perception of a whistle by a human observer maps 

exactly onto that of a dolphin such an exclusive use of a behaviour type is rare. It 

shows that the human classification has recognised a class of behaviour that is 

significant for the animal. Such an external validation justifies the usage of a 

particular method if data on how the animal perceives and classifies whistles are 

not available.

It is still possible that other methods could have discovered significant classes that 

were missed by the humans. It could be that dolphins use veiy different criteria for 

the classification of signature and non-signature whistles. With the exception of 

the signature whistles identified none of the classes defined by the computer 

methods that included at least three whistles, were used exclusively by one animal 

in isolation. But classes could be important in other contexts that were not 

considered in this study. However, the McCowan method on the one hand and the 

hierarchical cluster analysis techniques on the other did not agree on the 

classification of non-signature whistles either. Furthermore, the signature whistles 

they split up into several clusters were different ones. This disagreement between 

the computer methods showed that they concentrated on veiy different features of 

whistles. Studies on bottlenose dolphins in which McGowan’s method has been 

used did not find such clear differences in the usage of whistle categories 

(McCowan & Reiss 1995a, b, 1997). It is difficult to assess what role the whistle 

types described in those studies play in the animals’ repertoires because there is 

no external validation for them. As we have seen above such an external 

validation has so far only been achieved for signature whistles (Chapter 3), but 

these whistle types could not be identified reliably by the McCowan method in 

this study.
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It becomes clear that what is needed are good perceptual studies on dolphin 

whistles. The strength of classification by human observers certainly lies in their 

pattern recognition ability. Perception experiments should start by concentrating 

on gestalt perception, but also tiy to assess the stability of whistle recognition if 

parameters like duration start to vary. The McCowan method assumes that 

duration is irrelevant to the classification of whistles. To date, there is no evidence 

that this is the case. It has been shown that bottlenose dolphins vary the duration 

of given whistle types according to the context (Janik et al. 1994). A certain 

stability towards parameter changes can be assumed, but it is likely that there is a 

point at which whistle type identification starts to break down. Perception 

experiments should tell us, for example, whether a very short whistle is an 

interrupted version of a longer type or simply a complete short version of yet 

another whistle.

Similai* problems exist in the fi-equency domain. The fact that the McCowan 

method and that based on average differences in frequency, both of which 

concentrated on absolute frequency values, had problems identifying signature 

whistles reliably showed that these might be less important than the overall gestalt 

of the whistle. The failure of the cross-correlation coefficients to find signature 

whistles can probably be ascribed to the weakness of this method to detect small 

differences in the gestalt of whistle contours (Khanna et al. 1997). Bottlenose 

dolphins also vaiy fiequency parameters in relation to context (Janik et al. 1994). 

But again it is likely that there are limits within which parameters have to be 

found for a whistle to be ascribed to a certain type. It has been suggested by 

Richards et al. (1984), for example, that bottlenose dolphins are not sensitive to 

the frequency band a signal lies in but only to its general shape. This is based on 

their finding that the experimental animal imitated an artificial low fiequency 

model sound but transferred it up one octave. This is an intriguing result and asks 

for further investigation. However, it is premature to assume that absolute 

frequency is unimportant in the classification of dolphin whistles. Ralston & 

Herman (1995) showed that dolphins are able to learn to generalise between 

firequency contours that lay in different frequency bands. However, their study 

animal concentrated on absolute parameter differences in its classification in the
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initial stages of the training. Again, further studies are needed to investigate the 

role that absolute parameter values play in the classification of sounds by the 

animal.

The results presented here demonstrate that if data from perception experiments 

are not available it is of great importance to find another way of externally 

validating the behaviour types defined. This is true for human observers as well as 

for computer methods. A very selective usage by the animal of a behaviour type 

that was defined by a researcher represents such a validation, but only if  the type 

was defined before the usage was investigated. In dolphins such a validation has 

been found for signature whistles. But observers and computer methods disagreed 

strongly on the classification of non-signature whistles. Previous studies have 

used general design features of whistles for the classification of non-signature 

whistles, such as generally rising fi-equency, sinusoidal modulation or falling 

frequency contour (Tyack 1986b; Janik et al. 1994). Such types could also be 

found in the classification by the obseiwers used in this study, but the boundaries 

of these types were diffuse and observers disagreed on borderline cases. It is 

obvious that to date we know very little about any whistle types other than the 

signature whistle and that more studies are badly needed.

It is important to note that the issues discussed here using the example of whistle 

classification in dolphins, are relevant to all observations of animal behaviour. 

Computer methods are widely used to classify behaviour patterns. They can be 

used in two ways. One is a description of parameter differences in different 

contexts. This approach is very powerful and gives interesting results that concern 

single parameters (e.g. May et al. 1988; Elowson & Snowdon 1994; Janik et al. 

1994; Slabbekoom & ten Cate 1997). The other one is to arrive at some sort of a 

similarity measure as with the computer methods used here. Since a combination 

of parameters is used to define categories in these methods the results are more 

difficult to interpret. In this study the chosen computer methods could not identify 

signature whistles reliably. As long as there is no other external validation for the 

categories formed by these methods we laiow little about their biological 

relevance. Such methods can of course be successful (e.g. Nowicki & Nelson 

1990) but a careful examination of the classification obtained is needed. In many
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cases it will be useful to use categories defined by visual inspection that are used 

selectively in certain contexts by the animals and then investigate how parameters 

within such types change. Such studies can lead to the discovery of a distinction 

between types that were previously pooled together. The study of categorical 

perception is one example in which small parameter differences can lead to a 

different classification by the animal. To be able to find biologically relevant 

methods for comparisons between behaviour types, studies on differential usage 

of behaviour types, and perceptual studies on call classification by the animal 

should be carried out. Only then will we be able to assess how the animals 

themselves classify behaviour patterns.
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Chapter 5

Whistle matching in wild bottlenose dolphins

Introduction

The bottlenose dolphin is one of the few mammalian species in which vocal 

learning has been demonstrated (Janik & Slater 1997). Experimental studies 

looking at vocal learning in adult individuals have shown that they can imitate 

new whistle sounds accurately even at the first attempt as judged by human 

observers (Richards et al. 1984; Sigurdson 1993). Bottlenose dolphins are 

probably therefore capable of incorporating new calls into their repertoire 

throughout their lives. This ability makes it difficult to determine their whistle 

repertoire and raises the question of the code that their communication is based 

on. But even though early attempts to describe a species’ repertoire have failed 

because of this difficulty, there is a remarkably stable component in each 

individual whistle repertoire. Each bottlenose dolphin develops its own signature 

whistle (Tyack & Sayigh 1997) which is highly stereotyped and remains stable for 

at least 12 years (Sayigh et al. 1990). These signature whistles are thought to help 

maintain individual recognition and group cohesion in the marine environment 

(Caldwell & Caldwell 1968; Caldwell et al. 1990). However, in a species in which 

individuals copy each other’s calls individual recognition can be difficult. Tyack 

(1986b) showed that two captive individuals frequently produced each other’s 

signature whistles while swimming together in the same pool. Since there are no 

visible conelates to vocalising (e.g. beak movements) he used telemetry devices 

to identify the caller. Tyack hypothesised that this production of the signature 

whistle of another individual is used to address a specific group member and so to 

facilitate group cohesion in large aggregations of dolphins. However, such events 

seem to be rare among undisturbed, captive dolphins (see Chapter 2, Burdin et al. 

1975) and only seem to occur in matching interactions that involve signature
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whistles (see Chapter 3). We know little about whether and how this is used in the 

wild. In this study I employed a passive acoustic localisation method to 

investigate whistle interactions between wild individuals and so determine 

whether animals match each other’s whistles in the wild. I also give information 

on how often these interactions occur and at what separation distances.

Methods

This study was carried out in the Kessock Channel of the Moray Firth in Scotland, 

UK (Fig. 5.1). Water depth increases from 6 to 38 m from East to West in the 

middle of the channel. Maximum tidal differences in water depth are 

approximately 5 meters. The sea floor consists of mud and pebbles. The resident 

population of bottlenose dolphins in the Moray Firth contains around 130 

individual^ of which several spend large amounts of time in narrow passages like 

the Kessock Channel during the summer months (Wilson 1995). To localise 

calling dolphins I used a passive acoustic localisation technique. Three HTI -  

SSQ94 hydrophones were installed in a triangle to form a two-dimensional array. 

Two hydrophones were placed on the North shore of the channel and one on the 

Southern shore. Inter-hydrophone distances were 208, 513, and 560 meters. Each 

hydrophone was about 50 m fr om the shore at a depth of 1 to 5 m depending on 

the state of the tide. They were fitted with radio transmitters (Micron TXlOO), so 

that all signals could be recorded together at an observation point on the North 

shore 30 m above water level. Each transmitter was connected to a simple whip 

aerial. The receiving and recording station consisted of a Yaegi directional aerial, 

3 Yaesu FRG-9600 receivers and a Fostex 380S multitrack tape recorder. The 

frequency response of the whole system was 50 Hz to 18 IcHz ± 3 dB re 20 pPa. 

From the observation point the total number of animals present was estimated 

every 5 minutes. I only analysed periods in which animals were dispersed, so that 

at least two animals were at least 50 m apart dming all periods.

All data were analysed with the SIGNAL software localisation module 

(Engineering Design, Belmont, USA). The localisation of a soimd source by this 

system is based on the time difference with which a signal arrives at each pair of

63



Chapter 5: Whistle matching in wild bottlenose dolphins

NORTH KESSOCK

MORAY 
FIRTH/ 

NORTH SEASTUDY SITE

BEAULY FIRTH

KESSOCK

\
100m

Fig. 5.1: A map of the study area in the Moray Fiilh, Scotland. North is at the top of the map.

hydrophones. These delays are preserved on the simultaneous multitrack 

recording of all hydrophones. If the speed of sound in the medium and the 

transducer positions are known, the difference in time of arrival of the same sound 

at a given pair of hydrophones holds information on the possible sound source 

locations (Spiesberger & Fristrup 1990). Each time delay corresponds to a specific 

hyperbola of possible source locations. The hyperbolas of all three pairs of 

hydrophones (1-2, 1-3, 2-3) have a common point of intersection that represents 

the actual position of the calling individual (Fig. 5.2c). The speed of sound was 

determined as 1567 m/s by measurement with an artificial source over known 

distances. The hydrophone locations were determined by using two Magellan 

GPS ProMark X units with Magellan Mstar softwaie (Version 1.05) in a 

differential global positioning system setup. To determine the time delay between 

two hydi'ophones I used a cross-correlation of frequency spectrograms (Fig. 5.2b). 

Sounds were digitised at a sampling rate of 50000 Hz. Spectrograms were 

calculated with a 75% overlap between different FFT’s (Fast Fourier Transforms, 

dt: 10 ms, df: 98 Hz, FFT size: 512) resulting in an effective time resolution of 2.5 

ms. Even though the cross-correlation of frequency spectra instead of waveforms 

results in a slightly larger errqr due to the averaging over small time slices of the 

original signal, frequency spectrograms alloxv the detection of a signal in high
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Fig. 5.2: Illustration of steps in the localisation procedure, (a) Three spectrograms of the same 

signals received at the three different hydrophones. Note that the same signal starts at slightly 

different times in each spectrogram, (b) Cross-correlation functions of the spectrograms shown in
a). Numbers on the left indicate which spectrograms have been cross-correlated. The peak of each 

correlation function corresponds to the time difference in the time of arrival of a sound at the 

compared hydrophones. In this figure several peaks can be found because there are three signals in 

the spectrograms in a). For the actual localisation spectrograms were cut or digitally filtered before 

the cross-correlation to minimise background noise and to ensure that only one signal was in the 

spectrogram. In all cases the results of the cross-correlation procedure were checked manually 

with on-screen cursors to confirm that the correlation peaks corresponded to the signal of interest, 
(c) An overhead view of the study area with the resulting hyperbolas from the correlation peaks in

b). Asterisks indicate the position of the hydrophones. The point of intersection of the hyperbolas 

indicates the position of the sound source.
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background noise and enable the researcher to check the validity of the calculated 

time delay visually. If the hyperbolas did not intersect at one point but formed a 

tiiangle the corner points of the triangle were saved. For the analysis the point of 

the triangle that was closest to the other caller was assumed as the actual caller 

position.

A test of the localisation accuracy was conducted with an artificial sound source 

(two pieces of metal banged together) employed from a small zodiac dinghy. The 

position of the boat was determined with a Solddsha digital theodolite and then 

compared to the acoustic localisation. The test showed that the localisation error 

inside and in the immediate vicinity of the hydrophone array ranged from 2.4 to 

14.9 meters (Fig. 5.3). Most interactions that were analysed occurred in this area. 

On either side of the array the error increased with distance from the centre of the 

array. Interactions in those areas were only considered if the first caller position 

was nearer the hydrophone aiTay than the second one. In such cases the eiTor 

would have lead to an underestimation of the actual distance one animal would 

have had to swim to produce both sounds. Thus, the same criteria as for the inner 

array area could be applied to identify interactions in those areas (see below).

Whistle interactions were defined as any two whistles produced by two different 

dolphins that were separated in time by less than 3 seconds. Two whistles were 

considered as coming from different animals if one dolphin could not have 

covered the distance between the two sound source locations within the silent 

inter-whistle interval. For this the highest swimming speed that had been reliably 

measured in this area (7.5 m/s) (Lütkebohle 1995) was assumed. To allow for the 

localisation error 30 meters were subtracted from the calculated distance between 

the two sound source locations, 15 meters for each location. In addition I report all 

overlapping whistles that come from the same location as determined by these 

criteria as possible interactions. However, it has been found that some dolphins 

can produce two whistles at the same time (Caldwell & Caldwell 1969; Markov & 

Ostrovskaya 1990) and therefore some of the overlapping whistles might not 

represent interactions. For this reason data on overlapping whistles are presented 

separately. Spectrograms of whistles were inspected by eye to determine whether 

an interaction contained matching whistles. To improve the frequency resolution
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for this analysis spectrograms were recalculated with a FFT size of 1024. 

Spectrogi'ams shown in Figures 5.4 and 5.5 were calculated this way. Whistles 

were only considered as matching if the contours matched closely and were in the 

same frequency band and of similar length. These criteria were the same as those 

usually used for the recognition of highly stereotyped signature whistles of only 

one individual. Thus, the number of matching interactions presented here is 

conservative.

Results

A total of 4 hours, 18 minutes, and 43 seconds of recordings from 7 different days 

in July and August 1994 and 1995 were analysed. Four to 15 animals (average 10) 

were present during these. A total of 1719 whistles was recorded in that time. 

Fifry-eight % of all whistles (n = 991) were recorded with a sufficient signal to 

noise ratio on all hydrophones for the localisation procedure to be employed. 

Among these 188 whistle interactions were found. Of these 43 consisted of 

overlapping whistles from the same group. In the whole sample 45 cases of 

whistle matching were found. Of the matching interactions only 8 consisted of 

overlapping whistles from the same group of animals. Matching interactions in 

which whistles overlapped also occuned between individuals of different groups 

(n = 7). Fig. 5.4 shows six examples of matching and non-matching whistle 

interactions. In one case a matching interaction between thi*ee different animals 

from three different locations was found (Fig.5.5). The average distance between 

the positions of individuals that took part in a matching interaction was 167 (SE: 

23.97) meters. Matching whistle interactions were found on every day for which 

recordings were analysed.

If there are several animals in different groups in an area it can be expected that 

some whistles follow each other within 3 seconds simply by chance. This would 

not represent a vocal interaction. To test for this possibility an exact 

randomisation test was used (Sokal & Rohlf 1995). For the test 999 sets of 

random data with 991 whistles in 15523 seconds obseiwation time were generated. 

The total time and number of whistles were taken from the actual data. The
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Fig. 5.4: Examples of non-matching (left column) and matching (right column) whistle 

interactions.
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number of whistle interactions occurring in each of these sets was counted. To test 

the null hypothesis that the number of whistle interactions observed corresponded 

to what would be expected by chance the number of sets (n) that yielded a 

proportion of whistle interactions at least as large as that observed in the real data 

set was counted. The p-value for this test is n/1000 if the observed proportion is 

added as the 1000^ data point. The number of whistle interactions expected by 

chance increases with the number of animals and decreases if animals whistle 

with different rates. In reality the animals usually swam in two to five groups in 

the study area, but single animals would split off temporarily. To be as
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Fig. 5.5: The only case of whistle matching that involved three different animals. The whistles in 
this spectrogram were counted as two matching interactions. However, while in such cases usually 

the two outer whistles came from the same location, here all three whistles came from different 

locations. The caller positions formed a triangle with side lengths of 88, 97, and 183 meters.

conservative as possible in the test the average number of dolphins (10) in the area 

was used as the number of individuals at different locations and all animals were 

assumed to whistle at equal rates.
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The exact randomisation test using these assumptions showed that the observed 

number of whistle interactions was not significantly different from what would be 

expected by chance (observed proportion: 0.012, chance proportion: 0.011, n.s.) 

for 10 animals swimming separately in the area. Since the assumptions for this 

test were very conservative, we cannot conclude for certain that dolphins did not 

interacted vocally. However, it can be concluded that dolphins definitely did not 

avoid vocal interactions. To determine whether the amount of whistle matching is 

what could be expected by chance, we have to calculate the probability for each 

whistle type to occur. This is a difficult task since there is some debate as to how 

many whistle types are in a dolphin’s repertoire. If we again choose a 

conservative approach we can assume that there were at least as many whistle 

types as there were animals present since each animal has a stereotyped signature 

whistle. For the exact randomisation test 10 animals with a shared repertoire of 10 

whistles were assumed. The test also assumed that each individual was swimming 

at a different location. Again these are very conservative assumptions. The test 

showed that the observed proportion of whistle matching was significantly larger 

than expected by chance even if the 8 matching interactions that were detected by 

overlap only were discarded from the data set (observed proportion: 0.0024, 

chance proportion: 0.0011, p=0.001).

