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Abstract 24 

 25 

The 72-kDa immediate-early 1 (IE1) protein encoded by human cytomegalovirus (hCMV) 26 

is a nuclear-localized promiscuous regulator of viral and cellular transcription. IE1 has 27 

long been known to associate with host mitotic chromatin, yet the mechanisms underlying 28 

this interaction have not been specified. In this study, we identify the cellular chromosome 29 

receptor for IE1. We demonstrate that the viral protein targets human nucleosomes by 30 

directly binding to core histones in a nucleic acid-independent manner. IE1 exhibits two 31 

separable histone interacting regions with differential binding specificities for H2A-H2B 32 

and H3-H4. The H2A-H2B binding region was mapped to an evolutionary conserved ten-33 

amino-acid motif within the chromatin tethering domain (CTD) of IE1. Results from 34 

experimental approaches combined with molecular modeling indicate that the IE1 CTD 35 

adopts a β-hairpin structure docking with the acidic pocket formed by H2A-H2B on the 36 

nucleosome surface. IE1 binds to the acidic pocket in a way similar to the latency-associated 37 

nuclear antigen (LANA) of the Kaposi’s sarcoma-associated herpesvirus. Consequently, the 38 

IE1 and LANA CTDs compete for binding to nucleosome cores and chromatin. Our work 39 

elucidates in detail how a key viral regulator is anchored to human chromosomes and 40 

identifies the nucleosomal acidic pocket as a joint target of proteins from distantly related 41 

viruses. Based on the striking similarities between the IE1 and LANA CTDs and the fact 42 

that nucleosome targeting by IE1 is dispensable for productive replication even in “clinical” 43 

strains of hCMV, we speculate that the two viral proteins may serve analogous functions 44 

during latency of their respective viruses. 45 
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Introduction 46 

 47 

Nuclear DNA is largely organized and controlled through nucleosomes. Each nucleosome 48 

typically assembles 146–147 base pairs (bp) of DNA in 1.65 superhelical turns around a core 49 

histone octamer composed of a central H3-H4 tetramer flanked by two H2A-H2B dimers (1, 2). 50 

Additionally, linker histone H1 binds to the nucleosome at the DNA entry-exit points outside the 51 

octamer. Thousands of nucleosomes along the DNA compose a “beads-on-a-string” array, which 52 

can further condense into higher order chromatin attaining its most compact state during mitosis 53 

(reviewed in 3, 4). 54 

Herpesviruses transcribe, synthesize and package their double-stranded DNA genomes in 55 

the host cell nucleus where they contend with and exploit chromatin to aid viral replication and 56 

persistence. There are several examples of herpesvirus proteins interacting with cellular mitotic 57 

and/or interphase chromatin. The viral proteins attach to chromatin through at least three types of 58 

non-mutually exclusive molecular targets: DNA, histones, or chromatin-associated non-histone 59 

proteins. For instance, Epstein-Barr virus (EBV), a γ-herpesvirus, encodes the EBV nuclear 60 

antigen 1 (EBNA1) which targets host chromatin by interacting with adenosine/thymidine-rich 61 

DNA sequences (5) and EBNA1 binding protein 2 (6-9). In contrast, the latency-associated 62 

nuclear antigen 1 (LANA1 or LANA) encoded by another γ-herpesvirus, Kaposi’s sarcoma-63 

associated herpesvirus (KSHV), associates with chromatin through complex formation with non-64 

histone factors including methyl CpG-binding protein (10) as well as with core histones H2A-65 

H2B (11, 12) and, potentially, linker histone H1 (13). In fact, the crystal structure of a 66 

nucleosome complexed with the first 23 LANA amino acids revealed that the viral peptide forms 67 

a β-hairpin that specifically interacts with an “acidic pocket” formed by the folded regions of the 68 
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H2A-H2B dimer (12). Through chromatin interaction, LANA and other viral proteins assume 69 

fundamental roles in the infectious cycles of their respective viruses (see Discussion). 70 

The 72-kDa immediate-early (IE) 1 protein (IE1-72kDa, IE72, or IE1) is a nuclear 71 

regulatory phosphoprotein of human cytomegalovirus (hCMV), the prototypic β-herpesvirus. IE1 72 

is expressed from the hCMV genome at the onset of infection. Together with the 86-kDa IE2 73 

protein (IE2-86kDa, IE86, or IE2), IE1 is the most prominent member of the major IE (MIE) 74 

family of hCMV gene products which have been assigned critical functions in virus-host 75 

interaction including innate immune modulation and transcriptional regulation (reviewed in 14-76 

16). IE1 is required for viral early gene expression and replication in human fibroblasts, at least 77 

under conditions of low input multiplicity (17-19). Association of IE1 with condensed chromatin 78 

during mitosis was initially described more than 20 years ago (20) and has henceforward been 79 

conspicuous to many researchers (e.g., 21-28). The interaction with mitotic chromatin can be 80 

observed both during hCMV infection and upon ectopic expression of IE1. Chromosome 81 

association was first roughly mapped to MIE exon 4 sequences (20) and, subsequently, to 82 

residues 421 to 486 of the 491-amino-acid viral protein (24). Eventually, the 16 carboxy-terminal 83 

residues (amino acids 476 to 491) of IE1 were determined to be required and sufficient for 84 

mitotic chromatin interaction in transfected cells and were consequently termed the “chromatin 85 

tethering domain” (CTD) (22). The ability for chromosome attachment appears to be 86 

evolutionary conserved between IE1 orthologs of primate CMVs (21, 22, 29). However, despite 87 

being a conserved and distinctive feature of IE1, the mechanisms underlying chromosome 88 

association by the viral protein have not been determined. 89 
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The present study was designed to identify and precisely delineate the molecular 90 

interactions anchoring the hCMV IE1 protein to human chromosomes, and to determine their 91 

impact on viral replication in “clinical” strains of hCMV. 92 
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MATERIALS AND METHODS 93 

 94 

Plasmids and mutagenesis. For expression in human cells, plasmid constructs derived from 95 

pcDNA3 (Life Technologies), pCGN (30), pCMV.TetO (a gift from Roger Everett, University of 96 

Glasgow, Scotland), pEGFP-C1 (Clontech), and pME18S (31) were used. For expression in E. 97 

coli, plasmid constructs derived from pGEX-KG (32) were used. 98 

Plasmid pcDNA-HA-IE1 encodes the hCMV (Towne) 72-kDa IE1 (pUL123) protein 99 

tagged with an Influenza virus hemagglutinin (HA) epitope (21). Plasmid pcDNA-HA-mIE1 100 

encodes an HA-tagged form of the mCMV IE1 (mIE1, pp89) protein and was constructed by 101 

inserting a BamH1-EcoRI fragment from pGEX-mIE1 (21) into the same sites of pcDNA-HA-N 102 

(33) (a gift from Ronald Hay, University of Dundee, Scotland). For construction of pcDNA-HA-103 

IE2, encoding an HA-tagged form of the hCMV 86-kDa IE2 (pUL122) protein, a BglII-EcoRI 104 

fragment from pEGFP-IE2 (21) was inserted into the BamHI and EcoRI sites of pcDNA-HA-N. 105 

Plasmid pCGN-pp71 encodes an HA-tagged form of the hCMV pp71 (pUL82) protein (34). 106 

Plasmid pCMV.TetO.IE1 has been described (40). For pCMV.TetO.IE1M483A, 107 

pCMV.TetO.IE1NBM, and pCMV.TetO.IE11-475, mutant hCMV IE1 (Towne) coding sequences 108 

were PCR-amplified from template pEGFP-TNIE1 (21) with primers 483 and 1085, 483 and 109 

1086, or  483 and 695, respectively, and inserted into the HindIII and EcoRI sites of pCMV-110 

TetO. To generate pEGFP-IE1476-491 and related constructs encoding the enhanced green 111 

fluorescent protein (EGFP) fused to the IE1 CTD or to CTD variants with single amino acid 112 

substitutions (G476A, G477A, K478A, S479A, T480A, M481A, P482A, M483A, V484A, 113 

T485A, R486A, S487A, K488A, A489G, D490A, and Q491A), suitable oligonucleotides (635–114 

636 and 703–734) were annealed and inserted into the BglII and EcoRI sites of pEGFP-C1. A 115 
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construct replacing the first two IE1 coding triplets in pEGFP-IE1476-491 with stop codons 116 

(pEGFP-Stop) was generated in the same way using oligonucleotides 737 and 738. Likewise, 117 

pEGFP-LANA5-22 was generated by ligating annealed oligonucleotides 639 and 640 via BglII and 118 

EcoRI sites with pEGFP-C1. All constructs expressing human histone H2A (H2A.2, type 1-B/E) 119 

were based on pME-Flag-H2A (35) (a gift from Robert Eisenman, Fred Hutchinson Cancer 120 

Research Center, Seattle, USA). To generate constructs encoding Flag-tagged H2A with single 121 

(E41A, E56A, E61A, E64A, D72A, D90A, E91A, E92A, and E121A) and triple 122 

(E61A/E64A/D90A and D90A/E91A/E92A) amino acid substitutions, QuikChange site-directed 123 

mutagenesis (Stratagene) was performed according to the manufacturer’s instructions using 124 

suitable oligonucleotides (787–808).  125 

 In pGEX-KG, the BamHI and EcoRI sites served for all cloning reactions. Plasmid 126 

pGEX-IE1 encodes the hCMV (Towne) 72-kDa IE1 protein fused to GST (21). To generate 127 

pGEX-IE11-475, a PCR product amplified from template pGEX-IE1 with primers 637 and 638 was 128 

digested with BamHI and EcoRI and ligated with pGEX-KG. For construction of pGEX-IE1476-129 

491 and related constructs encoding GST fused to the IE1 CTD or to CTD variants with single 130 

amino acid substitutions, suitable oligonucleotides (635–636 and 703–734) were annealed and 131 

ligated with pGEX-KG. A construct replacing the first two IE1 coding triplets in pGEX-IE1476-491 132 

with two stop codons (pGEX-Stop) was generated in the same way using oligonucleotides 737 133 

and 738. Likewise, pGEX-LANA5-22 was generated by ligating annealed oligonucleotides 639 134 

and 640 with pGEX-KG. To construct pGEX-PreS-IE1, a DNA fragment encoding the 135 

recognition motif for PreScission Protease (LEVLFQGP) between the GST and IE1 sequences 136 

was generated by overlap extension PCR (36) from templates pGEX-KG and pGEX-IE1 with 137 

primers 484 and 603–605. The PCR product was digested with BamHI and EcoRI and ligated 138 

with pGEX-IE1. Plasmid pGEX-PreS-IE1 was used as a template for PCR with primers 695 and 139 
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838 resulting in a DNA fragment that was digested with BamHI and EcoRI and ligated with 140 

pGEX-PreS-IE1 to produce pGEX-PreS-IE11-475. Finally, pGEX-PreS-IE1476-491, pGEX-PreS-141 

LANA5-22, and pGEX-PreS were generated by ligating annealed oligonucleotides 834 and 835, 142 

836 and 837, or 658 and 659, respectively, with pGEX-PreS-IE1. 143 

As a standard for absolute quantification of hCMV genome copies by real-time quantitative 144 

PCR (qPCR), plasmid pCR-RPPH1-UL54P was constructed by a two-step procedure. First, a 145 

PCR product comprising 71 bp of hCMV UL54 promoter (UL54P) sequence was amplified from 146 

an infected cell genomic DNA template with primers 294 and 295, and was ligated with pCR4-147 

TOPO (Life Technologies). Secondly, the resulting construct (pCR-UL54P) was cleaved with 148 

PmeI and ligated with a PCR product comprising 83 bp of human ribonuclease P RNA 149 

component H1 (RPPH1) sequence amplified from an infected cell genomic DNA template with 150 

primers 759 and 765. All oligonucleotide sequences are listed in Table S1. 151 

 152 

Cells, viruses, and infections. Human fetal diploid lung fibroblasts (MRC-5) (37) were 153 

obtained from the European Collection of Cell Cultures, and early-passage cells (15 to 25 154 

population doublings before senescence) were used in all experiments. MRC-5-derived TetR 155 

cells and TetR-IE1 cells expressing inducible wild-type IE1 have been described (40). TetR-IE11-156 

475 cells expressing inducible CTD-deleted IE1 were generated via lentiviral transduction 157 

analogous as described for TetR-IE1 cells (40). The H1299 human lung carcinoma cell line (38) 158 

was obtained from the American Type Culture Collection. MRC-5 and H1299 cells were grown 159 

in Dulbecco's Modified Eagle's Medium (DMEM) (Life Technologies) supplemented with 10% 160 

fetal calf serum (Life Technologies), 100 U/ml penicillin, and 100 µg/ml streptomycin. For TetR, 161 

TetR-IE1, and TetR-IE11-475 cells, the same medium was further supplemented with 1 µg/ml 162 

puromycin and 300 µg/ml G418, and induction of IE1 or IE11-475 expression was accomplished 163 
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by adding doxycycline (1 µg/ml) 72 h prior to collection. All cells were maintained under 164 

humidified conditions at 37°C and 5% CO2. Cultures were regularly screened for mycoplasma 165 

contamination. 166 

 The wild-type (TNwt) and IE1-deficient (TNdlIE1) viruses of the high passage hCMV 167 

Towne strain (39) were described previously (21, 40, 41). The wild-type (TBwt) virus of the low 168 

passage hCMV TB40E strain (42) was derived from TB40-BAC4 (43) (a gift from Christian 169 

Sinzger, Ulm University, Germany). For the construction of TB40E-based IE1 CTD-deficient 170 

bacterial artificial chromosomes (BACs) (pTBIE11-475) by en passant mutagenesis, E. coli strain 171 

