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Abstract 
	  
Crustins are whey acidic four-disulphide core (WFDSC) domain-containing proteins 

in decapods that are widely regarded as antimicrobial agents that contribute to host 

defence. Whilst there have been many analyses of crustin gene expression in tissues, 

few studies have been made of the distribution of the natural proteins. Here we report 

an immunostaining investigation of carcinin, a native crustin from Carcinus maenas, 

in the body organs. The results show that the protein is largely confined to the 

haemocytes with only a weak signal detected in the heart, hepatopancreas and midgut 

caecum where it is restricted to the outer surfaces. Importantly, carcinin was seen to 

be deposited by the haemocytes on these surfaces. Higher levels of staining were 

detected in the gonads with carcinin particularly abundant in the capsule of ovary as 

well as some oocytes.  Conspicuous staining was further evident in the cuticle of the 

eyestalk peduncles. Ablation of the eyestalks resulted in a reduction of carcinin in the 

maturing ovary with the mature eggs rarely displaying a strong signal for the protein.  

Interestingly, the degree of carcinin also strongly increased in the healing peduncle, 

indicating that the protein may be associated with wounding, cell damage and/or 

tissue regeneration.   

 

 

Highlights 

 

• Carcinin protein is mainly present within granulated haemocytes, gonads and 
eyestalks 
 

• Outer surfaces of other tissues receive carcinin through deposition by 
haemocytes 
 

• The presence of carcinin in ovaraies changes markedly during oocyte 
maturation 
 

• Carcinin levels increase significantly in damaged and regenerating tissues 
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1. Introduction 

 
Antimicrobial proteins (AMPs) occur widely across many animal taxa and are 

generally considered to play key roles in the innate defences because of their ability 

to kill or inhibit the growth of bacteria, yeasts and/or fungi. AMPs are particularly 

important in invertebrates as these animals lack specific antibodies and clonally 

derived lymphocytes as immune effectors, and so rely heavily on innate immune 

responses for protection against potential infectious agents. The most studied 

invertebrate AMPs tend to be those from species of economic or environmental 

significance, especially decapods and molluscs, as well as antibacterial proteins from 

species that have value as experimental laboratory models (e.g. insects).   

 

In decapods, one of the most commercially important aquatic invertebrate groups, the 

dominant taxon-specific AMP families are the crustins and penaeidins. Of these two 

groups, crustins are the most dominant as they occur widely across the Malacostraca, 

whereas penaeidins are confined to shrimp and prawn (Smith et al., 2010; Smith and 

Dyrynda, 2015; Destoumieux-Garzón et al., 2016). In addition to the 50 or so 

crustins already documented for the Decapoda, crustin-like gene sequences occur 

more widely across the Pancrustacea, specifically in amphipods, copepods (Smith et 

al., 2008) and ants (Zhang and Zhu, 2012). Thus these are a noteworthy collection of 

invertebrate defence proteins and are, accordingly, attracting much research interest.  

 

Crustins are defined as secreted cysteine-rich cationic AMPs of ca 7-14 kDa that 

have at least one whey acidic four disulphide core (WFDSC) domain at the carboxyl 

terminus (Smith et al., 2008).  Three main types of crustins ((I-III) were originally 

identified by Smith et al. (2008) based on the number of cys-rich domains (including 

one WFDSC domain) and the presence, or not, of a glycine-rich domain with 5-8 

conserved VGGGLG motifs. However, a fourth type, with a double WFDSC domain, 

has now also been described (Li et al., 2012) and added to the crustin repertoire.    

 

Certainly, many recent studies of crustins have been directed at mapping the 

expression of encoding genes in different tissues and quantifying expression changes 

following various experimental challenges (see review by Smith and Dyrynda, 

2015). The reports of these analyses indicate that crustins are mainly expressed in 
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haemocytes but appear to be produced also in a variety of other tissues, especially 

gills, gut, hepatopancreas and haematopoietic tissue (see review by Smith and 

Dyrynda, 2015). However, whilst gene expression levels in these tissues may change 

after injection of bacteria, fungi, virus or immune-stimulating compounds, no 

consistent pattern of response emerges (Smith and Dyrynda, 2015). Clearly what is 

needed is, first, clarification of the localisation of the mature natural protein(s) in the 

haemocytes and body organs, and, second, an understanding of where and when 

crustins are secreted after infection challenge.  Such studies are warranted to provide 

a deeper understanding of where and how proteins exert their effect (Pandey and 

Mann, 2000). The present study was aimed at addressing the first issue: namely 

tissue localisation of crustin in vivo.  

 

The crab, Carcinus maenas, was chosen as the experimental animal because its size 

and tolerance of handing make it a robust and easy decapod to bleed and manipulate. 

It has few, if any, known lethal pathogens and its robustness has enabled it to spread 

to many areas of the globe, where it is becoming to be considered as an invasive pest. 

C. maenas expresses a type I crustin; in fact it was the first WFDSC domain-

containing AMP to be found and purified from any invertebrate (Relf et al., 1999). 

Cloning and sequencing of this protein, subsequently designated the name, 

‘carcinin’, (Brockton and Smith, 2007) revealed its relationship to glycine-rich 

WFDSC domain-containing AMPs in other decapod species (Smith et al., 2008).  

Curiously, carcinin has an unusual pattern of gene expression in vivo following 

bacterial challenge or temperature change (Brockton and Smith, 2008) but more 

importantly, in crabs, crustin-type genes are by far the most highly expressed AMP 

in the haemocytes (Sperstad et al., 2010), making them not only prominent defence 

molecules but also ones easily and reliably detected at the protein level by immuno-

staining.  

2. Materials and methods 

2.1. Animals  

Specimens of adult C. maenas were caught in creels laid in the Forth Estuary, 

Scotland. Only crabs at moult stage C4T, i.e. those that are fully-grown and past the 

terminal moult as defined by Drach (1939) and Crothers (1967), were used for 
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experiments. These animals ranged in size from ca 50 to 75 mm carapace width. 

They were maintained in seawater tanks at ca 10 ± 3ᵒ C and ca 32.5 ± 1.5 o/oo salinity 

for no longer than 10 days before use.  The animals were fed twice per week with 

commercial fish pellets or fresh mussels.  