Discussion

The results showed that the number of whistle interactions that could be found in 

wild dolphins is what could be expected by chance. Since the assumptions of the 

test were veiy conseiwative we can only conclude that dolphins did not avoid 

vocal interactions. If the assumptions were wrong the proportion of whistle 

interactions expected by chance would decrease, which could result in a 

significant difference indicating that dolphins tended to interact vocally. The 

number of matching interactions, on the other hand, was significantly larger than 

the chance level even with the conservative assumptions. This shows that whistle 

matching is a significant part of the communication system of these animals. The 

observed amount of whistle matching, at 4.5 % of all whistles, was slightly higher 

than the amount of matching (see Chapter 3) or signature whistle copying reported
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in other studies (Burdin et al. 1975). The term copying is used here as a 

description of an event when animal A is producing the signature whistle of 

animal B. This can happen in a matching interaction but also at other times. Since 

the temporal patterns of whistle production were not reported in other studies, we 

do not Icnow whether copying of signature whistles in these studies occurred in 

matching interactions. Note that even though the term copying is used here we do 

not yet loiow whether a copied signature whistle was actually learned from the 

animal that produces it primarily. However, this is the most likely explanation 

given the use of signature whistles in captivity (see Chapter 3). Tyack (1986b) 

found a high rate of signature whistle copying, but copying rates in his study were 

probably increased because of the methods used (see Chapter 2).

But do the matching interactions observed in this study involve signature or non­

signature whistles? Sayigh (1992) showed that wild bottlenose dolphins use few 

non-signature whistles. Most whistles she recorded were the signature whistles of 

the individuals present. Furthermore, matching of non-signature whistles did not 

occur in the captive group investigated in Chapter 3. Thus, it is likely that whistle 

matching in this study consisted primaiily of signature whistles. Furthermore, 

signatm*e whistle copying seems to occur only in matching interactions that 

involve the signature whistle owner (Chapter 3). Burdin et al, (1975) did not study 

the temporal pattern of whistling between individuals, but showed that signature 

whistle copying almost only occurred when animals were in acoustic contact. This 

finding has interesting implications. It sheds some light on the apparent 

contradiction between the high flexibility of vocal learning in dolphins on the one 

hand and the amazing stability of signature whistles over the years on the other. It 

seems that bottlenose dolphins use their abilities to copy signatme whistles of 

others primarily when interacting with these individuals vocally. Thus, most 

recorded signature whistles would still come from the actual owner of the whistle. 

Fmiheimore, the immediate reply of an individual to a copy of its own signature 

whistle would prevent the usage of whistle copying for deception.

Most hypotheses that have been put forward to explain why vocal matching 

occurs are based on the assumption that matching can be used to address a 

specific individual. Tyack (1986b) hypothesised that dolphins could address a
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particular group member by simply copying its call. Thus, the caller could either 

produce a copy of a signature whistle to find the corresponding group member or 

reply to a caller with a copy to indicate that it has been received. In such 

interactions the initial caller and the responding animal exchange information 

about their positions. Thus, it could also be used to elicit an approach. This pattern 

of copy usage has been found by Gwinner & Kneutgen (1962) in ravens {Corvus 

corax) and white-rumped shamas {Copsychus malabaricus), where the female 

could elicit an approach by the male if it copied its vocalizations. The mechanisms 

involved in such an interaction can be fairly simple (see Chapter 2). In the shamas 

the male often attacked the female if it copied his song, like the reaction towards 

an intmder. In dolphins such approaches were not obseiwed (Chapter 3). Thus, it 

seems likely that the mechanism involved in dolphins is different.

Another idea that has been suggested for dolphins is the password hypothesis 

(Janik & Slater 1997) that was originally put forward by Feekes (1977) for birds.

It suggests that sharing of calls can be used to label the membership of a group or 

to keep non-members out of a group. This is based on the assumption that it takes 

time to learn a new call. Dolphins can copy sounds at first exposure. However, 

call sharing could still be used to announce or reinforce a bond between animals. 

Non-members of a group could be kept outside by receiving increased levels of 

aggression if they produced the call. Especially in male dolphins that form 

relatively stable alliances (Coimor et al. 1992a) this could be a function of call 

sharing. The interaction shown in Fig. 5.5 shows that more than two individuals 

can be involved in a matching interaction. Smolker (1994) also found that three 

male bottlenose dolpliins that formed an alliance produced the same whistle type 

as their most common whistle. Again we have to ask whether these are signature 

whistles or not. Signature whistle convergence would contradict drastically the 

finding by Sayigh et al. (1990) that signature whistles are stable for at least 12 

years. However, the whistles used for reinforcing bonds could be non-signature 

whistles. Smolker recorded males in larger groups while they were interacting 

with humans in very shallow water. This is not a situation in which signature 

whistle production would be expected. Thus, even though the shai*ed whistle in 

Smolker’s study was also the most common one for each of the alliance members 

we have no evidence as to whether this whistle also represented the actual
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signature whistle of each animal. Further studies are needed to investigate the 

potential existence and use of stereotyped whistles in alliances.

In the case of male alliances it is possible that whistle matching is used in pair 

bonding. But it could also be used in the opposite way. In birds, playbacks that 

simulate matched countersinging often elicit aggressive responses (Krebs et al. 

1981; McGregor et al. 1992) or retreat (Todt 1981). In such aggressive encounters 

matching can again be used to address a specific individual. In dolphins, matching 

could be used in a similar way. Furthermore, some of the overlapping interactions 

that were found in this study are very similar to those found in birds. It is 

important to note that in this study most overlapping interactions occurred 

between members of the same group. This pattern is similar to that found in 

robins {Erithacus rubecula), where overlapping also occurs mainly in close 

proximity interactions (Brindley 1991). Furthennore, overlapping seems to be a 

strong threat in robins (Dabelsteen et al. 1997) and great tits {Parus major) 

(Dabelsteen et al. 1996). Thus, fi*om the data so far it is possible that dolphins use 

matching and overlapping in aggressive interactions, but also that whistle 

matching is used in maintaining group cohesion. It would be interesting to look at 

how different sexes and age classes use matching to elucidate in what ways 

addressing is most coimnonly used between dolphins.
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Chapter 6 

Source levels of bottlenose dolphin whistles in the wild

Introduction

Research on the acoustic properties of bottlenose dolphin (Tursiops truncatus) 

signals has mainly concentrated on écholocation clicks. Most of these studies have 

been conducted in captivity and investigated frequency, temporal patterning and 

amplitude of clicks (review in Au 1993). First studies on trained animals that were 

held in pens in the open sea showed that the source levels measured from captive 

animals were a lot lower than those used in open water conditions (Au et al.

1974). This result was hardly surprising since the acoustic characteristics of a 

concrete pool, especially its limited size and reverberation, differ drastically from 

those of the open ocean. Through careful comparisons of studies in dolphinaria 

and in the open sea we now have a lot of information on the range and resolution 

of dolphin écholocation in the ultrasonic range.

In contrast to écholocation clicks we know almost nothing about the source levels 

of dolphin whistles. This is somewhat surprising since only with this information 

would we be able to predict the acoustic range of whistles. We loiow that dolphins 

use whistles to maintain group cohesion and communicate over long distances 

(see chapters 3 & 5). The source levels that an animal can produce limit the range 

over which it can communicate with its conspecifics. Psychophysical studies have 

revealed both the hearing abilities (Johnson 1967) and the critical ratios for 

masking of sounds (Jolinson 1968) in bottlenose dolphins. Together with 

information on the ambient noise, source level measurements would therefore 

enable us to predict the minimum distance over which dolphins could stay in 

acoustic contact. This Icnowledge is also crucial for the assessment of effects that 

human activities like boat tiaffic have on the animals.
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In écholocation studies animals can be trained to perform an écholocation task and 

will automatically adjust their source levels to the task at hand (Au 1993). Even if 

a trained animal is taken to sea the transducer can be placed close to the dolphin 

and the animal can be held stationaiy during its performance. In the study of 

dolphin whistles we could train an individual to increase the amplitude of its 

whistles to find out maximum levels. This would give us a conservative estimate 

of what animals are capable of. But since these are social signals the animal might 

not produce its maximum levels even if rewarded with fish. To investigate what 

source levels are used in the wild we are limited to purely observational studies. 

Since it is often not possible to get within one meter of a wild animal (the distance 

required to measure source levels directly), sound pressure levels at greater 

distances must be used to calculate source levels. But since ambient noise limits 

the sensitivity of a transducer to distant sounds, even this approach requires one to 

get close to moving animals without producing noise that would compromise the 

measurement. Furthermore, to calculate source levels from measured sound 

pressure levels exact information on the distance between dolphin and transducer 

is needed. These obstacles in the study of wild dolphins explain why we loiow so 

little about this topic.

In this study I measured soimd pressure levels of dolphin whistles in the wild 

using an area in which animals occurred at predictable times of the day and where 

a hydrophone array allowed me to localize the sound source position. With this 

infomiation the source levels as well as the acoustic range of such signals can be 

calculated.

Methods

Recordings were conducted in the Kessock Channel of the Moray Firth, Scotland, 

(see Chapter 5) when bottlenose dolphins were present. Dolphins were recorded 

over tlnee weeks in July 1996. All recordings were carried out in sea state zero. 

Water depth in the study area ranges from 4 to 20 m and the bottom consists 

primarily of mud.
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The measuring equipment consisted of a Brüel & Kjaer 8103 hydrophone 

connected to a Brüel & Kjaer 2635 preamplifier. Sounds were recorded on a 

Nagra IV-S tape recorder. The frequency response of this system was 30-20000 

Hz ± 1 dB re 1 pP aata  tape speed of 38.1 cm/s. Recordings were conducted fiom 

a small inflatable dinghy anchored in the channel (Fig. 6.1). To measure distances 

from the recording point to the vocalizing animal, sounds were also recorded with 

the three hydrophone array described in Chapter 5. Only sounds from close to the 

array were used, so that the localization eiTor was small (up to 14 m). The position 

of animals was calculated as described in Chapter 5. The position of the dinghy 

was also determined by passive acoustic localization. Two hammers were banged 

together undei*water as a localization signal for the hydrophone array. All 

distances between the measuring hydrophone and the calling dolphin given in this 

chapter were calculated by subtracting the error twice from the originally 

calculated distance, since both locations were determined by acoustic localization. 

Ambient noise levels were measured 22 times at various times of day over a 

period of one week and then averaged to present an overall background noise 

level.

To calculate source pressure levels the recorded signals were analysed with the 

SIGNAL software package (Engineering Design, Belmont). The factor that a 

recorded wavefoim has to be multiplied by to result in the actual pressui e of the 

sound is given by the following formula:

multiplication factor -  input signal [V]
microphone sensitivity [V/Pa] * measured output [V]

To use this fonnula an input signal of Imown voltage had to be recorded at the 

start of each tape. This was done by using the internal reference oscillator of the 

preamplifier, which gave a reference signal of IV. Sound pressure levels were 

determined by using the ANSI sound level meter incorporated in the SIGNAL 

software. Before measurements were taken signals were put through a high-pass
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filter to exclude low frequency background noise. All dB values given are 

referenced to 1 pPa.

Transmission loss (TL) from the source to the receiver was calculated using the 

formula presented by Richardson et al. (1995), which was derived from the Marsh 

& Schulkin (1962) model for shallow water transmission:

7% = 151ogr + w4-a^| — -1  +51ogJV + 60~/c^
H  J

where r is the range, a  is the absorption coefficient of seawater, aj is the shallow- 

water attenuation coefficient, H is water depth, and Icl represents a near-field 

anomaly. The values for Icl and aj can be taken from tables in Marsh & Schulkin 

(1962), and a=0.036f^'^ (dB/km) where f  is the frequency. Water depth was taken 

from the admiralty chai*t of the area. This formula works well for sloping bottom 

conditions if the value for H is the average of the depth at the source and the 

receiver (Richardson et al. 1995). The error of this formula at a frequency of 2.8 

IdHz is about 4 dB at a range of 2.7 km (Marsh & Schulkin 1962). Errors for 

higher frequencies at shorter ranges were not measured in Marsh and Schulkin’s 

study.

Results

To calculate sound pressure levels a signal had to have a peak signal to noise ratio 

of at least 3 dB at the Brüel & Kjaer hydrophone and it had to be received by all 

four hydi'ophones, so that the source location could be determined. Due to the 

sensitivity of the Bmel & Kjaer hydrophone this criterion was fulfilled for only 

104 whistles in the total recording time of 21 h 38 min. The locations of the 

animals involved are shown in Fig. 6.1. The distribution of root mean square 

(rms) SPL’s measured from the animals is presented in Fig. 6.2a. The maximum 

SPL measured was 129.91 dB and the average (± SE) was 114.05 (± 0.57) dB.
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Fig. 6,1: Sound source locations for measured whistles. Triangles indicate the positions of tlie 

hydrophones. The open triangle indicates the position of tlie calibrated recording system.

Figure 6.2b shows the distribution of source levels calculated from measured 

SPL’s using the source-receiver distances as determined by the passive acoustic 

localisation. Transmission loss was calculated for a frequency of 10 kHz, which 

corresponds to the average fr equency of dolphin whistles. The maximum source 

level was 168.92 dB and the average (± SE) was 157.41 (± 0.63) dB. The animal 

that emitted the loudest sound was 77 m away from the measurement hydrophone. 

To detennine whether only whistles from very loud animals could be analysed or 

whether the average source levels actually represented the average levels used by 

animals I also localized the source of 23 quieter whistles that occurred before or 

after a whistle of which the SPL was measured. In 13 cases the quieter whistles 

were fr om the same position as the whistles that were measured, and in 8 cases 

they were from further away. Only in one case was the quieter animal closer to the 

hydrophone. Thus, it can be concluded that the sample was biased towards loud 

animals, and that the resulting average source levels are for animals that produce 

whistles at above average source levels.
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Fig. 6.2: Amplitude of whistles (n = 104) before and after correction for distance, (a) Sound 
pressure levels (SPL) received at tlie calibrated system, (b) Source levels (SL) calculated from a) 

by using distance infomiation from tlie passive acoustic localisation.

To calculate the acoustic range of dolphin whistles we also need infonnation on 

the ambient masking noise for whistles. Twenty-two measurements were talcen 

over the entire recording period with at least one measurement each day. Ambient 

noise levels were measured at 1 Hz intervals (Figs. 6.3 and 6.4). To deteimine the 

effective acoustic range of dolphin whistles in this area we furthermore need to 

Imow the acoustic sensitivity and the critical ratio of the animals. This infonnation 

was taken from studies carried out by Johnson (1967, 1968). I calculated the 

acoustic range of whistles (frequency range 3 - 2 0  IcHz) at the frequency of
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highest sensitivity and at that with the lowest critical ratio. The highest sensitivity 

found for a bottlenose dolphin in the frequency range of 3 to 20 kHz was 38.6 dB 

at 14 IcHz (Johnson 1967). The lowest critical ratio was 22 dB for a 6 kHz tone 

(Johnson 1968). In other words, the signal had to be 22 dB above background 

noise to be detected by a bottlenose dolphin. The average background noise 

(corrected for analyzer bandwidth) at 6 kHz in this study was 47.26 dB, at 14 kHz 

it was 51.08 dB. The sensitivity of a bottlenose dolphin at 6 kHz was 70.4 dB 

(Johnson 1967), and the critical ratio at 14 kHz was 32 dB (Johnson 1968). Thus, 

a 6 kHz whistle emitted at the average source level of 157.41 dB should be 

detectable up to 21.78 km from the caller. If the whistle was emitted with the 

maximum source level it could be detected up to 37.84 Ion from the caller. If we 

assume an en'or of four dB in the measurement of the transmission loss (see 

methods) the range would lie between 17 and 27 Ian for the average source level 

and between 32 and 44 Ian for the maximum level. This distance is limited by the 

sensitivity of the dolphin’s hearing.

If we consider a frequency of 14 l<Hz, where the sensitivity of the dolphin is 

highest, the range is limited by the masking effect of the background noise. 

Values for a? and Icl in this calculation were found by extrapolating linearly from 

the tables provided by Marsh and Schulkin (1962). A 14 kHz whistle emitted at 

maximum level would be audible to a dolphin at up to 14.57 (± 3) Ian and at 

average level it would range up to 7.03 (± 2) Ian.

Discussion

This study is the first to measure source levels in wild bottlenose dolphins and to 

estimate the acoustic range of these signals. The acoustic range is of great 

relevance to the question of group cohesion in dolphins. The results show that 

whistles have a range that covers the separation distances of up to 300 m reported 

for mothers and their infants (Smolker et al. 1993). The only other study that has 

measured source levels of wild dolphins reported whistle levels of 109-125 dB for 

spinner dolphins, Stenella longirostris (Watkins & Schevill 1974). Bottlenose 

dolphins in this study produced source levels well above these values. However,
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the sampling period of Watkins and Schevill’s study was very short and only 

looked at animals while they were resting during the day. Whistle source levels 

that have been measured from captive bottlenose dolphins ranged from 110 to 

above 140 dB (Tyack 1985). An upper limit could not be given since source levels 

were measured with a vocalight wliich is attached to the dolphin’s head and did 

not indicate any increase beyond 140 dB. Tyack also cites values up to 171 dB for 

wild bottlenose dolphins from an unpublished report by Fish & Turl (1976), and 

these correspond closely to the value found here.

