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ABSTRACT

The work of this thesis is concerned with the investigation of 

the propagation of waves in a magnetized plasma containing various 

parameter gradients, and with the stability of ion acoustic waves in a 

weakly collisional plasma with a strong temperature gradient.

The thesis is divided into three sections. In the first section 

the intention is to derive in a compact and unambiguous tensor form the 

dispersion relation describing the propagation of waves in a magnetized 

plasma containing three-dimensional density and temperature gradients, 

an E A B drift, and differing temperatures parallel and perpendicular 

to the magnetic field. This is achieved by introducing and extending 

the polarized co-ordinate system first proposed by Buneman in I9 6I, and 

then carrying through the standard procedure of integration along 

unperturbed trajectories. The "local" approximation of Krall and 

Rosenbluth is used in order that an analytic result may be derived.

The dispersion relation obtained includes certain moment tensors whose 

elements may be evaluated independently of the gradients involved in the 

problem. These elements may then be listed and the list referred to in 

order to obtain the elements required for a specific problem.

The second section is concerned with the use of the theory and 

results of J.P. Dougherty to show that in the high-frequency regime the 

introduction of a small amount of collisions into a plasma is sufficient 

to disrupt the gyro-resonances which allow the existence of Bernstein 

waves at multiples of the gyro-frequencies perpendicular and near- 

perpendicular to the magnetic field. It is shown that a collision 

frequency v such that (kp)”  ̂< ~ < (kp)""̂  where kp >> 1 is sufficient 

to do this; k is the wave-number, p the Larmor radius, and U the 

gyro-frequency. It is also shown that in this case the ion-acoustic

dispersion relation is valid even for propagation perpendicular to the 

magnetic field.
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In the final section the result of the second section is used to 

derive a dispersion relation for high-frequency wave propagation in a 
weakly-collisional plasma containing an electron temperature gradient.

The dispersion relation is solved numerically for various electron-ion 

temperature ratios and electron temperature gradient drift velocities. 

Earlier predictions, based on analytic calculations for small temperature 

ratios and drift velocities, are confirmed and some new results presented. 

In particular, it is shown that a temperature gradient is a more effective 

destabilizing agent then a simple drift between ions and electrons. 

Dispersion plots are given, along with analytic and physical explanations 

of their form; finally neutral stability curves are presented.

The thesis concludes with a summary of the results obtained.
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INTRODUCTION |

Plasma physics is a young science. The use of the term "plasma" '
to describe a partly or wholly ionized gas is not yet half-a-century old; 

yet plasma physics is the apex of a pyramid of scientific thought and *

experiment. Just below the apex lie the ideas of Vlasov and Landau,

Alfven, Tonks and Langrauir, Appleton and Hartree; deepening and

I

broadening the pyramid beneath are the minds of Debye and Larmor, Maxwell %,

and Boltzmann, Faraday, Gauss, Ampere, Volta.......  At the base of

the pyramid lies the foundation upon which the whole structure is built:- |
I

the minds of the Greek philosophers, in which the generic ideas of logical 

thought and theoretical science were born. Plasma physics may be young, 

but it has a pedigree that cannot be bettered. f

In any fully-ionized plasma there are short-range interactions between 

a charged test-particle and individual particles close to it; there is 

also a long-range collective interaction between the test-particle and the 

averaged electromagnetic field of all the other particles in the plasma 
(or at least of all the other particles within the Debye sphere of the

test-particle, where the radius of the Debye sphere is of order 
k T

Htt Uq ê
 ̂ , K being Boltzmann's constant, T the mean temperature.

'I
iIq the particle number density, and -e the electron charge). Short-range 
interactions have the effect of changing the trajectory of the test-particle 
over a relatively short time-scale, while the effect of the averaged 

Coulomb field is experienced over a much longer time-scale. The collective ;■ 

interaction may be pictured as a smooth, gradual change in the trajectory 

of the test-particle, with the short-range interactions as a series of 
small but finite deviations superimposed on the slow collective change. ,|

Depending on the density and temperature of the plasma, one or other 9

of these effects may dominate. If short-range interactions are so important 
that the collective interaction can be neglected, the plasma is termed a

. Æ
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"collision-dominated" plasma; it may be described by a model which 

considers local values of quantities such as mass density, net flow 

velocity, mean temperature and so on. This is justified because the 

test-particle is only affected by particles adjacent to it, and has no 
significant interaction with particles at a large distance. In essence, 
this description treats the plasma as a continuous fluid whose properties 

are averaged over a volume large enough to justify neglect of individual 

particle motions.
In the limiting case where short-range interactions may be neglected 

when compared with the collective interaction, the plasma is termed a 

"collisionless" plasma. Fluid descriptions break down here since they 

are dependent on collision dominance; however in the so-called "cold- 

plasma" regime (where the coherent flow velocity of the plasma is much 

greater than the random thermal velocities of the constituent particles) 
a quasi-fluid description is possible, although the cold-plasma model is 

highly idealized.
Models of the plasma state have been developed from the basic idea 

of an infinite, homogeneous, isotropic, fully-ionized, collisionless 

plasma with non-zero kinetic temperature. Simple and unrealistic as this 

may seem, the basic state is still capable of supporting a bewildering 

variety of waves and disturbances. These may be characterized by 

deriving a dispersion relation for the plasma. This relation takes the 

following form:-.
D(w, k, p^, p^, p^ ) = 0

where w is the wave frequency
-1k is the wave number, that is (wavelength)

p^, p̂ , Pg.... are parameters such as temperature,

density and so forth.
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For example, consider the relation
üĵ = 0)  ̂+ k^c^pe

2 _ nrwhere w - ^pe m
and o)pg is known as the electron plasma frequency,

m is the electron mass,
c is the speed of light in vacuo.

This relation describes the propagation of transverse (or electromagnetic) 

waves in our basic plasma with zero kinetic temperature.
Situations may arise in a plasma in which the effects of collisions 

do not dominate the collective interaction mentioned earlier, and yet in 
which they cannot be neglected entirely. By their random nature, 

collisions tend to disrupt coherent effects that may take place in a plasma; 

for instance the dispersion relation for a completely collisionless plasma 

may contain a resonance occurring at some particular frequency, giving 

rise to a propagating wave mode. The presence of even a very small amount 
of collisions may be sufficient to randomize the resonance so that the 

mode is destroyed; and collisions are always present in any real plasma.
Neither the fluid description nor the cold plasma model is equipped 

to deal with such a situation. Moreover, both of these descriptions 

contain averaging processes which lose many properties of the plasma; it 

is therefore of great interest to investigate a plasma in terms of kinetic 

theory. This is a more fundamental description than anything discussed

so far, in that it tries to deal with the microscopic particle nature of 

the plasma rather than considering averaged microscopic properties.
The use of kinetic theory, along with the introduction of applied 

electromagnetic fields, spatial gradients in density, temperature, 

magnetic field and so forth, results in a much more realistic model, but 

also in a greatly Increased complexity of the dispersion relation.

The basic quantity in kinetic theory is the distribution function
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and to the long-range collective interaction, while at is the ratec

3^ I 5 giving

of change of f due to microscopic interactions between particles, that is 

due to collisions. Detailed derivations of this equation are given in 

many works, for example in reference [ 1 ] ,

A collisionless plasma is described by the Vlasov equation [ 2 ] , or
f afcollisionless kinetic equation, which neglects the term

■ »- m ~
This may be linearized by setting f = f̂  + f̂  and F = F̂  + F ,̂ where f̂  

and Fq are equilibrium values, f̂  and F̂  being small perturbations. 
Substituting these in the Vlasov equation and neglecting products of small 

quantities, the linearized Vlasov equation is obtained:- 
3fl F„ Fj

at ar m ay m ay

Landau [3 ] solved this using Fourier-Laplace transforms; an expression

for the electric field E was then obtained from f, . In principle, this
-  1

expression may be written in terms of transforms as

1

— Ij.—"

of a plasma particle species, denoted by f(r, y, t). This quantity 

is such that the product f ̂  ̂  gives the probable number of particles 

to be found within an increment dr of the point with position vector r 

while travelling with a velocity within an increment dv of the velocity 

V at time t. The six-dimensional space including all points with 
co-ordinates (r, y) is called phase space. The dynamics of a particle 

species in phase space is normally described by the collisional kinetic 

equation |

where F is the macroscopic force on a test-particle due to external fields |
af
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E(k,p)e^(-'- " V dp
P

E(k,t)e^-‘- dk

where E(k,t) = | E(k,p)e dp

Now E(k;p) has poles p.(k) with residues R.(k), where p.’ is in generalJ 3 3

complex, say Pj = + iŷ . Therefore, using Cauchy's Residue Theorem

VE(k,t) = Z R. e ^
3

-iw.t + Y.t
e33

The Maxwellian distribution function is defined as
r2

’M ” ^0
m 3 /2 r

2ïïkT exp mv'=
2kT

This distribution describes a homogeneous, isotropic plasma species in 

thermal equilibrium. Using the Maxwellian as his f̂  , Landau found that 
Yj < 0, and so E(k,t) decays as t tends to infinity, since a negative 

exponential factor is included in it. Any other plasma parameter that 

can be derived from f̂  decays in a similar manner. Now Yj > 0 for any j 
would imply unlimited wave growth, or instability. Thus waves propagating 

in a Maxwellian plasma are stable. The decay phenomenon described above 

is known as Landau damping.

A physical explanation for this effect can be obtained by examining 

the distribution functions shown in Figure (la). For a wave with phase 

velocity v̂ , the number of particles of a given species travelling 

slightly slower than the wave is greater than the number travelling 

slightly faster. The electric field of the wave tends to accelerate the 

slower particles and decelerate the faster ones, the net result being 

that the wave loses energy, and is damped. Thus a negative slope of the 

distribution function implies damping. In the case of the Maxwellian 

distributions of Figure (la) the slope is always negative, and damping
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occurs for waves of all phase velocities. ° |

V, V, would be necessary to cause instability (note that v. -d 1 1 ,e
kT i,e
“i,e

T . . T.Thus plasmas that are unstable when i << 1 tend to stabilize as __i $
T  T*e e

increases.

If a net drift velocity v^ of the electrons relative to the ions 
exists, the electron distribution is shifted in the positive v-direction 

as shown in Figure (lb). The part of the electron distribution from 

V = 0 to V = v^ has positive slope. An isolated positive slope could

result in inverse Landau damping, so that waves might extract energy ■ I
'S

from the electrons, and their amplitude would then grow. A negative ion J3
slope also exists, however; growth occurs where the effect of the

positive electron slope is enough to overcome the effect of the negative

ion slope. Thus instability occurs if v^ is large enough. Drifts

and distortions of the distribution functions occur when the plasma
contains applied electric and magnetic fields, and when there are

spatial gradients in temperature, density, etcetera. Under these
conditions the chance of instability occurring is greatly increased.

Differing ion and electron temperatures have an effect on plasma

stability in the following way:- Consider Figure (2a) where T^ << T^ ;
the ion gradient is very steep and negative for small positive v, and

becomes negligible as v increases. This leaves only the weaker electron
damping, so that a small electron drift can cause instability. Figure

(2b) shows the distribution functions for T^ _ T̂ . The electron gradient

is small for phase velocities near zero, but the ion gradient is steep
enough to cause significant damping. The ion distribution also has enough

spread to cause considerable damping for v^ _ v̂ , where the ion thermal
velocity v. is no longer very small. Thus an electron drift of at least

1
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The study of all types of instability has become of the first ~|

priority in recent years, since it was realized that most of the troubles ’!1of the controlled thermonuclear fusion programme stemmed in one way or 4
.ftanother from plasma instabilities. In the first section of this thesis J

we consider a collisionless plasma with various general particle drifts, 

and derive a dispersion relation to describe the possible wave modes that 4

may propagate in it. In the second section we investigate one of the |
cases mentioned earlier, in which the existence of a small collision |

effect (in magnitude much less than the collective effect) is sufficient 4

to disrupt a resonance leading in the collisionless theory to a set of |

propagating wave modes, the Bernstein modes. In the third section we ^

investigate in detail the effect of a large temperature gradient drift i

on the wave-mode known as the ion acoustic wave in a thermal plasma |
including weak collisions. 4

We may note here that the method we use to solve the linearized j
Vlasov equation is equivalent to Landau's Fourier-Laplace transform

1
method, and results in a four-fold integral over three velocity components 4 
and time. If the time integral is performed first, followed by the i

velocity integrals, a solution may be obtained in terms of Bessel functions. 4

If the velocity integrals are performed first, a time integral known as 4
f;

the Gordeyev integral (or some modification of it) is involved in the result. 5

For a general problem the former approach is usually the most profitable. 4

However for a more particular problem, perhaps concerning a simple S

configuration or a limited parameter range, the Gordeyev integral approach
is often to be preferred. For the general drift problem in Section I we

use the Bessel function approach; in Sections II and III the Gordeyev |
(v, )integral approach is used in the regime kp >> 1, where p ==• 'i’j. k
“  ■■ I

is the Larmor radius, and Cv_) is the mean thermal velocity perpendicular IciB 3to the magnetic field B. The cyclotron frequency 0 is ^  where

q is the charge of the species considered. |



SECTION I : A dispersion relation for a plasma with various 

spatial inhomogeneities.

Chapter 1
In this section we derive a dispersion relation for a fully- 

ionized, collisionless, non-relativistic plasma which includes general 
gradients in density and temperature, and also differing temperatures 

parallel and perpendicular to an applied magnetic field.

The kinetic equation describing a particle species in such a plasma 

is the collisionless kinetic equation, or Vlasov equation

3fdf ^ 3f F
at - ' ar g 3v -s= 0 (1 .1)

In this equation r and v denote position and velocity respectively, so 

that (r,v) is a position in phase space. The species distribution 
function is f(r,v,t), while F represents the net macroscopic force acting 

on a particle of the species. This force includes the effect of external 

forces and of the internal averaged collective force due to particles of 

all species, but excludes microscopic short-range particle collisions.