GS1783 (44) carrying TB40-BAC4 was transformed with a DpnI-digested and column-purified 172 

PCR product generated using plasmid pLAY2 (45) (a gift from Karsten Tischer, Freie University 173 

Berlin, Germany) as a template and oligonucleotides 870 and 871 as primers. “Scarless” removal 174 

of CTD-specific sequences by homologous recombination was accomplished following published 175 

protocols (44). To control for inadvertent genetic changes, the en passant strategy was also 176 

employed to construct “revertant” BACs (pTBrvIE11-475). To this end, a PCR product comprising 177 

MIE exon 4 was generated using TB40-BAC4 as a template and oligonucleotides 876 and 877 as 178 

primers. This PCR product was inserted into pUC18 via HindIII and EcoRI sites resulting in 179 

plasmid pUC-MIE. In addition, a PCR product comprising a kanamycin resistance (kan) cassette 180 

and an SceI cleavage site was generated, using pLAY2 as a template and oligonucleotides 878 181 

and 879 as primers. Following cleavage with NcoI, this PCR product was inserted into the NcoI 182 

site of pUC-MIE resulting in plasmid pUC-MIE-kan_SceI. Then, GS1783 bacteria carrying BAC 183 

pTBIE11-475 were transformed with a DpnI-digested and column-purified PCR product generated 184 

using plasmid pUC-MIE-kan_SceI as a template and oligonucleotides 880 and 881 as primers, 185 

and this was followed by homologous recombination (44). The identity and integrity of pTBIE11-186 
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475 and pTBrvIE11-475 were verified in comparison to TB40-BAC4 by restriction fragment length 187 

and DNA sequencing analyses (data not shown). 188 

 Allelic exchange to generate IE1 CTD-deficient (pFXIE11-475) and revertant (pFXrvIE1) 189 

BACs of the low passage hCMV FIX strain (46, 47) utilized the following derivatives of transfer 190 

plasmid pGS284 (48) (amplified in E. coli strain S17λpir): pGS284-FXIE1kanlacZ, pGS284-191 

FXMIE, and pGS284-FXIE11-475. Plasmid pGS284-FXIE1kanlacZ contains the kan and lacZ 192 

genes cloned between sequences flanking the IE1-specific exon four of the hCMV FIX MIE 193 

transcription unit. The ~1,000-bp flanking sequences were obtained by PCR amplification using 194 

primers 136 and 138 (downstream flanking sequence) or 139 and 140 (upstream flanking 195 

sequence), and an EGFP expressing hCMV FIX BAC (pFXwt) (a gift from Dong Yu, 196 

Washington University School of Medicine, USA) as template. The amplified downstream 197 

flanking sequence was cloned into pGS284 via BglII and NotI sites. Following addition of 198 

adenosine nucleotide overhangs to the PCR product, the upstream flanking sequence was first 199 

subcloned into vector pCR4-TOPO (Life Technologies) and subsequently inserted via NotI sites 200 

into pGS284 carrying the downstream flanking sequence. The kanlacZ expression cassette was 201 

released from plasmid pGEM-kanlacZ (YD-C54) (49) and cloned into the PacI site located 202 

between the hCMV flanking sequences in the pGS284 derivative described above. For the 203 

construction of pGS248-FXMIE, a ~3,000-bp sequence of the MIE region was amplified by PCR 204 

using template pFXwt and primers 155 and 156. After phosphorylation, the PCR product was 205 

first inserted into the SmaI site of pUC18 to generate pUC18-FXMIE. Plasmid pUC18-FXMIE 206 

served as a template for QuikChange site-directed mutagenesis with oligonucleotides 280 and 207 

281 replacing IE1 codon 475 with a stop codon to generate pUC18-FXIE11-475. Then, FseI-NotI 208 

fragments were excised from pUC18-FXMIE and pUC18-FXIE11-475 and cloned into the same 209 
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sites of pGS284-FXIE1kanlacZ thereby generating pGS284-FXMIE and pGS284-FXIE11-475, 210 

respectively. For verification, DNA sequence analysis was completed on all cloned PCR 211 

amplification products. Allelic exchange was performed through homologous recombination in 212 

E. coli strain GS500 as previously described (21, 48, 49). First, the BAC pFXIE1kanlacZ was 213 

generated by recombination of pFXwt with pGS284-FXIE1kanlacZ followed by selection for 214 

kanamycin resistance and LacZ expression. After that, the BACs pFXIE11-475 and pFXrvIE1 were 215 

made through recombination of pFXIE1kanlacZ with pGS284-FXIE11-475 and pGS284-FXMIE, 216 

respectively, followed by selection for the loss of kanamycin resistance and LacZ expression. The 217 

identity and integrity of pFXIE11-475 and pFXrvIE1 were verified in comparison to pFXwt by 218 

restriction fragment length and DNA sequence analyses (data not shown). All oligonucleotide 219 

sequences are listed in Table S1. 220 

 Cell- and serum-free virus stocks were produced upon electroporation of MRC-5 cells with 221 

BAC clones carrying wild-type (TNwt, FXwt, TBwt), revertant (FXrvIE1, TBrvIE11-475), or IE1 222 

CTD-deficient (FXIE11-475, TBIE11-475) genomes. Stocks of TNdlIE1 viruses were produced in a 223 

similar fashion, following electroporation of TetR-IE1 cells (40). All virus stocks were screened 224 

for mycoplasma contamination. Titers were calculated by qPCR-based absolute quantification of 225 

intracellular viral genome copies following infection of MRC-5 cells as described (21, 40) and by 226 

comparing the results to a standard curve based on amplifications from plasmid pCR-RPPH1-227 

UL54P (see above) mixed with salmon sperm DNA. For wild-type viruses, titers were also 228 

determined by standard plaque assay on MRC-5 cells. For mutant and revertant viruses, plaque 229 

forming units relative to wild-type titers were calculated from intracellular viral copy numbers. 230 

Infections were carried out at the indicated input multiplicities and for the indicated durations on 231 

(nearly) confluent MRC-5 cells. 232 

 233 



- 12 - 
 

Protein production, purification, and analysis. For protein production in E. coli, a single 234 

colony of the Rosetta strain (Novagen) transformed with pGEX-KG or derivatives was grown by 235 

shaking (220 revolutions per minute [rpm]) overnight at 28°C in Luria-Bertani medium 236 

containing ampicillin (50 μg/ml), chloramphenicol (20 μg/ml), and 2% glucose. On the next day, 237 

the culture was diluted to an optical density at 600 nm (OD600) of 0.1 with fresh prewarmed 238 

medium lacking glucose and further grown for 2–3 h at 220 rpm and 28°C to an OD600 of 0.6. At 239 

this point, gene expression was induced by adding isopropyl-β-D-thiogalactopyranoside to a final 240 

concentration of 200 µM. Following a 6-h incubation at 220 rpm and 28°C, cells were quick-241 

chilled on ice and collected by centrifugation (~2,500×g, 15 min, 4°C). Bacteria were 242 

resuspended in 1/10 culture volume ice-cold wash buffer (50 mM Tris-HCl [pH 7.5], 150 mM 243 

NaCl, 2 mM MgCl2, 1 mM DTT, cOmplete EDTA-free Protease Inhibitor Cocktail [Roche]). 244 

After another round of centrifugation (~2,500×g, 15 min, 4°C), the pellet was resuspended in 245 

1/25 culture volume ice-cold wash buffer containing 1 mM phenylmethylsulfonyl fluoride (added 246 

freshly). The suspension was snap-frozen in liquid nitrogen and stored at -80°C. 247 

To purify GST and GST fusion proteins, bacteria suspended in wash buffer (see above) 248 

were thawed in a water bath at room temperature. For the subsequent workflow, ice-cold buffers 249 

and solutions were used, and all steps were carried out on ice or at 4°C. Following addition of 250 

lysozyme (150 µg/ml) and benzonase (25 U/ml), the suspension was sonicated five times for 1 251 

min using a Branson Sonifier 450 (duty cycle 80%, output control 2) to facilitate cell lysis. The 252 

lysate was combined with 1/9 volume wash buffer containing 10% Triton X-100, rotated for 30 253 

min to solubilize proteins, and centrifuged (20,000×g, 30 min). The affinity matrix was prepared 254 

by washing Glutathione Sepharose 4B (GE Healthcare) consecutively in ten bed volumes 255 

equilibration buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 2 mM MgCl2), 10 bed volumes 256 

blocking buffer (equilibration buffer with 2% bovine serum albumin) (1 h under rotation), and 257 



- 13 - 
 

another 10 volumes equilibration buffer. After that, 1.25 ml equilibrated matrix per 1,000 ml 258 

culture volume and the supernatant from the bacterial lysate were combined and rotated for 2 h. 259 

The sample was then applied to a 10-ml Pierce Centrifuge Column (Thermo Scientific), and the 260 

matrix was washed consecutively with 50 bed volumes low salt wash buffer (50 mM Tris-HCl 261 

[pH 7.5], 150 mM NaCl, 1 mM dithiothreitol [DTT], 1% Triton X-100, 1 mM EDTA, cOmplete 262 

EDTA-free Protease Inhibitor Cocktail), 50 bed volumes high salt wash buffer (50 mM Tris-HCl 263 

[pH 7.5], 500 mM NaCl, 1 mM DTT, 1% Triton X-100, 1 mM ethylenediaminetetraacetic acid 264 

(EDTA), cOmplete EDTA-free Protease Inhibitor Cocktail), and another 50 bed volumes low salt 265 

wash buffer. After the final washing step, one bed volume low salt wash buffer was added, the 266 

column was sealed, and the 50% slurry containing purified proteins was stored in ice until use. 267 

To remove the GST tag from GST-IE1 and GST-IE11-475, the protein-loaded matrix was washed 268 

with 50 bed volumes cleavage buffer (PBS with 1 mM DTT), the column outlet was sealed, and 269 

one bed volume of cleavage buffer containing PreScission protease (50 U/ml, GE Healthcare) 270 

was added. Protein cleavage was allowed to proceed in the sealed column for 16 h under rotation. 271 

After that, the flow-through containing IE1 or IE11-475 proteins was collected. Protein 272 

concentrations were calculated assuming absorption at 280 nm values of 0.396 or 0.409 for 1 273 

g/1,000 ml (0.1%) IE1 or IE11-475, respectively. 274 

For preparation of nucleosomes, H1299 cells grown to confluency were scraped on ice and 275 

collected in 15-ml tubes by centrifugation (500×g, 5 min, 4°C). For the subsequent workflow, 276 

ice-cold buffers and solutions were used, and all steps were carried out on ice or at 4°C. Cell 277 

pellets, each corresponding to one 10-cm plate, were resuspended in 1 ml MNase lysis buffer (10 278 

mM Tris-HCl [pH 7.4], 10 mM NaCl, 3 mM MgCl2, 150 µM spermine, 500 µM spermidine, 279 

0.5% IGEPAL CA-630) and vortexed while simultaneously adding another 4 ml MNase lysis 280 

buffer. Following a 5-min incubation, samples were centrifuged (300×g, 5 min), the supernatant 281 
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was removed completely, and nuclei were washed in 500 µl MNase reaction buffer (10 mM Tris-282 

HCl [pH 7.4], 15 mM NaCl, 60 mM KCl, 150 µM spermine, 500 µM spermidine). After that, 283 

nuclei were carefully resuspended in 100 µl MNase reaction buffer with 1 mM CaCl2 and 284 

prewarmed for exactly 5 min at 30°C. Extra-nucleosomal DNA was digested by adding 100 U 285 

Nuclease S7 MNase from Staphylococcus aureus (Roche) diluted in MNase dilution buffer (5 286 

mM Tris-HCl [pH 7.4], 10 µM CaCl2). Following incubation for 10 min at 30°C, reactions were 287 

stopped with 20 mM EDTA and 2 mM ethylene glycol tetraacetic acid. For co-288 

immunoprecipitations, nucleosome preparations (120 µl) were combined with whole cell extracts 289 

prepared as described above. 290 

Histones were purified by acid extraction from H1299 cell nuclei. Cells grown to 291 

confluency were scraped on ice and collected in 15-ml tubes by centrifugation (500×g, 5 min, 292 

4°C). For the subsequent workflow, ice-cold buffers and solutions were used, and all steps were 293 

carried out on ice or at 4°C. Cell pellets, each corresponding to one 15-cm plate, were 294 

resuspended in 1 ml hypotonic lysis buffer (10 mM Tris-HCl [pH 7.5], 10 mM NaCl, 3 mM 295 

MgCl2, 10 mM DTT, 0.5% IGEPAL CA-630, EDTA-free Protease Inhibitor Cocktail Set III). 296 

Then, 4 ml hypotonic lysis buffer were added while samples were concomitantly vortexed at 297 

medium speed. Following a 5-min incubation, nuclei were collected by centrifugation (500×g, 5 298 

min) and washed by repeating the consecutive 1-ml and 4-ml resuspension steps in hypotonic 299 

lysis buffer twice (without the 5-min incubation in between). Following centrifugation (500×g, 1 300 

min), the supernatant was removed completely, the pellet was resuspended in 1 ml 200 mM 301 

H2SO4, and the nuclei were transferred to 1.5-ml tubes. After that, samples were incubated for 16 302 

h on a rotator. Following extraction, samples were centrifuged (20,000×g, 30 min) to remove 303 

insoluble debris, and 900 µl supernatant were transferred to a new 1.5-ml tube. Histones were 304 

precipitated by addition of trichloroacetic acid (TCA) to a final concentration of 35% and 305 
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overnight incubation at -20°C. After centrifugation (20,000×g, 15 min), the protein pellet was 306 

washed by sonication (Branson Sonifier 450; 10 pulses, duty cycle 80%, output control 8) in 1 ml 307 

acetone with 50 mM HCl and, subsequently, in 1 ml pure acetone at room temperature. After a 308 

final centrifugation step (20,000×g, 15 min), pellets were dried at room temperature. For binding 309 

assays, histones were resuspended in an appropriate volume of reaction buffer by sonication 310 