 

2.2. Bleeding and haemocyte separation 

Haemolymph (2 mL) was extracted from the crabs and diluted in 2.5-3.0 mL of 

marine anticoagulant (MAC) as described previously in Söderhäll and Smith (1983). 

For experiments requiring unseparated haemocytes, the diluted cells were washed in 

0.22 µm filtered 3.2 % NaCl and the concentration adjusted to ca 6 x 105 mL -1.  For 

experiments on individual populations of each haemocyte type, 2 mL amounts of 

freshly drawn diluted haemolymph were loaded onto 9 mL pre-formed 60 % 

continuous Percoll gradients made up in 0.22 µm filtered 3.2 % NaCl. These were 

centrifuged at 3,000 xg for 10 min to generate bands of hyaline, semi-granular or 

granular cells (Söderhäll and Smith, 1983). Prohaemocyte populations were obtained 

and isolated as in Roulston and Smith (2011).   Haemocytes, whether used separated 

or un-separated, were always kept cool on ice and processed immediately. Unless 

otherwise stated all chemicals and reagents were obtained from Sigma-Aldrich 

(Irvine, UK). 

 

2.3 Purification of carcinin  

Haemolymph from 24 adult crabs was extracted as in 2.2 above, except that the 

MAC used was supplemented with the protease inhibitor, phenylmethanesulfonyl 

fluoride (PMSF) dissolved in dimethyl sulfoxide (DMSO) to a final concentration of 

1 mM. The haemolymph samples were pooled and then centrifuged at 1,900 xg for 

10 min (4 oC). After discarding the supernatant, the cell pellet was re-suspended in a 

volume of ice cold 50 mM sodium phosphate buffer (pH 6.5) containing 1 mM 

PMSF approximately twice the volume of the packed cell volume of the pellet.  The 

haemocytes were then vortexed (5 x 2 min bursts) to release the cytoplasmic 

contents. The haemocytes were cooled on ice for ten minutes between each burst. 

The disrupted haemocytes were finally centrifuged at 40,000 xg (4 oC) for 22 min.  

The resulting haemocyte lysate supernatant (HLS) was collected and its protein 

concentration was determined using the Bradford assay (Bradford, 1976). Typically 
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HLS samples derived from 24 crabs contained a total protein concentration of ca 9-

10 mg mL-1.  

 

Carcinin was purified from the HLS by liquid protein chromatography on a ÄKTA 

FPLC system (G.E. Healthcare Life Sciences, Bucks, UK). The procedure was to 

load 10 mL of HLS onto a Mono S 5/50 GL cation exchange column (GE Healthcare 

Life Sciences) equilibrated with 50 mM sodium phosphate buffer at pH 6.5. This was 

eluted with 50 mM sodium phosphate buffer (pH 6.5) containing 1 M NaCl.  The salt 

gradient was increased from 0-100 % over 20 min. Fractions of 1 mL were collected 

and the protein concentration in each was determined by Bradford assay. Fractions 

containing high levels of protein were subject to a further purification on a Superose 

6 10/300 GL gel filtration column (GE Healthcare Life Sciences). Equilibration and 

elution were again performed using 50 mM sodium phosphate buffer (pH 6.5). As 

the FPLC UV detector revealed single peaks matching carcinin in fractions 19 and 20 

on the gel filtration chromatograph, these fractions were collected and subjected to 

SDS-PAGE and staining with Coomassie Blue R-250 (BioRad, Hertforshire, UK).  

These produced two close bands of approximately 11 kDa (Supplementary 

Information Figure 1a), values close to those expected for native carcinin (Relf et al., 

1999). Each band was excised and subjected to in-gel digestion (Shevchenko et al., 

1996) using a ProGest Investigator digestion robot (Digilab, Champaign, USA) 

followed by nLC-ESI-MS mass spectrometry, performed by the Mass Spectrometry 

Unit at the University of St Andrews, which confirmed that both bands were 

carcinin, presumably as isoforms (Supplementary Information Figures 1b, c). 

 

2.4. Anti-carcinin antibody production 

Polyclonal rabbit antibody was prepared and purified from 1 mg of purified freeze-

dried pure carcinin by a commercial company (Davids Biotechnologie, Regensburg, 

Germany) and the resulting product tested for cross reactivity with carcinin in fresh 

HLS by SDS-PAGE and Western blotting.  High resolution SDS page was performed 

as described by Relf et al. (1999), using a 16 % separating gel, a 10 % spacing gel 

and a 4 % stacking gel (Schägger and von Jagow (1987). A mini Trans-Blot® Cell 

(Bio-Rad), with TTBS (Towbin transfer buffer with SDS: 25 mM Tris, 192 mM 

glycine, 20% methanol (v/v), 0.025–0.1 % SDS, pH 8.3) was used for blotting on a 

nitrocellulose membrane at 20 volts for 2.5 hours. The membrane was washed and 
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blocked overnight with 3 % bovine serum albumin (BSA) solution in TTBS. Both 

the anti-carcinin polyclonal antibody and rabbit pre-immune serum were diluted in 3 

% BSA solution in TTBS in different ratios: 1:10,000, 1:50,000 and 1:100,000. 

Primary incubation was for 1.5 h, followed by three washes in TTBS, each for 5 min. 

Goat anti-rabbit alkaline phosphatase (AP)-tagged secondary antibody was added at 

the same dilutions as those listed above, and then incubated for a further 1.5 h. The 

membranes were again subjected to three washes before addition of alkaline 

phosphatase substrate solution. This comprised a mix of 100 µL of a 15 mg mL-1 

solution of 5-bromo-4-chloroindolyl phosphate (BCIP) (made up in 

dimethylsulfoxide [DMSO]), plus 100 µL of nitroblue tetrazolium (NBT) solution 

(30 mg in 0.7 mL DMSO and 0.3 mL distilled water) and 10 mL of alkaline 

phosphate colour development buffer (2.5 mM MgCl2 in 100 mM Tris base pH 9.5). 