The particle mass in represented by m.

To solve (l.l) in the linear theory, we must examine the effect of 

small perturbations on a plasma which is initially in an equilibrium state 

We therefore make the following substitution:-

:̂ (Y)Y)t) = fQ(r,y) + f^(r,y,t)

F(r,v,t) = Fq(r,v) + Ei (̂ jVs't) 
where f̂  and F̂  are equilibrium values, and f̂  and F̂  are small 

perturbations such that

< < 1 and

Using this, equation (l.l) becomes

<  < 1

F,
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Sfo afo Eo 3fo
 ̂ 9t * - ' 9r  ̂ râ~ * 9v

;|

9 f l  9 f i  Fo 9 f i  h  afo
+ [ TT—  + V . T--+   .    ]

El af

+ Y  .-- -T~-- + ---  .-- T--  - -   • %--- (1 .3)9t - 9r m 9v m 9v

The solution of this equation, fi(psV,t), contains in principle all the 
information required to describe the perturbed plasma.

Equation (1.3) may be written in the following form:-

[•^] fi = h(r,y,t)

where h(r,v,t) = Ei
m 9v

and E 1 is a differential operator acting along the characteristic dt ^

9t - * 9r m ' 9v m ' 9v ( I.W  '4

The term —  . -—  is taken to be a product of small quantities, andm 9y
is therefore neglected compared with the other terms. To find the equation %

for the equilibrium state, we merely set f = 0 , giving

afo afo Eo afg
IF- Ï ^  • s W  = G - 2.)

This is the equation which the equilibrium distribution fg must satisfy;. 4

the equation giving the perturbation distribution f̂  is therefore, from |

equation (I .!&)

9fl 9fi F q afi Fi 9fr

curves of the partial differential equation (1.3). It may be thought of 
physically as the "convective" time differential operator; that is, the 

rate of change of a quantity measured along unperturbed particle orbits in 

phase space. Thus for a given value of (r,y,t), equation (1.3) gives the 

rate of change of fj as "seen" by a particle at the phase space point 
(r,y) at time t, but moving along the unperturbed orbit through (r,v).
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Our solution of (1.3) follows that, given by Cleiranow and 

Dougherty [ H ] , except for certain notational changes made for later 

convenience. If we wish to find the value of fj at some point 

(r^,v^,t^) in phase-space and time, we must integrate along the 

unperturbed orbit which passes through (n'',y'*), arriving at that point at 

time f . If (r(t),y(t)) denotes this orbit, fj at (r^,y^,t^) is given by

ft"
fl (y"sy''jt") = I h (r,y,t)dt (l.^)

- CO
ÎObviously depends in some way on f^, and so (I.U) is actually an integral
'Iequation with fj implicit in h. We therefore require further information 4
f

in order to specify the function h independently of f\. This information |

is contained in Maxwell's equations, which must apply to the plasma as a 

whole. However, there is no straightforward way of eliminating f% from |

h at this stage, so we adopt the following procedure

Fj is taken to consist of given perturbing fields, and the response 

of the plasma to these fields is to be calculated; subsequently the fields 
are to be made consistent with Maxwell's equations giving a self-consistent 

overall description. Thus h(r,y,t) is a known function at this point.

We now define the Green's function 

G(r,y,t,r";V",t") = 6 (̂r - r)6 (̂y - v) e(t"- t)

1 1 if T > 0
vrhere d t )  = o I if t < 0

f _ _
G(r,v,t,r",y'',t'')h(r,y,t)^ dv dt

t

where the integration limits are (- œ , oo ) in all seven variables.

Let X(t) and V(t) be the position and velocity functions defining 

the unperturbed orbit passing through r = 0 with velocity y at t = 0 . 

Then the unperturbed orbit passing through (r",y") at time t" is •

The equation (l.4) may be written as <
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r" - X(t" - t) 

v" + V ~ V(t" - t)

Thus
G = 6  ̂[ r - r" + X(t" - t)] [V(t" - t) - v" ] e (t" - t)

and therefore

V t=-oo

Setting t" - t = t""
00

V t""=o
h [ r"- X(t"") ,v,t"-t"" ] ■ ô M  v"-V(t"") ] dx dt

00

V t“0
h [ r"-- X(t) ,y,t"-t ] [ v"-V(t)] dv dt

where we have replaced the dummy variable t "  by t.

A function g(r",t") may be written in Fourier-Laplace integral form

as

g(k,cü) exp [ i(k.r" - wt") ] ^  dw
k 0)

The equation for fi(r^,y^,t") written in this form is

fĵ (k,y",a)) exp [ i(k.r''-a)t") ] dk dm

00

k cjj V t=o

oo

k Ü) V t=o

h [k,v,w ] 6  ̂ [v" - V(t) ] dv dt

exp ( i(k. [r"~ X(t) ] - w(t"- t))l dk dm

h E k,v,w ] <Ŝ [ y"- V(t) ] exp [ i(mt~k.X(t) ] ^  dt

. exp [ i(k . r" - wt") ] dm
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Equating Fourier-Laplace components gives 
1*00

(k,y ",0)) = h [k,y,w ] [ y - V(t) ] exp [ i(wt-k.X(t) )] ̂  dt
y t=o

In order to invoke Maxwell's equations, we must work in terms of charge 

and current densities rather than f^. They are given respectively in 

terms of their Fourier-Laplace transforms by

p^(k,m) = q I f^(k,y",m) dv

and Ç
£^(k,m) = q (I

Considering only the effect of electric and magnetic fields on the plasma,

the force F in equation (l.l) is given by
*1F = q(E + ~ y B) [in Gaussian units ]

where 5 y  ̂B is the force on a particle due to the interaction between 

its velocity y and the magnetic field B.
Thus

Eo = %(Eo + 7 Y  * Eo)
and = q(Ê  + y ̂  B̂ )

giving h(r,y,t) = - ^ (Ê (r,t) + ̂  y - 5 (̂r,t)) . ^  fqfr.y). 

The integral for j ̂ is therefore

2
00

V(t) [ E (k,w) + ^ V  ̂B (k,w) ] . fg(k,v)— ~ 1 ” C — — 2 — dV V — —
y t=o

exp [i(cAt - k . X(t))] ^  dt (1.6)

where we have substituted for fĵ (k,y",m) in equation (1 .5), using the 

Fourier-Laplace transformed version of h. Maxwell's equation of 

electromagnetic induction is

V » E + T 1^1 = 0 . (1.7)
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Suppose we assume fields of the form 

E(r,t) = + Ej(r,t)

= B^(r) + B^(r,t)

Thus we have a constant equilibrium electric field and a steady 

equilibrium magnetic field.

Equation (I.T) reduces to

E ' gi + ; It 5i = °

The Fourier-Laplace integral forms of Ê  and are

E,(k,m) exp [ i(k . r - mt)] ^  dm

(1.8)

k m

and B.(r,t) = B^(k,m) exp [ i(k . r - mt)] ^  dm
k m

Substituting these in (1.8), taking the differential operators inside 

the integral signs, and then equating Fourier-Laplace components results 

in the following equation

Bi(k,m) = ^ k . Ei(k,m)m

Using this in (1.6), we find that
00

(1.9)

j^(k,m) = 1m E (k,m) + •“ (k  ̂E (k,m))
V t=o

V(t)

exp [ i(mt - k . X(t)) ] dv dt (I.10)

When the integrations are carried out, the right-hand side of equation 
(I.10) gives a vector whose components are linear combinations of the 

components of Ê . We may therefore write

j^(k,m) = ĝ (k,m) . E^(k,m) (l.lQa)

This is a generalized Ohm’s Law, and we define ĝ (k,m) to be the

conductivity tensor for the plasma species concerned.
The total current is given by

W  = I g=(k,w) . Ei(k,m) (I. 10b)
species
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Chapter 2
In order to derive an algebraic value for we must insert a 

specific expression for the equilibrium distribution fgfkiv) into (I.IO). 
We consider initially the following inhomogeneous equilibrium distribution;

V
fg(r,v) = [ 1 + [s + 6^ [ a^v^- 1 ] + [ a„ vf, - i]) (x + ̂  ) ] f̂  ̂ (I-11 )

where r = (x,y,z) and y = (v^,Vy,v^) are in orthogonal Cartesian 
co-ordinates. The quantities Vj_ and v„ are defined by

V? — v^ + v^X y
—  y2" z qBo

is theWe take Eg  = 0 and B g  = Bg  z, where Bq is constant*, then 0 = —
II JLcyclotron frequency. The quantities n(x), T (x) and T'(x) are 

respectively defined to be the density, and kinetic temperatures parallel 
and perpendicular to Bq ; ng, tJ’ and T̂  are their values at x = 0 , since 

the origin of our co-ordinate system may be chosen anywhere in space.

We now define f^ to be the Maxwellian distribution for differing 

parallel and perpendicular temperatures, that is

'M " ^0
' 8*1 ' exp , 2 2. (aj. + a_ T„) (1.12)

where a, m
2 k TJ* 0

m
" 2 k TjJ

f̂  must be chosen in such a way that it satisfies the zero-order Vlasov 

equation (1.2). We show in Appendix (ill a) that the f̂  given by 

equation (I.11) satisfies (1.2), and also that for small values of e,

and the following relations hold:-
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n(x) - nq(l + ex) 

TJ-(x) = T i (1 + x) 

T”(x) ~ T" (1 + a x) 1
Thus we may define e to be a density gradient

<Sj_ to be a perpendicular temperature gradient 

6„ to be a parallel temperature gradient.

[ The requirement that the gradients be small is only necessary when a 
combination of density and temperature gradients is used in f^; when e 
or one of the 6 ’s occurs alone, this requirement is unnecessary (see f

Appendix (ill a))].
The effect of using such a form for f̂  has been treated elsewhere (for

example reference [ 5 ] )• The aim of Section I is to derive a

conductivity tensor involving general three-dimensional gradients in
density and temperature, with differing temperatures parallel and

perpendicular to Bq , and to derive it in such a way that the result is
concise, convenient and easily reducible to a conductivity tensor for a

simpler situation. To do this we require a notation which allows the

retention of a compact tensor form even when describing an inhomogeneous,

anistropic plasma. We use the polarized co-ordinate system originated

by Buneman [ 6 ] and developed by Dougherty [ T 1 ♦ This system and
its associated tensor behaviour is described in detail in Appendix (l);

here we merely define the components of a vector in the system. Note

that Greek letters are used for indices, and that upper indices denote

contravariant indices, while lower indices denote covariant indices.

Suppose that the vector b is represented in rectangular Cartesian

co-ordinates by the components (b ,b ,b ). Then the contravariantX y z
vector b^ in polarized co-ordinates is given by the components
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bl = 2”  ̂ (b̂  + i by)
= bz

b“  ̂= (b - i b ) X y

The covariant vector b^ is given by

bi = 2 - i \)

= 2 '̂  ■" ̂ V

The metric tensor for the system is 6 _ , so that raising and loweringA 5 U

(no)"' 3r̂
n SS £V

( V ) " “
9
3r̂

T-̂ = Ô-*-V
»

(To")"' â_
9r̂

t'* = 6"
1

Where ng, Tq-̂ and Tq” are n, T-*- and T" evaluated at the arbitrary origin

s

1
of indices is achieved merely by changing the sign;

The requirement now is to find an fq, expressed in terms of 

polarized co-ordinates, which contains general gradients and temperatures, 

yet which satisfies (1.2). Firstly, suppose we have a steady situation, 

so that the density and temperatures are given by n(r), T-̂ (r) and T"(r).

(Note that the position system r is not a vector in general, since it 

does not transform according to tensor laws). If we write r as in ^

polarized co-ordinates, the gradient operator — adds a covariant 

index to any tensor quantity that it operates on (see Appendix I).

Define the gradients in n, T-̂ and T" as follows :-

of the co-ordinate system. Thus is the density gradient vector, and 

6 ,̂ 6  ̂ are the temperature gradient vectors.

Considering the simplest non-trivial case, that of constant gradients, .5 

we attempt to generalize (I.11) by proposing an fg of the following form:-

3/
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fo = {l + + [a^ v2 - 1 ] 6^ + [a. - & ] 6^)(r^ + v^)} j

= {l + Y^(r^ + v^)} (1.13)

9 f nfor substitution in (1.2). Firstly ® is zero. Now consider
9fo 9fo

and
9t

9r̂  9v̂

= Y It f 
3r" '' ar“ “

= Yv a;

= Yp f#

^  = [ (rY + aY yP) ^  M  t + y^Cr^ + yP) ] 1 %
oV oV o V

f^ is given by (1 .12) so that

8f L-M = _  
9v̂ 9v̂  • Vĵ  ̂+ a„ V,,̂ )

Now v̂ ^ _ V 2 + V 2 = 2 v̂  v~ ̂X y
v,,̂ (vO)2

We define wU = 2
9
9v̂

(â  v^2 + a„ v„2 )

where = a_̂ v"l = a^ v^

^0 = a„ ^0

w_ v̂ = v_i

where “ (ê  + t %  - 1] + [ a„ v,,̂  “ M  5̂  ) «

and the Einstein summation convention is used. m

As noted before, r is not a vector. However, since ê , 5̂  and 6" are

vectors, and fg is an invariant, the tensor quotient law implies that

the system (r̂  + â  v̂ ) must be a vector.