Considering the sound propagation characteristics of water it is not surprising that 

the acoustic space of dolphin whistles is larger than that of tenestrial animals. The 

largest range in air estimated for teiTestrial animals was about 10 Ion for African 

elephants {Loxodonta africana) (Larom et al. 1997), which can only be achieved 

with very low frequencies. The data here have shown that the range decreases 

when the frequency of a call increases. This was to be expected since attenuation 

is higher for higher frequencies. Baleen whales that use low frequencies similar to 

those used by elephants achieve acoustic ranges of several hundred Ian 

underwater simply because sound travels better in water than in air (review in 

Richardson et al. 1995).

Apart from the implications for the distances over which animals can stay in touch 

acoustically, this large range is also likely to affect the design of a communication 

system. A large acoustic space means that a dolphin is exposed to calls of all 

animals present within that area. Thus, a large acoustic space results in a high 

masking noise for whistles simply because other dolphins use the same frequency 

range for their whistles. It would be interesting to combine information on animal 

density, acoustic space and calling rates for different species to test whether an 

increased noise level in the frequency band used for communication affects the 

design of a group cohesion mechanism in social animals. The large acoustic space 

for dolphins described here certainly supports the idea that they are exposed to 

increased background noise levels and that this could have contributed to the 

evolution of learned signature whistles to maintain acoustic contact between 

particular individuals.
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However, there are two main problems with the acoustic range derived from 

measurements as presented here. One problem lies with the calculation of the 

transmission loss in shallow-water habitat. Underwater transmission loss is a 

complex phenomenon and the approximation that can be achieved by using 

empirically derived formulae is related to the acoustic topography of the area. 

Acoustic transmission characteristics of different shallow water areas do not vaiy 

as much as those of terrestrial habitats, but it is still important to consider regional 

variations. Strong cuiTents, varying water depths or obstacles in the sound path 

can limit the range of an underwater signal drastically. The second problem 

concerns the transmission of information in a whistle. Animal signals carry 

different sorts of information. If we assume that identity is the most important one 

for dolphins, we need to lorow which parameters encode identity and how well 

they are transmitted. Even though whistles without much frequency modulation 

can be found in dolphins, this is not usually the case. The methods comparison in 

Chapter 4 showed that the identification of signature whistles was strongly 

affected if certain parameters were excluded. Caldwell et al. (1990) have shown 

that a bottlenose dolphin was able to identify a whistle if only pari of it was heard. 

If identity is encoded in the overall pattern of the modulation of the fundamental 

frequency, further behavioural studies are needed to show at what distance 

different whistles can still be told apart by a dolphin. Only then will we be able to 

give more detailed estimates of the acoustic space of a dolphin whistle.
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Chapter 7

Food-related calling In wild bottlenose dolphins

Introduction

Food-related signaling has been described in many animals. Bees {Apis mellifera) 

(von Frisch 1967) and naked mole rats {Heterocephalus glaber) (Judd & Sheiman 

1996) inform other members of their colonies about the location of food patches, 

and various birds (Elgar 1986; Marier et al. 1986; Brown et al. 1991; Heinrich & 

Marzluff 1991) and primates (Dittus 1984; Chapman & Lefebvre 1990; Elowson 

et al. 1991; Benz et al. 1992; Clark & Wrangham 1993; Hauser & Marier 1993) 

produce calls if  they encounter divisible food items. Various different possible 

benefits for the caller have been proposed for this seemingly altruistic behaviour. 

Food calls could inform closely related kin of food sources and thus increase the 

caller’s inclusive fitness (von Frisch 1967; Judd & Sheiman 1996). The presence 

of other animals at the feeding site could increase the caller’s food in-take (Brown 

et al. 1991) or decrease predation pressure (Elgar 1986). In social groups food 

calling could increase an individual’s social status (Clark 1993) or help to avoid 

increased levels of aggression if others discover the same food source (Hauser 

1992). Finally, food calls could be effective in attracting potential mating partners 

(Smith 1991).

In animals that use sound for écholocation or to manipulate prey behaviour the 

distinction between food-related signaling to conspecifics and food-associated 

calling that attracts conspecifics as a by-product is less clear. Many odontocetes 

produce sounds while they are foraging because they use écholocation clicks to 

detect and pursue prey. These écholocation signals are highly directional and 

therefore less likely to attract conspecifics. However, this has not been 

investigated systematically. In bats écholocation signals can attract conspecifics to
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a feeding site (Barclay 1982). This attraction could be disadvantageous but 

unavoidable if other means of detecting prey are not available. Noms & Mohl 

(1983) have argued that dolphins might be able to debilitate prey with sound.

Such calls could also attract conspecifics to a feeding site. Loud, low fi-equency 

calls like bangs have been recorded form feeding odontocetes (Marten et al.

1988), but we do not know whether they stun prey and/or attract other dolphins.

Information on food-related signaling to conspecifics in cetaceans is sparse. To 

date there is no report about such food calls in captivity. However, captive 

animals are usually fed with dead fish which could prevent the animals from 

giving food calls. In the wild it is difficult to identify from the suiTace when an 

animal is feeding or has found food. Würsig & Würsig (1980) noted that the 

smTace behaviour of dusky dolphins (Lagenorhynchus ohscurus) suggested that 

they produce food-related calls that attract conspecifics, but sounds were not 

recorded in their study. Some authors have argued that calls that were recorded 

during more obvious feeding behaviours like bubble-net feeding in humpback 

whales (Megaptera novaeangliae) (D'Vincent et al. 1985) and feeding on seals in 

killer whales {Orcinus orcd) (Guinet 1992) function to recruit conspecifics. 

However, these studies could not show any congelations between calling and 

approaching behaviour of non-calling animals to the caller since the position of 

the caller was not Imown.

Bottlenose dolphins {Tursiops truncatus) produce a variety of low-frequency calls 

that have hardly been studied. One such call is the bray described by dos Santos et 

al. (1990,1995). They concluded that this call is related to socializing and 

feeding. In this chapter I investigate the functional significance of braying in the 

behaviour of wild bottlenose dolphins in the Moray Firth, Scotland, by using a 

passive acoustic localization method. With this method it was possible to identify 

a caller and study the quality and direction of reactions of other animals if a bray 

was given.

86



Chapter 7: Food-related calling in wild bottlenose dolphins 

Methods

The study was conducted in the Kessock Channel of the Moray Firth, Scotland, 

The Moray Firth contains a resident population of around 130 bottlenose dolphins 

(Wilson 1995). Sound recordings and localizations were conducted as described in 

Chapter 5. Data were only taken from an area where the localization error was 

smaller than 30 m. Only braying will be considered in this chapter. To investigate 

the response of other animals towards braying their surface behaviours in relation 

to the position where a bray was localized was recorded. Since brays often occur 

in bouts I only used the first bray in a series. Only cases in which no brays 

occuned for 1 min before such a braying event were considered. Throughout the 

chapter I use the term caller for the animal that emitted the first bray, and the term 

non-caller for all other animals. However, it is important to note that other animals 

could have brayed or produced other calls in response to a bray, but this was not 

investigated.

Obseiwations of surface behaviour were carried out from a point on the North side 

of the channel 30 m above water level and 145 m from the nearest microphone. 

From this point the whole area could easily be monitored for the surface 

behaviour of all animals present. Data on the position, dfrection, and behaviour of 

each surfacing animal were recorded on a separate channel of the multi-track tape 

recorder and on the audio track of a Sony camcorder that monitored parts of the 

study area. The analysis was conducted by using these audio recordings together 

with the video recordings from the camera. By combining human observations 

with data from the video camera the whole study area could be monitored 

continuously. The following behaviour patterns were noted continuously using an 

event sampling method:

Fast swimming: A dolphin smfaces creating white caps around it due to its speed. 

Porpoising (i.e. shallow forward leaps of not more than one body width above the 

surface that sometimes occur when a fast swimming animal surfaces) were also 

counted as fast swimming. The direction of fast swimming was always noted.
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Leaping: The whole animal leaves tlie water in any other way than during 

porpoising. Porpoising was not counted as leaping. Cases in which only the fluke 

stayed in the water were also counted as leaps.

Feeding: A fish was seen either in a dolphin’s jaws or swimming away firom it at 

the surface. Only fast swimming fish were seen at this distance, since they 

sometimes broke the surface during their escape.

Surfacing: The back of a dolphin breaks the surface.

Except for feeding all these behaviour patterns were mutually exclusive. It is 

important to note that I could not identify individuals. Thus, a series of surfacings, 

for example, could have been produced by one or by several animals.

To investigate whether animals were attracted by braying, I compared the location 

and direction of all fast swims in relation to the position where a bray came from. 

To determine the position of an observed animal landmarks like houses and trees 

on the South shore were used. I noted in front of which landmark on the South 

shore the animal was seen. This limited the possible position of an individual to 

somewhere on a straight line between the observation point and the given 

landmark. Positions of landmarks were taken from admiralty charts of the area 

(scale: 1:2500). To deteimine an animal’s distance firom the observation point the 

channel was divided into tliree distance areas, one close to each shore and one in 

the middle of the channel. Each area was 175 m wide, so that the whole channel 

between the hydrophones was covered. Thus, for each surfacing there was a 

straight line in one of the three areas on which the animal could have been. The 

position of each surfacing was then compared to the location of the caller by using 

that point on the straight line that was closest to the caller’s position as determined 

by acoustic localization. This is the most conseiwative estimate of non-caller/caller 

distance. I did not attempt to estimate the distance of a surfacing animal from the 

observation point more accurately to avoid observer bias.

If the position of a fast swim was less than 50 m from the caller the behaviour 

pattern was counted as occurring at the position of the caller. Otherwise the
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Fig. 7.1: (a) Waveform of a bray. Each bray consists of two parts, a long multiband part and a 

short downs weep, (b) Power spectrum of a short part in the first segment of the bray, (c) 

Frequency spectrogram of the bray.
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direction of fast swimming was noted as either towards the caller (decreasing 

distance to caller position) or away from the caller (increasing distance to caller 

position). All statistical tests were calculated by using the SPSS statistical package 

(Version 7.5).
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Fig. 7.2: OccuiTence of braying, fast swims, and leaping in periods when feeding was obsei*ved 
compared with control periods. N = 28 for each condition (Cramer’s V test: < 0.001).

Results

Fig. 7.1 shows an oscillogram, a frequency spectrogram and a typical power 

spectrum of a bray. Between 3/7/96 and 31/7/96 I recorded 132 braying events in 

a total of 51h 15 min observation time with dolphins present. This yields a rate of 

2.58 events per hour. The number of dolphins present varied from 3 to over 15. To 

investigate whether braying could be food-related I investigated what other 

behaviour patterns could be obseiwed when feeding occurred. Twenty-five feeding 

events were found in this sample. Three additional feeding events were observed 

in other ad libitum samples in 1996. The fish taken by the dolphins in these events 

were relatively large. Only two fish species of that size and shape are common in 

the Kessock Channel in the summer, salmon {Salmo salaf) and sea trout (Salmo 

trutta). Using one-zero sampling I noted whether braying, fast swimming, or

90



Chapter 7: Food-related calling in wild bottlenose dolphins

leaping occurred anywhere in the area during one minute before and after feeding 

was observed (Fig. 7.2). As a comparison for this test another 28 randomly chosen 

two minute periods were examined for the occuiTence of all the registered 

behaviour patterns. Fast swimming (Cramer’s V test: V = 0.5, P < 0.001) as well 

as braying (V = 0.57, P < 0.001) occurred significantly more often during feeding 

than during non-feeding periods while leaping did not (V = 0.19, NS). Braying 

was observed in association with 93% of all feeding events , while fast swimming 

only occurred in 71% of cases. However, fast movements could only be observed 

if they occurred at the surface. Thus, fast movements could be more common than 

this during foraging but simply occur fully submerged.
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Fig. 7.3: Frequency of fast swimming before and after a bray. The bray occurred at time 0 s. (a) 

Total number of fast swimming surfacings. Test not conducted since it is not clear how many 
animals accounted for surfacings. (b) Number of 15 second periods that contained fast swimmmg 

surfacings (one-zero sampling). An Asterisk indicates a significant difference (McNemar test: *p < 

0.05, ***P< 0.001).
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Tab. 7.1: Numbers of changes in the occurrence of fast swimming 
at the caller position before and after brays

Fast swimming Fast swimming after bray

before brays No fast swims Fast swims

No fast swims 2 9

Fast swims 1 13

Tab. 7.2: Nmnber of changes in the occurrence of fast swimming 

towards the caller position before and after a bray

Fast swimming Fast swimming after bray

before brays No fast swims Fast swims

No fast swims 7 15

Fast swims 0 3

If brays indicate feeding, fast swims could either be chases of fish that occur at the 

caller position or rapid approaches by conspecifics that are attracted by a bray. 

However, if  braying indicates social interactions that involve chases between 

individuals we would expect them to occur primarily at the caller position. In the 

second phase of the study I investigated whether fast swimming that was obsei*ved 

before and after a bray, occurred at the caller position or whether it involved other 

animals that approached or avoided the caller. Only fast swimming could be used 

as an indicator of animal movement since dolphins could not be identified 

individually. I compared the occurrence of fast swimming in a 15 second period 

before and after the first bray of a braying event again using one-zero sampling. 

Fast swimming in these periods occurred in association with 36% of all braying 

events in July 1996. Acoustic localization together with behavioural observations 

was carried out in 1995. In 25 cases between 14/7/95 and 21/9/95 fast swimming 

was observed in at least one of these periods and the first bray could be localized 

acoustically (total observation time 37h 45 min). I also counted the total number 

of fast swims (Fig. 7.3a). However, since it was not clear whether one or more 

animals were responsible for the observed fast swim surfacings in a 15 second 

observation period tests were conducted on the one-zero sampling data. The
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results showed that fast swimming at (McNemar test: P < 0.05) as well as towards 

the caller position (McNemar test: P < 0.001) increased significantly after a bray 

(Tab 7.1 & 7.2). Fast swimming away from the caller position was rare (once 

before a bray, twice after a bray) and its frequency did not change after a bray 

(McNemar test: NS) (Fig. 7.3b). The binomial distribution was used for all 

McNemar tests. However, it is important to note that not all animals in the area 

reacted with an approach. Even animals near the caller position sometimes did not 

seem to react. They continued to surface normally without showing any 

acceleration.

Discussion

The results presented here showed that braying is a food-related call that attracts 

conspecifics in the area. An increase in fast swims also occurred at the position of 

the caller. This could be for two reasons. Firstly, feeding on large fish is likely to 

involve chases leading to fast swims at the caller position. Secondly, all surfacings 

within 50 m of the caller were considered to be at the caller position and the 

distance between a caller and a non-caller was determined in a very conservative 

way. Thus, this distance could have been underestimated in many cases. It could 

have been that some animals that were considered to be at the caller position were 

actually non-calling animals near-by that were also attracted and accounted for the 

fast swimming that was observed in this area.

But is this call used to signal to conspecifics or to manipulate prey behaviour? 

Several hypotheses that have been brought foiward for other animals are less 

likely in dolphins. Since fish are very mobile and it is unlikely that other dolphins 

would find the same food spot at the same time, explanations that involve the 

avoidance of increased aggression by other group members can be discarded. 

Furthermore, dolphins do not have many predators, so that a decrease in predation 

pressui e due to the presence of more individuals does not seem to be a likely 

reason for food calling. Four hypothesis may explain braying. (1) Brays could 

attract closely related kin that are near-by. Female bottlenose dolphins tend to 

associate with their kin (Wells et al. 1987). However, dolphins have very fluid
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association patterns and the probability that other unrelated individuals are also 

attracted is high. (2) Attracting conspecifics is a strategy to increase the feeding 

success of the caller. In cliff swallows (Hirundo pyrrhonota) a caller benefits from 

the presence of other individuals because insect swarms disperse more slowly if 

more animals are present (Brown et al. 1991). In dolphins the approach of 

conspecifics could chase fish back towards the caller and thus increase its 

probability of a catch. (3) The caller could benefit by an increase of its social 

status. This is a possibility that we know little about, since the dynamics of status 

changes in dolphin societies are virtually unlcnown. In this and the other 

hypotheses mentioned so far the bray would be a signal to conspecifics, as has 

been suggested for food calls in other species. However, (4) another possible 

function of brays could be to change prey behaviour. The design features of a bray 

suggest that it has not evolved as a long distance signal to conspecifics. Most 

energy in it is below 1 IcHz. Even though low frequencies travel better undeiwater, 

the hearing sensitivity of a dolphin is low in this frequency range (Johnson 1967). 