After the signal developed, the nitrocellulose membrane was washed with TTBS and 

imaged using the ChemiDoc XRS+ system (Bio-Rad). Three controls were included, 

namely: (i) no primary or secondary antibodies; (ii) secondary antibody only; (iii) 

pre-immune rabbit serum substituted for the primary antibody. Controls (i) and (ii) 

used buffer in place of the relevant antibodies. The blots showed that the anti-

carcinin antibody bound both of the two bands of carcinin (depicted in 

Supplementary Information Figure 1d) and no other proteins in HLS, thereby 

demonstrating that it exclusively recognized both isoforms of carcinin. 

 

2.5. Immunocytochemistry and immunohistochemistry 

The localisation of carcinin in individual haemocyte types and tissue sections taken 

from at least three healthy crabs was determined by indirect immunostaining.  

 

For analysis of the haemocytes, individual 200 µL amounts of separated or un-

separated cells, prepared from at least five crabs as described above, were cyto-

centrifuged on to glass slides for 3 minutes at 250 rpm (7 xg) on a Shandon Cytospin 

3 (Thermo-Fisher Scientific, UK) at room temperature.  The preparations were then 

fixed with 4 % paraformaldehyde in 3.2 % NaCl for 30 min followed by 

permeabilization of the cells with Triton-X 100 (3 min) and blocking of endogenous 

antigens by overnight incubation at room temperature using 10 % goat serum plus 10 

% bovine serum albumin in phosphate buffered saline (PBS) as the blocking reagent. 
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The fixed haemocyte preparations were then incubated with the carcinin-specific 

rabbit antibody (diluted 1:100 in blocking serum) for 90 min. The slides were then 

re-washed 3 times in PBS (5 min each) and incubated for a further 90 min in 

secondary antibody (goat anti-rabbit tagged with FITC: diluted 1 in 100 in blocking 

solution). Also included with the secondary antibody solution were 5 µM Draq 5 

(BioStatus Ltd. Leicestershire, UK) (excitation 647 nm; emission 681 nm) to reveal 

DNA and 20 µM rhodamine phalloidin (excitation 540 nm; emission 565 nm) 

(Thermo Fisher Scientific, Paisley, UK) to identify actin.  Each slide was given 

another 3 washes of 5 min in PBS supplemented with 3 % bovine serum albumin 

before mounting in Vectashield (Vector Laboratories, Peterborough, UK).  Control 

slides comprised preparations without primary or secondary antibodies, samples 

incubated with secondary antibody only and preparations treated with rabbit sera 

instead of primary antibody. For each control, 3 % bovine serum albumin in PBS 

was substituted for the relevant antibody solution. The stained haemocytes were 

examined by confocal microscopy with a Leica (DMIRE2) TCS2 confocal 

microscope (Leica Microsystems, Milton Keynes, UK). Images were captured via 

Leica software and processed using Image J (National Institutes of Health, USA).   

 

To investigate the distribution of carcinin in the main body organs, samples of gill, 

heart, hepatopancreas and posterior midgut caecum, were excised from three crabs 

freshly killed by injection of 4 mL of 2.5 % glutaraldehyde in 3.2 % NaCl as in Robb 

et al. (2014). Testes and ovaries were obtained from three male and three female 

animals respectively. Additional tissues, other than those specified above, were not 

extracted because the organs were either too small or too fragile to obtain intact. All 

the excised tissues were immediately fixed in fresh 2.5 % glutaraldehyde for 24 h. 

The fixed samples were then dehydrated in a graded series of ethanol and cleared 

with Histo-Clear (National Diagnostics, Yorkshire, UK) in a Shandon Duplex Tissue 

Processor. The tissue samples were finally embedded in paraffin wax with a Shandon 

Histocentre 2 Embedding Centre and sections of 4-5 µm thickness were cut before 

mounting on glass slides and processing for histology and immunostaining. Prior to 

immunohistochemistry, the sections were rehydrated and permeabilized, as above. 

Blocking of endogenous antigens was as described above, but with the additional 

inclusion of 30 % levamisol (Vector Laboratories) diluted with PBS to block any 

endogenous alkaline phosphatase. The slides were then washed 3 times in PBS (5 
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min each) before incubation with the carcinin-specific rabbit antibody at the same 

dilution and time as for the haemocytes (above). Following a further three washes in 

PBS, the sections were incubated with the secondary antibody (goat anti-rabbit 

tagged with alkaline phosphatase) at a dilution of 1:100 in blocking solution. Each 

slide was re-washed 3 times again and then incubated for 10 min in the substrate 

solution, comprising 100 µL of the BCIP solution and 100 µL NBT added to 10 mL 

of development buffer, as in Section 2.4 above.  With this substrate solution, carcinin 

is visualised as a deep blue colouration. After washing the slides in PBS 3 more 

times the sections were dehydrated through an increasing ethanol series and then 

finally mounted with Histomount (National Diagnostics, USA).  To map organ 

morphology, additional sections were cut and stained with haematoxylin and eosin to 

reveal the inner architecture of these tissues. The fine structures on these slides were 

identified with reference to Johnson (1980). All samples were examined using a 

Zeiss Axiophot light microscope. Images were captured with ZEN image software. 

 

2.6. Experimental manipulation of crabs 

To further investigate changes in the presence and distribution of carcinin in the 

reproductive tissues, eyestalk ablation was performed to provoke gonadal 

development (Quackenbush, 1986). Eyestalks secrete the neuroendocrine factors that 

prevent gonad development and moulting, so ablation effectively deprives the 

animals of these factors. Whilst this has little effect on male crabs, in females it 

results in an increase in the level of ecdysteroids (moulting hormones) that stimulate 

ovarian development (Chan, 1995; Subramoniam, 2000). In the present study, the 

procedure was carried out on both males and females; the males being used as 

controls for injury and wounding. For both sexes, groups of three crabs were pre-

chilled to 4 oC to make them quiescent and to reduce blood loss. They were were 

then subjected to either unilateral (i.e. a single eyestalk) or bilateral (i.e. the two 

eyestalks) ablation. The procedure entailed swabbing the areas above the X organs 

with 70 % ethanol, and then cutting transversally across the middle of the ocular 

peduncles with sterile scissors. The cut surfaces were immediately treated with 

antibacterial ointment (1 % fusidic acid in a sterile base) after which the animals 

were allowed to recover for 2 h at 4 oC in 0.22 µm filtered Instant Ocean (Aquarium 