The system â  is chosen in such a way that the fg given by (1.13)

satisfies (1.2). We now require the quantities and
9t 9r 9v

^3
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We also define the vector w*̂ with components (a_j_ v^, 0, aj_ v_̂ ) and 

the vector w|| with components (O, a„ Vg, O)

Thus we have

- 2 f.. V
M ;

9y,, Dvj.̂ 9v„2
Now --  = a, 64-   + a„ 6"

9fo

3vP Y V

= 2 (6  ̂w^ + 6” w" )V y V y
.Therefore our final expression for --- is

ayP

Y a + 2(r + a  v^)(6-̂ w-̂ + w" )l . v y  p v y v y

-2 [ 1 +  Yy (r^ + &p v^) ] w^ j f ^  (1.141

For the case of a plasma in which the zero-order fields Eg and 

Bg are constant, (1.2) takes the form ij

3fo q , 1 , 3fo , I
3t- " Ï • i T  " m *-0 " Ô Ï   ̂So’ • i T  ° ° (1-15) I
■ . '  “ 1 The existence of a component of Eq parallel to Bg would result in the ••

acceleration of particles to relativistic velocities in the direction of |

Bq, and would also result in arbitrarily large currents and charge

separation. The Maxwell equations

V . B  = - ®S + h l j  (1 .16)
-  -  p M

and V . E = l+Trp (I.IT)

would then imply large field fluctuations. Thus the assumption of an 
Eg component parallel to Bg is inconsistent with our non-relativistic 

and linear approximations. We therefore take Ê  perpendicular to B^.

The simultaneous existence of Ê  and Bq results in the particle 

species as a whole drifting with a velocity  ̂ (see
g2

reference [ 8 ]). 0
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and. results in the following equation:-
9v̂

[ Y + 2 (r'̂ + â  v*̂ ) ( 6-̂ w-̂ + ô-’ w")v y  p v y  v y

- 2 {1 + Y^(r^ + â  v^)} w^ ] f ̂ 5 0 (1.19)

where (v - B„)^ has been replaced by its tensor form - i (B„) ,— —0 p X
e^^^ being the permutation tensor in polarized co-ordinates (see 

Appendix (l)). We now choose a rectangular Cartesian reference frame 

such that B = Bq z ; that is Bg is (O., Bg, 0) in polarized co-ordinates.

electric field from the convective derivative [■—  1 . We discuss the /|
1

1 Q -- 4
The effect on the distribution function is to replace v by v - Vg |
in the expression for fg. This replacement and the existence of Eg 

itself in (1 .15) greatly complicate the derivation of a conductivity 

tensor. However, Vg may be eliminated from the analysis by transforming 
to a frame of reference whose origin is moving with velocity Vg. This 

transformation eliminates Vg from fg, and also eliminates the zero-order

dt
transformation in more detail in Appendix (ill b).

Our procedure now is to make the above transformation, to derive |

a conductivity tensor in the transformed frame, and then to carry out 

the inverse transformation once the final result has been obtained.

Details of the inversion will be given at that point.

Under the transformation, equation (I.15) becomes 

3fg 9fg  ̂ 9fg
  + V .   + —  V A B .   = 0  (l.l8)
3t 3r me “ 3v

where we have dropped the dashes used in Appendix (III b) to denote 

transformed variables.
Substitution of the values derived earlier for ^̂ 0 , ^̂ 0

4

1
. . . .  _ i&
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Equation (1 .19) may now be written as

^  YgBo ( Y^ aY + 2(rY+aY yP)(6J wj + 6̂  w||)

-2 { 1 + + â  )} w^ ] EG (1.20)

Now e^^^ V. w-̂ = ê  Ï "IjO v.w^ ,+ e“ »̂̂ s® v -,wf3 y 1 — 1 —i i

a, (v v, - V,V ,)' -11 ’ 1 ’ -1 
=  0 .

Similarly e^^^ v^w^ = 0

and therefore e^^° v w = 0
3 , y

= ame
Thus (I.20) reduces to

v^Y *■ Vg Y a"̂ E 0y 3 V y

or V (ŷ  “ Y â  ) E 0 !
3 V y j

Since  ̂ 0 we have

Y ^  -  i O e ^ G o  Y  a'-' e  0  ( l . 2 l ). V y

Now *̂ [ a_L vj - 1 ] 6  ̂+ [ a„ V?, - g ] 0̂

= (e - 6  ̂- gô" ) + a, 0  ̂Vĵ  ̂+ a„ ô" v,,̂V V V V V

or Y = g + h v,^ + I v,r̂  (1 .2 2)V y V ■*■ V

where - 6^ - ) 6  ̂ I

’’v = 4

Z = a„ 6" ;V V '4
■■;3
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Substitution for y in (l.2l) gives

iOeu3o [ h‘ 0

+ [ - i^e^^° & ] Vi V i = 0y y i -1

This equation must be satisfied identically by all possible values of 

Vq, v̂  and v_^. Such a situation can only occur if the coefficients 

of 1j Vg^ and v̂  v  ̂are identically zero. Thus we have three equations 
of the same form to solve; consider the first equation:-

g^ - iOe^^° g a^ = 0y y
In component form this is

ĝ  - iQe^51

gO - ifiê ’°’̂ ŷ
yay 0

ŷ
y

%
= 0

P = 0 ; so we

- h s-i [ E

g~l + ifi[ĝ aj + g_^a J) = 0

g° = 0

(1.23)

The equations for h and Z are identical in form, so that

= 0

=> 6
0

Similarly £ h o => 6JJ e 

Therefore ĝ  E o => - fii - i 61 f If
0

=> =0 = 0

The elements of a|j may be chosen in any way that satisfies (1.18).

Considering (1.23), the simplest way is to choose a| = i Ü and

-1 in , while setting all the other elements equal to zero. This

choice also satisfies the equations for h and Z
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V  pThe vector a v now has the elements

a ^  y P  =  v ^  +  a ^  v ^  +  a ^  V  ^0 -1

ia

a® v*̂

 ̂ = In Y

Now consider the elements of the- vector - vn  p
— ~ e^jPs^v — — ~ ê ĵï 1)0 Vn p n — 1

in

—  “  gO ) P ) 0 y  =  0<Q> p

— “ e )̂P)̂  V ~ — — e"l)l)0 Vwb P  ̂ 1

= iS^"'

Thus â  v̂  E - vp n p

Similarly â  can be shown to be identical to - — ê '̂y n y

Substitution for â  v̂  in (1.13) givesP

0̂ “ {l. + Yy (rY - i  eYP° Tp}} fjj (1.21*)
2where y = g + h  v v , + £  VnV V V 1 -1 V 0

with ĝ , h^ and A as defined by (1 .2 2).

We note here that the only forms of the gradient vectors ê , and 

which satisfy (l.l8 ) are those with Sq, 6i and ôq identically zero. 

This means that no gradients in density and temperature can exist along 

the direction of the zero-order magnetic field Bg. The physical
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-‘■f-. +.>10+. r —dt
Thus fQ, as "seen" by a particle moving along an unperturbed trajectory,

explanation for this lies in the fact that ] fg must be zero.
u

must be independent of time, and therefore must be a function of "constants

of the motion." These are quantities which are time-independent when
V

evaluated on an unperturbed trajectory; the quantities x + —^ and
. Vy -- — arising in fg through our choice of â  are constants of the

motion. However, the equivalent expression for a z-dependent function 

would be z - v̂  t. This is a constant of the motion, but any z-dependence 

in fg would then immediately bring in a time-dependence, so that fg would
'Ino longer be a steady-state equilibrium distribution. This implies that q

fg has no z-dependence, and therefore that fg cannot include a gradient

in the z-direction, as we have shown analytically.

By writing fg in terms of rectangular Cartesian co-ordinates and
"J

using the method outlined in Appendix (ill a), it is easily verified that 1

the following expressions hold for small gradients

n = Dg(1 + X  + Ey y)

Ti = Ti (1 + 61 X + 61 y) '!
0 X y •[

T" = T’o' ( 1 + 6^ X + 6^ y) |

where s = 2  ̂ (ŝ  + s 1) ' I
^ g

G = -i 2 2 (el - E~l) i1with similar expressions for the other gradients. This shows that ]
'1the gradients defined in our expression for fg can in fact be identified i

with corresponding gradients in the actual plasma parameters. i

I
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Chapter 3
In order to derive an expression for j^(k,w) from (I.IO), we

Sfo  i .v.O
Ü yrequire a specific value for _^ . On substituting - — e for

9v
â  in (I.14)5 we have

1  v.O ^ i vpO
9v̂

i- 4  Y e^*^,+ 2 (r̂  - ~  ê ^̂  v )(6i w^ + 6" w" )fi, p v y  v y

-2 [ 1 + Y^(rY - I  «YPO Vp) ] j fw (1-25)

The r dependence in this expression causes great analytic difficulty 

if it is left in. The result in the electrostatic case is a complicated

integral equation; the electromagnetic case is, as usual, much more 

troublesome. We follow Krall and Rosenbluth [ 9 ] in assuming a local

approximation in which fg is taken as before, but (and therefore f^)
9vy

is taken as being independent of r. Krall and Rosenbluth showed that 

the local approximation is valid if —^  << 1, where 0 is a typical-K-JL
parameter gradient and kj_ is the component of k perpendicular to Bg.

This condition is equivalent to saying that the perturbation f̂  goes

through many oscillations in the scale length for significant change

in f (r), and therefore over a few oscillations there is no r-dependence 
0 —  —

of f̂ .

We set r"̂ = 0 in (1.25), so that

It is shown in Appendix (lllc) that the term involving ê ^̂ v̂̂  in (1,26) 

can be neglected if kj_P > 1 where p is the Larmor radius. For k^p < 1, 

we must consider only small gradients in order that the local 
approximation holds. These small gradients can be represented 

approximately by the term ê ^̂  in (1 .2 6).
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9frOur final expression for ^ is therefore

3fr

9v,y
'M (I.27)

Substitution of this in (I.10) gives 
00

m V* [ ^ { V . (k . E^)} (i Yy eY^“ + 2w„ ]y
t=o

. f^ exp [ i(o)t ~ k . X(t)) ] dy dt (I. 22)

We may note here that we have neglected the effects of magnetic field

gradients in deriving (1.28). Parameter gradients result in particle

drifts, giving equilibrium currents. The Maxwell induction equation

(I,l6 ) then implies that a gradient in B must exist to balance these
currents. We show in Appendix (ill d) that it is permissible to neglect

8ttPmagnetic field gradients provided 3 << 1, where P is the plasma

pressure. Other consequences of assuming 3 << 1 are also dealt with in 

Appendix (ill d).
In polarized co-ordinates k  - may be written as

(k . E,)^ = -i k (Ê )

Therefore

[ V " (k . Ê ) ]y : _ypA [ V (k . I

ypX .t3

Substitution of this expression in (1.28) gives

I *  = m

oo

t = o
V . O. [ Y e - 2iQw ] f  exp [ i(wt - k  . X(t))J dv dt V  y  y  M  —  -  --



• ?iai
ïrifî

00

Y t=o

- 2 6 -

1̂“  t «% -  ; V k ] P T

• ( Y, eY;» 2ifiŵ  ] exp [ i(wt - k . X) ] ^  dt | (Ê )̂

In polarized co-ordinates (l.10a) takes the form

j* = *2 (Ei)9

Comparison of this equation with the preceding one enables us to identify 
with the expression in curly brackets. Therefore

,* = ia:
6 mQ

00

V t=o

. [ Y e"-" - 2ito ] V u y

. f^ exp [ i(o)t - k . X)] ^  dt

We now define the vector operator 1°̂ { } to be
00

V̂ f̂ . exp [ i(wt - k . X)] {
V t=o

I* { } = ̂  ̂ mü
} dv dt

and so
V  k ] [ Y eY ■ *1- 2ifiv 1 }p  T V  p  w

N0W 3 using equation (1 .2 2)

[3% - ; Ypk^ , [ Y, eYy-2ifiw^l

= [ Sv + h, VÎ + \  ] e Y-°

- 1  ê P- ê Y. û.O
u) X 3 y T - " ' v p  V

+ SiR ePP; e^y k w V0) X 3 T y p

- 2iOw,

k [ g  V + h  V, V + A v,,2 V ]

Operating on this expression with I { }, we get
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= 2";° 1 8, A" + c" + D' ] - Sin?;

- 1 « ' ' i  \  [ + \ <  + V p  ]

+ ^  ePP; ê T. 1, m“w X 3 T yp

where we define the following tensor moment integrals

A* = I* {1} C* = I* {v^Z} D I" {V„2}

Fo = I* {w.} G* = I* {V } 3 3 p P

I {v,,̂  V^}

{w V } yp y P

(1.29)

(1.30)

Thus for any given set of gradients, the conductivity tensor can he 

expressed in terms of members of the standard set of moment integrals.

These members may be evaluated separately, listed and referred to 
as and when required for a given problem. In Appendix (ll) we evaluate 

and list the components of some of the simpler tensor moment integrals, 
and give some idea of how the more complicated integrals are evaluated; 

considerations of space do not allow us to carry through the evaluations.

The equation (1.29) shows how the use of polarized co-ordinates 
has enabled us to derive an expression for with several useful properties. 

Firstly it is compact, clear and unambiguous. Secondly, the gradients 

appear as coefficients multiplying moment tensors whose components can 

be evaluated separately from a given problem, and can be listed for easy 

reference. Thirdly, by following through the analysis and applying the 

tensor quotient law, it is easily seen that (1 .2 9) is a tensor equation 

which holds its form under any tensor transformation. Therefore 

may be evaluated in another co-ordinate system merely by transforming 

the necessary tensors according to the appropriate transformation law.



We have the Maxwell equations

9 * El

at

The Fourier-Laplace transformed version of the second equation is obtained 

in the same way as we obtained equation (I.9 ) from the first equation.
The transformed versions are

B, (k,w) = — k - E (k,to)-1 - Ü) - -1 -

and k - B, (k,w) = - ~ [ E, (k,w) + —  j, (k,w) 1 (1.31)“ — i — C — 1 — (Ü _1 “

Substituting for B̂  and ĵ  in (1.31) and writing the result in polarized 
co-ordinates gives

[ k . (k . 3;) ] « = - 4  [ (E;)" + ]
C2

üT
^2 " 3 0) '3 " '""1

where we have defined the dielectric tensor ^  ̂ by

1
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and then substituting them into (l.29)*
The total conductivity tensor for a multi-species plasma is 

given by 8^ where

- I < 'species
A dispersion relation describing possible waves in such a plasma is 

obtained as follows:-

and V » ^
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We show as an example in Appendix (l) that

[k A (k - Ej) 1°̂ = [ k^ k - k.2 6g ] (Ei)

Substitution in (1.32) gives
«2

u : { k“k - k? 6% } ] (Ej)® = 0

This is a system of linear equations in the components of (Ê ) ;

the condition for a non-trivial solution for (Ê )̂  is the following:-

det [ 5 Û + “o { k - k̂  ô“ } 1 - 0

or, in terms of S

det [ ^  S“0) 6 + (1 + 4  k“ kj = 0 (1.33)p wr p ^

We include the effects of E * B drift velocities by making appropriate 

Lorentz transformations of the individual species conductivity tensors 
Oq making up S^ . Suppose for a given species the E  ̂b drift velocityp p “
is Vg. We define an orthogonal Cartesian frame of reference moving

with velocity , and carry out our derivation of as previously.