(Branson Sonifier 450; 10 pulses, duty cycle 80%, output control 8) and repeated pipetting. 311 

For separation of histones into fractions containing either H2A-H2B or H3-H4, the 312 

purification protocol was extended by an ion exchange chromatography step (50) following acid 313 

extraction. Briefly, a 2-ml Pierce Centrifuge Column was filled with 1 ml Sulfopropyl-Sepharose 314 

Fast Flow (Sigma-Aldrich) and washed twice with 8.1 ml wash buffer I (50 mM Tris-HCl [pH 315 

8.0], 200 mM NaCl, 2 mM EDTA). Concurrently, histone extracts (prepared as described above) 316 

from six 15-cm dishes of H1299 cells were pooled in a 50-ml tube and combined with 2 volumes 317 

of 1 M Tris-HCl (pH 8.0). After verifying the pH (pH 7.0–8.0), 200 mM NaCl, 1 mM DTT, and 2 318 

mM EDTA were added, and the mixture was applied to the filled column. The column was 319 

washed with 8.1 ml wash buffer II (50 mM Tris-HCl [pH 8.0], 500 mM NaCl, 2 mM EDTA [pH 320 

8.0]) and, subsequently, with the same volume of wash buffer III (50 mM Tris-HCl [pH 8.0], 600 321 

mM NaCl, 2 mM EDTA). For elution of H2A-H2B, 6.6 ml elution buffer I (50 mM Tris-HCl [pH 322 

8.0], 800 mM NaCl, 2 mM EDTA) were added to the column, of which the first 600 µl were 323 

discarded and six 1-ml fractions were collected. Following two 8.1-ml wash steps with elution 324 

buffer I, H3-H4 was eluted with 2.5 ml elution buffer II (50 mM Tris-HCl [pH 8.0], 2 M NaCl, 2 325 

mM EDTA) and collected in five 500 µl-fractions. A subset of histone fractions (determined by 326 

polyacrylamide-sodium dodecyl sulfate [SDS] gel electrophoresis and Coomassie Brilliant Blue 327 

staining, see below) were pooled and subjected to TCA precipitation as described above. 328 
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 For protein analysis, samples were mixed with 2×loading buffer (100 mM Tris-HCl [pH 329 

6.8], 4% SDS, 20% glycerol, 0.2% bromphenol blue, 200 mM β-mercaptoethanol), denatured for 330 

5 min at 95°C, and separated in SDS-polyacrylamide gels that were either stained with 331 

Coomassie Brilliant Blue (PlusOne Coomassie Blue PhastGel R-350, GE Healthcare) according 332 

to the manufacturer’s instructions, or subjected to immunoblotting including chemiluminescent 333 

detection (SuperSignal West Pico or SuperSignal West Femto, Thermo Scientific) as described 334 

(51). The following antibodies were used for protein detection following blotting: α-Flag (M2, 335 

Sigma-Aldrich), α-GAPDH (ab9485, Abcam), α-HA (3F10, Roche), α-H2A (ab13923, Abcam), 336 

α-H2B (ab1790, Abcam), α-H3 (ab1791, Abcam), α-H4 (62-141-13, Upstate), α-IE1 (1B12, 337 

[52]; ab30924 [IE1.G10], Abcam; 6E1, Santa Cruz), α-IE1/IE2 (MAB810R, Merck Millipore), 338 

and horseradish peroxidase-coupled anti-mouse (115-036-003, Dianova), anti-rabbit (AP156P, 339 

Chemicon), or anti-rat (112-035-003, Dianova) secondary conjugates. 340 

 341 

Protein binding and competition analysis. For co-immunoprecipitations, subconfluent 342 

H1299 cells on 10-cm plates were transfected with 10 µg plasmid DNA using a calcium 343 

phosphate precipitation technique (53). Approximately 48 h post transfection, cells were stored at 344 

room temperature for 10 min and cross-linked by adding formaldehyde to a final concentration of 345 

1% directly to the medium. Following a 5-min incubation at room temperature, a glycine solution 346 

(125 mM final concentration) was added to each dish to terminate cross-linking. After another 5-347 

min incubation at room temperature, the medium was removed, and cells were washed twice with 348 

10 ml ice-cold serum-free DMEM. For the subsequent workflow, ice-cold buffers and solutions 349 

were used, and all steps were carried out on ice or at 4°C. Cells were scraped into 2 ml serum-350 

free DMEM with EDTA-free Protease Inhibitor Cocktail Set III (Merck Millipore), and each dish 351 
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was washed three times with 2.5 ml serum-free DMEM for optimal cell recovery. After that, cells 352 

were centrifuged (2,500×g, 10 min), and the medium was removed completely. The cell pellet 353 

was resuspended in 1 ml immunoprecipitation (IP) lysis buffer (50 mM Tris-HCl [pH 7.5], 125 354 

mM NaCl, 500 µM DTT, 0.5% IGEPAL CA-630, 1% Triton X-100, 5 mM EDTA, EDTA-free 355 

Protease Inhibitor Cocktail Set III), and the suspension was incubated for 5 min. After 356 

centrifugation (12,000×g, 1 min), the pellet was washed in IP lysis buffer, recentrifuged 357 

(12,000×g, 1 min), resuspended in IP lysis buffer, and incubated for 10 min. Then, the cell lysate 358 

was sonicated three times for 5 min in a Bioruptor UCD-200 (Diagenode; position “H”, 30 s on-359 

off cycle) to shear the chromatin. After that, insoluble debris was removed by centrifugation 360 

(20,000×g, 30 min), and 900 µl supernatant were transferred to a new 1.5-ml tube. The following 361 

matrices were used for the subsequent immunoprecipitation reactions: Anti-Flag M2 Affinity Gel 362 

(Sigma-Aldrich), Monoclonal Anti-HA-Agarose (HA-7, Sigma-Aldrich), Mouse IgG-Agarose 363 

(Sigma-Aldrich), or Protein A Agarose/Salmon Sperm DNA (Merck Millipore). Before use, 364 

agarose beads were washed three times in 1 ml IP lysis buffer. To preclear the lysate, 100 µl (20 365 

µl bed volume) Mouse IgG-Agarose or Protein A Agarose/Salmon Sperm DNA were added, and 366 

the mixture was rotated for 1 h. Following centrifugation (20,000×g, 30 min), 50 µl supernatant 367 

were removed to serve as input sample and 850 µl were transferred to a new 1.5-ml tube. For 368 

reactions using Protein A Agarose/Salmon Sperm DNA, the lysate was incubated overnight with 369 

α-H3 antibodies (ab1791, Abcam) or IgG from rabbit serum (Sigma-Aldrich). Then, 100 µl (20 370 

µl bed volume) of the respective antibody-coupled or Protein A agarose matrix were added. After 371 

rotation for 1 h, samples were centrifuged (100×g, 1 min), and the supernatant was removed 372 

completely. The protein-loaded matrix was resuspended in 100 µl DNase buffer (Ambion) and 373 

reacted with 2 µl (4 U) DNase I (Ambion) for 15 min at 25°C. After that, 1 ml IP lysis buffer was 374 
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added, and the matrix was washed five times in the same buffer. Following the final 375 

centrifugation step (100×g, 1 min), the pellet was resuspended in 45 µl 1×loading buffer, and 376 

samples were heated (10 min for output and 5 min for input samples). Before electrophoresis, 377 

output samples were centrifuged (16,000×g, 5 min), and only the supernatant was used for 378 

immunoblotting. 379 

For GST pull-down assays, ice-cold buffers and solutions were used, and all steps were 380 

carried out on ice or at 4°C. For each reaction, 20 µl (bed volume) Glutathione Sepharose 4B (GE 381 

Healthcare) loaded with GST or GST fusion proteins were washed twice in 700 µl binding buffer 382 

(50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM DTT, 10% glycerol, 0.5% Triton X-100, 383 

EDTA-free Protease Inhibitor Cocktail Set III). Acid-extracted histones from one half 15-cm dish 384 

of H1299 cells in 300 µl binding buffer were subjected to one 10 min and two 5 min 385 

centrifugations (20,000×g) to remove insoluble debris. The histone solution was subsequently 386 

combined with the washed protein-loaded sepharose matrix, and 10% of the total volume was 387 

removed to serve as input sample. The suspension was rotated for 90 min to facilitate binding. 388 

After that, the matrix was washed five times in 700 µl binding buffer, resuspended in 100 µl 389 

1×loading buffer, heated, and analyzed. 390 

 To analyze competition between IE1 and LANA for nucleosome/histone binding, synthetic 391 

peptides encompassing KSHV LANA residues 5 to 22 (LANA-CTD: 392 

GMRLRSGRSTGAPLTRGS) or a mutant amino acid sequence deficient for histone binding 393 

(LANA-CTD*: GMRAAAGRSTGAPLTRGS) were purchased from Thermo Scientific and 394 

dissolved in water. IE1 and IE11-475 proteins were derived from the respective GST fusion 395 

proteins by cleavage with PreScission protease (GE Healthcare). Acid-extracted histones in 396 

binding buffer were preincubated for 1 h with various concentrations of LANA-CTD or LANA-397 

CTD* (1 mM stock solution), IE1 (95 µM stock solution), or IE11-475 (83 µM stock solution). 398 
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After that, the samples were centrifuged (20,000×g, 15 min), and the supernatant was reacted 399 

with the respective GST or GST fusion proteins coupled to Glutathione Sepharose 4B as 400 

described above. 401 

For protein quantification, bands were scanned at 72 dots per inch and subjected to 402 

densitometry using Scion Image 4.0.2 software (Scion Corporation) including the GelPlot2 403 

extension. 404 

 405 

Immunofluorescence and microscopy. Subconfluent H1299 or MRC-5 cells grown on 406 

sterile coverslips in 6-well dishes were transfected with 5 µg plasmid DNA using a calcium 407 

phosphate precipitation technique (53). Alternatively, MRC-5 cells were mock- or hCMV-408 

infected as described in Supplemental Material. Approximately 48 h post transfection or 409 

infection, cells were washed three times with phosphate-buffered saline (PBS) containing 0.05% 410 

Tween 20 (PBS-T) and fixed with ice-cold methanol for 20 min at -20°C. After three 5-min 411 

washes with PBS-T, samples were blocked for 1 h in PBS-T containing 2% bovine serum 412 

albumin (BSA) and reacted for 1 h with the respective primary antibodies in a humidity chamber. 413 

The primary antibodies used for immunofluorescence were α-EGFP (ab290, Abcam) or α-IE1 414 

(ab30924 [IE1.G10], Abcam; sc-69834 [6E1], Santa Cruz). Following three 5-min washes with 415 

PBS-T and a 1-h incubation with the appropriate Alexa Fluor 488- and Alexa Fluor 594-416 

conjugated secondary antibodies (Life Technologies) and 0.2 μg/ml 4′,6-diamidino-2-417 

phenylindole (DAPI) (Roche), coverslips were mounted on glass slides using ProLong Gold (Life 418 

Technologies). Slides were analyzed using a Keyence BZ 9000 (Generation II) or a Leica DMRX 419 

epifluorescence microscope equipped with a digital camera system (Retiga, Q-Imaging), and 420 

images were acquired and processed using BZ II Analyzer (Keyence) or Image-Pro Plus (version 421 
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6.2) (Q-Imaging) and Adobe Photoshop CS4 software. The extent of overlap between pixels in 422 

the green and blue channels was quantified by calculating Pearson’s correlations from 423 

autocontrasted eight bit images using ImageJ software (National Institutes of Health) and the 424 

Colocalization_Finder (version 1.2) plugin (http://rsb.info.nih.gov/ij/plugins/colocalization-425 

finder.html). 426 

 427 

Molecular modeling. Homology modeling was performed using the PERMOL module 428 

(54) implemented in the AUREMOL package (55). The 16 carboxy-terminal residues (amino 429 

acids 476–491) of hCMV (Towne) IE1 were aligned with 14 amino-terminal residues (amino 430 

acids 4–17) of KSHV LANA using a program based on the Needleman-Wunsch algorithm 431 

contained in PERMOL. The alignment was confirmed with other programs including ClustalW2 432 

(http://www.ebi.ac.uk/tools/msa/clustalw2) and EMBOSS Stretcher 433 

(http://www.ebi.ac.uk/tools/psa/emboss_stretcher), respectively. An alternative alignment was 434 

produced by just one of all tested programs (LALIGN; http://www.ebi.ac.uk/tools/psa/lalign). 435 

Other possible alignments were excluded as they did not involve the nucleosome binding motif 436 

(GMRLRSG) of the LANA CTD. As a template for homology modeling, we used the x-ray 437 

structure of the LANA4-17-nucleosome complex (12) (PDB: 1zla). The modeling was restricted to 438 

the interaction site of the LANA peptide with histones H2A and H2B, i.e., LANA amino acids 4–439 

17, H2A amino acids 14–107, and H2B amino acids 30–122 could evolve using restrained 440 

molecular dynamics while the remaining part of the histone complex was held rigid during the 441 

calculations. For the modeling, the LANA peptide was replaced by the IE1 CTD using either of 442 

the two reasonable amino acid sequence alignments. In a second step, we used PERMOL to 443 

generate interatomic distance restraints, dihedral angle restraints, and hydrogen bonds from the 444 