Systems Ltd, Cheshire, UK). They were then allowed to return gradually to ambient 

temperature (10 ± 3 oC). Non-ablated male and female crabs were similarly 
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maintained as controls. Water was changed every 48 h before the crabs were 

sacrificed and the gonads were excised and weighed after five days. The 

gonadosomatic index (GSI) was calculated to estimate gonad maturation for each 

crab using the following equation: 

GSI = gonad weight /body weight x 100 

 

After the initial surgery, the excised parts of each eyestalk were fixed in Davidson’s 

solution for 48 h then immersed in 70 % ethanol before full dehydration and clearing 

as described in 2.5 above.  Glutaraldehyde was not used for fixation because the 

eyestalks in crabs are partially calcified. Additional peduncle material, ca 2-3 mm 

thick, was sliced from the top of the severed eyestalks remaining on the crab bodies 

at 5 days to ascertain if carcinin is associated with wound repair and tissue 

regeneration of this structure. The slices were fixed and dehydrated as above. All the 

peduncle samples were then processed for wax histology and immunostaining as 

described in Section 2.5 above.  

 

3. Results       

3.1.  Localisation of carcinin in circulating haemocytes in vitro  

Immunostaining with the anti-carcinin antibody showed that freshly harvested un-

separated haemocytes give strong signals in the cytoplasm of a proportion (ca 15 %) 

of the cells (Figure 1a). The staining was often seen to be so intense as to obscure the 

cytoplasm and sometimes also the nucleus (Figure 1a). A smaller proportion (ca 10 

%) showed a variable degree of less intense and more granular staining, with the 

remainder (ca 75 %) giving no signal at all (Figure 1a). Based on the size, shape and 

relative proportion in the mix, the cell types would roughly correspond to the 

granular, semi-granular, and hyaline cells, respectively as described by Smith and 

Ratcliffe (1978). Within the unstained cell population a few haemocytes were small 

and had a thin ring of cytoplasm around the central nucleus (Figure 1a), typical of 

prohaemocytes (Roulston and Smith, 2011).  

 

Further analyses of the four highly enriched haemocyte populations separated on 

Percoll gradients confirmed that the haemocytes staining most strongly for carcinin 

were the granular cells (Figure 1b). The extent of co-localisation of the signal with 
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rhodamine phalloidin confirmed its intracellular location (Figure 1b). Haemocytes 

from the semi-granular cell fraction of the Percoll gradients exhibited less and more 

variable intensity of staining, with the signal largely confined to cytoplasmic 

inclusions, and rarely showed co-localisation with rhodamine phalloidin (Figure 1c). 

By comparison, the cytoplasm of haemocytes from the hyaline cell fraction remained 

unstained for carcinin, although a variable number (up to approximately 30 %) of 

these cells displayed a small amount of extracellular carcinin on the outside of the 

plasma membrane (Figure 1d).  

 

With the prohaemocytes, the enrichment and two-step isolation procedures enabled a 

greater number of these cells to be examined than would have been possible with 

freshly drawn haemolymph or single step separation alone, and confocal microscopy 

established that there are two patterns of staining within this population of 

haemocytes. The majority were carcinin-negative (Figure 1e) but a few showed some 

granular staining inside their cytoplasm (Figure 1f).   

 

For all haemocyte types, the pattern of staining was repeated in samples obtained 

from each of the crabs used.      

 

3.2. Localisation of carcinin in gills, heart, hepatopancreas, midgut caecum, 

gonads and eyestalk in vivo 

Immunohistochemical staining of various organ tissues excised from C. maenas 

consistently showed that a clear signal for carcinin is detectable in circulating 

haemocytes in situ in all animals used. Figure 2a shows an example of a group of 

haemocytes residing in the gill.  At high magnification the pattern of the distribution 

of the stain enabled the main haemocyte types to be distinguished consistent with 

those seen in isolated haemocytes in vitro. Granular and semi-granular cells in 

particular were discernable by their degree of granular staining with the alkaline 

phosphatase label.  At lower magnification, the gills were seen to be well populated 

with stained haemocytes (Figure 2b) but there was no other evidence of carcinin in 

the lamellae (Figure 2c).  Carcinin was also absent from the musculature and internal 

sub-structures of the heart in each of the three crabs tested (Figure 2d), although 

weak staining was discernable in the capsules surrounding the outer edges of this 
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organ (Figure 2e). Otherwise the haemocytes were the only cells seen to display 

strong staining with alkaline phosphatase, and these were usually found in the outer 

regions of the tissue (Figures 2d, e).  Analyses of the hepatopancreas similarly 

revealed that the only cells to show strong staining for carcinin were the haemocytes 

perfusing the haemal sinuses between the tubules and the associated interstitial 

connective tissues. Carcinin was absent from the internal matrix of the hepatic 

lobules, the secretory tubules and the tubule lumens (Figures 3a-d). Instead, it was 

present only as a thin ring on the outside of the hepatopancreas capsules (Figure 3a-

d) or as weak patches along parts of the connective tissues on the outer edges of the 

tubules (Figures 3b-d). Interestingly, in these patches, higher magnification revealed 

clusters of small dark blue spots in close proximity to stained haemocytes (Figure 

3d).  These resemble carcinin-positive granules discharged from granulated cells, 

indicating that carcinin can be deposited on the tissues by exocytosis from granular 

haemocytes.  The distribution of carcinin in the posterior mid-gut caeca followed 

similar patterns, in that the only positively stained cells were haemocytes present in 

the interstitial spaces (Figures 3e).  There was little evidence of carcinin in 

association with the caecum basement membranes but carcinin-positive haemocytes 

were noticed to be in the process of disgorging densely blue material to the 

extracellular environment (Figure 3f-g). No variations in the staining patterns were 

observed between the individual crabs. 

 

A different picture emerged for the gonads.  In the testes, a positive signal for 

carcinin was clearly evident not only in haemocytes but also in the connective tissues 

between the seminiferous lobules and in parts of the epithelia (Figure 4a). It was also 

evident as a thin layer on the outer edges of the basement membranes but was absent 

from the lobules themselves, the spermatogonia, the spermatocytes and the 

spermatids (Figure 4b-d).  