We use k' and to' to represent the wave-vector and frequency in this frame,
ito 'so that we have a four-vector (k* , ~  ). We now transform to a frame

in which the species considered is moving with velocity yg. In this

frame we take the four-vector to be (k, —  ). The transformation of— c
the four-vector is given by the following equations:-

k • Yo V,
- Y

(0* = Y (w - k . y^)

where = (1 [ see reference (lO) ]

In our non-relativistic case y - 1 so that
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k' = k - ^  w
c2

(o' - (0 - k . Vg
The first equation may he written as

k' == k - k ( 4  ) . )

Now 24 15 and we normally consider the regime ^  < 1 . Thus we
c

are justified in using the approximation k' = k , so that the 
transformation becomes the simple Doppler shift

k’ - k

(o' - (0 - k . V
(1.34)

So, to modify equation (1.33) to include E B drift velocities, we

merely Doppler shift the expression for according to (1.34), for

each species separately. We then denote the resulting total conductivity

tensor by (ŝ } . Our final expression for the dispersion relation is
 ̂L

det [ ^  {s“ } + (1 ) S“ + —  1 = 0 (1.35)
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SECTION II the effect of weak collisions on the 

Bernstein modes.

Chapter 1
In Section I we derived a general dispersion relation in the 

context of a completely collisionless plasma involving various spatial 
parameter gradients. As observed in the Introduction, such a collision- 

less dispersion relation may contain descriptions of wave modes which 
depend on resonance effects, and which may be destroyed by the presence 
of even a very small amount of collisions. In this Section we introduce 

such collisions, and in the high-frequency regime we investigate their 

effect on particular resonance modes which are present in the final 
dispersion relation of Section I, namely the Bernstein modes. These 

occur at multiples of the ion and electron gyro-frequencies, propagating 

perpendicular and near-perpendicular to the magnetic field Bq in the 

plasma.
In this context the general dispersion relation of Section I is far 

too complicated to be dealt with as it stands; we therefore introduce a 

small collision frequency and investigate the effect of this on the 
Bernstein modes that exist in an otherwise collisionless, homogeneous, 

magnetized plasma.
The intention is then to apply the results of this investigation 

to a particular case of inhomogeneity, namely that of a temperature 

gradient in a magnetized plasma. If the cyclotron resonances which 

generate the Bernstein modes are destroyed in this particular case, it 

.is reasonable to assume that they will not be significant in the general 

dispersion relation derived in Section I; therefore in using any reduced 

form of equation (1.35) in the high-frequency regime, we need not concern 

ourselves with possible effects due to instabilities in the Bernstein 
modes. In the following work, we make use of techniques and results
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published in 1964 by J.P. Dougherty [T ] .

The Bernstein (or electron-cyclotron) modes were first described 

in 1958 by I.B. Bernstein [ 11 ] , who solved the linearized Vlasov 
equation by the Fourier-Laplace transform method. The method of 

integration along unperturbed trajectories as used in Section I is 
equivalent to this, and will be used in the subsequent analysis.

Following Section I, we note that the perturbation charge density 

is given by , J
f r . IPj (r' , t' ) = q h (r, V, t) dv dt 
V t=-co

where (r, v) is the unperturbed trajectory passing through (r', y’) 

when t = t'. In general

h (r. V. t) = - ^ (E, +
G 9y

To derive the Bernstein modes, ire follow Clemmow and Dougherty [4 ] , 

using the electrostatic approximation (in effect letting c tend to 
infinity) and replacing E by -V(}) , where  ̂is a scalar potential. 

This gives

,2
Pj (r', ■t') = m

t' 3fgV<}) . ___ ^  dt
3y

V t=-oo

By a similar procedure to that used in Section I it is possible to take 

Fourier-Laplace components of this (equivalent to assuming that the 

variables are harmonic functions, that is they are proportional to the 

function exp [ i(k . r - mt) ],} The resulting equation is
00 3 I'dexp [ i (wt - k. X(t)) ] k .   dv dt- - 9v —V t=o

where X(t) is the unperturbed trajectory passing through r = 0 with 

velocity y when t = 0.

J
■4
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The components of X(t) are linear in those of y so that 

k . X(t) 5 y . p(t) 

where p(t) is easily obtained, and is the same for all particles since 

V has been extracted. Integrating by parts with respect to y we find 

that
. CO

Pl(k,w) = -
V t=o

k . p(t) exp [ i(o)t " p . v) ] fg dv dt

Taking fg to be the Maxwellian distributionI
0 0̂ ( 2ttkT  ̂ [ 2kT ^

the y integration is the Fourier transform of a Gaussian distribution, 

which gives when carried out
uu
I k . p(t) exp { iwt 1“  p2 } dt
t=o

No generality is lost if we choose our axes such that 
k = (kj,, 0, k„); particle orbit theory gives for X(t)

V V -V V
X(t) = ( ~  sin Qt + ̂  (1 - cos Ot), —~  (l - cos Sit) + sin fit, v̂ t)

kj_ kj_
, Thus p(t) = ( —  sinfit, ^  ( 1 - cos fit), k„ t)

and

where g(t) = ^  r ( 1 “ cosS2t) + kn^ i
2m I ^2

= kj_2 p2 (1 - cosfit) + g k„2 p2 t2

“4

$

o , oo «
%0 % ^ f . ,. , f . . tcT

Pi = - --'I'-'

2. 00
 ̂ + k„2 t2 ] exp { iwt - g(t)} dt ;l

fit=o

(p is the Larmor radius as defined previously)

.1



Thus 2 , oo
kT

Asdt
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exp {iwt - g(t)} dt
t=o

npq. * 
kT [ 1 + iw

00

t=o
exp {iwt - g(t)} dt ]

Poisson* s equation is V̂(|> = - 4n  ̂ p,(r,t)species

or, in terms of Fourier-Laplace components

k̂((> = 471  ̂ p^kjw)
species

where k̂  = k,,̂  + kj_̂

Suppose we consider a plasma with thermal electrons and a cold, stationary 

background of ions. The ion distribution function is fg = Ug 6(v), and 
the electron distribution is Maxwellian. Using Poisson*s equation and 

our final expression for p̂ , the dispersion relation for this plasma is
2 T, 2k. k 

„2 [ 1 + iw exp { iwt - g(t)} dt] = 0  (II.1)
t=o

where k .̂  i,e
4nUge2

"̂ i,e

The integral
oo

t=o
exp {iwt - g(t)} dt is the Gordeyev integral [ 12 ] .

We may define a dimensionless form of this integral by setting t - fit. 

Then the dimensionless Gordeyev integral is

G —
00

T=0
exp { i w * T  - g(t)} dT (II.2)

where w’ = fi.
Unfortunately, for general parameter values, the integral has no 

concise analytic result. In certain limited parameter ranges, however,

■a
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analytic expressions can be derived. The results obtained in 
Appendix (lllc) suggest that gradient effects are most significant 

within the local approximation in the regime (kj_p)̂  >> 1 ; it would 

therefore seem to be of interest to examine the Gordeyev integral 

in this regime.

To derive the Bernstein modes, we must look at wave propagation
perpendicular to the magnetic field; that is we must set k„ = 0.
The dimensionless Gordeyev integral in this case is

oo
G = exp {iwT - k^pZ (1 - cos x}dT . (11,3)

T=o
where k̂  =

The usual way of deriving the Bernstein modes from this integral is to 
use the identity

00
exp (X cos fit) = \ I (X) exp (infit)

n=-oo

where is the Bessel function of imaginary argument and X in this case 

is k^p2 . The integral may then be easily carried out, and the 

asymptotic forms of used. However, we intend to investigate the effect 

on the Bernstein modes of introducing a small collision frequency; the 

results involve modified Gordeyev integrals of greater complexity, for 

which the Bessel function approach is much more difficult. We shall 

therefore apply an approximation technique to equation (II.1) to indicate 

the origin of the.Bernstein modes, and then use the same technique to 

examine the effect of a small collision frequency on these modes.
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Chapter 2

The dimensionless Gordeyev integral for k„ = 0 is

G,
oo

T=0
exp {iw'x - k̂  p2(l - cos t)} dx

and we intend to examine the regime k^p2 >> i. The function 1 - cos x

has the form sho>m in Figure (3a). Our basic assumption in the
approximation technique we now use is that the integrand in Ĝ  contributes 

significantly to the integral only in regions near 1 - cos x = 0, since 
the integrand contains the factor exp {- k̂  p2 (i - cos x)} and

k̂  p2 >> 1, This assumption is supported by later computational results

for the case with a collision frequency included. Thus we need only

examine regions where cos x - 1 ; that is where x = 2mr + cf) with

I (j) I << 1 for n = 0» 1, 2, ...
Define the number 6̂  (n = 0, 1, 2, . ...) to be the size of a

domain of significance around the point x == 2nn. By this we mean that

6 is large enough for the following inequalities to hold:-n

exp [ s(x) ] dx >> exp [ s(x) ] dx

,2%n+6
and n exp [ s(x) ] dx >>

2n(n+l)-6^+i
exp. [s(x) ] dx

27rn-6n 2mn+6n

for n > 1, where s(x) = iw'x - k̂  p̂  (1 - cos x). 

Ĝ  may now be written as 
"6̂

Gi = exp [ s(x) ] dx

oo
+  In=1 2nn-6

exp ( s(x) ] dx

■5
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or, replacing t by 2irn + (j> so that

1 - cos T -X,

the following approximation holds:

exp (iw'cf) - ^  } d(f)

oo
+  ̂ exp {2mriw’}
n=1

exp (iw’(}> - k̂  p̂  } d(j>

oo
+ \ exp {2nniw*}
n=1

<j> AyNow 1 -- .cos X = ^

exp {- iw’cj) - k^pZ } d<j)

, so that the integral involving

(II.4)

exp {- k%p2 } is more convergent than the one involving

exp { - k^pZ (1 - cos X)} ; the 6̂ ^s must also be the sizes of domains

of convergence for the integrals in equation (II.4).

Therefore
<5 00
^ exp {iw'O - k^pZ ^  } dA = exp (iw’cj) - k^p^ d̂

for n = 0, 1, 2, ...
Consider the integral

oo
I = exp { ± iw*  ̂- k̂  — } d(}>.

Change the variables as follows:-

r = xiil 
Ækp

/2 -p2Then I = r—  e kp dp
iç-oo

= - y -  z(ç)
/2kp

where Z(ç) is the plasma dispersion function of Fried and Conte [13a]
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Thus from (II.4)

■i , CO
G% g - ——  z( ——  ) I exp (gnmiw'}

v̂ kp v̂ kp n=o

CD
~  2 ( — r— ) I exp (Snwiw'}
/2kP /2kp n=1

z (  )
(kp)'

v̂ kp ( 1-exp [ 2îriw*l ) Æk
(kp)'

( 1-exp [ 2Triw'] )
-(kp)“1

If (l ~ exp [ 2iriw' ] ) is of order unity, then the contribution that

Gĵ makes to a dispersion relation such as (ll.l) is quite small because 

of the factor (k p) ^. However, if ( 1 - exp [ 2niw' ] ) is of order 

(kp)  ̂ , then the contribution is much more significant. This condition 

results in the following

cos 2niw* - 1 

=> w ~ nfi for n = 0, ± 1, ± 2, ....

Bernstein showed that dispersion relations involving Ĝ  have solutions 

with real w and k for w = nfi (n f O). These are known as the Bernstein 
modes, and they are undamped for propagation perpendicular to Bg.

Let us examine the regime k^^pZ >> -j k„^p^ > 1. We have

œ
G = exp {iw'x - k^2p2 (i _ QQs T) - ikn^p^x^} dx

Making the change of variable x = 2mr + <j) as before and using the same 
approximations gives 

00 00
exp I iw*(J) - ik̂ p̂ (f)̂ } d(j) ■** I exp {2nniw* - gk„̂ p̂ (2Trn)̂ }

n=1

00
exp {<j)(iw' - k„^p^. 2mr) - gk̂ p̂ tj)̂ }

00
■+• J exp {- (|s(iw* - ktî p̂ . 2mr) - gk^p^^^} dcf)



39-

For n = 1, (2ïïn)̂  - 40; we also have k|,̂ p̂  > 1. Thus
exp [“ i . (2wn)2 k„^p^ ] < exp [-20 ] for n > 1, and so the only

significant term in G is the n = 0 term. Therefore

exp {iw'4> - ik̂ p̂ (j>̂ } d(f>
roo

G “

z ( - 7 ^ )v̂ kp /2kVgi

as before, where v^ is the mean thermal velocity.

For cold, stationary ions the following dispersion relation 

results
k.^ k 2 

1 + Z' I/- = 0.( y f - )
k? 2k2 T

This is the dispersion relation for ion acoustic waves in an unmagnetized

plasma with cold stationary ions. Figure (4) shows the angular regions
relative to the magnetic field in which the different types of waves

are important. For k,i = 0, there are undamped Bernstein waves at

w = nfi for n  ̂0, and the damped n = 0 wave is in fact the ion acoustic

wave. For k„2p^ << 1, the Bernstein waves are damped, but still of the

same order as the ion-acoustic wave. For k„2p2 > 1, the ion acoustic

wave dominates ; the Bernstein waves are damped so quickly that they can

be ignored.
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Chapter 3

To investigate the effect on the Bernstein modes of introducing 

a small amount of collisions into the plasma, we make use of theory- 

developed by Dougherty [ 7 ] • We provide here an outline of his 

procedure.
Dougherty begins with a Boltzmann equation as follows:-

I

where Einstein sums of Cartesian tensors are used, and â  is the

macroscopic acceleration vector, 

collision term given by

is a Fokker-Planck

(II.5)

where

and

3v.