H2A-H2B/IE1 CTD model template based on the degree of sequence conservation between the 445 
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LANA and IE1 CTDs. With this set of restraints, 1,000 structures were calculated per each model 446 

using the molecular dynamics program Crystallography & NMR System (56, 57). The twenty 447 

best structures in terms of total energy were used for explicit water refinement (58). After the 448 

water refinement, a bundle of the ten lowest energy structures was selected for each of the two 449 

models. 450 
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RESULTS 451 

 452 

IE1 interacts with nucleosomes in a nucleic acid-independent fashion. We started the work by 453 

employing immunoprecipitation-immunoblotting analysis to investigate whether IE1 and other 454 

nuclear localized CMV proteins are physically associated with nucleosomes. For the first set of 455 

binding assays, extracts from cells transfected either with empty vector or with plasmids 456 

encoding epitope-tagged hCMV IE1, murine cytomegalovirus (mCMV) IE1 (mIE1), hCMV IE2, 457 

and hCMV pp71 were combined with exogenous nucleosomes prepared by micrococcal nuclease 458 

(MNase) digestion of human cell nuclei. Readily detectable amounts of core histones from all 459 

four classes (H2A, H2B, H3, and H4) were found to co-precipitate with IE1, while much smaller 460 

amounts were detected with IE2. Very little, if any, histone binding was observed in the mIE1, 461 

pp71, and empty vector transfections. Likewise, a non-specific antibody did not precipitate any 462 

appreciable amounts of core histones (Fig. 1A). In a second round of experiments, we checked 463 

for co-precipitation of endogenous nucleosomes solubilized by sonication with epitope-tagged 464 

IE1, mIE1, IE2, and pp71. Under these conditions, specific core histone binding could only be 465 

demonstrated for IE1, but not for any of the other viral proteins under investigation (Fig. S1). 466 

Importantly, IE1 was found to specifically interact with endogenous core histones not only in 467 

plasmid-transfected but also in hCMV-infected cells (Fig. 1B). 468 

To confirm the results obtained by immunoprecipitation-immunoblotting in another type of 469 

binding assay, we expressed IE1 fused to glutathione S-transferase (GST) in Escherichia coli and 470 

affinity-purified the protein on glutathione sepharose beads. GST-IE1 beads and beads loaded 471 

with only GST or no protein (empty beads) were subsequently reacted with acid-extracted 472 

histones, and samples were analyzed by electrophoresis in polyacrylamide gels stained with 473 
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Coomassie Brilliant Blue. The four core histones were found to interact with GST-IE1 at an 474 

approximately equimolar ratio, while only minor binding to GST or empty beads was observed in 475 

these assays (Fig. 1C). IE1 is not believed to bind DNA or RNA directly, and acid-extracted 476 

histone preparations are not supposed to contain intact nucleic acids. However, to fully rule out 477 

the possibility that the observed IE1-histone interactions are mediated through DNA or RNA, the 478 

pull-down assays were repeated in the presence of excess amounts of nucleases (DNase I and 479 

RNase A). As expected, the results obtained from DNase- and RNase-treated samples were 480 

virtually indistinguishable from those obtained in the absence of nucleases (Fig. 1C). 481 

Taken together, the results from our in vivo and in vitro interaction assays demonstrate that 482 

IE1 specifically binds to human nucleosome cores, most likely through direct interaction with 483 

histones. 484 

 485 

IE1 interacts with core histones via two separable regions with distinct binding 486 

specificities. To investigate whether core histones interact with IE1 residues previously shown to 487 

be required for chromosome association (22), we constructed plasmids encoding GST fused 488 

either to a carboxy-terminally truncated IE1 lacking the CTD (GST-IE11-475) or to an amino-489 

terminally truncated IE1 consisting of only the CTD (GST-IE1476-491). We also generated a 490 

plasmid encoding GST fused to the KSHV LANA amino-terminal CTD (GST-LANA5-22) (59, 491 

60), which was shown to bind to the H2A-H2B dimer of the nucleosome (12, 61) (Fig. 2A). 492 

Following expression in E. coli, the GST fusion proteins were used in pull-down assays with 493 

acid-extracted histone preparations as described above for wild-type GST-IE1 (see Fig. 1C). With 494 

GST-IE11-475, a reduction in H2A and H2B binding was evident compared to the full-length 495 

protein, whereas H3 and H4 binding was not negatively affected. Conversely, GST-IE1476-491 and 496 

GST-LANA5-22 did not specifically interact with H3 and H4. Instead, both GST-IE1476-491 and 497 
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GST-LANA5-22 displayed selective affinity for H2A and H2B. The interaction between H2A-498 

H2B and GST-IE1476-491 was less efficient compared to full-length GST-IE1, but about equally 499 

efficient compared to GST-IE11-475 and GST-LANA5-22. No interaction between any of the GST 500 

proteins and linker histone H1 was detected (Fig. 2B). Notably, CTD-mediated complex 501 

formation between IE1 and H2A or H2B was also observed in co-immunoprecipitations from 502 

cells arrested in interphase (G0 phase), indicating that nucleosome targeting by the viral protein is 503 

not restricted to mitosis (Fig. S2). 504 

To discriminate between direct and indirect core histone interactions, acid-extracted 505 

histones were further purified and separated into fractions highly enriched for either H2A-H2B 506 

dimers or H3-H4 dimers/tetramers. As predicted from the preceding experiments (see Fig. 2B), 507 

GST-IE11-475 and GST-IE1476-491 displayed H2A-H2B binding comparable to GST-LANA5-22 but 508 

less efficient compared to full-length GST-IE1. By contrast, GST-IE1 and GST-IE11-475 were 509 

equally efficient in binding to H3-H4. Finally, for GST-IE1476-491 and GST-LANA5-22 no H3-H4 510 

interaction above background was observed (Fig. 2C). 511 

The results from these experiments allow for several conclusions: (i) IE1 binds to core 512 

histones through at least two physically separable (and therefore independent) interaction 513 

surfaces, i.e., the CTD and unspecified sequences located upstream from the carboxy-terminus; 514 

(ii) the CTD selectively binds to H2A-H2B dimers through direct interaction, while the upstream 515 

histone binding domain directly binds to both H2A-H2B and H3-H4 dimers/tetramers with a 516 

preference for H3-H4; (iii) there are striking similarities between nucleosome binding by the IE1 517 

and LANA CTDs. 518 

 519 

Alanine scanning mutagenesis identifies a discrete nucleosome binding motif within 520 

the IE1 CTD. To gain further insight into the physical requirements of IE1-nucleosome complex 521 
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formation, we decided to determine which individual CTD residues contribute to the interaction. 522 

For this purpose, we performed alanine scanning mutagenesis replacing each of the 16 amino 523 

acids comprising the IE1 CTD with alanine (except for A489, which was replaced by glycine) 524 

(Fig. 3A). All mutant CTDs were expressed as GST fusion proteins in E. coli and used in pull-525 

down assays with acid-extracted histones. The IE1 CTD pulled down all four core histones in 526 

these assays, most likely because the experimental conditions (i.e., higher histone concentrations 527 

leading to a larger proportion of octamers compared to Fig. 2B) allowed not only for direct 528 

(H2A-H2B) but also for indirect (H3-H4) interactions. Again, no binding to linker histone H1 529 

was observed. Interestingly, only four CTD residues (H481, M483, T485, and R486) proved to be 530 

essential for histone binding. In addition, six amino acids (S479, T480, P482, V484, S487, and 531 

K488) turned out to augment the interaction significantly. In contrast, mutation of all residues 532 

upstream of S479 (G476, G477, and K478) and downstream of K488 (A489, D490, and Q491) 533 

had no obvious adverse effect on CTD-histone complex formation. In fact, the D490A exchange 534 

appeared to even enhance histone binding compared to the wild-type CTD (Fig. 3B–C). 535 

In order to link the in vitro histone binding results to cellular chromosome association, we 536 

also expressed the wild-type and mutant CTD peptides as fusion proteins with amino-terminal 537 

EGFP in human cells. Co-staining of the EGFP-CTD proteins with mitotic DNA revealed that 538 

each of the same four residues shown to be essential for histone binding (H481, M483, T485, and 539 

R486) is also indispensable for chromosome attachment (Fig. 4A�B). Alanine substitution of all 540 

four essential CTD residues or individual substitution of M483 also abolished mitotic chromatin 541 

association of IE1 in the context of the full-length protein (Fig. 4C). Moreover, in agreement with 542 

the binding results, individual exchange of S479, T480, P482, V484, S487, and K488 was linked 543 

to an intermediate phenotype, while mutation of residues at the edges of the IE1 CTD had no 544 
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significant negative (G476, G477, K478, A489, and Q491) or even positive (D490) effects on 545 

chromosome association (Fig. 4A–B).  546 

These results identify a ten-amino-acid nucleosome binding motif (NBM: STHPMVTRSK) 547 

within the IE1 CTD, of which amino acids H481, M483, T485, and R486 are individually 548 

essential for nucleosome core targeting and chromosome attachment (Fig. 4D). 549 

 550 

Histone binding by the IE1 CTD is directed by acidic residues in H2A. In addition to 551 

identifying the viral determinants of IE1-nucleosome complex formation, we set out to probe the 552 

histone-specific contributions. Much of the LANA-nucleosome interaction is mediated by 553 

negatively charged residues in H2A composing the acidic pocket (12). Given the similarities in 554 

histone binding between the LANA and IE1 CTDs (see Fig. 2), each of the nine negatively 555 

charged amino acids found in H2A (including acidic pocket residues E56, E61, E64, D90, E91, 556 

and E92) (Fig. 5A) was individually replaced with alanine. Additionally, we constructed two 557 

triple mutants where H2A residues E61, E64, and D90 or D90, E91, and E92 were 558 

simultaneously changed to alanine. Subsequently, human cells were transfected with plasmids 559 

encoding epitope-tagged wild-type or mutant H2A, and pull-down assays with acid-extracted 560 

histones and GST-IE1476-491 were conducted (Fig. 5B). Interestingly, only mutations in acidic 561 

pocket residues E56, E61, E64, and D90 and the two triple substitutions proved to abolish IE1-562 

H2A binding while all other mutations (E41A, D72A, E91A, E92A, and E121A) had little, if any, 563 

effect on this interaction. 564 

To confirm these results in the context of the full-length IE1 protein, we performed 565 

additional immunoprecipitation-immunoblotting assays (Fig. 5C–D). Again, the E41A, D72A, 566 

E91A, E92A, and E121A substitutions did not diminish (but rather enhanced) IE1 binding 567 

relative to wild-type H2A. However, we reproducibly found reduced binding between the viral 568 
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protein and H2A mutants E56A, E61A, E64A, D90A, and D90A/E91A/E92A. In addition, the 569 

E61A/E64A/D90A mutant exhibited highly impaired IE1 binding. As expected, neither of the 570 

histone mutants was completely defective for binding to the viral protein, most likely due to the 571 

second histone binding domain located upstream of the CTD (see Fig. 2B–C). Correspondingly, 572 

IE11-475 retained some affinity for H2A (Fig. 5C–D). 573 

 These results demonstrate that several negatively charged H2A residues (E56, E61, E64, 574 

and D90) composing the nucleosomal acidic pocket, but not acidic residues outside the pocket, 575 

selectively direct the interaction with the IE1 CTD. 576 

 577 

The IE1 and LANA CTDs compete for binding to nucleosome cores and 578 

chromosomes. Our results indicate that IE1 targets human chromatin via interaction between its 579 

CTD and the acidic pocket formed by H2A-H2B on nucleosome cores (see Fig. 2–5), which 580 

closely resembles the situation described for LANA (12). To further test the idea that the IE1 and 581 

LANA CTDs target the same nucleosomal surface, we asked whether the presence of the IE1 582 

CTD is compatible with or competitive to nucleosome binding by the LANA CTD. First, we 583 

utilized a competition pull-down assay to address this question. GST-LANA5-22 was reacted with 584 

acid-extracted histone octamers and increasing molar ratios of purified IE1. As observed 585 

beforehand for IE1 (see Fig. 3B), histone binding by LANA extended to all four core histone 586 

species under these conditions. However, IE1 diminished complex formation between the LANA 587 

CTD and core histones in a dose-dependent manner (Fig. 6A). Compared to full-length IE1, the 588 

CTD-deficient protein (IE11-475) was much less efficient in competing with GST-LANA5-22 for 589 

histone binding (Fig. 6B). Very similar results were obtained when a synthetic peptide 590 

encompassing the LANA CTD (LANA-CTD) was used to compete with binding between GST-591 

IE1476-491 and core histones, while a mutant peptide (LANA-CTD*) had no effect (Fig. 6C). 592 
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 To gain in vivo support for our assumption that the IE1 and LANA CTDs compete for 593 

binding to nucleosomes, we expressed HA-tagged IE1 and LANA5-22 fused to EGFP in human 594 

cells and examined their localization by immunofluorescence microscopy. In mitotic cells, both 595 

EGFP-LANA5-22 and HA-IE1 predominantly localized to condensed chromatin when expressed 596 

individually (with HA or EGFP, respectively) conforming to previous observations (e.g., 12, 20, 597 

22, 24, 59). However, simultaneous expression of the two proteins resulted in partial release of 598 

EGFP-LANA5-22 and almost complete displacement of HA-IE1 from mitotic chromatin. As 599 

expected, HA-IE1 lacking the CTD (HA-IE11-475) did not attach to chromosomes (Fig. S3). These 600 

results strongly suggest that IE1 and LANA share the same binding site on the nucleosome. 601 

 602 

The IE1 CTD is predicted to form a β-hairpin recognizing the acidic pocket on the 603 

nucleosomal surface. The notion of a shared binding site for IE1 and LANA on the nucleosome 604 

also suggests that key residues responsible for CTD-histone interaction may be conserved 605 

between the two viral proteins. Therefore, we generated alignments between the IE1 and LANA 606 