 

Ovaries by contrast, exhibited very strong staining within the ovarian capsules, the 

thin pavement epithelia of the capsules and some of the developing oocytes, 

particularly those at the outermost parts of the organs (Figure 5a, c-d). Patches of 

carcinin were also observed in connective tissues surrounding the developing oocytes 

and their associated accessory cells within the germinal zone (Figure 5b, c).  The 

signal seen in the epithelia around some of the oocytes in the vicinity of the germinal 
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centres may have been deposited by the haemocytes as carcinin-positive cells were 

commonly observed in very close contact with the epithelia of some oocytes with 

some appearing to be in the process of depositing stained granular material on to the 

surfaces of them (Figure 5d).  More remarkably, carcinin was further present, to 

varying degrees, within the cytoplasm of some, but not all, oocytes near to the 

ovarian walls (Figure 5a). In the more deeply stained oocytes, even the nuclei 

appeared to contain carcinin (Figure 5a).  Again, the distribution of carcinin in testes 

and ovaries was consistent within the gender groups. 

 

The eyestalk peduncles were the only other body organ in which carcinin was 

detected at appreciable levels. Samples taken immediately after ablation showed a 

well-organised architecture comprising an outer acellular cuticle overlying a thin 

layer of cells, some of which appear to be melanised (Figure 6a). The sub-cuticular 

endodermal regions beneath this were seen to contain a loose network of 

interconnected cells, which include neurons (lamina ganglions) and haemocytes 

amongst others (Figure 6a). Carcinin occurred mainly in the cuticular capsules where 

it had a distinct pattern of distribution, appearing as patches along the exocuticles 

and as series of striated bands in the endocuticle (Figure 6b, c). As depicted in 

Figures 6b, c, these endothelial striations show decreasing staining intensity from the 

outer region inwards, reminiscent of growth rings in tree trunks. The only other 

staining seen inside the cellular matrices of the inner part of the peduncles was in 

haemocytes (not shown). 

  

3.3. Localisation of carcinin following eyestalk ablation 

Macroscopic observations of the ablated C. maenas confirmed the animals were 

active, feeding and in good condition five days after surgery, so were not seriously 

handicapped by the treatment. As expected, ablation of the eyestalks had a major 

impact on the size, texture and colour of the ovaries in female crabs five days after 

surgery, but had no observable effect on the other body organs or testes in males 

(Figures 7a-c).  In particular the ovaries became more conspicuous and changed from 

creamy white to yellow and orange in unilaterally and bilaterally ablated animals, 

respectively, compared to the un-ablated controls. Overall, the effect was much 

stronger and more pronounced in the individuals in which both eyestalks were 

removed (Figures 7a-c). These changes were quantified in terms of their GSI values 
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as 1.02 for the un-ablated crabs, 1.29 for the unilaterally ablated ones and 4.21 for 

the bilaterally ablated specimens. These values show that ablation had successfully 

driven gonadal maturation in the female crabs. As expected, these macroscopic 

changes were accompanied by marked alterations in the histological characteristics 

of the ovary tissues, especially a shift in the oocyte profile from the presence of both 

pre-vitellogenic and vitellogenic stages in the un-ablated crabs to only vitellogenic 

stages in the treated animals (Figures 7d-f).  The unilaterally ablated animals tended 

to have mostly early vitellogenic oocytes in the ovary (Figure 7e) whereas in the 

bilaterally ablated females the ovaries were packed with fully mature ova containing 

yolk bodies (Figure 7f). Regarding carcinin distribution, there was a marked 

reduction in its level and presence throughout the ovaries in crabs that underwent 

unilateral eyestalk ablation (Figure 7e).  With the exception of a few haemocytes 

seen in the extra-oocyte vascular spaces, which were well stained, there was very 

little evidence of staining in the connective tissues between the developing oocytes 

(Figure 7e). A few oocytes showed weak internal staining but otherwise carcinin was 

not seen in association with the surrounding epithelia (Figure 7e). Staining was 

totally absent from the ovaries of the bilaterally ablated animals (Figure 7f) but, more 

remarkably, these tissues also appeared to be devoid of haemocytes, or at least 

lacking blood cells displaying positive blue staining (Figure 7f). This could not have 

been due to haemolymph loss through the surgical procedures as no other organs 

were similarly affected (data not shown). The only remaining carcinin in these 

bilateral ablated females was occasionally noted around the ovarian capsules (Figure 

7f). 

 

Five days after ablation, however, the eyestalk cuticular capsules seemed to be 

regenerating despite the structures being ragged and torn with their inner cores 

unstructured and dense (Figure 6d). Interestingly the regenerating areas were 

intensely stained for carcinin (Figures 6e-f) with almost the entire exo- and endo-

cuticular areas plus the inner cellular matrices strongly staining blue (Figure 6e). The 

re-growing inner tissues were also infiltrated with cells, presumably haemocytes, 

strongly positive for carcinin (Figure 6f).   
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4. Discussion 

There are a growing number of research papers reporting expression of genes 

encoding immune-relevant proteins in decapod crustaceans with AMPs, including 

members of the crustin family, popular targets (see review by Smith and Dyrynda, 

2015). Many of these studies present data showing that transcripts of crustins are 

present, to varying degrees, in a wide range of tissues and body organs of 

unchallenged animals. These investigations include those on crab: Yue et al. (2010) 

and Mu et al. (2010); shrimp: Sun et al. (2010) and Antony et al. (2011), as well as 

crayfish (Yu et al., 2016). Such results are often, understandably, interpreted as 

evidence that the organ or tissue itself expresses the protein. Here we show that 

carcinin is prominent in the haemocytes, but scarce in several of the body organs in 

healthy, un-stimulated crabs.  