A. = - v(v. - u.)1 1 1

V is an inverse time, independent of velocity

u^ and T are the local drift velocity

and temperature respectively, given by

nUi V. f dv 1 —

3 ntcT = m(v - u)2 f dv

where n is the local number density of particles, defined by n = 

Equation (II.5) is linearized, and written in the form
Dfi = h

where D is a linear differential operator, and f̂  is given by 

f = fg + f1, fg being an equilibrium distribution function. Thus

h

f dv,



““1vîiere D is an inverse differential operator. Dougherty defines 

a set of quantities

1 . D dv

where at most two suffixes are needed before or after H. Each suffix 

(if any) labels the component of v to be inserted in the appropriate 

place in the integral.

The theory gives for f̂

vTi
d“ (v2fj - 3D * f„ ] (II.6)^1=

and the following expressions for the perturbation quantities n^, u, and 

T̂  (ng and Tq are equilibrium values of n and T and â  is now the 

perturbed macroscopic acceleration vector )

vT

0

m
“o"i = ^  i-jj.H. 3,H)

n̂  + no T1 = m
3cT,

Tr
+ vUj'iiHj + ^  ii«jj - 3iiH) }

We write kTq as V 2 where v is the mean thermal velocity of the m T T
particle species considered. Our procedure now differs from that of 

Dougherty in that we derive an expression for the charge density p(r,t), 

while Dougherty solves for the perturbation velocity u.

Solving equations (II.T) for û  gives

where

M. . =
T

M. .1.1
t no - M

3^ [ 3^2 jjH. - H. ] [-^2 -H.j - 3.H ] 

n„ + !'(— &' t .^H + Hjj ] - 3H - zZT'i
3V(p 11 JO
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Substitution of u. back in (II.T) gives1

v^ np - vMjj 3vgn̂  11 j j j2 n  + ] [ — 2 ,..H, " H, ]
L

Tl
Note that n̂  is implicit in û  and —  , even though it is not explicitly-

involved in the expression for

To derive a dispersion relation, f̂  itself is not required; the 

perturbed charge density p(r,t) is sufficient, and this is given as 
follows, using équation (II.6):-

p(r,t) = q fl(r,v,t) ^

1 vM. .L- M  4. __ JA a_ D  ̂ (v̂ fg) dv

, 1

In general a. = E +  — v ^ B ] .
1 m - c - - 1

where E and B are the perturbed electric and magnetic fields respectively

To investigate Bernstein modes, we follow Chapter 1 of this Section by

making the electrostatic approximation and taking Fourier-Laplace

components, which is again equivalent to assuming a harmonic dependence

of the form exp [. i(k . r ~ wt)].

The expression for â  becomes

a. = -̂ E.1 m i

D  ̂ (v̂ fn) dv - 3 D  ̂ fg dv )] (II.8)

m 3r̂

where c() is an electrostatic potential independent of y. Thus

î ~ ~ m^ ̂ i (II.9 )
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taking a harmonic dependence for <}) as in Chapter 1. Therefore

! a. D (v.fg) ^ -1D (v.fg) ÙV

m ki *

Also

and -1D (fn) dv = H
Ti

Substitution of these values and the expression for into (IX.8)
■‘•0

gives in terms of k and w

p(k^w) = ^
mvL

vM. .
 ̂’’ ng-vM

JJ

vM. .

______ 2___JA
"o + ''(& + H ] - 3H - A t :,H.. )'' ip J J 3v^ ii"jj

mvT

vM. .
1 + --- „ .  '(3 ^ ^  ii“j - '̂ dd - 3h)

n^-vM.. 
0 JJ no - v(3H +3^ ^  . .H.. - 1; [ . ,H + H. .) )_

We now convert all Cartesian tensors to the polarized co-ordinate tensor

form developed in Section I. In terms of these tensors, M.. becomesij .

M
'T

3vĝ  e"p

„ 0  - 3v [ H - 3 ^  (^H H- H^) H- ^

where upper indices are contravariant and lower indices are covariant; 

repeated indices (one contravariant and the other covariant) are again 

Einstein sums.
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The charge densicy is

p(k,w) = - Â U
mv.T

vM
1 + +

Define A,

c»X-Kx)( V ̂6 -

T T

«X )

kX. m

no-v(3H + ;%6 - Ç2 + Hg 1)

Then MP v;T
and

p(k,w)

{ -3 [ ] A , }

-iaH vM,
1 +

no~ vMg
- 3H)A, k

(II.10)

(1 1 .1 1 )

These expressions involve a k with general direction. We would like 

to investigate the effect of collisions on Bernstein modes in the region 

where they are most important, namely with k„ = 0 so that they are 

undamped in the collisionless case. Thus in order to find p(k,(t)), we 

must evaluate the following set of H-functions with k„ = 0 :-

H,  ̂H, H*. X ,

Dougherty shows that the general H-function 

as follows :-
H can he evaluated

X... g
30.

1 3
i 3p; • . . I ]

o ~ p — 0
(1 1.12)

where

I = n.
oo
exp [ - 0(t) - Y(t) + imt ] dt (11.13)
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$(t) - ~ 2 i ^  (lit - 1 + e [ cos X + - e '*̂ cos(J2t-x)] f
\  I v2+fi2 J

1 f 1 X . 1 X . , X ( 1 - e-[^ - 'h

+ k^p, X - ( V  . i«X)t }
V + ifiX X ^

X  = 2 tan  ̂ ^ ) and 0 < x < m

Note that Greek indices are used as algebraic quantities at some points 

in the expression for Y(t); see Appendix (ih).

For k„ = 0

#(t) = “2 • . [ cos X + vt - e cos (Ot - x) ] (II. l4)

Since a and p are eventually set equal to zero, Y(t) disappears from the 

final result of any integration.

The simplest H-function is H itself, given by 

fOO
H = %0 exp {- $(t) + itüt) dt

and in general
00 X. . .

' *HP F̂  (t) exp {- $(t) + iwt } dt

where  ̂ J  •••  ̂^ ^ ^

We now proceed to derive one of the required F’s and to list the others, 

in order to prevent tedious repetition. The necessary F's are the 

following:-

Fx' Ih' M ’

where all the functions are to be evaluated with k„ = 0, that is with 
0k = kg = 0.
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Consider the case of Fy

F 9 9
'x

•ï

= [

a = Q = 0 

9Y 9Y
9a 9p̂  9a. 9p̂

]
a = p = 0

Now

11
3p'

( 1 - v+iww] t ) [v+iOw]t
y T I y y v + iJîy

Therefore

Similarly

11 
L 3p'

1 - e [ v+ifïii] t

a = p = 0

1190. ] = k’' 1 - e [ v-fifiX] t
V + inx

0 = p = 0

9̂ Y 
90 9p'

= V 2 gA g-[v+iOy] t
T p

0 ” p ~ 0

Therefore

‘F = T 2 -6̂  _ 4 j,Xĵy T p T p
1 _ g t v+ifiX] ‘ t 'i -̂[ v-hifip] t

V + i^X V + ifîp

and 

6F. = v„2 [g-(v+iO)t + 2-vt + g-(v - iO)t ]
T

v/ [kIk (1 -  ̂ (1 - ^
(p+i^)2  ̂ (v-iJï)̂

Now k^k = k  ̂k_j = ik̂  where k̂  = k_t.̂

■À
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Therefore

[ e ( 1 + 2 cos fit )

\  { (v -ifi)2 [1-e (v+iO)t]2 ^ (v+in)2 j j
(v2+ «2)2 

Finally

^^6 ~ T̂^ [ e ( 1 + 2 cos fit)

k^v 2
_ 1  { ^  (1 - 2e-''* cos fit + e-2^%os 2î2t)
V̂ +fî  v̂ +fî

+ e (2 sin fit ~ e sin 2fit)} ]
v2+fi2 '

Similarly, the following expressions may he derived:-

. ,, “(v+ifiX)t
: + im ]

- v,p2 (3 - ^ ''t [1 - 2e cos Sit + e ] )

= 4

= i  ̂- ijiX

V%+fi2

-(v+iClX)t M - e A Z A A l j

1 v,' (1 _ 2e-'’* cos Sit + e-2v*)V  + iSlX [ v2+Sl2.
“ 3] } k.

F̂̂  is the same as F̂̂  except that k^ replaces k̂ .

F̂̂  = v̂ *+ [ v^^ U2 - 2v^2 (3u + 2V) + (9 + Se'^^t [g + cos 2fit] )]

where U = — —  ( 1 - 2e cos fit t e ^̂ )̂
v2+fi2
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and V = e-vt { f z g l  [cos Sît(l + e'®'’*) - 2e"'’* ]
pZ+fiZ V̂ +fi2

. 2vfi r . ”2vt
v2+fi2

[ sin fit{1 - e ) ] }

If we define

and D = H - —  ( ''H + h“ ), + -—  %

vCthen A, = XX

and =

3vD -ng

implying ^  { °H, - 3 °C A, }

Examining the expression for p(r,t), we see that the following functions 

are required:-

k^H^, ^CĈ , D

F-functions for all of these except ĈC. are easily derived hy combining 

the F-functions for the component parts of each. is a product of

two integrals, and therefore must be treated separately.

We list the appropriate F-functions below:-

ik^v  ̂ ' k^v ^
k^C ->   —  { --   (l-2e cos fit-i-e, Cv [1-e cosfit]+fie ^^sin

A 3(v2+fi2) (v2+fi2)

- 2e (v [ e cos fit - 1 ] + fi sin fit)}

ik^v ^
kH. ^ —-- — { V  ( 1 - e cos fit) + fie sin fit}

v2+n2
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k^v 2______

H -> (e [ 1+2 cos fit ] ------- { ~— — (l~2e ^̂ cosfit+e ^^^cos 2fit)
 ̂ T v2+fi2 v2+fi2

X„ 0 / -vt t ''T r v2-fi2 -vt . ~2vt

+ — e (2 sin fit - e sin 2fit)}
v2+fi2

2

D *+ y {2e [ 2+cos 2fit ] - 4 — --I- e (cos fit [ 1+e ] -2e
9 v2+fi2 v2-fi2

- 2vn sin ot(l - e-2vt) ,
v2+fi2

+    (1 - 2e~vt cos fit + e }
2 ,

(\,2+fi2)2

Using the definitions of and C , the function ĈC may be written 
as follows :-

X ngZkZ
cc, = [ (

CD
^  J exp {iwt - $(t)} dt)2

o
oo
^  exp {iwt - @(t)}dt)2 ] (II.I5)

where and 3“ are given by *

A  , = (1 _ 2gvt COS at + e-2vt)(l - e-<v +
3(v2+fi2) \)2 + q 2

- 2(v-+ - e-2vt)}

_ ^
" 3(v2+o2) v2 + «2

- 2(v - - e-2vt)}

It is easily (if laboriously) verified from the expressions listed above 
that all the integrals involved in p(k,œ) have F- or ̂  - functions 

which are linear sums of the following exponentials:-
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( V -vt -(V ± ifi)t(1) e , e

-2vt -(2V ± ifi)t -(2v ± 2ifi)t(2) e , e , e
(3v ± ifi)t ■ a

(3) e
*4 vt(4) e

Thus p(k,to) may be written explicitly in terms of the following set of 

dimensionless ’’modified Gordeyev” integrals: - .
00

(1 ) exp { - v 't - $(t ) + i( — ± £ )t ) dx

oo
(2 ) exp { - 2v’x - $(x) + i( ~ ± m)x} dx

(3)

(4)

o
oo

oo

exp { - 3v’x -

exp { - 4v'X

&(x) + i( ^ ± l)x} dx

$ ( x ) + i  ^ x  } dx

where £ = 0,1

m = 0,1,2

and V ’ =

fit
v_
fi

We now define a general dimensionless "modified Gordeyev" integral:

oo
GM exp { iw*x - rv'x - $(x) } dx (11.17)

where a)* = “ ± s ; s  = 0, 1,2 and r = 1, 2, 3» 4. Any of the integrals 

in (1 1.15) may be obtained by using the appropriate values of r and s in 

(II.16).
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The dimensionless expression &(%) is given by:-

k^2p2
*(?) = (v')2 (v'T - 1 + e  ) + (cos X + v 't - e ^ ^cos(T-x))

\
\
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Chapter k
In Appendix IV we show that for kp >> 1 and (kp)  ̂  ̂v' << 1 

the integral given by equation (II.16) may be approximated thus:-

Gm = z ( - ^  ) (11.18) -Æ k p  Æ k p
where Z(ç) is the Fried-Conte plasma dispersion function. When 
evaluating p(k,w), integrals of the form

oo
-nv ' T cos mx exp {iw’x - $(x)} dx

(where w' = ~ ) are approximated by

_ [ Z ( ) + Z ( ) ]
Ækp ŷ kp ŷ kp

and integrals of the form
oo

-nv'X r. , ./ _e sin mx exp {iw'x - #(x)} dx

are approximated by

[ Z ( ) - Z ( ) ]
2 v̂ kp i/2kp ŷ kp

It is straightforward, though lengthy, to write down expressions
in terms of Fried-Conte functions for k^C., k^H , , D, andA A A
O O
/ «5^+1 exp {iwt - $(t)}dx.
o “

X . IFor example, the expression for is |

{ Z ( ^  ^ [Z ( ) + 2 ( A ^ ) aŷ kp ŷ kp Ækp ŷ kp

+ k 2p2 [ (z ( _ ü ! _  ) _ [ z (iü!±l) + z ( ) ] + H z  ( - ^ )  +z ( ! ^ ) ] -
y ^ k p  y ^ k p  / 2 k p  y ^ k p  y ^ k p

-2iv' ([- 2iv'([Z ( )-Z ( )]-a [z ( )+Z ( A A  )I )1 } ,]
y^p y^p Ækp yikp

(11.19)1
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The other expressions have a similar form.