An alternative explanation is that brays can either stun a fish or change its 

behaviour so that it is easier to catch. Salmon can be disorientated by exposing 

them to low frequency sound (VanDerWalker 1967). The mechanism of this 

effect is not understood. Possible explanations are that the acceleration in the 

water affects the lateral line system, that the sound hits the resonant fiequency of 

the fish or parts of it, that the sound pressure level overloads the hearing of the 

fish, or that the sounds actually cause tissue damage. It has been argued that high 

frequency clicks are less likely to stun prey because the sound pressure levels 

required would be too high (Zagaeski 1987; Marten et al. 1988). However, if it is 

not the pressure but another parameter that elicits the reaction in the fish, clicks 

might still stun prey. (Marten et al. 1988) argued that low frequency sounds are 

likely candidates for prey stunning because they fall in the auditory range of fish 

and they last long enough to overload their hearing. Fuilher studies are needed to 

investigate this possibility. Looking at the facts from this study it seems more 

likely that brays are used to manipulate prey behaviom* than that they are designed 

to attract conspecifics. If this is true the attraction of conspecifics would be a by­

product of braying.
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Playback studies of brays to salmon as well as dolphins would shed light on their 

functional significance. It would enable us to observe the reactions of salmon to a 

bray and also show whether it is the bray that attracts other dolphins. Presently it 

is still possible that the actual attraction is caused by other sounds produced 

during these feeding events. Such other sounds are whistles and clicks, which are 

found in many contexts, but also feeding sounds caused by the impact of the 

dolphin’s teeth. Even slight variations in whistles or clicks could indicate a 

feeding event to other dolphins. However, the distinct approach reaction in the 15 

s after a bray was heard suggests that this sound is the actual indicator to other 

dolphins. Fuithermore, brays are a lot rarer than other dolphin sounds. We know 

that whistles and clicks are used in many different contexts. This relative rarity 

could mean that brays are used exclusively during feeding. It would be interesting 

to know how context-specific the use of brays is. Braying occurred several times 

in the randomly selected control periods. However, controls were simply times in 

which feeding could not be observed from above the surface, and it is possible 

that subsurface feeding occuiTed during these periods. In fact, the small amount of 

feeding observed at the surface suggests that most feeding occurred underwater. 

Thus, playback experiments as well as closer underwater obseiwations are needed 

to test these hypotheses.

95



Chapter 8

General Discussion and Conclusions

The results of this thesis have shown that bottlenose dolphins use sounds in a wide 

variety of contexts. They used individually-specific, stereotyped signature 

whistles primarily when they were separated, but sometimes copied those of other 

individuals. The captive animals used a lot of non-signatiue whistles, on the 

classification of which different methods disagreed. In wild dolphins that were 

dispersed, matching of stereotyped whistles occurred more often than expected by 

chance. The active space of these whistles was a lot larger than that of terrestrial 

animal signals. Finally, wild bottlenose dolphins used low-frequency bray sounds 

in the context of feeding. These sounds attiacted conspecifics, but their 

characteristics suggest that they might function mainly to modify prey behaviour 

and facilitate capture. These are just a few examples of how dolphins use sounds. 

Many other applications as in écholocation (Noms et al. 1961) or in aggi'essive 

interactions (Overstrom 1983) have been described elsewhere.

Certain patterns that underlie the communication system of dolphins emerge from 

these studies. The idea that stereotyped signature whistles are used as cohesion or 

individual identification sounds has been supported. Furtheimore, it seems likely 

that vocal learning evolved in dolphins in response to the constraints that the 

marine enviromnent imposed on their communication system. To investigate these 

two questions further we need work on whistle classification and recognition. 

Most studies on dolphins have concentrated on the sound producer and rarely on 

the reaction of the receiver. But only classification experiments can answer some 

of the questions that have arisen fr om previous studies. One of the main questions 

is how dolphins classify non-signature whistles. While we have good evidence for 

the biological significance of signature whistles as defined by human obseiwer 

classification (see Chapters 3 and 4), human observers as well as different

96



Chapter 8: General Discussion and Conclusions

computer methods disagree strongly on the classification of non-signature 

whistles. If human obseiwers use their criteria for signature whistle classification 

on non-signature whistles the whistle repertoire of an individual seems vast. It is 

very rare that two non-signature contours resemble each other as closely as two 

signature whistle contours do. In an experiment in which an animal is conditioned 

to press a paddle if it hears the same sound twice, one could make the two test 

sounds more and more dissimilar to test classification thresholds or test how a 

dolphin classifies pairs of non-signature whistles. Similar experiments have been 

carried out with birds (e.g. Shy et al. 1986). Another method to investigate this 

question is the measurement of response times or response strength. In 

meadowlarks {Sturnella neglecta), for example, response times become shorter if 

playback songs are made more different (Falls et al. 1990). If animals tend to 

match playbacks this can also be used in classification experiments (e.g. Falls et 

al. 1988). If the stimulus is made more and more variant the threshold at which the 

animal still classifies it as its own call can be found. It remains to be seen whether 

dolphins match playbacks of their own whistles, so that this method could be 

used. The results of this study make this seem likely. Finally, habituation 

experiments can be used to determine whistle type boundaries. This has been used 

in various bird species like red-winged blackbirds (Agelaiusphoeniceus) (Searcy 

et al. 1994) and song sparrows (Melospiza melodia) (Searcy et al. 1995). If an 

animal habituates to sound A and dishabituates to sound B a difference has been 

detected. However, results of such experiments have to be compared to perception 

experiments. Dishabituation could occur to any perceivable change and, in this 

case, would give only information on perception thresholds. However, if an 

animal does not dishabituate to sounds that have been shown to be distinguishable 

to the animal, this paradigm can be used to gather information on whistle type 

boundaries. It has been used successfully on the perception of alarm calls in 

vervet monlceys {Cercopithecus aethiops) (Cheney & Seyfarth 1988).

Another question that experiments of this sort could answer is whether dolphins 

can recognize each other by voice. Individual recognition can be based on various 

parameters. All animals have individually shaped vocal tracts that cause unique 

voice characteristics. The question is whether these are sufficient for individual 

recognition at all distances. In dolphins, the use of signature whistles suggests that
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it is not. But identity information that is encoded in a learned contour is umeliable 

if animals copy each other’s signature whistles. So far it has only been 

hypothesized that signature whistles are necessary for the maintenance of group 

cohesion and individual recognition. A test of this hypothesis is badly needed. In 

vervet monlceys habituation studies have shown that individuals generalize over 

different alarm calls emitted by the same individual suggesting voice recognition 

(Cheney & Seyfarth 1988). In birds this question has also received a lot of 

attention. Song similarity should, in theory, make individual recognition more 

difficult (Krebs & Kroodsma 1980). Great tits {Parus major) (McGregor & Avery 

1986) and song sparrows (Beecher et al. 1994a) have problems in distinguishing 

between individuals singing the same song type. However, both species can learn 

to distinguish shared songs sung by different individuals. Female great tits can 

distinguish between their own mate and another male singing songs that are 

shared between them (Lind et al. 1996), and song sparrows can be trained to 

distinguish between shared songs (Stoddard et al. 1992). Dolphin whistles are 

more similar to the tonal song of birds than to the low frequency calls of primates. 

Low frequency calls are theoretically better for transmitting voice characteristics 

over long distances since they are not attenuated as quickly and since more 

harmonics are found in the low frequency range. Haimonics are influenced by 

vocal tract morphology and can be used to transmit identity information. The 

more haimonics reach the receiver the more redundancy there is in the signal and 

the more likely it is to transmit the encoded identity information. However, the 

auditoiy sensitivity of dolphins is tuned towards higher frequencies even though 

they also produce low frequency sounds. It could be that this is a result of the 

necessity for good hearing in the frequency range of above 100 kHz (Au et al. 

1974; Au 1993) that is used for écholocation. The use of this high frequency range 

is probably an adaptation to prey size. Killer whales {Orcinus area), for example, 

feed on larger prey and use écholocation clicks that are usually below 50 kHz 

(Diercks et al. 1971; Evans 1973). Their low frequency hearing is better than that 

of the bottlenose dolphin (Hall & Johnstone 1972). Killer whales only rarely use 

whistles (Ford 1989). They have pod specific burst-pulsed calls with many 

harmonics (Ford & Fisher 1983), but so far no individual recognition signals have 

been found. Thus, killer whales may be able to use these harmonics for individual
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recognition by voice. To date no study has addressed this question, but it could 

explain the difference in the vocal repertoire of these two dolphin species.

Recognition experiments will also have to consider voice recognition over the 

different distances that correspond to separation distances between individuals. 

While voice recognition might be possible at close range it could be difficult at a 

distance. Another issue related to this is the change of air-filled cavities under 

different water pressures and how this affects recognition. The findings of 

Ridgway et al. (1997) suggested that beluga {Delphinapterus leucas) sounds 

changed drastically at different depths. It would be important to trace such 

changes in dolphins more systematically and investigate whether parameters that 

are thought to be important for individual recognition by signature whistles, such 

as the overall contour of the whistle, can be kept constant at varying depths.

The question of how dolphins recognize each other by sounds is directly related to 

the issue of whistle type matching. As pointed out several times in this thesis this 

is theoretically a contradictory phenomenon. However, all the results presented 

here suggest that on the one hand dolphins use signature whistles for group 

cohesion and individual recognition and on the other that matching is an important 

aspect of their communication. There are two possible solutions to this problem. 

One is that deception does not pay and therefore does not occur (Grafen 1990). 

This could either be because the costs for producing a deceptive signal outweigh 

the achieved benefit, or because the same goal can be achieved with a different 

strategy that is inherently less costly, or because deceivers are sanctioned by 

conspecifics. In the last case the occurrence of deception would depend on the 

probability of being found out. So far deception has not been demonstrated to 

occur in dolphins, but it is a theoretical possibility. One of the main contexts in 

which it is likely to be used is where resources are monopolized, in which case 

deception could be one strategy to gain access to such resources. Since dolphins 

are not territorial and food patches form and dissolve relatively quickly in the sea, 

this seems unlikely to be of advantage. However, male bottlenose dolphins 

sometimes monopolize females (Connor et al. 1992b). In this context deception 

could be a fruitful strategy if  herding males could be lured away from the females. 

Just as with individual recognition the solution for the contradiction between
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learned individual recognition calls and the possibility of deception could involve 

both pressures in a stable equilibrium. Deception can be evolutionarily stable if it 

is rare and if  the advantages of using learned calls in individual recognition 

outweigh the disadvantages of being deceived occasionally (Wiley 1994),

Matching can have many advantages too. It allows animals to address specific 

individuals. Considering the vast active space of a dolphin whistle this is probably 

a lot more important than in most terrestrial animals. A similar case can be found 

in bat roosts where several thousand individuals occupy a very small area and 

frequently depart and arrive to feed their young (Janik & Slater 1997). It is 

interesting that bats are also vocal learners and that they use learned sounds in 

individual recognition contexts (Jones & Ransome 1993). This parallel supports 

the idea that vocal learning evolved in the context of individual recognition. Again 

playbacks as well as more observational studies in the wild are needed to 

investigate in what contexts this addressing is used.

We have seen tlnoughout this thesis the arguments that can be brought forward to 

explain the complexity of dolphin communication. It is important to note that 

most of these arguments also apply to terrestrial animals to a certain extent. 

However, the degree to which dolphins are deprived of visual and olfactory cues, 

together with their high mobility, predatory life style, and the long phase of 

dependency of their infants is unparalleled. The acoustic channel is the only one 

available for communication and to maintain group cohesion. Thus, acoustic 

backgroimd noise caused by other dolphins must be high. The finding that the 

active space of a bottlenose dolphin whistle can have a radius of up to 38 km 

shows that they are exposed to a lot more noise than we would expect from their 

group sizes. Apart from the problem of masking noise, this finding has two very 

important implications. Firstly, it means that we possibly have to readjust our 

views on the stmcture of dolphin societies. Studies that have employed boat 

surveys and photo identification techniques to determine social association 

patterns found that bottlenose dolphins tend to associate with specific individuals, 

but that these patterns are very fluid and that an individual often does not 

associate with one interaction partner for several days (Wells et al. 1980,1987; 

Wells 1991). This conclusion is based on the assumption that animals in the same
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group interact socially while those in different groups do not. Wells and his 

colleagues considered all animals that are within 100 m of each other as belonging 

to one gi’oup. Given the long range over which individuals can be in acoustic 

contact and the dynamics of fish aggregations it is reasonable to take an 

alternative viewpoint. Since dolphins rely heavily on acoustic communication it 

could be that a group definition based instead on the acoustic space of dolphin 

signals would shed new light on social structures. Individuals that interact 

acoustically might be more closely associated than those that are only swimming 

in the same general area. Animals that happen to feed in the same area need not 

necessarily interact socially. Dolphins seem to use the Kessock Channel primarily 

for foraging during rising tides (Lütkebohle 1995). Small clusters of dolphins 

often arrived together and also left together, but mixed with other individuals in 

the area during their stay (pers. obs.; Lütkebohle 1995). Even though this is a 

preliminary observation based on very obviously marked individuals, it could 

indicate that such feeding aggiegations are not well suited to investigate the social 

stmcture of these animals. Acoustic data are often difficult to get, but group 

definitions that aie based on close proximity between individuals (e.g. Smolker et 

al. 1992), and if possible on the behavioural context, might be more usefLil for the 

study of association patterns.

The second implication of the large acoustic space of dolphin signals also 

concerns their social behaviour. This large range enables an individual to collect 

information on a lot of interactions without being itself involved. McGregor 

(McGregor 1993; McGregor & Dabelsteen 1996) pointed out that eavesdropping 

is likely to occur in large communication networks and that its role in animal 

communication has been underestimated in many studies. Indeed we know almost 

nothing about whether and how dolphins use such infonnation. However, it would 

be very interesting to investigate its possible effects on social interactions and the 

dominance structure in dolphin societies. If the food-related calls described in 

Chapter 7 are used to stun prey, the finding that dolphins are attracted to feeding 

sites after braying was recorded could be an example of how animals benefit by 

eavesdropping on others. However, currently we do not know what the primary 

function of braying is.
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It becomes clear that the study of dolphin communication is still far behind that of 

other animals. Now that acoustic localisation techniques are more easily available 

I hope that more researchers will take these into the field and study functional 

aspects of this important part of their social behaviour. Dolphins have a complex 

social systems and exhibit cognitive abilities that equal those of non-human 

primates. Thus, they are a veiy promising group for the comparative study of the 

evolution of cognition and communication in mammals. The comparison of 

dolphins, seals, bats, and primates has already helped to recognize some of the 

likely factors that were responsible for the evolution of vocal learning in 

mammals (Janik & Slater 1997). Similarly, as pointed out in Chapter 2, the 

similarities in the complexity of the social structure and in the opportunistic 

feeding habits of dolphins and some apes make comparisons between these 

animals particularly interesting for the study of the evolution of intelligence. The 

fact that dolphins, unlike non-human primates, are also very versatile at vocal 

learning gives us a chance to observe in what ways these skills interact and how 

such interactions affect the structure of animal societies.
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I. I n t r o d u c t io n

In this chapter we survey the occurrence of vocal learning in mammals 
and discuss possible reasons it has evolved. But first it is important to 
be clear about what we mean by “vocal learning.” The term has been used 
to describe the influence of learning on a variety of different aspects of 
vocal communication. Learning can affect the generation of sounds, their 
usage, and their comprehension. While modifications in sound genera­
tion as a result of experience can be described as learning sounds, those 
in comprehension and usage are rather different phenomena, which are 
perhaps better described as learning about sounds. Vocal learning, as we 
discuss it here, refers only to learning sounds, that is, to instances where 
the vocalizations themselves are modified in form as a result of experience 
with those of other individuals. Learning that affects usage and comprehen­
sion of sounds will be referred to as contextual learning as opposed to 
vocal learning. Contextual learning in relation to vocal communication is 
relatively common among mammals. The list of animals in which the utter­
ance of a vocal signal has been brought under conditional control, i.e., 
which have learned to change the context in which they are using sounds, 
comprises rats (Lai, 1967), guinea pigs (Burnstein and Wolff, 1967), dogs 
(Salzinger and Waller, 1962), cats (Molliver, 1963), sea lions (Schusterman 
and Feinstein, 1965), primates (Myers, Horel, and Pennypacker, 1965; Ran­
dolph and Brooks, 1967; Wilson, 1975; Aitken and Wilson, 1979), and 
dolphins (Lilly, 1965). Other forms of contextual learning in vocal communi­
cation involve learning to recognize particular sounds, or learning to react 
to sounds differently as a result of experience. These are important ways 
in which learning may influence vocal communication, and the behavior 
associated with it, but they are not examples of vocal learning in the strict 
sense in which we use the term here.
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Some types of modification through learning are likely to be easier to 
achieve than others because different sound parameters are controlled by 
different mechanisms. Overall duration and amplitude of a sound can be 
altered by simple modifications of exhalation alone. A longer exhalation 
phase or higher air pressure while producing the sound is all that is required 
to cause such changes. For learning to occur here, only the activity of 
respiratory muscles need be modified by experience. Such changes in dura­
tion or amplitude do not affect the overall form of a call. On the other hand, 
the detailed matching of a sound pattern requires much more complicated 
alterations. The fundamental frequency of a sound can be altered only if 
the activity of muscles controlling the vocal apparatus itself can be modified 
by experience. In tonal signals this is required to achieve change in the 
frequency contour of a call. Of course, other more complex processes can 
be involved in sound production. Rapid amplitude modulation, for example, 
can cause additional frequency bands in a call. Seemingly subtle changes 
that require a high degree of coordination between respiratory, laryngeal, 
and articulatory muscles, like those leading to differences in voice-onset 
time, can also be involved. Where possible we look at modifications in 
duration and amplitude and those in frequency parameters separately, and 
point to these different levels of motor control as they occur in the vocal 
learning of different groups.

Vocal learning has been described only in birds and mammals, and even 
among these the evidence is patchy. It has been found in all songbirds 
(Oscines) studied to date (Kroodsma and Baylis, 1982), but appears not to 
occur in the closely related Suboscines (Kroodsma, 1984,1989). Convincing 
evidence comes from only two of the twenty or so other orders of birds: 
the hummingbirds (Apodiformes) (Baptista and Schuchmann, 1990: Gaunt, 
Baptista, Sanchez, and Hernandez, 1994) and the parrots (Psittaciformes) 
(Todt, 1975; Pepperberg, 1981). The three groups showing vocal learning 
are only distantly related to each other, suggesting that it has evolved among 
birds on at least three separate occasions. In mammals, the importance of 
vocal learning in our own species contrasts remarkably with the scarcity of 
evidence elsewhere. Part of the reason for this may be the lack of relevant 
studies. Absence of evidence for vocal learning in a particular species is 
certainly not evidence for its absence.