 

In haemocytes, carcinin is differentially distributed across the various sub-

populations, being present only in those haemocytes that contain granules. This 

distribution of carcinin in the blood cells tallies with the findings of a previous study 

on the spider crab, Hyas areneus, which determined that the gene encoding a Type I 

crustin, is expressed over 2,000 times more highly in the granular haemocytes than in 

the hyaline cells, but only 30 fold more so in the semi-granular cells, again in 

untreated animals (Sperstad et al., 2010). In the present study we confirm that 

carcinin in C. maenas is absent from the cytoplasm of the hyaline haemocytes and 

agranular prohaemocytes, although in vitro it may be external to the plasma 

membrane of some of these cells. It is likely that the protein was derived from other 

haemocytes as it is well established that the semi-granular haemocytes of decapods 

are labile and readily discharge their granules to the exterior in vitro (Bauchau, 1981; 

Smith and Söderhäll, 1983; Söderhäll et al., 1986).  In the present study 

degranulation could well have been triggered during the bleeding and cell separation 

procedures. The presence of carcinin in granules of some prohaemocytes is also 

noteworthy because it provides further evidence that there may be two separate 

precursor haemocyte lineages in decapods, as previously suggested for shrimp by 

van de Braak et al. (2002) and subsequently for crab by Roulston and Smith, (2011). 

 

Surprisingly, carcinin was largely absent from gill, hepatopancreas, heart and mid-

gut caecum taken from the un-challenged specimens of C. maenas. Where carcinin 
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was seen, it tended to be on the outer surfaces of these structures and more 

conspicuous in haemocytes populating these organs rather than the tissues 

themselves. As haemocytes were observed disgorging carcinin-positive material at 

the outer surfaces in contact with the haemolymph, we suggest that the haemocytes 

are the main source of the carcinin staining apparent in these organs. This raises 

questions as to the extent to which crustin transcripts, detected in the organs of 

unchallenged animals by previous authors (cited above) actually originated from 

tissues themselves or from haemocytes populating them. That there is no consistent 

pattern of expression levels for individual studies, decapod species, treatments or 

tissues (reviewed by Smith and Dyrynda, 2015), may be a reflection of this. At 

present, it is unclear if the distribution of carcinin in the body organs of C. maenas 

would be different in animals that had received an immune challenge with bacteria, 

virus or other immune-activating substances compared to untreated ones. So far, our 

preliminary findings with C. maenas (unpublished) lead us to consider that, while the 

internal body organs receive an influx of haemocytes from the haemolymph 

following lipopolysaccharide injection, the tissues themselves do not seem to express 

carcinin de novo as a response.  

 

In contrast to the gill, heart, hepatopancreas and mid-gut caecum, carcinin is present 

in the eyestalk peduncles. Its occurrence in the endo-cuticle is in keeping with 

previous studies on crabs that noted the presence of crustin signatures in EST 

libraries prepared from eyestalks of the crab, Portunus trituberculatus (Liu et al., 

2011; Cui et al., 2012).  As yet it is unknown whether these transcripts originated 

from the peduncle tissue itself or from the haemocytes that pervade it. In C. maenas, 

the striated pattern of staining in the excised peduncles closely resembles that of the 

growth bands described for the peduncles in other decapod species by Kilada et al. 

(2012). These bands are believed to form annually in calcified regions of the 

peduncle in decapods and are often used to estimate the age of the animal (Kilada et 

al., 2012), so it is possible that crustins are synthesised or deposited there by 

haemocytes as the crab ages and passes through its moult cycles. We propose that the 

striations of carcinin detected in the peduncles from C. maenas represent individual 

moult events that occurred during the animals’ lives.  Mature adult crabs generally 

moult once per year (Chang, 1995) and during the process the eyestalks, along with 

the antennae, mouthparts, gills and legs, are withdrawn from the old exoskeleton and 
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a new epidermis forms beneath (Crothers, 1967).  After the old shell has been cast, 

the new, soft, epidermis underlying it is finally exposed to the outside environment. 

Until it hardens, however, the animal is left very vulnerable to injury and infection.  

It is therefore highly likely that antimicrobial proteins, including crustins, come to be 

associated, one way or another, with the un-calcified epidermis in order to confer 

some protection against microbial incursion.  

 

In addition to its location in the eyestalk, carcinin was seen to be conspicuous in the 

gonads although its presence was more marked in ovaries than in testes. Indeed, in 

un-ablated crabs both the ovarian tissue itself and some of the developing oocytes 

near the periphery of the capsules show the strongest staining of all tissues examined 

except for the haemocytes. Indeed the level is greater than that which would be 

expected through deposition from haemocytes alone.  We therefore believe that 

synthesis of carcinin can and does occur in the ovary; a view that agrees with the 

findings of Zhang et al. (2007) and Sun et al. (2010), who reported expression of 

crustin genes in ovary of untreated shrimp.  In crabs, oocytes arise from oogonial 

cells, and pass through four development stages before maturing into mature eggs 

(Ravi et al., 2013).  These four stages are marked by an increase in cell size with a 

concomitant decrease in the nuclear:cytoplasmic ratio (Sharifian et al., 2015). There 

is also a transition from a pre-vitellogenic state to a vitellogenic stage as the oocytes 

move away from the germinal centre towards the periphery of the ovary (Sharifian et 

al., 2015).  Fully mature eggs are large and packed with yolk bodies (Ravi et al., 

2013). In our study, carcinin tended to be located in the larger, vitellogenic oocytes 

near the outer edges of the tissues. Unfortunately the pre-vitellogenic oocytes in 

these females were too small to visualise with any degree of certainty but the lack of 

clear signals in the central region of the ovaries leads us to suppose that they are 

devoid of carcinin.  We do not know why carcinin associates with some of the 

vitellogenic cells but the heavily vacuolated and fragmented appearance of the 

carcinin-positive oocytes leads us to suppose that it may play a role in the 

degeneration, resorption or clearance of defective or redundant ones.  

 

Removal of the eyestalks clearly drove oocyte maturation but, curiously, very little 

carcinin remained in the fully mature yolk filled eggs of the bilaterally ablated 

females five days post surgery. Where present it appears to be derived from granular 
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material originating from haemocytes.  Thus, we conclude that carcinin is confined 

to oocytes in later vitellogenic development, as it is largely absent from mature eggs. 