Taking ç = —— << 1, we may expand the Fried-Conte functions kp
in a power series as follows:- 

Z(c) exp (-(2) - 2ç [ 1 - %  xp-

- iiT - 2Ç to order ç
1

- iïï (l - ç̂ ) - 2ç to order 

etcetera

Substituting (II.20) to order Ç in (11.19)

(11.20)
'i

H, -1 ' + k%p2 [ term 0 ([—^  ] ) at most
v̂ kp kp kp

+ 2iv*(iïï v^(m’-2)
kp ) ] }

Ü
[O(v'kp) + 0( [ kp ] )̂ + O(v') + 0( [kp 3 ^ ) ]

The leading order term is O(v’kp), since (kp) 3 v’ < (kp)  ̂ [see 
Appendix IV ]

Thus H, ^ o V0 ( — r  - v'kp) (1 1.2 1)X ~ ' fi
where we use the sign to denote that the leading order term of the

expression is given on the right-hand side.

Carrying out similar expansions for the other required expressions 
we find that

oo
3^ exp {io)t - #(t)}dt =

oo

3/2(kp)

3^^ exp {iwt - 0 (t ) }dt =

2Æ  .

3/2(kp)
2y/2 .

V ' +i 
kp

v'-i
kp

3ïï(2w'-l)
(kp)2

3ïï(2w'+l)
(kp)^

. (11.22)1
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Thus from (II.I5)

' “ > ■ - 9  i S »  i f ;  ' '

and so - 0(n(,2p2(kp)"2) (11.23)

Similarly for D

D ss iQ. -Î { ^  [6iïï^ + 0([kp 3 ^)3 - r  (kp)2 [ 0([kp 3  ̂ ) or less 3 
fi Æ k p  ^ ^

and therefore

0 f Ov'nn^pZfkp)*^ 'j
I no

0 ( fiv'ngP̂ (kp)  ̂) (1 1.2 5)'0

using (1 1.2 3) and (11.24). 

.X

;:4

j

■|

1 _U+ — (kp)4 [ 0([kp 3 ) or less 3 } ^

That is "I?

D ~ 0( Q (kp) )

ng-vM^

3vD “ Hg = Sv’fiD - ng t
- - ng(1 + 0(v*(kp) ^))

- 0(ng) (11.24)

Now ^CA = fi — —
3vD - no

0(11 v’kp) using (11.24) and (II.25). ’ 3
fi ■*'

Therefore vM̂  ̂ ~ 0(ng(v’)̂ kp) (11.26) |

vM^
and so ——  ̂  ~ 0( (v*)̂ kp) since (v’)2 < (kp)~̂  .

ng-vM^

vM^ _
Thus 1 +    ̂ - 1 for (kp) < v' < (kp)  ̂ (II.27)

a
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Froin (II. 11) using (11.27)

p(k^w) = - - 3H)A^ ] k* (11.28)

We may write k^A^ as

k̂ A, = ^ C,
3vD-ng *0

using (11.24)

Now k^C^ may be written as
oo

k C. = ng [ k%k^ exp {iwt - &(t)} dt

+ k-lk-1

oo
exp {iwt - $(t)} dt 3

—  [ 2 Æ  v' - 3 using (11.22)
3/^ kp ■¥

Thus k V  - - f 2 /2 'X 3/^ kp

and k^A^ 0(fiw' ^  ) (II.29)

for v’ < (kp)  ̂ .

Using the F-function derived earlier for it can be shown that
' I

-  2 - 3H ~ 0 ( 1 1 .  1  ) (11.30) "
''̂T fi kp

and using the F-function derived for k̂ H, - AI
\ -1 '5k ~ 0(ng) for v' < (kp) (II.31)

I
Thus the expression A

[ Ç 2 - 3H ] A^k^ - 0 (now' (11.32) ’

from (II.29) and (II.30).
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and Y = - & Z' (
Ækp

In terms of small argument expansions

X = 1 + 3 +.......
ŷ kp (kp)2

ITT w2,.. (w')2
Æ k p  (kp)'

k H, = - 111 Z' ( )
2 ÆkT^

Equation (11.28) now reduces to

.-z-
- 56 -  ■ A

Comparing (11.32) with (II.31), we see that

[ — 2 - 3H 3 A k̂  may he neglected when compared with k^H .
6 A A

Now the expression for k^H^ in terms of Fried-Conte functions

is as follows:-

• A h  = - I k  kp [ z ( ) - z I (11.33)
2Æ  Ækp Ækp

Consider the functions

X = [ Z ( ^ )  - z 1
2/2 /2kp /2kp

Thus X - Y ~ 0( [kp 3  ̂ ) << 1 in our approximation and so X - Y; I
that is we may write (11.33) as ■

in.

M

P(k.w) = - Z' ( 7 A -  } (II.3k)T . y^kv^

As in Chapter 1 of this Section, we use Poisson’s equation and the 

electrostatic approximation, with a harmonic variation in the electrostatic i

potential <j) of the form exp {i (k . r - wt)} . The resulting equation is
:

k̂cj) =5 4tt  ̂ P(k,m) (11.35)
species ^

:  '
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Thus the dispersion relation for waves propagating perpendicular to 

a constant magnetic field Bg in an electron-ion plasma in which 

kp >> 1 and (kp)  ̂ < v’ < (kp)  ̂ is given by substituting the 4

appropriate values of p(k^w) from (11.34) into (11.35)*

The dispersion relation is then

k.^ k ^
1 + Z' ^  Z ' { — — ) .= 0 (11.36)

where v. is the mean thermal velocity of the given species. \

Equation (11.36) is the dispersion relation for ion-acoustic 

waves travelling in an unmagnetized plasma with warm ions, and is the 

same dispersion relation that holds in the region of Figure (4) marked 

kn^p^ > 1 in the collisionless case. Thus it seems that for kp >> 1

the effect of introducing a collision frequency v’ (such that 

(kp)  ̂ < v' < (kp) ^) is to disrupt the gyrorésonances that allow the

existence of undamped Bernstein modes for k„ = 0. If this holds for 

undamped Bernstein modes, it must hold all the more strongly for the 

region of damped Bernstein modes (marked k,t̂ p̂  << 1 in Figure (4)).

The statement of our result is as follows 
For the regime kp »  1 in a magnetized electron-ion plasma, the

introduction of a collision frequency v (such that (kp)  ̂ ^ < (kp) ^)

results in the replacement of the Bernstein mode dispersion relation by 

the normal ion-acoustic mode dispersion relation even for propagation 

perpendicular to the magnetic field.

Certain recently - published work lends support to the idea that 
Bernstein modes and the Bernstein instability are unlikely to be important |

in practise. Lampe et al [13b ] showed that in the linear theory there 

is a smooth transition from the Bernstein instability to the ion acoustic

instability as the magnetic field B tends to zero, and that when
!

j
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I:non-linear turbulent fields are introduced, the electron |

gyrorésonances for modes with kp^ > 1 are smeared out. Two- |

dimensional computer simulations [ l4 ] have also shown the finite 

amplitude stabilization of the Bernstein instability.

«

i
-I

' ÏIf
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SECTION III Temperature gradient driven ion acoustic instability. 

Chapter 1

It is well known that ion acoustic waves may be driven unstable 

by introducing a relative drift velocity between ions and electrons.

The problem was originally investigated by Fried and Gould [ 15 I , 
who solved the dispersion relation numerically and gave a neutral 

stability curve showing the critical drift velocity as a function of 

electron to ion temperature ratio, /̂T̂ . Although this analysis was 

for an unmagnetized plasma the same general conclusions may be applied 

to ion acoustic waves in a magnetized plasma provided that (a) the drift 

velocity is parallel to the magnetic field [ I6 ] or (b) the drift velocity 

is perpendicular to the magnetic field but the waves are effectively 

unmagnetized, that is k^ >> p̂   ̂ , where p̂  is the electron gyroradius 

[ 17 ] • In the opposite limit of k^p^ < 1 either the ion acoustic 

instability or the modified two-stream instability may arise depending 

on the ratio [ I8 ] . A large number of recent papers have
1

drifts caused by plasma inhomogeneities have been examined [ 19 1 » [ 20 ] ,
[ 21 ] , [22].

In this Section we examine case (b), that is a perpendicular drift 
and kj_ p^ >> 1. The result of Appendix (ill c) supports the idea that 

the maximum effect of a gradient drift within the local approximation occurs
when kĵ p »  1. The significance of inhomogeneity drifts in this limit was

Texamined analytically by Priest and Sanderson [23] for e/T^>> 1. In that 

paper, hereafter referred to as I, it was shown that weak inhomogeneities 
in electron density and magnetic field (see also [ 17 1 ) have a negligible 

effect on the ion acoustic instability, but that an electron temperature 

gradient could have a very significant destabilizing effect. Since 

the physical explanation of this lies in the distortion of the electron
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distribution function (see Chapter 2 of this Section), it was suggested 

that a sufficiently large temperature gradient might drive ion acoustic 

waves unstable even in an equal temperature plasma (T̂  ~ T̂ ) and for 

very small or zero net drift velocities. (note that it is only 

necessary to consider small gradients when density and temperature gradients 

occur together; see Appendix (III a)). The numerical investigation of 
this prediction is the chief aim of this Section.

We restrict attention to the physically significant temperature 

gradient, choosing the density constant and the magnetic field 

inhomogeneity vanishingly small. The latter is achieved in a similar 

manner to that detailed in Appendix (ill d). Equation (AIII.9 ) of 
Appendix III is

va = -J2~

where v, is the net drift between ions and electrons, and v_ is the d B
average VB drift velocity. In this Section we consider equal 

temperatures parallel and perpendicular to B, so that 3j. ~ 3n = 3* 

Considering the electrons (III.I) becomes

2vV, = _B_ (III.2)

where 3 = ^^^e , the electron pressure being P . Thus if 3 << 1

we may neglect the magnetic field inhomogeneity, and choose B. - Bq z , 

where Bg is constant and x,y,z are Cartesian axes. The temperature 
gradient and the steady state electric field are in the x-direction.

By integrating the first velocity moment of the electron distribution 

function (given in Chapter 2) over velocity space, a value for v^ may 
be obtained. Combining this with (ill.2) gives the equation

Ya = Yo - Yg. (III.3)
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C E g  z'
ühere Yq = --- y is the E B drift velocity, (Eg and Bg being

Bg  -

the steady state electric and magnetic fields respectively)

6Vê
ÏT = I T  ?

® Ig I
where 5 is the temperature gradient, v = ( —  ) the mean electrone me
thermal velocity, and the electron gyrofrequency. The electric

field is necessary to establish equilibrium; although this could also

be achieved by an opposing magnetic pressure gradient, the resulting
configuration would be less unstable than the one we consider.

The results presented in this Section consist of a series of 
graphs showing the frequency w = + iy plotted against the wave-number

k for various values of the following parameters
T .the ratio of ion temperature to electron temperature ' i

the normalized temperature gradient drift velocity ^T ,
V

/

e

the normalized net drift velocity ^d

the sine of the angle between k and B ,
k̂

We take the ion-electron mass ration to be I8 3 6, thus considering a 

hydrogen plasma throughout. We also show how critical values of v^ 

for neutral stability may be obtained for a given temperature ratio, 

and we provide stability diagrams for different values of v̂ .

«
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Chapter 2

We consider a Maxwellian ion distribution, and an electron

distribution function fg as follows:

nr (v_ - V.)

e e e e

. exp [ -- ^2 (v “ (ill.4)
2ve

This expression comes from (I.11) and (1.12) of Section I with e » 0,
±  »» _6̂  = 6„ and Tg = Tg . An E - B drift Vgy has been introduced into

the distribution. Figure (5) shows how the temperature gradient 6

distorts the electron distribution away from the Maxwellian and introduces

a positive slope,thus making instability more likely (from l).
We may now carry through an argument essentially similar to that

given in the first part of Chapter 1 in Section II. A dispersion
relation is derived of the form

1 + = 0 (III.5)
where K. is the ion, contribution and K the electron contribution.

1 e
Following through the argument with the modifications introduced by

warm ions and drifts in the electron distribution, it is found that

K. and K have the following forms :- 1 e
k.2

K. = -^ [ 1 + i ^ G. ] (III.6)1 k% 0. 1

where Ĝ  is the dimensionless Gordeyev integral given by equation (II.2),

K = -£ [ 1 + —  ^  G(u) +.-.A-- |- G(y) 1 (III.7) j
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where G(y) is as follows 
oo

G(y) = dT exp {ito’x - pk,2p2 (i-cos x) - iyk„^p^ x̂ }0 Q

Here w'
ü) - kj_ Vg

assuming a wave vector of the form

k = (o, k,, k„).

We now take k^^p^^ >> 1, and to exclude the Bernstein modes in 

the collisionless case, we must restrict attention to the regime 

k„^p.^ > 1. Equation (ill.6 ) reduces to

K .  =  -1
V
2k' v2kv.

(III.8)

using the same method as in the final part of Chapter 2 in Section I.
Similarly, when k^^p^Z >> i and we exclude Bernstein modes in 

the collisionless case by taking k„^p^^  ̂1, becomes

K
Ækv ®

Ç Z' (Ç ■) ] = 0e e (III.9)

Substitution of (ill.8) and (III.9) into (III.5) results in the

following dispersion relation:-

1
k.2

z' (
2k̂ k'

kx Ç Z'(C )] = 0 (III.10) 
2^kv ® ®

Note that, as in the calculation of reference [ 13a] , the magnetic field 

now appears in the dispersion relation only through the drift velocities.
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Equation (ill, 10) describes ion acoustic waves in the region .?

k„^p^ > 1 in the collisionless case. However, we see from (ill,6)

.'jand (lll.v) that and involve Gordeyev integrals and modified 

Gordeyev integrals which are independent of the drift velocities.