CTD sequences. The algorithm implemented in PERMOL (54, 62) and most other tested 607 

programs (e. g., ClustalW2, European Bioinformatics Institute) produced an alignment with three 608 

identical residues, one conserved exchange, and two semi-conserved substitutions between 609 

LANA4-17 and IE1476-491 (Fig. 7A). However, the same number of identical residues was also 610 

found with an alternative alignment (Fig. S4A) generated by another program (LALIGN, 611 

European Bioinformatics Institute). The two alignments differ mainly in the way the RS sequence 612 

(R486–S487) in the IE1 CTD is positioned relative to either of two RS sequences (R9–S10 and 613 

R12–S13) in the LANA CTD. Other possible alignments were excluded as they did not involve 614 

the LANA residues known to be required for nucleosome binding (12). 615 
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Based on the two most likely alignments and the available x-ray structure of the LANA 616 

amino-terminal peptide bound to the nucleosome core (Protein Data Bank [PDB]: 1zla), 617 

molecular dynamics-based homology modeling of the IE1 CTD-histone complex was performed. 618 

From the patterns of hydrogen bonds, interatomic distances, and dihedral angles (54, 62) two sets 619 

of restraints (one for each alignment) were created and used to calculate 1,000 structures by 620 

restrained simulated annealing. The ten best structures each in terms of lowest total energy were 621 

refined in explicit water resulting in structural bundles (Fig. 7B and Fig. S4B). The results 622 

suggest that the IE1 CTD can adopt a β-hairpin (two antiparallel β-strands connected by a reverse 623 

turn) resembling the LANA CTD structure. The structural bundle deduced from the first of the 624 

two alignments is well defined with a backbone root-mean-square deviation (RMSD) of 0.038 625 

nm (Fig. 7B). In this model, the β-hairpin formed by the IE1 CTD is stabilized by four main 626 

chain intramolecular hydrogen bonds, and there are ten intermolecular hydrogen bonds between 627 

CTD residues and histones H2A-H2B including amino acids forming the acidic pocket (Fig. 7C). 628 

A three-dimensional representation of this model indicates excellent shape and charge 629 

complementarity between the IE1 CTD and the acidic pocket formed by H2A-H2B including 630 

H2A residues E56, E61, E64, and E92 (Fig. 7D–E and Movie S1). The model derived from the 631 

second alignment is structurally much less well defined exhibiting a backbone RMSD of 0.200 632 

nm (Fig. S4B). Here, the CTD engages in only three intra- and five intermolecular hydrogen 633 

bonds (Fig. S4C). 634 

Although both interaction models largely comply with our in vitro and in vivo data, the in 635 

silico results and conclusions from mutagenesis experiments (see Discussion) favor the model 636 

shown in Fig. 7. 637 

 638 
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The IE1 CTD is dispensable for productive replication of “clinical” hCMV strains. To 639 

address how IE1-nucleosome interaction may impact the course and outcome of infection, BAC 640 

clones of the hCMV low passage strains TB40E (TBwt) and FIX (FXwt) were used to construct 641 

mutant viruses specifically lacking the IE1 CTD (TBIE11-475 and FXIE11-475, respectively). We 642 

also generated “revertant” viruses (TBrvIE11-475 and FXrvIE1) to control for inadvertent genetic 643 

changes. The IE11-475 proteins expressed from the mutant genomes were detected at kinetics and 644 

steady-state levels comparable to full-length IE1 (Fig. 8A–B), and the mutant proteins were 645 

confirmed to be inactive for chromosome association (Fig. 8C–D) in hCMV-infected cells. 646 

 Following infection of permissive fibroblast cells (MRC-5), two independent clones each of 647 

TBIE11-475 and FXIE11-475 did not exhibit significantly altered replication compared to the 648 

corresponding wild-type and revertant strains, neither at high nor low input multiplicities, as 649 

determined by quantification of extracellular viral DNA and infectious particles (Fig. 9). These 650 

findings are consistent with results from a recent study testing a CTD-deleted mutant of the 651 

hCMV high passage strain Towne (23). Thus, nucleosome targeting by IE1 appears to be entirely 652 

dispensable for normal productive hCMV infection in fibroblasts suggesting a function during 653 

non-productive infection and/or infection of other cell types (see Discussion). 654 
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DISCUSSION 655 

 656 

Structural aspects of the IE1-nucleosome interaction. Nucleosomes are the repeating 657 

centerpieces of chromatin (reviewed in 3, 4). Within the nucleosome core, the disordered histone 658 

tail domains are known to engage in interactions with numerous different proteins, while the 659 

folded regions are believed to primarily function in compacting and constraining the DNA. 660 

However, the nucleosome surface is highly contoured and differentially charged (1, 2). The most 661 

distinctive feature of this surface is the acidic pocket, a negatively charged and concave patch 662 

generated by several highly conserved glutamate and aspartate residues contributed by histone 663 

H2A and, to a lesser extent, H2B (reviewed in 63, 64). In fact, the acidic pocket is the only 664 

negatively charged area on the otherwise positive or hydrophobic nucleosomal surface. The 665 

pocket serves no apparent role in maintaining the structure of the nucleosome, but is specifically 666 

recognized by histone H4 tails of adjacent nucleosomes (1, 2) and an increasing number of non-667 

histone cellular and viral proteins. The first protein, besides histone H4, reported to bind to the 668 

acidic pocket was LANA encoded by the γ-herpesvirus KSHV (12). Subsequently, human 669 

interleukin 33 (IL-33) (61), Drosophila melanogaster regulator of chromosome condensation 1 670 

(RCC1) (65), human high-mobility group nucleosomal 2 (HMGN2) protein (66), and 671 

Saccharomyces cerevisiae silent information regulator 3 (Sir3) (67) were all shown or predicted 672 

to interact with the acidic pocket of the nucleosomal core. Furthermore, Foamy virus group-673 

specific antigen (Gag) and Borna disease virus ribonucleoprotein (RNP) were proposed to bind to 674 

host chromosomes via H2A-H2B (68, 69). 675 

The present study identifies the first β-herpesvirus protein targeting the acidic pocket on the 676 

nucleosome. Previous work has demonstrated that the hCMV IE1 protein attaches to human 677 
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mitotic chromosomes through a CTD located at the carboxy-terminus (20, 22, 24). However, the 678 

mechanism of interaction has not been addressed. Although hCMV encodes several chromatin-679 

associated proteins (e.g., 70, 71; reviewed in 72-76), nucleosome binding appears to be a rather 680 

unique feature of IE1. For instance, the hCMV IE2 protein is known to interact with DNA (e.g., 681 

77-80), histones H3-H4 (81), and several histone-associated proteins (e.g., 51, 81-83); however, 682 

IE2 neither associates with condensed chromatin (21, 25) nor with nucleosomes (this work), at 683 

least not to the same extent as IE1. Surprisingly, even mIE1 has little affinity for nucleosomes 684 

and does not co-localize with mitotic chromatin (21, 84 and this work) despite reportedly binding 685 

to DNA and core histones (85, 86). Accordingly, IE1 orthologs of known rodent CMVs 686 

(including mCMV and rat CMV strains) do not seem to exhibit functional CTD sequences (data 687 

not shown). However, CTD and NBM sequences are highly conserved across IE1 proteins of 688 

primate CMVs (Fig. 10) (22). The African green monkey CMV IE1 ortholog has also been 689 

shown to associate with metaphase chromosomes (29). At the same time, sequence similarity 690 

across the full-length orthologous IE1 proteins is limited (Fig. 10). Thus, any available evidence 691 

points to nucleosome targeting being a primate-specific viral adaptation and a distinguishing 692 

feature of primate CMV IE1 proteins. 693 

Our results indicate that the IE1 NBM directly and selectively recognizes the nucleosome 694 

core through the H2A-H2B dimer. In fact, IE1 does not detectably interact with linker histone 695 

H1, and nucleic acids are not required for nucleosome binding by the viral protein. The latter 696 

finding matches the long-standing assumption that hCMV IE1 does not directly bind to DNA 697 

(86), although our data do not exclude this possibility. Despite the fact that the CTD is sufficient 698 

for H2A-H2B binding, nucleosome core interaction, and chromosome association, histone 699 

binding by IE1 is clearly not restricted to the carboxy-terminal domain. Instead, another histone 700 

binding region, which functions independently from the CTD/NBM, must exist upstream of 701 
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amino acid 476. In contrast to the NBM, this region directly binds to all four core histones with a 702 

preference for H3-H4. The fact that all tested H2A mutants retain some affinity for full-length 703 

IE1 suggests that the upstream histone binding domain may interact with H2A-H2B residues 704 

outside the acidic patch. It is tempting to speculate that negatively charged residues within three 705 

proximate acidic stretches (termed acidic domains 1 to 3, AD1–AD3) (21) between amino acids 706 

373 and 475 of IE1 might engage in electrostatic interactions with basic residues of the H3-H4 707 

tetramer and the H2A-H2B dimers. Moreover, the observation that IE11-475 does not associate 708 

with chromosomes and is not required for nucleosome interaction suggests that the upstream 709 

histone binding region may interact with “free” histones rather than nucleosomes.  710 

In most published cases of interactions with the nucleosomal acidic pocket (H4, LANA, IL-711 

33, RCC1, and HMGN2), arginine (and serine) containing linear motifs within conformationally 712 

flexible protein regions contribute to H2A binding. Our work identifies the ten-amino-acid 713 

sequence STHPMVTRSK to be this motif in IE1 (NBM). Results from proton nuclear magnetic 714 

resonance spectroscopy suggest that the IE1 CTD is highly mobile and that this domain is 715 

natively unstructured (data not shown), as has been previously predicted (21). Nonetheless, our 716 

results strongly suggest that the IE1 CTD forms a loop connecting two hydrogen-bonded 717 

antiparallel β-sheets (β-hairpin), at least when complexed with H2A-H2B (“induced fit”). The 718 

predicted IE1 β-hairpin closely resembles the structure previously reported for the complexed 719 

LANA CTD (12). Consequently, the mode of interaction with nucleosomes is strikingly similar 720 

for IE1 and LANA; this is not only evident from our binding and competition experiments, but 721 

also from comparisons between our preferred model and the known crystal structure of the IE1 722 

and LANA CTD-nucleosome complexes, respectively. According to the published structure (12), 723 

LANA4-17 interacts with E61, E64, D90, and E92 of H2A (and several residues of H2B). 724 
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Likewise, our preferred model displays interactions between IE1476-491 and H2A E61, E64, and 725 

E92 (and H2B). In addition, substitution of H2A D90 has a strongly adverse effect on IE1 726 

binding that cannot be directly inferred from the proposed hydrogen bond patterns. However, the 727 

imidazole ring of IE1 H481 is expected to be positively charged in the complex and may thus be 728 

involved in an electrostatic interaction with the nearby negatively charged side chain of H2A 729 

D90. Most likely, the D90A exchange also alters the geometry of the IE1 H481 binding site 730 

within the acidic pocket. Interestingly, our model predicts an additional interaction of IE1476-491 731 

with H2A E56 which has not been described for LANA. The importance of E56 for the IE1-732 

nucleosome interaction is reinforced by our mutational analyses. Moreover, the fact that E56 is 733 

not predicted to contribute to H2A-IE1 binding by our alternative model adds further 734 

experimental support in favor of the preferred model. Taken together, our structural data indicate 735 

that LANA and IE1 target nucleosomes through molecular interactions that are highly similar, 736 

albeit not identical. 737 

 738 

Potential functions of the IE1-nucleosome interaction. Our structural analyses strongly 739 

suggest that the IE1 CTD has specifically evolved to fit the acidic pocket of the nucleosome, and 740 

the CTD/NBM sequences are highly and selectively conserved through primate CMV evolution. 741 

These findings clearly point to an important role of nucleosome targeting by IE1 in hCMV 742 

infection. However, no such role has been reported so far. 743 

Our prior work has demonstrated that nucleosomes are not confined to cellular chromatin, 744 

but also form on hCMV nuclear DNA (87-89). We have also recently shown that global 745 

nucleosome occupancy and dynamics across hCMV genomes are largely controlled by IE1-746 

dependent mechanisms (88). Thus, IE1 may target nucleosomes for active remodeling of viral 747 

and/or cellular chromatin. Notably, interaction between the acidic pocket contributed by H2A-748 
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H2B and a positively charged region of the histone H4 tail from an adjacent nucleosome has been 749 

implicated in the formation of higher-order chromatin structures (90, 91). The H4 tail has no 750 

significant sequence similarity with the IE1 or LANA CTDs (data not shown) and seems to adopt 751 

a different conformation compared to the viral peptides. Moreover, the binding sites of LANA 752 

(and hence also of IE1) and H4 in the acidic pocket do not overlap (2, 12). Nonetheless, the 753 

available structures and models predict that IE1 and LANA may displace the H4 tail from the 754 

pocket raising the possibility that the viral proteins might adversely affect chromatin 755 

condensation. Conceivably, global chromatin decondensation may serve as a mechanism through 756 

which viruses enhance permissiveness of the cellular and/or viral genome to transcriptional 757 

activation and/or other DNA-based processes. Luger and colleagues have examined the effect of 758 

LANA CTD binding on folding and self-association of nucleosome arrays. Against expectations, 759 

they found that LANA stabilizes self-association of nucleosomes and promotes cellular 760 

heterochromatin formation (92). However, these findings somewhat conflict with other reports 761 