 

It is reasonable to assume that the carcinin seen in C. maenas ovary serves in an 

antimicrobial capacity and therefore should have value in protecting the maturing 

oocytes from infection. This would be important as mating occurs in crabs when the 

female has moulted and is susceptible to microbial incursion through the soft, un-

calcified epidermis. Certainly, several reports already exist that antimicrobial 

proteins are associated with the reproductive organs of crabs (Jayasankar and 

Subramoniam, 1999; Huang et al., 2006; Wang et al., 2007; Qiao et al., 2016; Xu et 

al., 2011a, b) as well as in some other arthropods (Samakovlis et al., 1991). Indeed 

there are some WFDSC-domain containing proteins, particularly eppin, that occur in 

the testes and/or ovaries of mammals (Yenugu et al., 2004; Trexler et al., 2002; see 

also review by Bingle and Vyacarnam, 2008).  However, whilst the notion of 

gonadal disinfection is attractive and compelling, it does not fit with our observations 

that carcinin almost entirely disappears from the fully mature eggs and ovaries of 

ablated female crabs. 

 

The vast majority of decapod crustins, described in the literature are known for their 

antibacterial activities (Smith et al., 2008; Smith and Dyrynda, 2015) with, as yet, no 

other functions definitely proven. What is puzzling about these proteins is that their 

ability to kill or inhibit the growth of bacteria tends to be much weaker than that of 

other AMP families in the Pancrustacea, and that the proteins mainly act against 

Gram-positive strains (Smith et al., 2008; Smith and Dyrynda, 2015). In recent years, 

however, some publications have started to provide indications that, in addition to 

disinfection, crustins might also have some other physiological effects. For example, 

a few crustins, primarily Type IIIs (i.e. those that have a relatively simple structure in 

comprising only one WFDSC domain and a short proline-arginine sequence together 

with the signal sequence), have proteinase inhibitory properties (Smith et al., 2008). 

Further, some Type IIs (which possess not only a cysteine rich region but also a long 

glycine-rich domain adjacent to the signal region) are reported to be involved in 

haematopoiesis (Fagutao et al., 2012; Chang et al., 2013) or have possible opsonic 

effects (Liu et al., 2015). Surprisingly, too, expression of a carcinin-like transcript in 

the swimming crab, Portunus pelagica, has been found be 7-8 times higher in inter-
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moult crabs than at ecdysis, with intermediate levels at pre-and post moult stages 

(Kuballa and Elizur, 2008). This finding, in particular, is at odds with the notion that 

the prime role of crustins is in antimicrobial protection because ecdysis is the period 

when the animal has most need of its host defences. 

 

It is well known that decapod crustaceans are able to regenerate certain parts of their 

body (especially appendages and eyestalks) after autotomy or injury (Hopkins and 

Das, 2015). In the present study, the presence of regenerating epithelial tissue seen at 

the cut surfaces of the peduncles demonstrate that recovery would have been well 

underway before sacrifice. However, at present it is unclear what purpose carcinin 

serves in this process. The dramatic increase in the amounts of the protein in the 

capsular walls at this time point supports the view that carcinin has some 

involvement in the healing or regeneration processes.  Certainly crustins have been 

reported to be present in regenerating tissues, with PET-15, a Type I crustin 

transcript in the spiny lobster, Panulirus argus, in particular, expressed at sites of 

olfactory sensory neuron proliferation (Stoss et al., 2003). Likewise, another Type I 

crustin gene (designated DW176897) is expressed in regenerating limbs of the 

fiddler crab, Celuca pugilator (Durica et al., 2006). It is also noteworthy that 

transcripts of three crustin isoform genes have been identified in the heart, intestine, 

haemocytes, gills and hepatopancreas of planktonic phyllosoma (larval) stages of 

Panulirus japonicus, with a fourth isoform detected in nerves (Pisuttharachai et al., 

2009).  Interestingly, in humans, a gene, encoding a WFDSC-domain containing 

protein, namely WFDSC-2 (also known as human epididymis protein, HE4), is over-

expressed in cancerous ovarian tissue (Hellström et al., 2003). A more recent study 

has now shown that the protein enhances proliferation of the cancer cells by 

regulating apoptosis (Chen et al., 2013). Furthermore, in rodents a uromodulin like-1 

WFDSC domain-containing protein accelerates age-related ovarian degeneration 

(Wang et al., 2012). Given that carcinin is not only expressed in regenerating 

eyestalk, which is well supplied with neural fibres, but is also prominent in ovary and 

late-stage vitellogenic oocytes, it is not unreasonable to propose that it, and probably 

other crustins, have some role(s), as yet unknown, in cell and/or tissue repair or 

regeneration. Further proteomic studies on this family of proteins in other decapods 

are clearly warranted.	  
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Figure legends 
 
Figure 1.  Carcinin distribution in circulating haemocytes 

Cytocentrifuge preparation of haemocytes from C. maenas stained with anti-carcinin 

antibody.  Green staining (FITC) reveals carcinin, blue (Draq 5) reveals DNA and 

red (rhodamine phalloidin)  shows actin. (a) Freshly harvested un-separated 

haemocytes. Note that carcinin is present only in some cells to varying extent. Many 

cells remain unstained. H = hyaline cells; SG = semi-granular cells; G = granular 

cells; PH = prohaemocytes. (b-f) Haemocytes separated on Percoll gradients: (b) 

Granular cell showing co-localisation of carcinin with actin (yellow staining). (c) 

Semi-granular cell in which carcinin tends to occur around the nucleus and with less 

co-localisation with actin than in the granular cells. (d) Hyaline cell with no 

conspicuous staining for carcinin within the cytoplasm. Peripheral staining outside of 

the plasma membrane may be from carcinin released from semi-granular or granular 

cells during cell separation (e) Agranular prohaemocyte lacking carcinin. (f) 

Granulated prohaemocyte with some carcinin staining evident in the surrounding 

cytoplasm.  

 
Figure 2. Carcinin distribution in gill and heart 

Paraffin wax sections of gill and heart extracted from healthy adult crabs, stained 

with anti-carcinin antibody. Carcinin is revealed by alkaline phosphatase label (dark 

blue). (a) Part of a gill filament showing haemocytes in vivo. The unstained cells are 

likely to be hyaline cells (H), with patchily stained cells being semi-granular cells 

(SG) and the more densely stained granular haemocytes (G). (b) Primary gill lamella 

showing the conspicuous presence of carcinin in the haemocytes (arrow); (c) 

Secondary lamellae showing carcinin located only in haemocytes (arrows); (d) 

Cardiac tissue again revealing the absence of carcinin staining except in haemocytes 

(arrow). (e) Haemocytes staining positively with carcinin clustered at the periphery, 

whilst the heart tissue itself remains largely unstained apart from weak signals 

surrounding the outer edge of this organ (arrows).  