It was shown in Chapter 2 of Section II that cyclotron resonances 
resulting in Bernstein modes arise within the Gordeyev integral 

itself, and in Chapters 3 and 4 of Section II .that the introduction 

of a small collision frequency v (such that (kp)  ̂ ^ < (kp) )̂ is

sufficient to disrupt these resonances within the Gordeyev integrals 

resulting in the ion acoustic wave dispersion relation even for k„ = 0. J
We carry over this result into the present Section, and assume the 

existence of a collision frequency v (as above) which destroys the i
cyclotron resonances within the Gordeyev integrals in and K̂ .

This allows us to relax the collisionless restriction that k„^p^ > 1 

for exclusion of the Bernstein modes, so that from now on we may use 
the dispersion relation (III.10) to describe waves propagating 

perpendicular and near-perpendicular to the magnetic field. That is, 

we take the ion acoustic wave dispersion relation to be valid even for 

k» = 0.
Computational solutions of (ill.10) under various parameter changes 

were obtained on the U.K.A.E.A. Culham Laboratory I C L 4-70 computer 

using the interactive root-finding programme of Martin [ 24 ] . We 

give the results of these computations under two main headings, namely :- 

(a) The effect of a temperature gradient drift velocity 

and (b) Stability diagrams.

(a) The effect of a temperature gradient drift velocity f

As mentioned previously, a Cartesian reference frame has been chosen

such that the magnetic field lies in the z-direction; the y-axis lies ,‘;i

along the net drift velocity direction and along the direction of kj_, ;i
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Thus the ratio -̂*-/k is equal to sin 6 for ion acoustic waves 

propagating at an angle 0 to the magnetic field. As 6 increases,

—  also increases to the value 1. k

Figure (6) shows the normalized growth rate plotted
y/pTf V (̂4against —:—  for = 0.5, 0.866, 1 and for —  = 0, —  =0.5,k “—  V Ve k e e

T. 4ïïnge2 w  ̂ kj_
—  = 0.3 (where w  ̂= -----  and k  ̂ ^ ). For —  = 0.5m ® m ® V ke e e

ion acoustic waves are stable (that is y is always negative and the

waves decay). As ^  increases, the waves go unstable over a range
k ^

of wave-nurabers, and the maximum positive growth-rate occurs for = 1.
k

Other values of the parameters ^T/v^, ^d/v^, ^i/T^ were investigated, 

and the same effect was found to occur in each case. The explanation 

for this is that ion acoustic waves extract the maximum amount of energy 

from the drift motion when propagating parallel to the net drift velocity 

[ 15 ] . In figures (t ) to (15) we consider only maximum growth rates, 
and so we choose ^^/k = 1 in each case.

Figure (T) shows how a plasma with no net drift (v̂  = O) and
T. . .i/T^ = 0.3.is driven unstable over a range of wave-numbers by
increasing the value of ^T/v . For = 0,1, ion acoustic wavese Ve
decay; but for ^  = 0.5 an unstable wave-band appears. Figure (8)

Ve
shows a similar situation. A net drift of —  = 0.5 is not sufficient

e
to counteract the stabilizing effect of a temperature ratio of order unity;

V , .even with __T =0.5 ion acoustic waves still decay. However, taking v^
V0

fi ,
equal to v^ (that is, the gradient 6 =  ̂v̂ ) we find a considerable

positive growth-rate. Figures (T) and (8) are typical examples of a 

number of sets of results obtained, all of which show the same effect
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occurring for a variety of parameter values.
Figures (9)» (10) and (ll) show how the real part of the frequency

is affected by increasing /v^; Figures (9) and (11) are for the

situations described in Figures (7) and (8). In Figures (9) and (10),
over the chosen range of k, the curves of against k for v^ = 0 are

convex relative to the k-axis [due to computing difficulties, no

v^ = 0 curve was found for Figure (9) 1 • As-v^ increases, the convexity

is seen to decrease in all three Figures, until the curves become concave.

For ~ 1, the concavity is very obvious, though it may be seen in

Figure (?) that over the final part of the ^T/v^ = 1 curve, a convexity
is again becoming apparent. In a normal ion acoustic wave, the phase

velocity decreases with increasing wave-number. We note from the above
results that the effect of a large electron temperature gradient is to

modify the wave in such a manner as to give increasing phase velocity

with increasing wave number.
(b) Stability diagrams

In figures (12) to (lU) we give a detailed picture of the transition
from complete stability to complete instability over the chosen range of 

V* • /wave-number, for __d = 0 and i/T = 1*5
V ®e

Figure (12) :- at —  = 1.25 we have complete stability, while
e

at —  = 1.41 we have complete instability.

Figure (13) :- expanding the growth-rate scale and including more

values of -ç— , we see how the y against k curves peak more and more
e

sharply as we increase the value of —  .
e

Figure (l4) :- finally we expand the growth-rate scale still further,4

and plot a series of curves over a small range of — * . At —  = 1.283, i
e e

■-Î
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the curve just crosses the k-axis, giving a small unstable wave-band.

As —  increases, the unstable wave-band covers a wider range of 
e

wave-number and has a greater maximum positive growth-rate. Ultimately
v*̂ kthe unstable wave-band will stretch from k = 0 past —^  = 1, as

demonstrated by the —  = 1.4l curve in Figure (12). From Figure (15)
e

we see that the same peaking effect occurs for. non-zero net drift

velocity. It may be noted that the peaking behaviour of the y against
T .k curves only becomes obvious when i/T^ > 1. Below this value, the 

transition from a completely stable state with no appreciable peak to
an unstable state occurs over a very small range of ^T/v^. For example,

V *v* Tthe transition occurs between = 0.932 and _JT = 0.933 for __i =1,

=  0.1.Ve
The point of neutral stability for a given temperature ratio occurs

where ion acoustic waves are on the point of instability; that is just
T.before the transition for _i < 1, and where the peak of the y against
T

k curve just touches the k-axis for —  > 1. Fried and Gould [15 ]
. e

showed that for a simple drift (v̂  = v̂  in our case) the points of
T.

neutral stability for the range ^ = 0.05 to 20 occur at k = 0.
e

We see here that the peaking of the y against k curve due to the 
introduction of a large electron temperature gradient leads to the 

occurrence of a neutral point at some k greater than zero. We 

may note that these neutral points occur where the phase velocity

'̂i ^V - V. (where v = :—  and v. = { —  1 1 . Obviously we now havep i  p k  1  ̂m^  ̂ /
a straightforward computational method for finding neutral points.

i
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/We vary v^ until, depending on the value of T̂ , we either 
find a sudden transition from stability to instability, or we find 

the curve whose peak touches the k-axis; the accuracy in finding a 

neutral point depends only on how much computing time the operator 

wishes to spend on each point.
%i/Neutral points were obtained for various values of T in thee

cases —  = 0 and — - = 0.1. The results are shown in Figure (l6).
e e

For a plasma with a given net drift, electron temperature gradient and 

temperature ratio, .ion acoustic waves are damped if the plasma lies 

below the relevant curve, and grow if the plasma lies above the curve.
3It may also be noted that the formula given in I for the

"effective drift velocity" is verified by the diagram over the whole 

range of v^ investigated, with a relative error of modulus less than 3̂  ; 

this error is about the same as the sum of the computational and plotting 
errors. Thus for small values of [̂d at least, the formula holds

V
Tf ®

remarkably well when ~  is of order unity, even though it was proposed
Ti ®

for << 1. We see from this formula that an increase in v^ has
e

a greater destabilizing effect on ion acoustic waves than the same
increase in v,.d

*
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Chapter 3

In this Chapter we give explanations of the results outlined 

in Chapter 2, from (a) the analytic point of view and (b) the physical 

point of view.

(a) Analytic approximation to y

An analytic approximation to y for v^ = 0 and —  = 1 may be

obtained from the dispersion relation (ill, 10) by making the following ...Iassumptions:- 3

(1) y << Wg (2) V «  Vg (3) ~ v^ .

The first implies an examination of the region close to neutral stability;
V "I

the second is supported by values of derived from the computational
e

Now   = ——  + 2]—.
Æ k v . Æ k v . /2kv.1 1 1

' =  1 %  + ix
Æ  V . Æ k v .1 1

z ) = z ( i z' (i Ze ) (III.11)
/2kv. v2 V. v2kv. v2 v.1 1 1 1

using assumption (1)

results of Chapter 2. The third is required for the peaking effect to 

be obvious. Although the approximation is not accurate enough to rival 

the computed results, it provides an insight into the reasons for the 

peaking effect.
Consider the Fried-Conte function Z(z) where z = x + iy and y << x.

Using a Taylor expansion
2

Z(z) = Z(x) + iyZ'(x) - Z"(x) + ....

= Z(x) + iyZ'(x) 1■||
w 0̂  iy I
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^ Z 2 _ 1 Zk + H.
Ækv Æ  Æ  \  Æk?e e

1  Z ï  +Æ  V /Zkv e e
using assumptions (2) and (3)

Therefore

= Z ( - 1  ÿ )  . ^ 4 '  (- 1 ÿ )  (111.12)
v2kv /2 e Ækv >/2 ee e

using all three assumptions.
The standard expression for Z'(z) is

Z'(z) = -2(1 + z.Z(z))

and substituting the approximations (ill.11) and (ill.12) into (ill.10), 

the following expression for may be obtained from the imaginary
part of (III.10): -

where

A(x) = x..lm Z(x) - C

i w

k T. / m. I T iK 1 . / m. 2 T g
B(x) " ^  ^  j ] [x-J ReZ(x).( 1-2x2) 1e  ̂ e i

- Re Z(b) [ 1 - ( “ + 1) . 2b2+ Æ" b^ ]|
Æ  Æ  ;

T.
-  1 -JkT2 -- Im Z(b). [2b3 - 3b ]

X = —

1
^e
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In regions where the peaking effect of the y against k curve i

is obvious, B(x ) is positive over the range of k investigated.

For small ^/k^ it is large, and it decreases as k increases. The sign 

of y is therefore determined by the sign of A(x), and for given i/T^ 

and ^T/v^ in the regions investigated, C is fixed and positive (note that 

X . Im Z(x) is positive, so that A(x) and therefore should always

be positive when C is negative, that is when ^T/v^ > /s ; a set of
v^k T. . Ycomputed results for — = 0.1 and i = 2 was obtained in which ~

T
' V? Tichanges from negative to positive at —  - 1,73). For = 1,5 and

e "e ^
Vm
—  = 1.2 8 3, C = 0 .7 1 7 and the function A(x) takes the form shown in i

_ T V \Figure (17). As noted previously, for these values of _i and _T '3%

the phase velocity v , and therefore x, increases with increasing k; 4p
thus the peaking behaviour of the y against k curves is shown to be a

result of increasing phase velocity. In this approximation |y| -> 0
as k 0 since B(x) involves a factor ̂  . No computed results were

k
t̂ kobtained for — < 0,065 because of computing difficulties, but the 
e

trend of the y against k curves up to this point agrees with the 

approximat ion.
V

The general variation in with k is shown in Table (3), for
i

T • *v* Vvalues of and __T close to neutral stability ( __d = 0 in all •
T v  Ve e e

cases). The subscripts on the variables in Table (3) represent the
following parameters values;-

{1} => = 0.05 ; = 0.017 {2} => ^  = 1.5 ; —  = 0.229 .?
e e e e

h  T. V
{3} = > ^  = 1.0 ; çi- = 1.025 => ~  = 1.5 i p - =  1.283

e e e e
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For large values of ~  and — * , is sensitive to changes in k,
e e i

and is increasingly less sensitive as ^  and ^  decrease. The
e e

V
approximation (ill,13) depends heavily on —^ . In case {U} of

i
V

Table (3) the rapid change in results in a well-defined peak in

the Y against k curve (see Figures (13) and (l̂ ))» while for lower

values of ^  and —  smaller changes in —^ , allied with a decrease
e e î

in C, result in the peak being flattened and spread out over a large 

range of k. In fact, in regions such as {1} of Table (3), where normal 
ion acoustic behaviour is apparent, the peak no longer exists, 
b) Physical approach

The physical explanation of the peaking effect lies in the distortion 

of the electron distribution function. In a simple small displacement of 

the peaks of the ion and electron distribution functions, ion acoustic 
waves have decreasing phase velocity v^ with increasing k. In the region 

of low Vp (k = k̂ ) , the growth due to the small positive slope of the 

electron distribution is cancelled out by ion Landau damping; instability 

appears at larger v^(k O). However, as mentioned previously, the 
effect of a large temperature gradient drift velocity v^ is to modify the 

ion acoustic wave in such a manner that v^ increases with increasing k‘.

This effect enables us to explain the peaking effect of the y against k 

curves for large v^ directly from diagrams of the ion and electron 

distributions as follows.

Consider firstly Figure (l8a). This shows the qualitative forms

of the distribution functions when ^  is < 1, and both %d and ^T
T V Ve e e
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are zero. In this case, v decreases as k increases. Therefore,p
near k = 0, is large and the gradient of the electron distribution 

function, is small and negative, so that electron Landau damping is 

small. As k increases, v^ decreases; the electron gradient becomes 
more negative, and electron damping increases. Finally, the ion 

function takes over and damping increases rapidly. It is therefore 

easily seen that the y against k curve will have the general form 

shovna in Figure (l8b); this form is very similar to the computational 

curve çhown in Figure (7) for %d = 0 and 2%. ~ 0,^, with ^i = 0.3

in this case; Figure (8) for ^2 “ 0 and “ 0*5 shows a similar

form. In the case of small ̂ 2 > therefore, we have a monotonie
Ve

damping curve until large k is reached, and no peak appears on the 

(k,y) curve in the regions investigated.