(e.g., 93). Likewise, IL-33 appears to regulate chromatin compaction by promoting nucleosome-762 

nucleosome interactions (61). It remains to be determined whether IE1 has any positive or 763 

negative effects on higher-order chromatin structure. 764 

The CTD has been shown to be entirely dispensable for complementing the defective 765 

replication of an IE1-deficient mutant hCMV (Towne) in human fibroblasts (22). Moreover, 766 

mutant viruses of both laboratory-adapted and “clinical” hCMV strains expressing IE11-475 767 

instead of the full-length protein do not display any obvious phenotypic differences compared to 768 

the parental wild-type viruses in these cells (23 and this work). Thus, nucleosome binding by IE1 769 

appears to be irrelevant for hCMV productive infection in fibroblasts. However, IE1-nucleosome 770 

interaction may serve an important function in cell types supporting non-productive (latent) 771 

hCMV infections. More than a decade ago, it was first reported that LANA tethers KSHV 772 
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episomes to host mitotic chromosomes (13, 94), and LANA turned out to be necessary and 773 

sufficient for KSHV episome persistence in the absence of other viral genes. By bridging KSHV 774 

DNA and host chromosomes, LANA facilitates nuclear retention and segregation of viral 775 

episomes to daughter nuclei during viral latency (reviewed in 95). Very similar mechanisms are 776 

used by EBNA1 of EBV and the early 2 (E2) proteins of human and bovine papillomaviruses, 777 

which also tether their respective genomes to cellular chromosomes for efficient maintenance 778 

during cell division (reviewed in 96). As opposed to other DNA viruses, including both α- and γ-779 

herpesviruses, the mechanism of viral genome persistence during latency has remained a mystery 780 

in any of the β-herpesviruses. Thus it is highly tempting to speculate that the IE1-nucleosome 781 

interaction described in this work may contribute to hCMV genome tethering and maintenance. 782 
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Figure Legends 1080 

 1081 

FIG 1  hCMV IE1 interacts with human nucleosomes and all four core histones in a nucleic acid-1082 

independent fashion. 1083 

(A) Results of co-immunoprecipitations from plasmid-transfected cells. H1299 cells were 1084 

transfected with plasmids encoding the indicated HA-tagged viral proteins or with empty vector 1085 

(w/o). Cell extracts were combined with nucleosomes derived from MNase-digested human cell 1086 

nuclei. Samples were subjected to immunoprecipitation using anti-HA or anti-Flag agarose. Input 1087 

and output protein samples were separated in 10 or 15% polyacrylamide-SDS gels, and HA-1088 

tagged proteins and individual core histones were detected by immunoblotting. See also Fig. S1. 1089 

(B) Results of co-immunoprecipitations from hCMV-infected cells. Following infection of MRC-1090 

5 cells with TNwt or TNdlIE1 viruses (3 PFU/cell for 72 h), cells were fixed with formaldehyde, 1091 

and cell extracts were sonicated to solubilize nucleosomes. Samples were subjected to 1092 

immunoprecipitation using rabbit antibodies to histone H3 or non-specific rabbit IgG (rbIgG). 1093 

Input and output protein samples were separated in 15% polyacrylamide-SDS gels, and the IE1 1094 

protein and histone H3 were detected by immunoblotting. 1095 

(C) Results of in vitro GST pull-down assays. Equal volumes of empty glutathione sepharose 1096 

beads or beads carrying GST or GST-IE1 were reacted with acid-extracted human histones in the 1097 

absence or presence of DNase I and RNase A. Input (8% of output) and output protein samples 1098 

were separated in 15% polyacrylamide-SDS gels and stained with Coomassie Brilliant Blue. 1099 

 1100 

FIG 2  hCMV IE1 exhibits two separable histone binding domains with differential specificities 1101 

for H2A-H2B and H3-H4. 1102 
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(A) Schematic of wild-type and mutant hCMV IE1 and KSHV LANA proteins with relative 1103 

locations of their CTDs. 1104 

(B) Results of in vitro GST pull-down assays with acid-extracted unfractionated human histones. 1105 

Empty glutathione sepharose beads or beads carrying GST or the indicated GST fusion proteins 1106 

were reacted with acid-extracted human histones. Input and output protein samples were 1107 

separated along with purified recombinant human core histones (H2A, H2B, H3, and H4 from 1108 

New England Biolabs) in a 15% polyacrylamide-SDS gel and stained with Coomassie Brilliant 1109 

Blue. The asterisk marks H1 histones. 1110 

(C) Results of in vitro GST pull-down assays with acid-extracted human histones separated into 1111 

H2A-H2B and H3-H4 fractions. Equal volumes of empty glutathione sepharose beads or beads 1112 

carrying GST or the indicated GST fusion proteins were reacted with purified human H2A-H2B 1113 

or H3-H4. Input (8% of output) and output protein samples were separated in 15% 1114 

polyacrylamide-SDS gels and stained with Coomassie Brilliant Blue. 1115 

 1116 

FIG 3  Alanine scanning mutagenesis identifies IE1 CTD residues critical for histone binding. 1117 

(A) Presentation of wild-type (wt) and mutant IE1476-491 protein sequences. Amino acids 1118 

substituted by alanine scanning mutagenesis are highlighted. 1119 

(B) Results of in vitro GST pull-down assays. Glutathione sepharose beads carrying GST or the 1120 

indicated wild-type (wt) and mutant GST-IE1476-491 fusion proteins (see also Fig. 3A) were 1121 

reacted with acid-extracted histones. Input (14% of output) and output protein samples were 1122 

separated in 15% polyacrylamide-SDS gels and stained with Coomassie Brilliant Blue. 1123 

(C) Quantitative assessment of GST pull-down assay results. The output bands were quantified 1124 

by densitometry, and bars represent the ratio of histones H3, H2B, H2A, and H4 to GST-IE1476-1125 
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491. Results for the CTD mutants are presented relative to the CTD wt sample present on the same 1126 

gel (set to 100%). 1127 

 1128 

FIG 4  Alanine scanning mutagenesis identifies IE1 CTD residues critical for mitotic chromatin 1129 

association. 1130 

(A) Results of co-localization analyses in mitotic cells. H1299 cells were transfected with 1131 

plasmids encoding EGFP or the indicated wild-type (wt) and mutant EGFP-IE1476-491 fusion 1132 

proteins (see also Fig. 3A). Cells were fixed with methanol, immunostained for EGFP, and 1133 

counterstained for DNA with DAPI. Representative individual and merged images of EGFP and 1134 

DAPI signals are presented. 1135 

(B) Quantitative assessment of co-localization analysis results. The extent of overlap between 1136 

pixels in the green and blue channels was quantified by calculating Pearson’s correlation 1137 

coefficients (1 = perfect positive correlation, 0 = no correlation, -1 = perfect negative 1138 

correlation). Bars represent means from at least three randomly selected mitotic cell images with 1139 

standard deviations. A Student’s t-test was performed to check for statistical significance of 1140 

differences between CTD wt and the respective mutant (* p <0.1, ** p <0.01). 1141 

(C) Assessment of essential CTD residues in the background of full-length IE1. H1299 cells were 1142 

transfected with pCMV.TetO-derived plasmids encoding wild-type IE1, IE11-475, or full-length 1143 

IE1 with alanine substitutions of all four (IE1 NBM) or one single (IE1 M483A) CTD residue 1144 

determined to be essential in (A) and (B). Cells were fixed with methanol, immunostained for 1145 

IE1, and counterstained for DNA with DAPI. Representative individual and merged images of 1146 

IE1 and DAPI signals are presented. 1147 
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(D) Delineation of the nucleosome binding motif (NBM) within the IE1 CTD as deduced from 1148 

data shown in (A), (B), (C), and Fig. 3. Amino acids determined to be essential or accessory for 1149 

histone binding and chromatin association are highlighted. 1150 

 1151 

FIG 5  Site-directed mutagenesis identifies human H2A residues critical for interaction with IE1. 1152 

(A) H2A residues targeted by mutagenesis and evaluated for contributions to IE1 binding. The 1153 

complete sequence of human histone H2A.2 (H2A type 1-B/E) is shown, with acidic residues in 1154 

bold letters and amino acids forming the acidic pocket underlined. 1155 

(B) Results of in vitro GST pull-down assays performed with the IE1 CTD. Empty glutathione 1156 

sepharose beads or beads carrying GST-IE1476-491 were reacted with acid-extracted human 1157 

histones from H1299 cells transfected with empty vector (w/o) or plasmids encoding the 1158 

indicated Flag-tagged H2A proteins. Input and output protein samples were separated in 15% 1159 

polyacrylamide-SDS gels and stained with Coomassie Brilliant Blue. Flag-H2A proteins were 1160 

detected by immunoblotting. 1161 

(C) Results of co-immunoprecipitations performed with full-length IE1 protein. H1299 cells were 1162 

simultaneously transfected with empty vector (w/o) or plasmids encoding the indicated wild-type 1163 

(wt) and mutant Flag-H2A proteins and plasmids encoding either HA-tagged full-length IE1 or 1164 

HA-IE11-475. Cells were fixed with formaldehyde, and cell extracts were sonicated to solubilize 1165 

nucleosomes. Samples were subjected to immunoprecipitation using anti-HA or mouse IgG 1166 

(mIgG) agarose. Input and output protein samples were separated in 10 or 15% polyacrylamide-1167 

SDS gels, and Flag- and HA-tagged proteins were detected by immunoblotting. 1168 
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(D) Quantitative assessment of results. The α-Flag bands shown in (C) were quantified by 1169 

densitometry, and bars represent the ratio of output to input signal intensities relative to the H2A 1170 

wt sample present on the same blot (set to 100%). 1171 

 1172 

FIG 6  The IE1 and LANA CTDs compete for binding to human core histones. 1173 

(A) Full-length IE1 competes with GST-LANA5-22 for histone binding. 1174 

(B) IE1 lacking the CTD (IE11-475) is less active in competing with GST-LANA5-22 for histone 1175 

binding compared to the full-length protein. 1176 

(C) A peptide encompassing LANA5-22 (LANA-CTD), but not a mutant peptide (LANA-CTD*), 1177 

interferes with histone binding to GST-IE1476-491. 1178 

Acid-extracted human histones were combined with solvent or with the indicated soluble IE1 1179 

proteins (A, B) or LANA peptides (C) and then subjected to in vitro GST pull-down assays with 1180 

glutathione sepharose beads carrying GST-LANA5-22 (A, B) or GST-IE1476-491 (C). Input and 1181 

output protein samples were separated in 15% polyacrylamide-SDS gels and stained with 1182 

Coomassie Brilliant Blue. See also Fig. S3. 1183 

 1184 

FIG 7  The IE1 CTD is predicted to adopt a β-hairpin structure that docks with the acidic pocket 1185 

formed by H2A-H2B on the nucleosomal surface. 1186 

(A) Amino acid sequence alignment of IE1476-491 and LANA4-17 (* = identical residue, : = 1187 

conserved substitution, . = semi-conserved substitution) used for homology modeling. 1188 

(B) Bundles of the ten lowest total energy structures for IE1476-491 after explicit water refinement 1189 

(RMSD = 0.038 nm) based on the sequence alignment of (A) and the LANA4-17-nucleosome 1190 

crystal structure (PDB: 1zla). 1191 
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(C) Predicted intra- and intermolecular hydrogen bonds in the IE1476-491-nucleosome complex 1192 

based on the sequence alignment of (A) and the LANA4-17-nucleosome crystal structure (PDB: 1193 

1zla). Black arrows symbolize predicted interactions between IE1 CTD and H2A or H2B 1194 

residues also observed in the LANA-nucleosome complex, and red arrows represent predicted 1195 

interactions unique to the IE1-nucleosome complex. Arrow tails define the donor and arrow 1196 

heads point at the acceptor of a possible hydrogen bond. 1197 

(D) Front view of detailed total best energy homology model of the molecular interaction 1198 

between IE1476-491 and the H2A-H2B dimer based on the sequence alignment of (A) and the 1199 

LANA4-17-nucleosome crystal structure after explicit water refinement. The model is presented as 1200 

displayed in PyMOL (http://www.pymol.org) (97) showing the H2A-H2B dimer in surface 1201 

representation. Blue color represents positively charged and red color negatively charged side 1202 

chains. The H2A residues predicted or experimentally determined to be critical for binding to 1203 

IE1476-491 (see Fig. 5) are indicated. The IE1476-491 peptide is shown in a ball-and-stick 1204 

representation. IE1 residues P482 and R486 are marked by arrows for better orientation. 1205 

(E) Model (D) after 90° turn in indicated direction. See also Fig. S4 and Movie S1. 1206 

 1207 

FIG 8  Steady-state levels and chromatin association of wild-type and mutant IE1 proteins in 1208 

hCMV-infected cells. 1209 

(A) IE1 and IE2 steady-state protein levels in hCMV TB40E infections. MRC-5 cells were mock-1210 

infected or infected with TBwt, TBrvIE11-475, or TBIE11-475 at 3 PFU/cell, and viral IE1/IE2 1211 

protein levels were monitored over time by separation in 10% polyacrylamide-SDS gels and 1212 

immunoblotting. Detection of the cellular GAPDH protein served as a loading control. 1213 

(B) IE1 and IE2 steady-state protein levels in hCMV FIX infections. MRC-5 cells were mock-1214 

infected or infected with FXwt, FXrvIE1, or FXIE11-475 at 3 PFU/cell, and viral IE1/IE2 protein 1215 
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levels were monitored over time by separation in 10% polyacrylamide-SDS gels and 1216 

immunoblotting. Detection of the cellular GAPDH protein served as a loading control. 1217 

(C) Mitotic chromatin association of IE1 in hCMV TB40E infections. MRC-5 cells were mock-1218 

infected or infected with TBwt, TBrvIE11-475, or TBIE11-475 at 3 PFU/cell for 48 h, and the 1219 

localization of the viral IE1 protein relative to cellular mitotic chromatin (stained with DAPI) was 1220 

detected by indirect immunofluorescence using a 1:1 mix of antibodies IE1.G10 and 6E1. 1221 