 

Figure 3.  Carcinin distribution in hepatopancreas and mid-gut caecum 

Paraffin wax sections of hepatopancreas and gut excised from healthy adult crabs 

and stained with anti-carcinin antibody using alkaline phosphatase (staining dark 

blue) as label. (a-d) Hepatopancreas. Note the absence of stain in the matrix of the 
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organ and the presence of strong staining of the haemocytes perfusing the tissue 

between the tubules. Weaker staining is visible at the outer edge of the organ in 

places and in the interstitial connective tissues (arrows). (e-g) Mid gut caecum: The 

sections are cut across the caecum coils so appears as rings of tissue populated by 

intensively stained haemocytes (arrows). (e) Staining is largely confined to 

haemocytes with some densely stained haemocytes appearing to disgorge material 

(boxed area). (f) Higher magnification of the boxed area from (e) confirming that 

darkly stained material (arrow) is discharged from carcinin positive cells, likely 

granular cells. (g). Similar release of intensely stained material (arrow) from a 

granular haemocyte lying close to the interstitial cells 

 

Figure 4. Carcinin distribution in testes 

Paraffin wax sections of testes extracted from healthy adult male crabs and stained 

with anti-carcinin antibody using alkaline phosphatase. A positive signal is seen as 

intense blue. (a-b) Low power plans showing the seminiferous lobules (SL) that do 

not give a positive signal for carcinin although staining is clearly evident as a thin 

layer on the outer edge of the basement membrane and in the connective tissue 

between them (arrows). (c, d) Part of a testis showing spermatagonia, spermatocytes 

and spermatids (Sp). Note only the haemocytes and patches of the epithelium 

surrounding the spermatogonia show the blue stain for alkaline phosphatase 

(unlabelled arrows).  

 
Figure 5. Carcinin distribution in ovary of adult intermolt crabs 

Paraffin wax sections of ovary extracted from healthy adult female crabs. Carcinin is 

indicated by blue from alkaline phosphatase stain. (a) Low power plan of an ovarian 

capsule containing oocytes in various stages of development. Note there is very 

strong staining around the outer edge of the capsule (white arrow), in the thin 

pavement epithelium of some oocytes and even in some maturing oocytes near the 

periphery of the capsule (black arrows). There are also a few nuclei showing positive 

staining for carcinin (grey arrows). (b) Vitellogenic oocytes showing the presence of 

carcinin in the connective tissue surrounding the developing oocytes. (c) Vitellogenic 

oocyte with patches of carcinin on its outer surface (black arrow) and an associated 

accessory cell (white arrow). (d) Higher power detail of a vitellogenic oocyte in very 
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close association with haemocytes, some of which appear to be releasing intensely 

stained carcinin onto the oocyte surface (arrows).  

 

Figure 6. Carcinin distribution in eyestalk peduncle of unablated and ablated 

female crabs  

Paraffin wax transverse sections of the eyestalk peduncle excised from adult, 

intermoult female crabs. (a) Appearance of the peduncle in a control slide without 

carcinin antibody. No blue staining is evident. (b) Appearance of the peduncle at the 

time of ablation stained for carcinin with an alkaline phosphatase label (blue). 

Carcinin can be seen in a wide band lying between a thin darkly stained layer of 

melanin (M) and underneath the outer shell (OS) of the peduncle. (c) Higher power 

detail of the carcinin-positive region of the peduncle. Note the blue striations of 

carcinin that diminish in width and colour intensity from the outer region inwards. 

Each striation represents a previous moult. (d) Haematoxylin and eosin stained 

section of the regenerating peduncle 5 days after eyestalk ablation. Note the 

fragmented nature of the damaged tissue. (e) Regenerating eyestalk peduncle 5 days 

after ablation stained with the alkaline phosphatase label to identify carcinin. The 

wound is very intensely stained and with a positive signal extending into the inner 

regenerating tissue (RT) of the structure as well as to the outer capsule.  (f). Higher 

power detail of the regenerating peduncular tissue 5 days post ablation. Note the 

presence of haemocytes in the regenerating tissue (RT) outside of the internal 

structure (IS). At least one haemocyte (arrow) seems to be depositing carcinin to the 

injury area lying between the RT and the IS. 

 

Figure 7. Carcinin distribution in ovary of eyestalk ablated female crabs 

(a-c)  Dissected female crabs showing changes in the ovary (arrows) following 

eyestalk ablation. (a) normal ovary in an un-ablated intermoult female crab: G = 

gills,  Ht = heart, Hp = hepatopancreas, the asterix indicates the region where the 

mid-gut caecum is located.  (b) Ovary in a unilaterally-ablated female 5 days post 

surgery. The tissue is enlarged and developing a yellow colouration. (c) Ovary in a 

crab subjected to bilateral eyestalk ablation 5 days previously. The ovary is very 

enlarged and bright orange in colour due to the accumulation of yolk bodies in the 

oocytes.  (d-f) Paraffin wax sections of the ovary tissue stained for carcinin with 

alkaline phosphate.  (d) Ovary from an un-ablated crab showing oocytes at late pre-
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vitellogenic stages and a few early vitellogenic stages of maturation. Carcinin is 

present in the connective tissue surrounding and within some of the vitellogenic 

oocytes plus their associated accessory cells. (e) Ovarian tissue from a unilaterally 

ablated animal. The majority of oocytes are vitellogenic but not fully mature. They 

show little evidence of carcinin staining. Rather the stain is confined to a few 

haemocytes present in the interstitial spaces. (f) Ovary from a bilaterally ablated 

female. Note all the oocytes are now fully mature ova full of yolk bodies. There is 

little or no evidence of carcinin within the ovarian tissue, although there is staining 

remaining on the ovarian capsule (arrow). 
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