In our review of the literature on vocal learning in mammals we attempt 
to determine the extent to which it occurs in species other than our own, 
and whether it is widespread or patchily distributed as in birds. This survey 
enables us to compare and contrast birds and mammals, and to consider 
the possible functional significance of vocal learning. It may perhaps also 
shed some light on why it occurs in humans. But first we discuss the methods
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that have been used in various studies and the extent to which these can 
give unequivocal evidence for or against vocal learning.

II. E v i d e n c e  f o r  V o c a l  L e a r n i n g

There are several pitfalls in trying to show vocal learning in a particular 
species. A fundamental problem is the question of whether a particular 
call was in an animal’s repertoire before it was first noted. Apparent changes 
in the call repertoire of an animal often relate to other changes in its 
environment. Examples are alterations in social context, because of the 
introduction of foreign animals or a change in status, changes in the habitat 
that alter its sound transmission characteristics, or seasonal events that 
influence the diurnal behavior patterns of the animal. If a new call arises 
at the time of such an event, it could be because of a change in the frequency 
of occurrence of calls that were already present in the repertoire rather 
than vocal learning.

But even a truly new call could arise for different reasons. Maturational 
processes or improvisation could be responsible, rather than copying from 
other individuals. Maturational processes lead to changes in vocal tract 
morphology that can influence sound characteristics. Thus, simple observa­
tions of changes in the call repertoire during ontogeny are difficult to 
interpret. Vocal learning may or may not be involved.

Improvisation is another process that leads to the production of new 
calls. Various different mechanisms can be used to achieve improvisation, 
and vocal learning, again, may or may not be involved. One possibility is 
the production of completely new sounds through random sound genera­
tion. This form of improvisation would be an interesting case of vocal 
flexibility. According to our definition it does not involve vocal learning, 
however, since experience is not required. As we see in our survey, com­
pletely random sound production has so far never been the only possible 
explanation for an observed change in call structure. But there are other 
forms of improvisation that do involve learning. If an animal produces a 
completely new call that avoids overlap with calls of other individuals, 
experience might be used to achieve this avoidance. This would be a case 
of vocal learning according to our definition. A more restricted form of 
improvisation might involve a recombination of given subunits of a call. If 
these units can be produced on their own, this form of improvisation repre­
sents a special case of contextual learning. It is simply a matter of calls that 
are already present in an individual’s repertoire being produced in a new 
context. Finally, an animal could learn different parts of other individuals’
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calls and combine them to form a new call. This sort of improvisation would 
be a clear case of vocal learning.

Vocal learning is obviously difficult to investigate if changes in calls do 
not result in matching those of other individuals or model sounds. The 
most clinching evidence for vocal learning comes from experiments in which 
animals are trained to imitate sounds that have not been in their reper­
toire before. If animals are able to copy sounds that are very different 
from sounds in their natural repertoire, like human speech or computer­
generated sounds that were designed to be different, vocal learning has 
clearly been demonstrated. In animals that are not capable of imitating 
such sounds, vocal learning within the natural repertoire can nevertheless 
be shown by rearing experiments, if infants that were raised with different 
acoustic stimuli are found to match the sounds they heard in detail. It is 
unlikely that selective reinforcement of randomly produced sounds could 
result in detailed matching of sounds produced by other animals.

Such rearing experiments have commonly been carried out on birds, but 
few have been attempted on mammals. There are probably two main rea­
sons for this. First, many of the mammalian species involved, such as whales 
and dolphins, are difficult to keep in the highly controlled acoustic environ­
ments necessary for such studies. Second, the species involved are highly 
sociable and subjecting individuals to experimental treatments involving 
deprivation likely to lead to suffering is not easy to justify. Because of these 
difficulties, for many mammals the evidence for or against vocal learning 
is more circumstantial.

The main source of such less direct evidence comes from geographic 
variation in vocal signals. Where neighboring animals, or those in a social 
group, share sounds that differ from more distant individuals or those in 
other groups, vocal learning is a probable reason. This is most obvious 
where groups are not geographically isolated from each other. However, 
one has to be careful in interpreting such observations. Geographic varia­
tion in vocalizations can also arise because of ecological differences. Trans­
mission characteristics of the environment may influence the extent to 
which a particular sound in an animal’s repertoire is used. Differences in 
social structure in different locations could have the same effect on the 
usage of different call types that are present in the repertoire of all members 
of the species. Even different preferences for certain call versions can be 
the reason for geographic variation. In what he called action-based learning 
Marier (1991) suggested that an animal may produce only those sounds 
from its repertoire that are selectively reinforced by social stimulation. If 
there are different preferences for particular call types in different popula­
tions, action-based learning may result in geographic variation of their call 
repertoires. This would be a case of contextual learning, but not vocal
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learning. Finally, if animals tend to stay in their maternal groups, genetic 
transmission is a possible reason for differences in call repertoires. Further 
research is needed in such cases to show vocal learning unequivocally.

III. S u r v e y

A. B ats

In many bat species the isolation calls of pups exhibit vocal “signatures” 
(significant individual differences that remain constant over time) and these 
are used by mothers to find their offspring when they return to the colony 
to suckle them. Variation in the isolation calls of young big brown bats 
(Eptesicus fiiscus) is as great within as between colonies, and between 
twins as between less close relatives (Rasmuson and Barclay, 1992). The 
production of a completely new call could be achieved either by producing 
a call at random, which need not involve learning, by active avoidance of 
matching the calls of neighboring individuals, or by composing a call mixing 
different parts of heard calls. Although the last two mechanisms would 
involve learning, there is no conclusive evidence that they are involved 
here. However, it is interesting that there are closer similarities in écholoca­
tion calls within families than between them in this species (Masters, Raver, 
and Kazial, 1995), suggesting that écholocation and isolation call develop­
ment are controlled by different mechanisms.

In the lesser spear-nosed bat (Phyllostomus discolor) mothers and infants 
exchange calls when they reunite, and Esser and Schmidt (1989) suggest 
that the infant’s isolation call becomes progressively more like the mother’s 
call over the first few weeks of life. Esser (1994) argues that this is due to 
learning: he found that the calls of isolated pups that were played a tape- 
recorded call over the first 50 days of life tended to become somewhat 
similar to it, while those of unstimulated controls remained highly variable. 
However, one problem with isolation experiments is the general lack of 
stimulation. Bats might simply need auditory input of some nonspecific 
sort to develop normal calling behavior. An experiment with two groups 
hearing different calls would clarify whether learning is involved.

The most convincing evidence for vocal learning in bats comes from the 
development of écholocation calls in greater horseshoe bats (Rhinolophus 
ferrumequinum) (Jones and Ransome, 1993). This call is an almost pure 
tone of around 83 kHz. Its sound frequency is higher in summer than in 
winter, but it also rises in the first year or two of life, and later falls off in 
old age. When young bats first start to hunt for themselves at a few weeks 
of age the frequency of the calls they adopt is strongly correlated with that
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of their mother. In both males and females young bats with mothers over 
five years old have significantly lower écholocation calls than those born 
to younger mothers. This correlation with maternal age strongly suggests 
that learning is involved.

B. P in n ip e d s

Most authors place the pinnipeds in the order carnivora. They are classi­
fied into the true seals (phocids), the sea lions and fur seals (otariids), and 
the walruses (odobenids). Evidence for vocal learning has so far been found 
only in phocids. The most conclusive evidence that seals can learn new 
sounds comes from the imitation of human speech by captive animals. Two 
male harbor seals (Phoca vitulina) at the New England Aquarium were 
able to mimic speech sounds (Ralls, Fiorelli, and Gish, 1985). The more 
impressive of the two. Hoover, spontaneously developed imitations of a 
variety of phrases typically produced by visitors to the aquarium, such as 
“hello there” and “come over here,” as well as his own name and an 
imitation of laughter. In a controlled conditioning experiment, the second 
seal was trained to imitate its own name.

Evidence in the wild is not so easily obtained. Geographical variation 
has been described in several species, but authors vary in whether they 
attribute this to learning. Thomas and Stirling (1983) examined Weddell 
seal {Leptonychotes weddelli) calls at Palmer Peninsula and McMurdo 
Sound, two sites on the edge of the Antarctic continent some 4000 km 
apart. Weddell seals have a large repertoire of vocalizations that they use 
extensively in the mating season (Thomas and Kuechle, 1982). Although 
some call types were found at both sites, each colony also had several 
unique ones. Marked spectral and temporal differences were found in some 
of the shared calls. Furthermore, seals at McMurdo had more call types in 
their repertoire than those at Palmer Peninsula. The authors suggest that 
the combination of fidelity to breeding sites and learning may account for 
these differences. The problem is to differentiate between these ideas: over 
a long period of time geographical isolation may lead to genetic differences 
affecting calls just as learning may give rise to call differences over shorter 
periods. Morrice, Burton, and Green (1994) compared vocal repertoires of 
two Weddell seal colonies located in adjacent fjords only 20 km apart. 
Despite the close proximity of these two colonies they had only 5 of 44 
described vocalization types in common. Of the five shared call types two 
showed significant differences in their start or end frequency between colo­
nies. Furthermore, a song type recorded in 1984 in one of the fjords (Green 
and Burton, 1988) could not be found again in 1989/1990 (Morrice et a i.
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1994). Such strong dialects between adjacent colonies are rare in mammals 
and make vocal learning a likely explanation for their occurrence.

All other studies on geographic variation in seal calls have concentrated 
on very distant sites. Thomas and Golladay (1995) studied geographic 
variation in leopard seal {Hydrurga leptonyx) underwater vocalizations at 
Palmer Peninsula and McMurdo Sound, the same sites as in the Weddell 
seal study by Thomas and Stirling mentioned earlier. They found that seals 
at Palmer Peninsula had more call types in their repertoire and that shared 
calls varied in frequency and time parameters between the two sites. 
Bearded seals {Erignathus barbatus) at six distant sites north of Canada 
and Alaska also differed in various temporal and spectral features of their 
underwater “trill” vocalizations (Cleator, Stirling, and Smith, 1989). Again, 
the authors suggest that this may be because of strong fidelity to specific 
breeding areas, but they do not discuss learning. Terhune (1994), in a 
study of harp seal {Phoca groenlandica) underwater calls in the Gulf of St. 
Lawrence and on Jan Mayen Island, sites some 3500 km apart, found 
spectral and temporal differences in shared call types. Each colony also 
had one unique call type not found at the other study site. Terhune attributes 
differences between sites to reproductive isolation. Given the possible role 
of learning, this seems somewhat sweeping. It is interesting, though, that 
different samples at each of the two sites were collected on occasions 18-20 
years apart and only slight differences, probably attributable to sampling 
error, were found between the recordings at the same place (Terhune, 1994). 
This suggests that call repertoires at a particular place are conservative in 
a way that would be less likely if learning were involved. However, harp 
seals can live up to 35 years (Reeves, Stewart, and Leatherwood, 1992), so 
that 20 years might not be enough time to pick up changes caused by 
copying errors in a learning process.

Differences in the pattern of northern elephant seal {Mirounga angustiro- 
stris) threat vocalizations between several islands off California were inter­
preted by Le Boeuf and Peterson (1969a) as evidence for learning. There 
were marked differences in the pulse rate of threat calls between the colo­
nies, one of which, with its distinct dialect, had been in existence only for 
a few years. However, later studies showed that, even though there were 
still clear individual differences in pulse rates, colony differences had disap­
peared (Le Boeuf and Petrinovich, 1974; Shipley, Hines, and Buchwald,
1981). Note that to change pulse rate the animal has to produce the same 
sound in quicker or slower succession. It does not change the form of the 
call. Therefore, this would not qualify as an example of vocal learning 
according to our definition, unless pulse sequences represent minimum 
units of call production and single pulses cannot be produced on their own. 
However, the disappearance of geographic differences in calling behavior
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is an interesting phenomenon that is relevant for our interpretation of 
geographic variation in other cases. By the end of the 19th century, northern 
elephant seals were reduced to less than 100 animals all living on Isla de 
Guadalupe 243 km west of Baja California (Bartholomew and Hubbs, 
1960). The population was then protected and started to grow again and 
to recolonize old breeding sites (Le Boeuf and Petrinovich, 1974). There 
are two ways in which differences between colonies could have arisen in 
the first phase of recolonization. The first is a founder effect. The small 
number of males that emigrated to recolonize a particular breeding site 
could have had pulse rates on average different from those of the original 
colony. Once an elephant seal has chosen a breeding site in the first year 
of its reproductive life, it tends to return to that same site each year (Le 
Boeuf, Ainley, and Lewis, 1974), A difference in pulse rates between colo­
nies would therefore be likely to persist as long as no further migration 
occurred. The second possibility is that a few males monopolized most of 
the females and spread their pulse rate, either through being imitated by 
younger animals or through genetic transmission. If young males return to 
their natal rookery to breed, a particular pulse rate could thus establish 
itself and persist. In small colonies only a few males do indeed monopolize 
all the females and are the only ones that breed (Le Boeuf, 1974), but 
there is no clear evidence on whether males return to their natal rookeries 
to breed. Dispersion from the island of birth after 1968 was considerable 
(Le Boeuf et ai, 1974), but of 400 males tagged as juveniles on Ano Nuevo 
Island between 1964 and 1969 none were sighted at any of the other breeding 
sites in their first breeding season at the age of 5-6 years (Le Boeuf, 1974). 
If there is continuing immigration from other colonies, pulse rate in a 
recolonized site would change and eventually the differences in pulse rate 
between colonies would disappear. The subsequent studies during rapid 
population expansion showed this to be the case. Such a process would 
occur as long as there was no isolating mechanism between populations, 
whether or not learning has a role in pulse rate development. The longevity 
of elephant seals made it possible to witness these changes occurring. The 
observed differences cannot therefore be regarded as a result of learning.

C. C e t a c e a n s

i. Toothed Whales (Odontocetes)
As with seals, the smaller cetaceans can be kept in captivity, and observa­

tions there provide some evidence of vocal imitation. There is anecdotal 
evidence, largely from keepers, that these animals can modify the broad­
band frequency squeaks that they produce so as to imitate human speech 
{Tursiops truncatuSf Caldwell and Caldwell, 1972; Delphinapterus leucas,
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Eaton, 1979). The most extensive experimental evidence comes from the 
bottlenose dolphin (Tursiops truncatus), as this is the cetacean most com­
monly kept in captivity. They produce whistles, clicks, and burst-pulsed 
sounds that are all modifiable by experience. Most of the evidence of vocal 
learning concerns their whistles. Caldwell and Caldwell (1972) recorded a 
case of spontaneous whistle mimicry when their study animal matched a 
whistle that was being used to test its sound localization abilities. Reiss 
and McCowan (1993) also found bottlenose dolphins mimicking whistle 
sounds spontaneously. Two young males were given control over stimuli 
by means of an underwater keyboard. Pressing a symbol on this released 
a sound linked to it and also the presentation to the dolphin of an object 
or activity, such as a ball or being rubbed. The animals learned to mimic 
the sounds and later produced them frequently without having pressed the 
key to hear the appropriate stimulus, but often while playing with the object 
or engaged in the activity with which it had been linked.

When it comes to training, there is no doubt that dolphin whistles can 
be modified by experience. Richards, Wolz, and Herman (1984) trained a 
dolphin to imitate computer-generated sounds using food or petting by the 
trainer as rewards. The animal matched a variety of sounds that were 
quite different from those it produced before the training. In some cases 
it produced passable copies the first time a sound was introduced. In further 
training the animal was rewarded for producing particular whistles when 
specific objects were shown to it, and would do so with a high degree of 
reliability. Thus, the dolphin effectively learned vocal labels for those ob­
jects. In a subsequent series of experiments, Sigurdson (1993) also success­
fully trained two dolphins to match computer-generated whistles.

A few studies have described the changes in whistle repertoires of infant 
bottlenose dolphins over time (Caldwell and Caldwell, 1979; Sayigh, 1992; 
McCowan and Reiss, 1995). However, even though the species is clearly 
capable of vocal learning, the role of vocal learning in whistle development 
of infants has not been demonstrated so far.

Wang and his colleagues (Wang, Wtirsig, and Evans, 1995) found marked 
geographic variation in spectral and temporal features of bottlenose dolphin 
whistles in the wild at sites only a few hundred kilometers apart. Each site 
had its own resident population with some individuals moving between 
them. Since dolphins produce individually specific whistle contours, the 
study did not look at different call types separately, but simply compared 
general parameters like start and end frequency in all recorded whistles at 
each site.

Experimental work by Moore and Pawloski (1990) provided evidence 
that vocal flexibility applies to click sounds used in écholocation as well. 
They succeeded in training a bottlenose dolphin to shift the peak frequency
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of its broad-band ultrasonic écholocation clicks. The anecdotal evidence 
of dolphins mimicking speech sounds also suggests that clicks can be modi­
fied, as they use very rapid click trains called burst-pulsed sounds to produce 
these imitations.