(D) Mitotic chromatin association of IE1 in hCMV FIX infections. MRC-5 cells were mock-1222 

infected or infected with FXwt, FXrvIE1, or FXIE11-475 at 3 PFU/cell for 48 h, and the 1223 

localization of the viral IE1 protein relative to cellular mitotic chromatin (stained with DAPI) was 1224 

detected by indirect immunofluorescence using antibody IE1.G10. 1225 

 1226 

FIG 9  The IE1 CTD is not required for efficient hCMV productive infection. 1227 

(A) Single-step replication analysis of TB40E viruses. MRC-5 cells were infected with TBwt, 1228 

TBrvIE11-475, or TBIE11-475 (two independent clones) at high input multiplicity (3 PFU/cell), and 1229 

extracellular viral genomes were monitored over time by qPCR-based relative quantification. 1230 

Data represent means and standard deviations from duplicate infections each measured twice 1231 

(TBwt at 0 days post infection set to 1). 1232 

(B) Peak virus titers in high multiplicity TB40E infections. Extracellular infectious particles from 1233 

7 days post infection (A) were quantified by standard plaque assay on MRC-5 cells. Data 1234 

represent means and standard deviations from duplicate infections each measured twice. 1235 

(C) Multi-step replication analysis of TB40E viruses. MRC-5 cells were infected with TBwt, 1236 

TBrvIE11-475, or TBIE11-475 (two independent clones) at low input multiplicity (0.03 PFU/cell), 1237 

and extracellular viral genomes were monitored over time by qPCR-based relative quantification. 1238 
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Data represent means and standard deviations from duplicate infections each measured twice 1239 

(TBwt at 0 days post infection set to 1). 1240 

(D) Peak virus titers in low multiplicity TB40E infections. Extracellular infectious particles from 1241 

16 days post infection (C) were quantified by standard plaque assay on MRC-5 cells. Data 1242 

represent means and standard deviations from duplicate experiments each measured twice. 1243 

(E) Single-step replication analysis of FIX viruses. MRC-5 cells were infected with FXwt, 1244 

FXrvIE1, or FXIE11-475 (two independent clones) at high input multiplicity (3 PFU/cell), and 1245 

extracellular viral genomes were monitored over time by qPCR-based relative quantification. 1246 

Data represent means and standard deviations from duplicate infections each measured twice 1247 

(FXwt at 0 days post infection set to 1). 1248 

(F) Peak virus titers in high multiplicity FIX infections. Extracellular infectious particles from 6 1249 

days post infection (E) were quantified by standard plaque assay on MRC-5 cells. Data represent 1250 

means and standard deviations from duplicate infections each measured twice. 1251 

(G) Multi-step replication analysis of FIX viruses. MRC-5 cells were infected with FXwt, 1252 

FXrvIE1, or FXIE11-475 (two independent clones) at low input multiplicity (0.05 PFU/cell), and 1253 

extracellular viral genomes were monitored over time by qPCR-based relative quantification. 1254 

Data represent means and standard deviations from duplicate infections each measured twice 1255 

(FXwt at 0 days post infection set to 1). 1256 

(H) Peak virus titers in low multiplicity FIX infections. Extracellular infectious particles from 15 1257 

days post infection (G) were quantified by standard plaque assay on MRC-5 cells. Data represent 1258 

means and standard deviations from duplicate infections each measured twice. 1259 

 1260 

FIG 10  The IE1 NBM is selectively conserved through primate CMV evolution. 1261 
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(A) Alignment of orthologous IE1 sequences from hCMV (Towne) and all non-human primate 1262 

CMV isolates present in GenBank (National Center for Biotechnology Information) (98) 1263 

including chimpanzee CMV (panine herpesvirus 2), african green monkey (simian) CMV 1264 

(cercopithecine herpesvirus 5), rhesus macaque CMV (Macaca mulatta CMV and Macacine 1265 

herpesvirus 3, 68-1 strain), and baboon CMV. The multiple sequence alignment was generated 1266 

using ClustalW2 (European Bioinformatics Institute; http://www.ebi.ac.uk/tools/msa/clustalw2) 1267 

with default settings and rendered using Jalview 2.7 (http://www.jalview.org) (99). The extent of 1268 

amino acid conservation is visualized by shades of blue. CTD and NBM sequences are marked. 1269 

(B) Table presenting GenBank accession numbers of orthologous IE1 sequences from primate 1270 

CMVs and % amino acid sequence identities of full-length IE1 proteins, IE1 CTDs, and IE1 1271 

NBMs relative to the corresponding hCMV IE1 (Towne) sequence based on pairwise alignments 1272 

(IE1) or the multiple sequence alignment shown in (A) (CTD, NBM). 1273 

(C) Sequence logo illustrating extent of amino acid conservation in orthologous IE1 CTD 1274 

sequences from primate CMVs. The sequence logo was generated using WebLogo 2.8.2 1275 

(http://weblogo.berkeley.edu) (100) with default color code. Amino acids are numbered 1276 

according to their positions in the hCMV (Towne) IE1 sequence. Numbers corresponding to 1277 

amino acids forming the hCMV IE1 NBM are printed in bold type, and residues essential for 1278 

nucleosome and chromosome interaction are underlined. 1279 



Figure 1

α-HA

α-H2A

α-H2B

α-H3

α-H4

input output

H
A

-I
E

1

H
A

-I
E

1

H
A

-m
IE

1

H
A

-I
E

2

H
A

-p
p

7
1

w
/o

H
A

-I
E

1

H
A

-I
E

1

H
A

-m
IE

1

H
A

-I
E

2

H
A

-p
p

7
1

w
/o

α
-H

A

α
-F

L
A

G

α
-H

A

A

α-IE1

α-H3

T
N

d
lI
E

1

T
N

w
t

T
N

w
t

input output

α
-H

3

rb
Ig

G

T
N

d
lI
E

1

T
N

w
t

T
N

w
t

B

C

m
a

rk
e

rs

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

input

m
a

rk
e

rs

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

output

175
80
58
46

30
25

17

7

k
D

a

without nucleases

m
a

rk
e

rs

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

input

GST-IE1

GST

H3

H2A
H2B

H4

m
a

rk
e

rs

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

output

with nucleases



Figure 2

H2B
H2A

H
2

A
/H

2
B

H
3

/H
4

input

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

G
S

T
-I

E
1

1
-4

7
5

G
S

T
-I

E
1

4
7

6
-4

9
1

G
S

T
-L

A
N

A
5

-2
2

output

e
m

p
ty

 b
e

a
d

s

G
S

T

G
S

T
-I

E
1

G
S

T
-I

E
1

1
-4

7
5

G
S

T
-I

E
1

4
7

6
-4

9
1

G
S

T
-L

A
N

A
5

-2
2

H3

H4

CA

B

IE1

1001
amino acids

IE1
476-491

IE1
1-475

LANA
5-22

LANA

CTD

CTD

G
S

T

G
S

T
-I

E
1

H
2

A

H
2

B

H
3

H
4

h
is

to
n

e
 i
n

p
u

t

G
S

T
-I

E
1

1
-4

7
5

G
S

T
-I

E
1

4
7

6
-4

9
1

G
S

T
-L

A
N

A
5

-2
2

e
m

p
ty

 b
e

a
d

s

m
a

rk
e

rs

kDa

175
80
58
46

30

25

17

7

*



Figure 3

in
p

u
t

175
80
58
46

30
25

17

7

k
D

a

m
a

rk
e

rs

G
S

T

C
T

D
 w

t

G
4

7
6

A

G
4

7
7

A

K
4

7
8

A

S
4

7
9

A

T
4

8
0

A

o
u

tp
u

t

175
80
58
46

30
25

17

7

m
a

rk
e

rs

G
S

T

C
T

D
 w

t

H
4

8
1

A

P
4

8
2

A

M
4

8
3

A

V
4

8
4

A

m
a

rk
e

rs

m
a

rk
e

rs

G
S

T

G
S

T

C
T

D
 w

t

C
T

D
 w

t

T
4

8
5

A

R
4

8
6

A

S
4

8
7

A

K
4

8
8

A

A
4

8
9

G

D
4

9
0

A

Q
4

9
1

A

GST-IE1
476-491

GST

H3

H2A
H2B

H4

H1

GST

H3

H2A
H2B

H4

GST-IE1
476-491

B

C
T

D
 w

t

G
4

7
6

A

G
4

7
7

A

K
4

7
8

A

S
4

7
9

A

T
4

8
0

A

H
4

8
1

A

P
4

8
2

A

M
4

8
3

A

V
4

8
4

A

T
4

8
5

A

R
4

8
6

A

S
4

8
7

A

K
4

8
8

A

A
4

8
9

G

D
4

9
0

A

Q
4

9
1

A

h
is

to
n

e
 b

in
d

in
g

 (
%

)

0

20

40

60

80

100

120

140

160

180C

A CTD wt

G477A

K478A

S479A

T480A

H481A

P482A

T485A

V484A

M483A

R486A

S487A

K488A

A489G

D490A

Q491A

G476A

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

A

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

K

K

A

K

K

K

K

K

K

K

K

K

K

K

K

K

K

S

S

S

A

S

S

S

S

S

S

S

S

S

S

S

S

S

T

T

T

T

A

T

T

T

T

T

T

T

T

T

T

T

T

H

H

H

H

H

A

H

H

H

H

H

H

H

H

H

H

H

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

M

M

M

M

M

M

M

M

M

A

M

M

M

M

M

M

M

V

V

V

V

V

V

V

V

A

V

V

V

V

V

V

V

V

T

T

T

T

T

T

T

A

T

T

T

T

T

T

T

T

T

R

R

R

R

R

R

R

R

R

R

A

R

R

R

R

R

R

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

K

K

K

K

K

K

K

K

K

K

K

K

A

K

K

K

K

A

A

A

A

A

A

A

A

A

A

A

A

A

G

A

A

A

D

D

D

D

D

D

D

D

D

D

D

D

D

D

A

D

D

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

A

QA

A

A



Figure 4

B

E
G

F
P

C
T

D
 w

t

G
4

7
6

A

G
4

7
7

A

K
4

7
8

A

S
4

7
9

A

T
4

8
0

A

H
4

8
1

A

P
4

8
2

A

M
4

8
3

A

V
4

8
4

A

T
4

8
5

A

R
4

8
6

A

S
4

8
7

A

K
4

8
8

A

A
4

8
9

G

D
4

9
0

A

Q
4

9
1

A

P
e

a
rs

o
n

's
 c

o
rr

e
la

ti
o

n
 c

o
e

ff
ic

ie
n

t

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

** **

** **

**

* *
*

* *

*

*

A

D
A

P
I

M483A V484A T485A R486A S487A D490AK488A A489G

α
-E

G
F

P
m

e
rg

e

Q491A

α
-E

G
F

P
D

A
P

I
m

e
rg

e

EGFP CTD wt G476A G477A K478A H481AS479A T480A P482A

20 µm

D IE1 NBM

G
477

K
478

S
479

T
480

H
481

P
482

M
483

V
484

T
485

R
486

S
487

K
488

A
489

D
490

Q
491

G
476

essential accessory

C

D
A

P
I

α
-I

E
1

m
e

rg
e

IE1 IE1 M483A IE1 NBMIE11-475

20 µm



Figure 5

A

  1 SGRGKQGGKA RAKAKTRSSR AGLQFPVGRV  30

 31 HRLLRKGNYS ERVGAGAPVY LAAVLEYLTA  60

 61 EILELAGNAA RDNKKTRIIP RHLQLAIRND  90

 91 EELNKLLGRV TIAQGGVLPN IQAVLLPKKT 120

121 ESHHKAKGK                        129

w
t

w
t

E
4
1

A

E
5
6

A

E
6
1

A

E
6
4

A

D
7
2

A

E
6
1
A

/E
6
4
A

/D
9
0

A

D
9
0
A

/E
9
1
A

/E
9
2

A

D
9
0

A

E
9
1

A

E
9
2

A

E
1
2
1

A
B

H2A

C
o
o
m

a
s
s
ie

 g
e
l

GST-
IE1

476-491

H3

H2A
H2B

H4

in
p

u
t

GST-
IE1

476-491

H3

H2A
H2B

H4

C
o
o
m

a
s
s
ie

 g
e
l

H2A

o
u

tp
u

t

E
6

1
A

/E
6

4
A

/D
9

0
A

w
t

D
9

0
A

/E
9

1
A

/E
9

2
A

w
t

w
t

IE1

IE1

IE1
1-475

IE1
1-475

in
p

u
t

o
u

tp
u

t

α-Flag

α-Flag

α-HA

α-HA

m
Ig

G

α-HA

H2A

H2A
E

4
1

A

w
t

E
5

6
A

E
6

1
A

E
6

4
A

D
7

2
A

C

in
p

u
t α-Flag

α-Flag

α-HA

α-HA

D
9

0
A

w
t

E
9

1
A

E
9

2
A

E
1

2
1

A

IE1

IE1

α-HA

o
u

tp
u

t H2A

H2A

D

w
t

E
4

1
A

E
5

6
A

E
6

1
A

E
6

4
A

D
7

2
A

D
9

0
A

E
9

1
A

E
9

2
A

E
1

2
1

A

E
6

1
A

/E
6

4
A

/D
9

0
A

D
9

0
A

/E
9

1
A

/E
9

2
A

w
/o

w
t 
(I

E
1

1
-4

7
5
)

w
t 
(m

Ig
G

)

b
in

d
in

g
 t
o

 I
E

1
 (

%
)

0

20

40

60

80

100

120

140

160

180

w
/o

w
/o

H1



Figure 6

GST-LANA
5-22

H3

H2A
H2B

H4

IE1

in
p

u
t

o
u

tp
u

t

IE1

−

−

+

−

Histones+ + + +

GST-LANA
5-22

H3

H2A
H2B

H4

in
p

u
t

o
u

tp
u

t

Histones

IE1

IE1
1-475

− + + +

− − + −

− − − +

IE1
1-475

IE1

GST-LANA
5-22

H3

H2A
H2B

H4

GST-LANA
5-22

H3

H2A
H2B

H4

H1

A B C

in
p

u
t

o
u

tp
u

t

LANA-CTD (µM)

LANA-CTD* (µM)

Histones− + + + + + +

− − 16 32 64 128 −

− − − − − − 128

GST-IE1
476-491

H3

H2A
H2B

H4

GST-IE1
476-491

H3

H2A
H2B

H4

H1



Figure 7

B

C

H2B H2A

IE1

K

113

H

106

E

110

Q

44

E

56

E

92

E

64

E

61

G

477

K

478

S

479

T

480

H

481

P

482

M

483

V

484

T

485

R

486

S

487

K

488

A

489

D

490

Q

491

G

476

H2B

A

LANA   4   PGMRLR--SGRSTGAP  17

IE1    476 GGKSTHPMVTRSKADQ 491

            *   :    **..