Turning to larger odontocetes, there is also evidence in favor of vocal 
learning. Pods of killer whales (Orcinus orca) off British Columbia have 
repertoires of 7-17 call types, which appear to be shared by most individuals 
in the pod (Ford and Fisher, 1983; Ford, 1991). Groups of pods can be 
placed in “clans,” which share some call types, although shared types still 
have pod-specific features; there is no sharing of calls between clans. New 
pods appear to form by splitting of preexisting ones, with slow divergence 
of calls thereafter, though there is evidence that pod repertoires can persist 
for 25 years with little change. Since all animals within a pod are closely 
related (Bigg, Olesiuk, Ellis, Ford, and Balcomb, 1990), such differences 
could be caused by genetic differences. However, Ford (1991) reports that 
individuals occasionally seem to mimic the calls of other pods, suggesting 
that learning is involved.

Studies on captive killer whales have not addressed the question of vocal 
learning directly. However, Bain (1986) gave an anecdotal report that a 
female killer whale from Iceland started to mimic calls of a female from 
British Columbia, Canada, after they had been housed together for a few 
years. Differences in the vocal repertoire of killer whales between such 
distant sites are larger than those between sympatric pods (Awbrey, Evans, 
Jehl, Thomas, and Leatherwood, 1982). However, no spectrographic analy­
sis was provided in Bain’s study. Bowles, Young, and Asper (1988) de­
scribed the vocal development of a captive killer whale calf, but the role 
of vocal learning in call development could not be addressed. As discussed 
earlier, changes in the vocal repertoire during ontogeny can be matura­
tional, genetic, or learned. Van Heel, Kamminga, and van der Toorn (1982) 
reported an experiment in which a killer whale seemed to spontaneously 
imitate computer-generated tonal signals that were used in training the 
animal to perform different tasks. However, these signals were designed 
to resemble the whale’s own vocalizations, so that vocal learning was not 
necessary to produce them.

2. Baleen Whales (Mysticetes)
Perhaps the best known example of vocal learning among whales in the 

wild is that of male humpback whales {Megaptera novaeangliae) in which 
individuals produce long and elaborate songs lasting up to 20 minutes 
before repetition (Payne and McVay, 1971). Recordings of the songs of 
this species off Bermuda over a period of 18 years showed that they changed 
with time but that at any one time the songs of different individuals were
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similar (Payne and Payne, 1985). Detailed study of songs recorded around 
Hawaii in two singing seasons (mid-November to mid-May) demonstrated 
progressive change from month to month through the season, with little 
difference between the end of one season and the start of the next, the 
period when the whales are away on their feeding grounds and sing little 
(Payne, Tyack, and Payne, 1983). This suggests that change is an active 
process rather than one of forgetting sounds with the passage of time. Nor 
can the changes be attributed to changing group membership, as Guinee, 
Chu, and Dorsey (1983) obtained two recordings from each of three identi­
fied individuals and found both that they changed and that they did so in 
parallel with each other. These detailed short-term changes, both within 
and between individuals, can be accounted for only if animals are imitating 
one another. However, songs of different humpback whale populations 
differ completely (Winn, Thompson, Cummings, Hain, Hudnall, Hays, and 
Steiner, 1981). But even though this species is clearly capable of vocal 
learning, geographic variation could have evolved because of genetic isola­
tion between populations in different oceans.

Bowhead whales {Balaena mysticetus) studied during their spring migra­
tion have also been found to sing (Cummings and Holliday, 1987). Their 
song consists of repeated phrases that can be categorized into one to three 
themes. A song lasts about one minute but is usually repeated several times. 
As with humpback whales, all animals in the study population off Alaska 
sang the same song but the song was different in each singing season 
(Wtirsig and Clark, 1993). Cummings and Holliday (1987) always heard 
one animal singing at a time but another one often started as soon as the 
first stopped. It is not clear yet whether individuals change their song over 
the season, but, if so, it would be strong evidence for vocal learning.

D. P r im a te s

As we get closer to humans, one might imagine that the evidence for 
vocal learning would become more and more impressive. As we shall see, 
this is far from being the case.

7. Monkeys
“There is no conclusive evidence of vocal learning in monkeys” (Snow­

don, 1990, p. 225). Perhaps the strongest evidence against vocal learning 
is in squirrel monkeys {Saimiri sciureus)^ where isolation-reared animals 
(Winter, Handley, Ploog, and Schott, 1973), and even deafened ones 
(Talmage-Riggs, Winter, Ploog, and Mayer, 1972), show normal vocal devel­
opment. In the squirrel monkey there is also a good example of a dialect 
that is not based on learning. Two distinct phenotypes of squirrel monkeys,
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the Roman Arch and the Gothic Arch population, named after characteris­
tics of their supraorbital color pattern, show differences in the structure 
of their isolation calls (Winter, 1969). The unique call structure of each 
population was present in infants from the first day of their lives (Lieblich, 
Symmes, Newman, and Shapiro, 1980). Given the normal vocal develop­
ment of both deafened and isolated individuals, these differences are clearly 
not based on vocal learning. Furthermore, Struhsaker (1970), who investi­
gated geographic variation in the call structure of vervet monkeys (CercopU 
thecus aethiops) in various parts of Africa, could not find any differences 
between populations.

Marmosets and tamarins have been studied extensively, mainly by Snow­
don and his colleagues. In the field, Hodun, Snowdon, and Soini (1981) 
measured four parameters of the long call of saddle-backed tamarins (Sagui- 
nus fuscicollis). They found differences in the long calls of different subspe­
cies, with that of one individual having features both of its own subspecies, 
S. f. nigrifrons, and of an adjacent one, S. f. illigeri, suggesting that learning 
might be involved. To find out whether this animal could have been a 
hybrid between the two subspecies, the same four call parameters were 
measured from two known hybrids of these subspecies in captivity. The 
hybrids developed a long call with one of the sound frequency parameters 
being closest to that of a third subspecies, which they had been able to 
hear in the room where they were housed, while the other parameters 
resembled those of nigrifrons. The wild animal, on the other hand, resem­
bled the illigeri subspecies in this frequency parameter and in its call dura­
tion. The data were not given in detail, and concern up to only 12 calls of 
each of the three different animals, so it is difficult to assess whether 
differences in long-call structure reflected vocal learning, genetic differ­
ences, or different motivational states during recording sessions.

Maeda and Masataka (1987) found variation in long calls of red-chested 
moustached tamarins (Saguinus labiatus labiatus), that had been caught at 
two sites 27 km apart. In a subsequent study, a third group, which was 
caught only 15 km from one of these sites, produced a third call variant 
(Masataka, 1988). Each particular variant of the call was used by animals 
living within 6 to 15 km of each of the original catching sites, while animals 
from further away used different variants. Masataka (1988) reported that 
there were no geographical barriers between sites where different call 
variants were found, but there are no data on whether interbreeding be­
tween these sites occurs. It is also possible that tamarins adjust their calls 
according to the habitat by using different forms that are already present 
in their repertoire or that the variations found belong to particular matri- 
lines. In either case learning need not be involved.
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In a more recent study, Elowson and Snowdon (1994) showed that mem­
bers of pygmy marmoset {Cebuella pygmaea) colonies modified the struc­
ture of their individually distinctive trill contact calls after being placed in 
a cage adjacent to another colony. The modifications did not result in 
converging or diverging call structure. This, again, could be evidence for 
learning, but introducing new animals, even if contact is only acoustic, 
might shift social relationships within and between colonies. Thus, the 
modification of calling behavior over time might not be due to learning 
but could be related to a change in the role or dominance structure of each 
colony. In this example it is not clear whether call variants that were found 
after the introduction of the other colony were in the call repertoire before. 
They simply could have occurred less often because of the different social 
status of the individual before the introduction.

Whether or not macaque food calls are learned has been the cause of 
some controversy. Field observations by Green (1975), in which he found 
differences between troops in Japanese macaques (Macaca fuscata), sug­
gested that food calls might be learned. However, in all three locations 
studied by Green, extensive food provisioning might have conditioned 
monkeys to produce only a particular version of their food call from a 
range present in their repertoire before provisioning started. Subsequently, 
Masataka and Fujita (1989) carried out cross-fostering experiments between 
Japanese and rhesus monkeys {Macaca mulatto), and found that the young 
developed calls more typical of their foster species. However, their result 
was based on only three animals that might have been atypical (Snowdon, 
1990). Owren, Dieter, Seyfarth, and Cheney (1992) failed to replicate Masa­
taka and Fujita’s result. They argue that the calls of adult females of the 
two species vary a great deal and that there was no significant difference 
between species in any of the measures used. Even though infants of both 
species differed significantly in several parameters, calls developed by the 
cross-fostered infants fell within the distribution range for normally raised 
members of their own species in most cases. Despite this, it seemed that 
cross-fostered Japanese macaques did become more similar to rhesus mon­
keys in several frequency measures after 2 years of age. Given the variability 
of calls within species and the overlap between them, this is not an easy 
system in which to test for vocal learning.

In training experiments it has been shown that rhesus monkeys can be 
conditioned to increase overall call duration and amplitude (Sutton, Larson, 
Taylor, and Lindeman, 1973). Therefore, primates seem to have control 
over these basic call parameters. However, as pointed out earlier, such 
shifts do not require any changes in the setting of the sound production 
organ, but only a longer or stronger expiration phase. In another report 
about these experiments, Larson, Sutton, Taylor, and Lindeman (1973)
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described changes in the spectral components of the trained calls in the 5- 
8 kHz range. It is important to note that these changes were not a require­
ment of the conditioning procedure but occurred independently of the 
selective rewards used in the experimental setup. Therefore, they do not 
represent evidence for vocal learning in the frequency domain. Larson et al. 
argue that they reflect a decrease in stress over the period of the experiment. 
Hauser (1992) found differences in the “coo” social contact vocalization 
of rhesus monkeys between different matrilines on Cayo Santiago. Again, 
it is not clear whether these are caused by learning, genetic predisposition, 
or differences in parental behavior that might affect the extent to which a 
particular call version in an animal’s repertoire is used. Hauser mentioned 
that some animals changed their coo calls after migrating into another 
group, but did not provide further details. As in other studies, such changes 
could also be the result of a change in usage of calls that were present in 
the animal’s repertoire before.

2 Gibbons
Among the primates, gibbons are undoubtedly the most elaborate singers. 

Both male and female sing, and they often do so in the form of coordinated 
duets in which the female, with her “great call,” may take the leading role. 
Gibbons are monogamous and territorial, and the song duets are assumed 
to function in territory maintenance and pair bonding. In playback experi­
ments, Mitani (1985) showed that females do not approach singing males, 
but males and females react strongly toward new duets in or close to their 
territory. Despite their complexity and intricacy, gibbon songs are highly 
stereotyped with little geographic variation (Marshall and Marshall, 1976). 
The major role of experience in the development of gibbon vocalizations 
lies not in copying but in coordination between members of a pair. A newly 
introduced pair of siamangs {Hylobates syndactylus) completed their great 
call sequences on only 24% of occasions, the songs terminating because 
one or the other animal produced a call that was inappropriately placed 
or timed. However, in recordings made after they had been together for 
18 weeks, some 79% of sequences were completed (Maples, Haraway, 
and Hutto, 1989). There is also evidence, some anecdotal (Marshall and 
Marshall, 1976) some better documented (Geissmann, 1983; Srikosamat,
1982), that females deprived of a male or with one that does not sing can 
produce the male contribution to the duet as well as their own.

When it comes to development in gibbons, there is no evidence that 
individuals copy from each other, but there is strong evidence for a genetic 
influence. This comes from hybrids in nature and in captivity. White-handed 
gibbons {Hylobates lar) and pileated gibbons {H. pileatus) hybridize in a 
contact zone in central Thailand. Brockelman and Schilling (1984) found
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that daughters of mixed parentage develop great calls unlike those of their 
mothers, but intermediate between the two species. This occurs despite the 
fact that the calls develop during mutual singing sessions between mothers 
and daughters. A similar conclusion has been reached from studies of 
hybrids between the two species in captivity (Geissmann, 1984,1987). Ten- 
aza (1985) also found that the song of two young, a male and a female, 
from a cross between H. lar and H. muelleri included characteristics typical 
of their own sex in both species despite having heard those elements from 
only one of these, that of their own sex parent.

Although these hybrid studies appear to argue strongly against a role of 
learning in gibbon song development. Marier and Mitani (1988) press for 
caution. If, as has been suggested in birds, young animals are born with a 
species-specific template that constrains what they will learn, the template 
in a hybrid might not be well matched to the sounds it experiences, so that 
it fails to learn parental calls. Mitani (1987) also presented evidence that 
agile gibbons {Hylobates agilis) show geographic variation in their calls. 
The populations involved were on separate islands very distant from one 
another. Therefore, genetic differences could be responsible. Further stud­
ies focusing on possible dialects in the wild are needed to evaluate whether 
some learning could be involved in gibbon call development,

3. Great Apes
Of the great apes, the vocalizations of chimpanzees have been the most 

extensively studied (e.g., Marier and Tenaza, 1977). It was natural that 
those interested in whether apes could master language first turned to 
humans’ closest relatives. Although subsequent efforts with various media, 
ranging from sign language to computer keyboards, met with considerable 
success, early attempts to “teach chimps to speak” were almost fruitless. 
Vicki, the common chimpanzee {Pan troglodytes) trained by Hayes (1951), 
eventually seemed to produce four English words after 7 years of language 
training. However, no data on the similarity of these sounds with actual 
words were presented. The bonobo {P. paniscus) called Kanzi, studied by 
Hopkins and Savage-Rumbaugh (1991), developed a variety of species- 
typical vocalizations but, despite extensive interactions with humans, only 
four calls not shared with control animals. However, the different rearing 
of Kanzi could have delayed the development of certain bonobo calls, so 
that these four sounds could have been left over from his call repertoire 
as an infant. Therefore, they do not represent evidence for vocal learning 
in bonobos either.

When it comes to imitation of conspecific sounds, there is little evidence. 
Mitani, Hasegawa, Gros-Louis, Marier, and Byrne (1992) describe differ­
ences in the pant hoot of chimps between two sites in Tanzania, Mahale
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and Gombe. In a subsequent analysis, Mitani and Brandt (1994) demon­
strated that population differences in these calls were largely encoded in 
only one parameter, namely frequency range. The differences seem, how­
ever, quite subtle, which may explain why there are no other reports of 
geographical variation in chimp sounds. Mitani e ta l (1992) argue that these 
differences could result, not from copying, but from contextual learning 
stemming from the selective reinforcement within each population if an 
animal produces sounds that match the population norm. This would be 
what Marier (1991) called action-based learning, in which an individual 
produces only those sounds from its repertoire that have been selectively 
reinforced by social stimulation. In this case the difference in call structure 
between recording sites would have been caused by different preferences 
for certain call versions by each population. Alternatively, food provisioning 
by humans at both sites may have had a conditioning effect that resulted 
in the observed differences, if individual humans were more responsive to 
certain call variants. Again, this may have led the animals to use another 
call variant that was present in their repertoire before without vocal learning 
being involved.

Mitani and Brandt (1994) presented interesting evidence that male chim­
panzees match the acoustic characteristics of each other’s pant hoots when 
calling together. This was statistically significant for the one individual for 
which a sufficient sample size was available. Depending on its chorusing 
partner this animal changed the spectral structure of its calls to match those 
of the other caller. Further research is needed to investigate the flexibility 
of pant hoot matching and assess whether these changes are learned or a 
side effect of subtle differences in calling contexts.

E. O t h e r  M a m m a lia n  O r d e r s

A few studies of other mammalian orders have shown similar phenomena 
to those discussed for primates, although they have not so often been 
interpreted as evidence for vocal learning. Romand and Ehret (1984) stud­
ied the development of sound production in the domestic cat {Felis catus). 
To investigate the influence of auditory feedback, motivation, and ontoge­
netic changes in the vocal tract, they compared calls of normally raised, 
deafened, and isolated kittens. The three groups differed in certain call 
parameters but individual variability was great. The authors interpret these 
differences as resulting from the lack of auditory feedback in deafened 
kittens and from different motivational states in isolated ones. Call parame­
ters of isolated individuals indicated a delayed development of the vocal 
apparatus and a higher stress level than in normally raised kittens. Romand 
and Ehret come to the conclusion that call development in cats “follows
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a ‘self-centered strategy’ rather than an ‘open and environmentally de­
pendent’ one” (Romand and Ehret, 1984, p. 648). Molliver (1963) success­
fully trained cats to increase the duration of their calls in an operant 
conditioning procedure. As discussed earlier, this does not require any 
changes in the setting of the sound production organ, but only a longer 
expiration phase. It is a demonstration of a limited form of vocal learning 
that has also been found in primates,

Slobodchikoff and Coast (1980) found geographic variation in various 
time parameters of alarm calls given by groups of Gunnison’s prairie dogs 
(Cynomys gunnisoni) living 13 km apart. An alarm call in this species is a 
series of several barks. Groups differed in total call length, number of barks 
per call, duration of each bark, and the time intervals between barks in a 
series. Again, these parameters describe the timing and duration of a call 
but not its frequency structure. Pikas {Ochotona princeps) in the United 
States also show geographic variation in duration and in the fundamental 
frequency of their short calls (Somers, 1973; Conner, 1982). The two popula­
tions studied by Somers are geographically separated by the Colorado 
River. However, there is an overlap zone at the source of the river where 
he found individuals with calls intermediate between the two variants. 
Conner (1982) only found differences between widely separated popula­
tions. He argued that variations do not represent vocal dialects but are 
the result of independent evolutionary histories. As with other cases of 
geographic variation, further studies are needed to clarify the origin of 
these differences. Finally, a recent study on banner-tailed kangaroo rats 
(Dipodomys spectabilis) has shown that they adjust their footdrumming 
signatures to differ from new neighbors after they change their territory 
(Randall, 1995). This is an interesting case of plasticity in sound production, 
although it concerns signals that are not produced by the vocal apparatus 
and concerns only the timing of signals, so it is not strictly relevant to 
our purpose.

IV. F u n c t i o n a l  S i g n i f i c a n c e  a n d  O r i g i n

In this section we will consider possible reasons why vocal learning 
evolved in mammals. In discussing this it is important to bear in mind two 
separate problems. First is the question of why vocal learning arose in the 
first place, the answer to which may be far back in time and within a 
different functional context to that in which it occurs today. Second is the 
more accessible question of why vocal learning persists in certain species. 
Similar hypotheses may be relevant to both contexts, so that a discussion
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of all possible reasons for vocal learning may shed light on both its origin 
and its current advantages for a particular species.

We will consider each of the main hypotheses that have been put forward 
to account for vocal learning. Earlier discussions have been largely in 
relation to birds, as vocal learning in this group has been extensively studied. 
Before discussing the possible relevance of each hypothesis to mammals, 
we will make brief mention of how these hypotheses measure up to the 
bird evidence.

A .  I n t e r s e x u a l  S e l e c t io n

In many animals male songs attract females. If a longer or more elaborate 
song is more effective in this respect, then sexual selection could result in 
the evolution of very complex displays. Different mechanisms could account 
for an increased response in the female. Complex auditory input might 
lead to greater stimulation of the reproductive system of a female or it 
might simply prevent habituation by females. From a functional perspective, 
song complexity might be a cue used by females to assess male fitness, if it 
is costly for males to achieve complexity. Whatever its causal and functional 
basis, however, if complexity is advantageous, vocal learning may be favored 
as a means of achieving it. The copying of song elements from conspecifics 
allows an animal to incorporate new elements into its song, while still 
retaining the species-specific pattern. The development of completely new 
sounds without such copying would risk the loss of species recognition. 
Furthermore, the generation of vocal complexity through an increase in 
genetic information would undoubtedly be a slow and costly process. Thus, 
vocal learning could well have been favored as a means of acquiring an 
elaborate song.

Many songbirds have complex song repertoires built up by learning, 
and sexual selection has frequently been proposed as a reason for this 
complexity. In line with this suggestion there is evidence that female birds 
of various species solicit more to repertoires of songs than to single song 
types (e.g., red-winged blackbird, Agelaius phoeniceus, Searcy, 1988; star­
ling, Stiirnus vulgaris, Eens, Pinxten, and Verheyen, 1991), and that the 
reproductive system of female canaries {Serinus canaria) may be more 
stimulated by complex than by simple songs (Kroodsma, 1976). In the 
field, male sedge warblers (Acrocephalus schoenobaenus) with large syllable 
repertoires have been found to attract females earlier than those with 
smaller ones (Catchpole, 1980). Thus, several lines of evidence point to 
the importance of sexual selection in the generation of complex song reper­
toires in birds.
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Turning to mammals, we know little about the functions of many male 
vocal displays. In phocids they are often highly varied, and several observa­
tions suggest that some of them may be sexual displays. During the mating 
season male harbor seals produce repetitive vocal displays underwater for 
up to several hours (Hanggi and Schusterman 1994; Van Parijs, Thompson, 
Tollit, and MacKay, in press). Male Weddell seals defend small underwater 
territories against other males; they sing on these territories and stop doing 
so if a female enters the territory to mate (Bartsh, Johnston, and Siniff, 
1992). A large part of the species’ repertoire is produced only by males 
(Thomas and Kuechle, 1982). Bearded seals and leopard seals, the vocaliza­
tions of which vary geographically, also produce underwater songs in the 
breeding season (Ray, Watkins, and Burns, 1969; Stirling and Siniff, 1979). 
Further studies of these and other “singing” seals, like the crabeater seal 
(Lobodon carcinophagus) (Stirling and Siniff, 1979), the Ross seal {Omma- 
tophoca rossi) (Watkins and Ray, 1985), and the walrus {Odobenus ros- 
mams) (Stirling, Calvert, and Spencer, 1987), should clarify the role of 
vocal learning in the acquisition of song.

Behavioral observations of humpback whales, and the fact that it seems 
to be only males that sing (Tyack and Whitehead, 1983) and then mainly 
during the breeding season, suggest that song is a reproductive advertise­
ment display and/or a territorial one. However, even though humpback 
whale and bowhead whale songs are very complex and change over the 
singing season, all males in a population sing the same song at any particular 
time. We can only speculate on the origin of this phenomenon but, if songs 
are used to attract females, sexual selection holds a possible explanation. 
If a maximal response in the female was elicited by presenting the same 
acoustic pattern repetitively, the singing behavior of humpback whales 
could represent a communal vocal display that increases the responsiveness 
of females. The synchronized changes in song over time combined with 
song complexity could then be a result of conflicting pressures on individual 
males to make their own song more attractive by introducing new variations, 
but to maintain a communal display at the same time. Although whales 
are not easy to study, there is a clear need for more information about 
how their songs relate to other aspects of their behavior if we are to 
understand their functional significance.

Other baleen whales that produce their sounds in repetitive songlike 
sequences are fin whales (Balaenopteraphysalus) (Watkins, Tyack, Moore, 
and Bird, 1987) and blue whales {Balaenoptera musculus) (Cummings and 
Thompson, 1971). However, mysticetes also produce a variety of other 
social sounds. Repetitive sequences of the same sound could also be used 
to coordinate group movements. Since low-frequency sounds of whales can 
travel long distances (e.g., Cummings and Thompson, 1971), it is hard to
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determine whether widely spaced animals belong to one social group or 
are solitary individuals that happen to be within hearing range.

The calls of some bats, like the hammer-headed bat {Hypsignathus mon- 
strosus) (Bradbury, 1977) and the African false vampire bat (Cardioderma 
cor) (McWilliam, 1987), are used to attract females or act in territorial 
defense. Studies of whether and to what extent these species learn their 
calls would be interesting given the small amount of information on vocal 
learning in bats.

B, I n t r a s e x u a l  S e l e c t i o n  a n d  R e s o u r c e  D e f e n s e

Vocal learning could also have evolved in relation to territory mainte­
nance and defense. In birds, small song repertoires are often used in 
matched countersinging between neighboring males on their territories, and 
the precise matching of songs that learning allows may confer a reproductive 
advantage. Payne, Payne, and Doehlert (1988) showed that male indigo 
buntings (Passerina cyanea) that share songs with neighbors do better in 
various measures of reproduction, including fledging more young. Song 
learning might enable birds to mimic established and successful individuals 
(Payne, 1981). This could discourage intruders and result in improved 
intruder detection if shared songs cannot be reproduced by foreign birds 
(see also Section IV,D on group recognition). Furthermore, the develop­
ment of varied song repertoires, which seems to depend on learning, as 
they have been recorded only in species where vocal learning occurs, can 
also have a deterrent effect as far as intruders looking for territories are 
concerned. This has been shown most clearly in the speaker replacement 
experiments carried out by Krebs, Ashcroft, and Webber (1978) on great 
tits {Parm major). Krebs (1976) argued that this might be because reper­
toires give the impression that there are several birds present rather than 
just one. If repertoire size is a measure of fitness, it could also be used to 
assess a male’s fighting ability in territorial conflicts.

In animals that defend territories it is often unclear whether females 
choose a particular male because of his vocal display or because of territory 
quality. In contrast to many terrestrial animals, underwater territories of 
marine mammals do not hold useful resources for the raising of offspring. 
The mating system of most singing marine mammals resembles more that 
of a lek. Therefore, if singing territories are positioned on the migration 
routes of females, the choice of a territory might have a considerable 
influence on breeding success. In that case vocal learning might have 
evolved through intrasexual selection. In marine mammals, there is some 
evidence that song might be used in male spacing on the breeding grounds. 
Weddell seals defend small underwater territories next to female haul-out
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sites while they are singing (Watkins and Schevill, 1968; Bartsh et al, 1992). 
Distances between singing humpback whales are about 2.4 times bigger 
than between nonsinging whales, suggesting a spacing function of song 
(Frankel, Clark, Herman, and Gabriele, 1995).

No evidence for vocal learning has been found in mammals that defend 
females or resource-based territories against other males. Examples are 
elephant seals and gibbons. Elephant seals defend breeding territories 
around their harems on land and produce threat vocalizations to defend 
these territories against other males (Le Boeuf and Peterson, 1969b). In 
gibbons song is thought to function in territory maintenance and pair bond­
ing but not in mate attraction (Mitani, 1985, 1988).

In social groups vocal learning could be used in a variety of ways to gain 
access to resources. In highly social animals the ability to match sound 
features of other individuals might help to establish and maintain social 
relationships, or even raise the possibility of deception through the mimicry 
of sounds made by dominant animals. In bottlenose dolphins the formation 
of alliances between males has been observed (Connor, Smolker, and Rich­
ards, 1992). Imitation of their signature whistles could be used to maintain 
social bonds or deceive other individuals alike. In primates increasing social­
ity and the formation of complex social relationships could provide reasons 
for vocal learning to arise. Chimpanzees are known to form alliances against 
other group members (Harcourt, 1988) and the behavior of monkeys in 
social interactions sometimes involves what appears to be deception (re­
viewed in Cheney and Seyfarth, 1990). However, they do not seem to be 
capable of vocal learning. There are two possible explanations for this 
difference between primates and cetaceans. It could mean that vocal learn­
ing did not evolve because of advantages in social interactions. Alterna­
tively, it may be because primates use other modes of communication (e.g., 
facial/gestural displays) to achieve similar results. Poor underwater visibility 
and the limited ability to use gestures and facial expressions in cetaceans 
could have favored the use of vocal communication more than in primates,

C. I n d i v i d u a l  R e c o g n i t i o n

Nottebohm (1972), in a classic paper on the origins of vocal learning, 
argued against individual recognition being an important factor in the 
evolution of vocal learning in birds. Learning, as he points out, often leads 
to precise similarities between animals, and these would hinder rather than 
aid individual recognition. Furthermore, slight individual differences in the 
morphology of the sound production apparatus within a population, if 
consistent over time, usually introduce enough variability in unlearned 
sounds to allow individual recognition (Beer, 1969). Individual recognition
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on the basis of simple unlearned calls has been demonstrated to occur in 
many bird species, such as auks (Tschanz, 1968) and gulls (Beer, 1969), in 
which vocal learning is unknown. However, set against these arguments, 
there are ways in which vocal learning may enhance differences between 
individuals and, especially in high-background-noise environments, this 
may be important as an aid to discrimination. Even though birds learn their 
songs from conspecifics, the frequently learn different songs from different 
individuals so that their repertoires differ. New elements may also appear 
in their songs as a result of copying errors, or a bird may combine elements 
from different songs to form a new song (Slater and Ince, 1979). Thus, 
learning can lead both to new repertoires and to new songs within a bird’s 
repertoire, so that it is not correct to assume that learning necessarily 
leads to greater call similarity between individuals. Indeed, one route to 
individually specific calls may be by combining features learned from several 
other animals.

All groups of mammals that show evidence for vocal learning do live in 
high-background-noise environments. Bat roosts, in which thousands of 
animals vocalize in the same frequency range, are one example, sea mam­
mals provide another (Spiesberger and Fristrup, 1990). Additionally, in 
diving animals air-filled cavities that are involved in sound production get 
distorted with changing pressure. This could change voice characteristics 
considerably and mask individually specific cues that could otherwise be 
used for individual recognition (Tyack, 1991). If individual recognition 
requires more variability in calls than arises from differences in vocal tract 
morphology, or if such cues become unreliable during diving, improvisation 
rather than vocal learning might provide the answer. But there are theoreti­
cal reasons for thinking that this way of producing a completely new behav­
ior pattern is a very difficult task. Every pattern that is generated reflects 
in some way the mechanism by which it is produced. For this reason, 
computer programs can create only pseudo-random numbers (Morgan, 
1984). Even though some birds seem to produce completely new songs in 
their ontogeny (Marier, Mundinger, Waser, and Lutjen, 1972), improvisa­
tion has rarely been reported, suggesting that composing a new sound out 
of parts of others is an easier way to produce a unique individually specific 
call. It also ensures that the new call is not accidentally similar to that of 
other group members. Vocal learning may thus lead to individual distinc­
tiveness by allowing the individual to produce a distinctive new call type 
that has not been present in the repertoire of its social group before. 
Examples of mammals that seem to make their signals different from those 
of other group members are dolphins (Caldwell and Caldwell, 1965,1968), 
big brown bats (Rasmuson and Barclay, 1992) and banner-tailed kangaroo 
rats (Randall, 1995). However, if individual recognition is why vocal learn­
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ing evolved, it must be supposed that there are benefits to the individual 
in allowing itself to be identified.

Investigations of vocal learning in bats have concentrated on call similari­
ties between mothers and pups. All species mentioned in Section III,A are 
colonial. Mothers leave the roost every night to feed and have to find their 
offspring on return. Here, the gain in being identified is clear because the 
offspring will die if not fed frequently. Interestingly, infant greater horse­
shoe bats of 5 to 7 weeks of age that are still suckled do not have specific 
isolation calls (Matsumura, 1979), but show learned modifications in their 
écholocation calls. Perhaps their ability to match the main frequency of 
the mother’s écholocation call is sufficient for mother-pup recognition so 
that specific isolation calls are not needed. The need for effective individual 
recognition does seem to be the most likely reason why vocal learning has 
evolved in these bats. However, more studies, especially on species that 
do not breed in big roosts, are needed to assess whether this is the only 
possible explanation.

Information on functions of odontocete sounds is still scarce, but the 
evidence we have points toward their use in individual recognition and 
group cohesion. These animals use most of their calls in social interactions, 
and have never been observed to show singing behavior like that of mysti­
cetes. Even though evidence for vocal learning has been found in every 
cetacean that has been examined, mysticetes and odontocetes have very 
different social systems. While mysticetes seem to live alone most of the 
time, odontocetes live in relatively stable social groups (Tyack, 1986a). 
Bottlenose dolphins have a large repertoire of whistles, but most of those 
produced by an isolated individual are of a particular form more or less 
peculiar to itself and thus termed its “signature whistle” (Caldwell and 
Caldwell, 1965,1968; Caldwell, Caldwell, and Tyack, 1990). These signature 
whistles can remain stable for at least 12 years (Sayigh, Tyack, Wells, 
and Scott, 1990). This stability of signature whistles and their frequent 
production by isolated individuals supports the idea that they have a role 
in individual recognition. Tyack (1986b) found that 77% of all whistles of 
two interacting dolphins fell into two categories. One whistle was largely 
produced by one animal and the second mainly by the other. Tyack sug­
gested that these were the signature whistles of the two animals, and that 
the fact that both individuals could produce both whistles may represent 
mimicry.

Bottlenose dolphins have been shown to hunt cooperatively (Hoese, 
1971) and support each other if injured (Lilly, 1963). In these situations it 
is certainly of advantage to a vocalizing animal to be individually identified 
by its allies. In a playback experiment Sayigh (1992) showed that mother 
bottlenose dolphins were also more likely to turn toward the signature
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whistles of their independent offspring (and vice versa) than toward those 
of other dolphins. Smolker, Mann, and Smuts (1993) presented evidence 
for use of signature whistles in mother-calf reunions. Individually specific 
signals are very common in odontocetes (e.g., Delphinus delphis, Caldwell 
and Caldwell, 1968; Lagenorhynchus obliquidens, Caldwell and Caldwell, 
1971; Physeter macrocephalus, Watkins and Schevill, 1977; Stenella plagio- 
don, Caldwell, Caldwell, and Miller, 1973) and add to the evidence that 
vocal learning might have evolved in this group because of benefits it 
brought to individual recognition and group cohesion.

D. F a m i l i a l  o r  G r o u p  R e c o g n i t i o n

In familial or group recognition we encounter the same problem as in 
individual recognition. There must be some benefit to each individual to 
be recognized by its group or family members for vocal learning to evolve. 
Possible reasons are avoidance of inbreeding, cooperation between group 
members, or the identification and exclusion of strangers. All these argu­
ments have been put foward for birds. Inbreeding avoidance is unlikely to 
be important, as male birds do not often sing the same songs as their fathers, 
as would be necessary if females were to use song as a cue. In Darwin’s 
finches {Geospiza spp.), which include some of the small number of species 
where fathers and sons are known to sing the same songs, females have 
been found to mate randomly in relation to song type (Millington and 
Price, 1985). Group recognition is perhaps more likely as birds usually 
respond more aggressively to alien songs than to those of neighbors, and, 
in colonies and in groups of territories, sharing of vocalizations through 
learning is common. This led Feekes (1977,1982) to put forward the idea 
that shared songs might act as a “password” in the colonies of caciques 
(Cacicus cela) that she studied.

It is striking that most odontocetes show individually specific calls, while 
killer whales have group-specific ones. The social organization of killer 
whales, with their stable family groups, is very different from that of bottle­
nose dolphins. Most dolphins live in fission-fusion societies with few stable 
associations between individuals (reviewed in Norris and Dohl, 1980). Killer 
whales tend to stay in their parental group throughout their lives (Bigg et 
a l, 1990). They hunt cooperatively on a variety of different prey, ranging 
from herring to other marine mammals (Smith, Siniff, Reichle, and Stone, 
1981; Simila and Urgate, 1993), and food sharing within pods has been 
observed (Hoelzel, 1991). Here, family-specific calls could help to avoid 
inbreeding or be used to maintain social bonds between group members 
and to exclude foreign individuals.
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As with individual recognition, vocal learning could have been a good 

solution for marine mammals to the problems imposed on group recognition 
calls by the environment. High background noise could easily mask the 
subtle effect of differences in vocal tract morphology between different 
matrilines, making them useless for group recognition. Learning would 
allow animals to produce completely new sounds that are different enough 
to be recognized even in noisy conditions. The production of new, very 
distinctive sounds could also compensate for changing voice characteristics 
caused by the effects of water pressure on the air-filled vocal tract at 
different diving depths.