P482
E61

E92

R486

E64
E56

D

E92

R486

P482

E61

E64

E

D90

D90



Figure 8

FXwt mock

6
 h

2
4

 h

4
8
 h

9
6

 h

9
6

 h

6
 h

2
4

 h

4
8
 h

FXwt FXrvIE1

6
 h

2
4

 h

4
8
 h

9
6

 h

6
 h

2
4

 h

4
8
 h

9
6

 h

FXwt FXIE11-475

6
 h

2
4

 h

4
8
 h

9
6

 h

6
 h

2
4

 h

4
8
 h

9
6

 h

GAPDH

IE2

IE1

IE11-475

B

IE2
IE1
IE11-475

GAPDH

A TBwt mock

6
 h

2
4

 h

4
8
 h

9
6

 h

9
6

 h

6
 h

2
4

 h

4
8
 h

TBwt TBrvIE11-475

6
 h

2
4

 h

4
8
 h

9
6

 h

6
 h

2
4

 h

4
8
 h

9
6

 h

TBwt TBIE11-475

6
 h

2
4

 h

4
8
 h

9
6

 h

6
 h

2
4

 h

4
8
 h

9
6

 h

mergeDAPI α-IE1D

mock

FXwt

FXIE11-475

FXrvIE1

20 µm

C

mock

TBwt

α-IE1DAPI merge

TBIE11-475

20 µm

TBrvIE11-475



Figure 9

C

R
e

la
ti
v
e

 a
m

o
u

n
t 

o
f 

v
ir
a

l 
D

N
A

1e-3

1e-2

1e-1

1e+0

1e+1

1e+2

1e+3

Days post infection

0 2 4 6 8 10 12 14 16 18

TBwt

TBrvIE11-475

TBIE11-475-1

TBIE11-475-2

D

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

1e+8

P
F

U
/m

l

T
B

w
t

T
B

rv
IE

1
1
-4

7
5 1 2

TBIE11-475

A

R
e

la
ti
v
e

 a
m

o
u

n
t 

o
f 

v
ir
a

l 
D

N
A

P
F

U
/m

l

B

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

T
B

w
t

T
B

rv
IE

1
1

-4
7

5 1 2

TBIE11-475

TBwt

TBrvIE11-475

TBIE11-475-1

TBIE11-475-2

8

1e-3

1e-2

1e-1

1e+0

1e+1

Days post infection

0 2 4 61 3 5 7

P
F

U
/m

l

F

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7

F
X

rv
IE

1

F
X

w
t

1 2

FXIE11-475

E

R
e

la
ti
v
e

 a
m

o
u

n
t 
o

f 
v
ir

a
l 
D

N
A

1e-3

1e-2

1e-1

1e+0

1e+1

0 2 61 43 5 7

Days post infection

FXwt

FXrvIE1

FXIE11-475-1

FXIE11-475-2

P
F

U
/m

l

H

1e+0

1e+1

1e+2

1e+3

1e+4

1e+5

1e+6

1e+7G

R
e

la
ti
v
e

 a
m

o
u

n
t 

o
f 

v
ir
a

l 
D

N
A

FXwt

FXrvIE1

FXIE11-475-1

FXIE11-475-2

Days post infection

0 3 6 9 12 15

1e-2

1e-1

1e+0

1e+2

1e+1

F
X

rv
IE

1

F
X

w
t

1 2

FXIE11-475



Figure 10

A

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

Human (Towne)

Chimpanzee

African green monkey

Rhesus macaque

Rhesus macaque (68-1)

Baboon

B

100 
67.2 
26.3 
25.1 
24.2 
23.9 

IE1 

100 
87.5 
62.5 
62.5 
56.3 
56.3 

CTD 

100 
90.0 
80.0 
80.0 
70.0 
90.0 

NBM 

Human (Towne) 
Chimpanzee  
African green monkey  
Rhesus macaque 
Rhesus macaque (68-1) 
Baboon  

CMV 

AAR31448 

AAB16882 
AAB00487 
AAZ80666 
ACX71624 

GenBank 

AAM00752 

C

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

1 50MESS-AKRKMDPD--------NPDEGPSSK-----VPRP--------ETPVTKATTFLQTMLRKEVN--SQLSL

1 51MESSSGKRKMDSA--------NPDEGPSSK-----IPRP--------ETPVSKACAFLTSMIQKEVN--SQLNL

1 69MDPRQTKRKADDQPPQHTEGGDPGEGTSAG--PEPGPSPPKMSRYDDPGT-ERAVQFLEKLLEPETK--AVLNL

1 67MDSR--KRKPEDE-THTGEAGDPEEGTSGG--PSTGPSPPKQAR--KDMALQHAVDLLEKMLADEEKKLTEFNL

1 67MDSR--KRKPEDE-THTGEAVDPEEGTSGG--PSTGPSPPKQAR--KDMALQHAVDLLEKMLADEEKKLTEFNL

1 70MDPRQLKRKADDE--QQSGQEDPGEGPSSGSPPAPGPSPPKMPRREDKNIHDEAVEFLEKLLAQETN--VVLSL

51

52

70

68

68

71

121

122

142

136

136

143

GDPLFPELA---EESLKTFERVTEDCNENPEKDVLAELVKQIKVRVDMVRHRIKEHMLKKYTQTEEKFTGAFNM

GDPLFPDVS---EDDLKSFEDVTKECDENPGKDILQELVKQIKVRVDIVRQKVKTHMLTKYTQMDEKFTAAFNN

GDPLFGYANVPEDEQFKTLEEIMNEDPQDPLR-KVQTLVYQIKLRVARTHTEIKNQHLQQFNDIRMGMEGKFKQ

GDPLFESA---NDDPIKTLEEIIQEG-DDVVG-AHQLVVTQIKLRVQRNRRLADEIIREQLTDIRKVFSDKFEK

GDPLFESA---NDDPIKTLEEIIQEG-DDVVG-AHQLVVTQIKLRVQRNRRLADEIIREQLTDIRKVFSDKFEK

GDPLLHLSPVPEEVNMQSFEDILLENPGDVIR-QTQNVVWQIKLRLARNHTSHKNEGLFQLNQIRLEMGKEFVE

122

123

143

137

137

144

193

194

214

208

208

217

MGGCLQNALDILDKVHEPFEEMKCIGLTMQSMYENYIVP--EDKREMWMACIKELHDVSKGAANKLGGALQAKA

MGGCLQTALDILDKVNEPFEDMKCIGVTMQNMYENYVVT--EESRDLWLQCLKDLHDVAKNAASKLGNALKAKA

LQDGVNNSIDLLGKVMEPFLGGKGILQTLEDTCPIIQLP--PVLQDKFIECVKKLADETVNMTQMFETALNEKV

LEQGIQNSYLLLDKLKVPFQNMRCLFEVANEQFNDTPVP--PQYKEKFMVCLKEIVQYAVNSSGKLEKFIMLKL

LEQGIQNSYLLLDKLKTPFQDMRCLFEVANEQFNDTPVP--PQYKEKFMVCLKQIVQYAVNSSSKLEKFVMLKI

VQNEMRGAMNVLNKLPDSFKDGKGILQTTYDMLCDYQMPRGSEISHKHTEAVKLTAQMAVKLAKKLEEIIYNRV

194

195

215

209

209

218

266

267

288

282

282

291

RAKKDELRRKMMYMCYRNIEFFTKNSAFPKTTNGCSQAMAALQNLPQCS-PDEIMAYAQKIFKILDEERDKVLT

QAKKEELNRKMTYIALKHVEFFTKNSAFPKTTNGTSAAIAALQSFHQCS-PEEVKCHAQRIMKTLDEERDKVLL

EMKQKDLQNRILYTHFKYSVMTVNSVTTPNISHGITQALIFLRGLPLHDDPETMINSGLNIIKLPDGEQTDLQI

KTKKGDIKDRVTYTCMKYLLMAMQGTGGPKAINNEEHVKLFFKQLSNYDDLTDANSAGLELIKKLDDEQKEVSF

KTKKDDIKDRVTYTCMKYLLMAMQGTGGPKAINNEEHAKLFFKQLSNYDDLTDANHDGLELIKKLDKEQKEVAF

EQKKNCIYESLHYATYAYAVQAVNSICLPKTVNSQEAAIMFLRGLPQHDGMEDVVRQGKQVMDMLDKEPNEIMN

267

268

289

283

283

292

340

341

361

355

355

364

HIDHIFMDILTTCVETMCNEYKVTSDACMMTMYGGISLLSEFCRVLSCYVLEETSVMLAKRPLITKPEVISVMK

HIDNIFMDILTTCVETMGNEYKVTSDASMMTMYGAISLLTEFCRVLSCYILEESSVMIARQPQITKEDLVSTMT

ENA-KFDALLLNIMNAFYKEGNSKNDEIMLSMYVPIQQTSIIMNSLSAFICDETAQIMYSKSHLSTEEIVKLMI

HVN-SFTHLVTTLGMALYKEGHQKNDEAMLGMHTPITMLSDQVRVLILYLIDEIVHAIHTNSNQSNDELIDGLK

HVN-NFTHLVTTLGMALYKEGHQKNDEAMLGMHTPITMLSDQVRVLILYLIDEIVHAIHTNSNQSNDELIDGLK

FSG-MFKHMLESIKLAFRKECSLTTDKYLMQMFAPVTQATAWVNTLSAFICHETADIVLRNPQITVEEIVKKMD

341

342

362

356

356

365

411

410

433

425

425

432

RRIEEICMKVFAQYILG-ADPLRVCSPSVDDLRAIAEESDEEEAIVAYTLATRGASSSDSLVSPPESPVP--AT

RRIQEICMRVFAQYLLG-CDPLRVCSPSVEDLRAIAEESDEDEAIAAHVRATAVSSP----ISPPDSPVPSESD

PKIQYLVREMYLKMCIDKTDKIKIWS--LAELREIVNDNEREASYAPVTGGVLPENVPSPDIPIESVMLYSDTE

PKVRIVINEFHATLMMG-TDRMRFYS--ISELRDIVNDKLNEDRFP-VVSGVLPENVPGTDIPLASVIIHSDTE

PKVRIVINEFHATLMMG-IDKMKFYS--LNELREIVNDKINEDRFP-VVSGVLPENVPGTDIPLASVIIHSDTE

FKIRAIVRDMFLKMVVDRTDKVKTQS--LEDFRKIIKEAEDEELLANIIGGDPFSAVSMRSESED----ESEEE

412

411

434

426

426

433

455

463

487

499

489

487

IPLS--------------------SVIVAENSDQ--EESEQSDEEEEEGAQEER----EDTVSVKSEPVS----

IPLG--------------------TVTVAETSDEEADEGEESQAEVEEETQEEEGEA-DDSVSVKSEPESEGEV

E-------------------EESEAEEETETAEEEAEEQ-ETQIEQGTQAEEGQVEAETEGESEMVIPETEQGE

DEEEQDSDADEEEQESETDEEEQETETGDEGAETQAEETEEGTDETDIEGTESETQIGSEAQPEAAESETQVEQ

D---------EEEQESEADDEEQETETGDEGTETQAEETDEGTDETDIEGTESETQIGSEAQPK-AESETQIEQ

E-------------------EQAETDEEVEETESEEEEQADTQAEEETQVEEEQAAQTEEGQAEQAEEGQAEAG

456

464

488

500

490

488

491

505

546

558

548

541

---EIEEVAPEEEEDG--------------------AEEPTASGGKSTHPMVTRSKADQ--

HHAELVEVKDEDTDSGEEV-----------------EEEQQPASGKRTHPMVTRSKADQ--

TQAETEGEKAEESDDETEIEEELVGTVLRAGKIKKEGDDGEGS--KSSHPMVTMSKTDKPE

TEGETEVETPQETEEGDEESEDLQMTVIKYAKPHVKEEEGAGPSSKSLHPMQTRSKSDK--

TEGETEVETPQETEEGDEESEDLQMTVIKYAKPHIKEEEGAGPSSKSKHHMQTRSKTDK--

QAEEQAEEESEEEESLTESEVEII--LFKAGRPQVK-QEPEPS--TSIHPMVTRSKKSH--

CTD

NBM

S T
K
R
S HHPMQVTMRSK T

A S
D
H

Q
K


	Manuscript Text File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