In the more fluid social system of bottlenose dolphins, individual recogni­
tion to maintain social relationships is likely to be more important. These 
animals associate in temporary groups of variable size and composition. 
However, certain long-term associations have been discovered between 
related females (Wells, Scott, and Irvine, 1987). Small subgroups of two to 
three males also form relatively stable alliances (Connor et ai, 1992; 
Smolker, Richards, Connor, and Pepper, 1992). Vocal learning could be of 
advantage in alliance formation and maintenance in this species. Males 
have been shown to cooperate with other males in aggressive interactions 
and in herding of females (Connor et ai, 1992). Male alliances could use 
signature whistle mimicry or learned alliance specific calls to maintain their 
bonding and exclude strangers.

Off Sarasota, Florida, approximately half the male bottlenose dolphins 
develop signature whistles that are very similar to those of their mother, 
while most females produce signature whistles highly distinct from those 
of their mothers (Sayigh etal., 1990; Sayigh, Tyack, Wells, Scott, and Irvine, 
1995). It seems unlikely that only males develop family-specific calls as a 
kinship label that facilitates inbreeding avoidance because, while females 
tend to associate in matrilines later in life, males do not associate closely 
with their female relatives, though remaining in the same general area. 
Females may need to develop a signature whistle as different as possible 
from their mother’s to avoid misidentification. The higher degree of similar­
ity of signature whistles between mothers and sons could stem from the lack 
of this requirement or it could benefit males if matriline affects dominance in 
dolphin societies. There is some evidence that it is the sons of only certain 
females that produce signature whistles like those of their mothers (Sayigh 
et ai, 1995), but further investigation is needed.

È .  P o p u l a t i o n  I d e n t it y

The development of dialects between neighboring populations of poten­
tially interbreeding individuals could lead to assortative mating; this in turn



84 VINCENT M. JANIK AND PETER J. B. SLATER

might benefit individuals if there are local genetic adaptations that can 
thereby persist. Nottebohm (e.g., 1972) suggested that dialects that are 
common in birds might have this effect. Although the idea has received 
some subsequent support, particularly in the white-crowned sparrow (Zo- 
notrichia leucophrys. Baker and Cunningham, 1985), the weight of evidence 
is against it. For example, white-crown dialect boundaries do not seem to 
limit dispersal, song learning in males may occur after dispersal, and females 
often mate with males singing a different dialect from their natal one (see 
Catchpole and Slater, 1995, pp. 205-209 for a more detailed discussion). 
Even though this idea is now generally discounted in birds, it could still 
be true for marine mammals and bats that possess a similar potential for 
quick dispersal. If these animals return to their home area to mate, dialects 
might help to maintain local adaptations. Even in the relatively homoge­
neous marine environment, differences in local adaptations could exist 
between coastal and pelagic populations or between areas with different 
prey species.

In many of the examples of geographic variation in mammal calls the 
actual extent of each population is unknown. Even though some of the 
locations where seals have been found to differ in their vocalizations are 
several thousand kilometers apart, these species are mobile as well as 
widely distributed and could easily cover such distances in their migrations. 
Humpback whale populations in different oceans on the other hand may 
well be truly isolated and their dialects are therefore unlikely to be adaptive 
in maintaining population identity. Variations in call structure of different 
primate populations have been interpreted as possible evidence for vocal 
learning by several authors. If call variations between neighboring popula­
tions are actually learned, a function in population recognition might be a 
reason. However, there is no clear evidence for learned differences yet.

F. I n t e n s e  S p é c i a t i o n

Nottebohm (1972) discussed intense spéciation as one possible factor in 
the development of vocal learning in birds. He argued that, with large 
numbers of species in small geographic areas, vocal learning might have 
qvolved among passerine birds because of the need for rapid change in 
signals. Subsequently, it was suggested that vocal learning might itself have 
enhanced spéciation in passerines, if learned signals acted to restrict gene 
flow. However, Baptista and Trail (1992) argue that there is little evidence 
that differences in bird vocal signals act as a barrier to interbreeding.

In mammals, vocal learning does not appear to correlate with rapid 
spéciation, making either of these ideas unlikely to apply. Marine mammals 
could have gone through a phase of intense spéciation when they returned
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from land to sea. However, this seems unlikely to have put any pressure 
on the development of vocal learning for species recognition, as the avail­
able space for dispersal was so great and the habitat was relatively homoge­
neous.

G. H a b i t a t  M a t c h i n g

Different habitats can have very different sound transmission characteris­
tics (Marten and Marier, 1977; Marten, Quine, and Marier, 1977; Wiley 
and Richards, 1978; Waser and Brown, 1986). If a species lives in various 
different habitats, or if the transmission characteristics of its habitat change 
frequently, vocal learning could help to optimize its vocal signals. This idea 
was originally put forward by Hansen (1979) for birds, many species of 
which disperse widely and live in a variety of habitats. Data in support of 
it have been obtained on two species: the great tit {Pams major, Hunter 
and Krebs, 1979) and the chingolo sparrow (Zonotrichia capensis, King, 
1972; Nottebohm, 1975). Particularly detailed studies by Handford (1981, 
1988; Handford and Lougheed, 1991) suggest that trill rates in this last 
species in agricultural areas match the habitat that was present before 
cultivation began, thus pointing to a very slow rate of change.

Studies on primates have shown that some species do have calls that are 
matched to the transmission qualities of their habitat (Brown, Gomez, and 
Waser, 1995). However, there is no clear evidence for vocal learning in 
primates. In marine mammals it is unlikely that vocal learning has evolved 
because of advantages in habitat matching because, compared to most 
terrestrial environments, the sea has very stable sound transmission charac­
teristics (Spiesberger and Fristrup, 1990). In bats all evidence for vocal 
learning involves mother-pup interactions. However, it could be possible 
that vocal learning enables them to match their écholocation calls to particu­
lar habitats. Further studies are needed to investigate this possibility.

V . C o n c l u s i o n s

A . F l e x ib il it y  i n  V o c a l  L e a r n i n g

We have identified several different levels of complexity in vocal learning. 
The most simple, in which animals can be trained to alter the overall 
duration and amplitude of a sound, seems to be a relatively common feature 
of mammalian communication systems (e.g., bottlenose dolphin, Lilly, 1965; 
domestic cat, Molliver, 1963; rhesus monkey, Sutton et a l, 1973). It is likely 
that this form of sound alteration is closely linked to contextual learning
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of sounds. If an animal has learned to withhold or produce a sound in 
different contexts, it has a certain degree of learned control over the onset 
and offset of calling. An alteration of temporal parameters, like intercall 
intervals in sound sequences, in relation to auditory experience would thus 
become possible. This control over the muscles of the respiratory system 
and their coordination with the vocal apparatus might also be sufficient for 
learning how to alter total amplitude and duration of single calls. A more 
elaborate form of this sort of learning might involve significant changes in 
voice-onset time in a call or complex amplitude modulations that superim­
pose additional frequency bands on a call. To our knowledge there are as 
yet no studies of the role of learning in modifying these parameters.

The second stage, in which an animal is able to learn how to alter 
certain frequency parameters to match another individual’s calls, has been 
demonstrated only in greater horseshoe bats, marine mammals and humans. 
Here, the activity of muscles of the vocal apparatus itself needs to be 
modifiable by experience. This needs a different level of neural control 
and is a significant next step in the evolution of vocal learning. While there 
are other reasons why an animal might gain control over the respiratory 
system to make it modifiable by experience (e.g., contextual learning in 
relation to vocal communication, diving), the vocal apparatus is used only 
in call production. However, not many studies have looked at this relatively 
limited form of vocal learning yet. It may be more common than it seems 
at this point.

The ability to copy completely new sounds seems to be rare among 
mammals. Our review has shown that it is known to occur only in marine 
mammals and humans. However, we do not know whether the distinction 
between the ability to imitate new sounds and that to change only certain 
parameters in a limited way is a real one. More studies focusing on the 
extent to which calls are modifiable through vocal learning are needed. 
Bats, for example, might be capable of more drastic changes than the ones 
we know of so far.

B . F a c t o r s  A f f e c t in g  t h e  E v o l u t io n  o f  V o c a l  L e a r n i n g :
T h e  R o l e  o f  M o b il it y

Many bird species in three different orders (Passeriformes, Apodiformes, 
Psittaciformes) show vocal learning, suggesting that it evolved separately 
in each of these groups. In mammals it is known to occur in humans, 
cetaceans, phocid seals, and bats, taxa that do not share a unique common 
ancestor. Here, too, it seems vocal learning has evolved independently in 
each group. Given this lack of a direct phylogenetic connection, it is interest­
ing to ask whether there is a common factor that could have caused a 
convergent evolution of vocal learning in these groups.
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We have identified several possible reasons why vocal learning could 

have evolved in different mammalian groups. If we examine features that 
these groups have in common with each other and with birds, an obvious 
similarity is their high mobility. With the exception of humans, they all 
spend at least part of their lives swimming or flying in three-dimensional 
environments. The high mobility of animals living in air or water is a 
fundamental common factor that has influenced various different aspects 
of their lives. It is more difficult for males to monopolize females. Members 
of a social group are more likely to lose contact in three-dimensional space. 
Vocal signals are likely to be used more because animals can disperse more 
quickly and visual contact is difficult to maintain. The increased use of 
vocal communication instead of visual signals increases background noise 
in the acoustic frequency bands used for communication and adds pressure 
toward signal diversity. Thus, living in these environments could make the 
development of vocal learning in a species more likely. There are, of course, 
other mammals, like arboreal or nocturnal ones, that face similar problems 
to a lesser extent. However, the impact of such problems is certainly highest 
in flying and swimming animals, as they disperse much more quickly and 
are not limited to moving only along solid structures in their environment, 
as are tree-living species, for example.

C . I m p l ic a t io n s  f o r  t h e  E v o l u t io n  o f  H u m a n  L a n g u a g e

In primates, researchers have been looking for evidence of vocal learning 
for a long time. Even though they clearly have considerable control over 
their vocal utterances, including the duration and amplitude of their calls, 
vocal learning has not been unequivocally established in primates other 
than humans. The fact that dolphins, seals, and many birds spontaneously 
start to imitate sounds from their acoustic environment in captivity suggests 
that imitation plays an important role in their lives. Such imitation of new 
sounds has never been observed in nonhuman primates.

It seems strange that our closest relatives show no evidence for vocal 
imitation, yet humans are so adept at it. The suggested environment of 
early humans does not seem to have been strikingly different from those 
of other primates. Thus, all the possible advantages of vocal learning men­
tioned in Section IV would have been present for other primates, too. Why 
then did the ability to imitate sounds evolve in humans and not in nonhuman 
primates? Jakobson (1941) claimed that all the sounds of the world’s lan­
guages occur in infant vocalizations, suggesting that the learning of new 
sounds is not involved in language acquisition. However, today most re­
searchers accept that humans are capable of vocal learning. More recent 
discussions on natural predisposition for language learning have concen-
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trated on the acquisition of language as a communication system (Bickerton, 
1990; Pinker and Bloom, 1990), not on whether vocal learning is involved 
in the acquisition of the sound repertoire. A convincing explanation for 
the difference between nonhuman and human primates relates to the evolu­
tion of language. It might seem difficult to imagine how imitating sounds 
could have been of any advantage to the first individual that did so. This 
is certainly true if we assume that the evolution of language relied on vo­
cal learning. However, several authors have argued that language devel­
oped in gestures before it affected vocal behavior (Hewes, 1973; Parker 
and Gibson, 1979). Once a gestural communication system with learned 
signals had become established, vocal learning would have been greatly 
favored because it makes it possible to use language even where visual 
contact is absent. If this sequence of events is correct, the lack of evidence 
for vocal learning in nonhuman primates would not be so surprising. How­
ever, more research, especially on the possibility of a more limited form 
of vocal learning in nonhuman primates, is needed.

D. F u t u r e  R e s e a r c h

We have suggested that sexual selection, defense of resources, and indi­
vidual recognition are the most likely reasons why vocal learning evolved 
in mammals, assuming that its functional significance has not changed since 
then. However, further studies are needed to find out how flexible the vocal 
system of each group is and what they are using this flexibility for. The 
body of evidence for vocal learning in mammals is still very small compared 
with that in birds. In many very vocal mammals, such as elephants, vocal 
learning has not been studied at all. We have already mentioned various 
other species that would be very interesting to study in this context.

The most powerful experimental approaches to the study of vocal learn­
ing are certainly conditioning experiments and studying the effects of keep­
ing experimental animals in controlled acoustic environments. If an animal 
can be trained to imitate a new sound that has not been in its repertoire |  
before or if infants that have been exposed to different stimuli match what 
they have been hearing in detail, we have found unequivocal evidence 
for vocal learning. As our survey has shown, many authors interpret less „ 
convincing results as evidence for vocal learning. Geographic variation, 
differences in vocalizations between different matrilines or between nor­
mally raised and isolated individuals, changes in the vocal repertoire during 
ontogeny, and changes in vocal behavior after being housed with new 
individuals have all been interpreted as indicating vocal learning. All these 
examples could involve vocal learning, but they do not represent unequivo-
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cal evidence for it. However, they give valuable information on species that 
could be interesting subjects in which to investigate its existence.

Recent investigations of primate communication systems have revealed 
a greater flexibility than previously thought. Elowson and Snowdon (1994), 
for example, found significant alterations in call parameters of pygmy mar­
mosets in relation to changes in their social environment. Because individu­
als did not match conspecifics in this study, trying to show that vocal learning 
was responsible would be difficult, but it deserves further investigation. In 
chimpanzees, in which individuals seem to match the pant hoots of their 
chorusing partners (Mitani and Brandt, 1994), this might be easier. Cross- 
fostering experiments within this species might be able to give clearer 
results on whether a limited form of vocal learning exists in nonhuman 
primates. Concurrent investigations of gestural communication in wild great 
apes could give information on what role learned gestures play in their 
natural communication system. Such studies could indicate how likely it is 
that gestural or vocal communication was the basis for language evolution.

Even in those groups where evidence for vocal learning has been pre­
sented, information on its significance and flexibility is often lacking. The 
evidence in bats, for example, is still sparse, though it seems clear that their 
learning is not as versatile as that in marine mammals. Training bats with 
different stimuli would help to find out to what extent learning can influence 
the development of their communication and écholocation calls. More 
experiments on vocal learning in those marine mammals that show singing 
behavior are also needed. We still do not know how widespread vocal 
learning is in these groups and how they learn their songs. In seals, phocids 
seem to be capable of vocal learning, but there is no evidence for it in 
otariids. This could simply reflect a lack of studies, but there are also marked 
differences in the mating strategies of otariids and phocids that could explain 
the apparent discrepancy. Apart from the elephant seal, all the phocids 
that show geographic variation in their vocalizations breed at least partly 
on ice and copulate in the water (Stirling, 1975). This makes it difficult for 
a male to monopolize several females: they are either scattered on available 
haul-out sites or else in the water where there is poor visibility combined 
with increased mobility in all directions. Otariids, on the other hand, breed 
on land and males often defend harems against other males. The fact that 
singing behavior has so far been found only in phocids suggests that vocal 
learning may have evolved in relation to their mating strategy. However, 
the only clear evidence for vocal learning in seals comes from a harbor 
seal that imitated human speech spontaneously. There are as yet no further 
studies of vocal learning in seals, and there is a clear need for them.

Comparative studies of how background noise influences call develop­
ment and usage might also shed light on the origin of vocal learning. While
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odontocetes seem to use vocal learning to improve individual recognition, 
mysticetes apparently use it only in their singing behavior. We do not know 
whether vocal learning evolved once or twice in the lineage of cetaceans. 
Studies on how sexual selection on one hand and individual recognition 
on the other influence vocal behavior are needed to clarify how vocal 
learning evolved and persisted in these animals.

Further studies on the vocal communication systems of toothed whales 
would be especially valuable. Even though individual recognition seems to 
be a likely reason for vocal learning to have evolved in dolphins, vocal 
learning could be used extensively in their complex social systems, including 
the possibility to use it in vocal deception. A study of how dolphins use 
imitation in the wild might open up a new perspective on why their vocal 
learning evolved. Given that its function might have changed in a particular 
species, and that dolphins show remarkable cognitive capacities (review in 
Herman, Pack, and Morrel-Samuels, 1993), including the ability to process 
syntactical information in signal sequences (Herman, Richards, and Wolz, 
1984), it is likely that, once evolved, vocal learning had profound effects 
on various aspects of their natural communication.

VI. S um m ary

Vocal learning, as we discuss it in this review, refers to instances where 
vocalizations are modified in form as a result of experience with those of 
other individuals. While many birds are capable of vocal learning, unequivo­
cal evidence for it is rare in mammals. The most versatile mammalian vocal 
learners are cetaceans, harbor seals, and humans, all of which are able to 
imitate new sounds. Greater horseshoe bats learn the main frequency of 
their écholocation calls from their mothers and are the only other mammals 
shown so far to be capable of learning to change frequency parameters in 
their calls. Nonhuman primates have been conditioned to alter the duration 
and amplitude of their calls but not their frequency parameters. We suggest / 
that sexual selection, defense of resources, and individual recognition are 
the most likely reasons why vocal learning has evolved in mammals. How­
ever, we know little about the functional significance of vocal learning for 
these animals and more studies are badly needed.
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