Figure (I9a) shows the forms of the distribution functions for 

^d V?= 0, Ç- ~1 and ~ 1; Figure (l9b) shows the resulting (k,y)
e e e

^Tcurve. The effect of taking —  of order unity is to reverse the
e

variation of v^ with k. We may divide the positive v-axis into four 

regions (a, b, c, d) as shown, and examine each separately.

Region (a):- For k near zero, v^ is small. There is low ion damping, 

and it can be shown (by differentiating the distribution function with 
respect to v) that the electron distribution slope is zero or very small, 

though positive, in this region. The net result is small damping.

Region (b) I n c r e a s i n g  k increases v̂ , so that strong ion damping occurs, 
though the positive electron slope is still small. The net result is 
strong damping.
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Region (c) :- The increasing positive slope of the electron 

distribution function overcomes the negative trend of the ion slope, 
so that the net damping decreases until a minimum damping point is 

reached when v^ is near the peak of the electron distribution function. 

Region (d) :- Ion damping is now small, but the slope of the electron 

distribution function has become negative, so that damping increases 

rapidly.

Thus the form of the (k,y) curve given in Figure (l9b) results 

directly from the shapes of the distribution functions given in Figure 

(l9a); the computational curve plotted in Figure (l4) for “ 0*
V

= 1.5 and -p- = 1.28 is obviously of the form given by Figure (l9b), 
e e

^TAs —  is increased, the peak of the electron distribution function is 
e

moved further to the right in Figure (I9a), into a region of smaller ion

damping, so that the peak rises until it touches the k-axis (as happens

in Figure (l4)), giving a point of neutral stability; finally a region
of instability is produced (again see Figure (l4)). Points of neutral

Tstability occur at v - O .98 v. for ^  = 1.25, and at v = 0.97 v.
P  ̂ T P 3-e

Tifor 'jr— “ 1.5* A similar explanation holds for v.  ̂0, except that a 
e

smaller gradient is sufficient to achieve the same effect.
We may note that the boundary between the regions in which v^ 

increases and decreases with k is determined by the curve of constant v^ 
in Figures (9), (IO) and (11). This is a straight line between the 

concave and convex curves, and must also be the boundary between the 

regions in which a peak in the (k,y) curve exists and does not exist.

The geometry of plasma inhomogeneities and electric and magnetic
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fields assumed in these calculations has wider applicability to 

experimental situations than just the collisionless shock experiments 

referred to in I; see, for example, references [25 1 and [ 26 ] . 

Observations in these experiments, however, appear to be restricted 

to waves with k^ p < 1, so that the theory of Liu [21 ] is perhaps 
more appropriate.

%
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SUMMARY OF RESULTS

a) In Section I we extended the "polarized" co-ordinate system for 
use in describing the propagation of waves in a collisionless plasma 

with general density gradients, temperature gradients both parallel 

and perpendicular to the applied magnetic field, and an E  ̂B drift.

The use of polarized tensors enabled us to derive a dispersion relation 
which was compact and unambiguous. In this dispersion relation the 

gradients appeared as coefficients multiplying moment tensors whose 

components could be evaluated separately from a given problem, and 

listed for easy reference. The dispersion relation for a simpler 

situation than the general case could then be found merely by 
substituting the appropriate moment tensor elements. Also the 

conductivity tensors derived in Section I are in tensor equation form, 

and so may be evaluated in any other co-ordinate system merely by 

transforming the necessary tensors according to the appropriate 

transformation law and substituting into the conductivity tensor equation.

The full dispersion relation was derived within the local 

approximation, and under the condition Bj, << 1 in order that gradients 

in magnetic field might be neglected, to simplify the situation. It 

was found that no gradients in density or temperature can exist in the 

direction of the magnetic field, to ensure that the equilibrium particle 

distribution f̂  is a function of constants of the motion. It was also 

found that within the local approximation the effect of parameter 

gradients was strongest in the high-frequency regime kj_p > 1. For 

kĵ p < 1 the local approximation is valid only for very small gradients.

b) In Section II we used the results of J.P. Dougherty to show that 

for a wave-band within the high-frequency regime kp >> 1 in a magnetized 

electron-ion plasma including a small collision frequency v such that



-77-

(kp)  ̂ ^ < (kp)  ̂ , the cyclotron resonances which generate the

Bernstein modes propagating perpendicular and near-perpendicular to 

the magnetic field are destroyed; as a result of this the dispersion 
relation involving Bernstein modes may be replaced by the ion-acoustic 

dispersion relation even for propagation perpendicular to the magnetic 

field.
c) In Section III we extended the result of Section II to a plasma 

with unmagnetized ions, and with electrons subject to E * B and 

temperature gradient drifts. We then verified that the inclusion 

of the electron temperature gradient increases the likelihood of ion 

acoustic instability, and showed that, given a net drift of gv̂ , a 

gradient of magnitude ^e/v^ can drive ion-acoustic waves unstable 
even when = T̂ . Given a greater net drift, a smaller gradient 

produces instability, though the gradient drift is a more effective 
destabilizing agent than the net drift velocity. Also, a large 

gradient reverses the variation of phase velocity with wave'number 

for ion acoustic waves.

Next we showed that the existence of a large gradient changes 

the behaviour, of the growth-rate curves in such a manner as to create 

easily-calculated points of neutral stability at wave-numbers greater 

than zero, and we provided analytic and physical explanations of this • 

effect, which also results in the creation of isolated unstable wave­

bands at values of the gradient greater than the critical value.

Finally we provided diagrams from which the stability of ion-acoustic
waves in a given plasma may be determined. These verified the formula

3 ,1 . ' . T.v^ +"2 v^ for the effective drift velocity" over a range of i/T̂

greater than could have been anticipated from the analytic calculations 
of I.
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APPENDIX I

a) In dealing with problems in magnetized plasmas, the zero-order 

field Bq defines a preferred direction in the plasma, since charged 
particles are constrained to move in helices aligned along the direction 

of Bq. Orthogonal Cartesian co-ordinates and their associated tensor 

system have no preferred direction, that is no cylindrical symmetry in 

this case; this makes compactness of notation and the retention of tensor 

form very difficult to achieve when these Cartesians are used to describe 
magnetized plasmas.

The first possibility to come to mind when discussing cylindrical 

symmetry is the familiar one of cyclindrical polar co-ordinates (p,0,z) 

defined in terms of the orthogonal Cartesians (x,y,z) by

p2 = %2 + y2

0 = tan  ̂^/x

z = z.

In this case the z-direction defines the preferred direction.

The definition of-the element of length ds in tensor notation is

(ds)2 = g ^  dx^ dx^ (AI.l)

where lower indices are covariant, upper indices are contravariant and
we use the Einstein summation convention. The tensor g is the metricmn
tensor for the system of variables x̂ .

For orthogonal Cartesians the metric tensor is

(̂ mn̂o.c.

1 0 0 

0 1 0 

0 0 1

Contravariant and covariant components are identical in this system. For
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cylindrical polars the metric tensor is

(̂ mn̂ c.p,

1 0 0

0 p2 0

0 0 1

by

X = 5 :  . / “ I (AI.2)

In this case we must distinguish between contravariant and covariant ï
Zcomponents. v

Suppose we require to differentiate a vector with respect to 4

the components of the position system say. In general we must J

define a covariant derivative in order that the result of the . 1
_ _  _ _  . . . .  #

differentiation is itself a tensor. This covariant derivative is 'given

%

where | is the Christoffel symbol of the second kind j

j  m , 1 mp f & E  + _ Z fïS . ]
8x" 8xP

and g^^ is the metric tensor for covariant differentials. For
ax ^

orthogonal Cartesians g is constant so that { = 0 and X = — ^ 1mn r̂ ŝ  r,s
îlî

For cylindrical polars g}  ̂ 0, and so the full covariant
derivative (AI.2) must be used. yj

We would like to have a co-ordinate system which includes a I
-1preferred direction like cylindrical polars, but which also retains the
■Â

simple derivatives of the orthogonal Cartesian system; this is i

achieved by the polarized co-ordinate system introduced by Buneman [6 ] ,

and extended by Dougherty [ 7 ] • The elements of the position system
(x̂ , X®, x~1) are given in terms of (x,y,%) by the following

pi
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= 2  ̂ (x + iy)
0 = <7.X

X  ̂ = 2 (x - iy)
(AI.3)

Note that the component labels are (1, 0, -l) instead of the usual 

(1, 2, 3).
From now on we use Greek indices to denote polarized co-ordinates

and Roman indices to denote orthogonal Cartesians. We define the metric

tensor in polarized co-ordinates to he ĝ ,̂ and the metric tensor in

orthogonal Cartesians to he g "6 . To find an expression for g. , ̂ iiin mn ^

we look at the invariant length element ds.

(ds)2 = g ^  dx dx

dx^ dx̂ ^
(AI.4)

Now g dx^ dx^ mn dx2 + (3,y2 + dz2 and from (AI.3) 

dx = 2  ̂ ( dx̂  + dx  ̂)

dy ~ - i2 2 (dxl - dx )̂

dz - dx̂

Therefore

dx̂  + dŷ  + dẑ  = dx̂  dx  ̂+ dx  ̂dx̂  + dx® dx®

’Ay dx̂  dx̂ ^ from (AI.4)

Comparing coefficients of the differentials we find that

Si.-i =  ̂ : 8-1,1 = ^ ’ 0 , 0

and all the other coefficients are zero.



“8l*“

Therefore

’Ay

(AI.5)

0 0 1

0 1 0

1 0 0

^A,-y

If we have a vector A , the associated vector A^ is given by

A = 6. A^y A,-y
Therefore

Similarly

1,-1 A' + «0,-1 + a_i,_i A-i
■1= A

= A® and A Al0 -1
Thus indices are raised or lowered merely by changing sign. We may

note that the invariant (ds)̂  in polarized co-ordinates contains

products of differentials with different indices, so that the system
is non-orthogonal.

By using polarized co-ordinates, we now have the x®-direction

as a preferred direction, while the (x̂ , x ) co-ordinates together

play the same role as the (p,0 ) co-ordinates in cylindrical polars;
they define the plane perpendicular to the x®-direction and retain

cylindrical symmetry. The advantages of this system are that

contravariant and covariant components are very simply related (by

a change of sign), and ĝ  has constant elements. The ChristoffelA y
symbols are therefore always zero, and covariant derivatives reduce 

to ordinary partial derivatives.

We note here the general tensor result that the position system 

x^ is not a vector, but that covariant differentiation of a tensor with 

respect to x^ does result in a tensor with an extra covariant index. 

Therefore in the case of polarized co-ordinates partial differentiation
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of a tensor with respect to results in a tensor with one more 

covariant index than before,
IOne further point to be noted concerns the question of choosing a

the contravariance or covariance of vectors and tensors when transforming à
4

from (say) Cartesian tensor notation to polarized tensor notation.

Our procedure is to arbitrarily choose basic physical vectors to be 

contravariant, and then all other quantities are chosen according to IÂ

Ithe Einstein summation convention. 4

For example, suppose we have the equation I
Ij = q. . E

We let j and E be represented by and Ê  in polarized co-ordinates;
then the equation takes the form

E^
V

Thus the conductivity tensor is chosen for us by the summationliuuc ox V jl o,y oexiaux-

convention.

b) We now derive some properties of polarized tensors, defining
certain useful scalars and tensors. Firstly, we define

g = det [ g^^ ] = - 1 from (AI.5)* Next we define the permutation
tensors ê ^^ and e.. to be such thatXyv
Xyv

or
+ 1 if (X,y,v) is an even permutation of (1,0,-l) 

- 1 if (X,y,v) is an odd permutation of (l,0,-l)
0 otherwise

Now e^^^ is a relative (or pseudo-) tensor of weight 1, while e^^^ 

is a relative tensor of weight -1. We now define corresponding 

absolute tensors, the e-systems, such that
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.Ayv  ̂ 1 ^Ayv  ̂  ̂gAyv

and ^Xyv ^  ̂ Xyv 1 eXyv

Raising and lowering of the indices of permutation tensors is achieved 

through multiplication by the appropriate metric tensor, for example

^X. V
y

'X.v

6 ep,-y
Xpv

Xpv

Since the metric tensor is an absolute tensor, e^'^ and e.,̂  arey X.v
relative tensors of weights 1 and -1 respectively, and are such that

X. VÎ y
or

. y
x.v

= + 1 if (X,-y,v) is an even permutation of (l,0,-l) 

= - 1 if (X,-y,v) is an odd permutation of (l,0,-l)

= 0 otherwise

The vector product of two tensors â  and b̂  ̂is defined as

(a z' b)^ = a^b = - i e^^^ a.b- - X y X y
(AI.6)

As an example of the use of these expressions, we derive the following 
result :-

( k - (k . E^) ]“ = [ k“kg - k2«“ ] (E;)G

Now

[k - (k . Ej ]

=

= kp kY(Ei)9
y 3
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where

.ap
’yB

0 when two of the subscripts or superscripts are 

the same, or when the superscripts do not have 

the same two values as the subscripts.

+ 1 when (a,p) and (y»3) are the same permutation of 

the same two numbers.

- 1 when (a,p) and (y,3) are.opposite permutations of 

the same two numbers.

Comparison of elements verifies the result

.ap
y3

Thus

[ k A (k Ê ) ]“ [ 4  4

= t k “  kg -  k2 (E^)G

as required.

One further useful property is that in certain circumstances 

the tensor indices may be used as algebraic quantities, condensing 
the notation even further. For example, suppose we look at the 

unperturbed orbit of a charged particle in a constant magnetic field Bq

V = ^ V .  Bn and X = V— me — — u — —
with V = V and X = 0 at t ~ 0.

Writing these in terms of orthogonal Cartesians, and then transforming 

to polarized co-ordinates, we get the equations 
yl = -iüVl xi = yi

V® = 0

V“1 = iOV"!

with corresponding initial conditions

X® - V® 

X~1 = V"1 
qBo
me ).
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In polarized vector notation this is

= - inXV^ and

with = v̂  and X̂  = 0 at t = 0.

Solving these we find that

X -iSÎXt V e

and X Vinx ( 1 -

(AI.7)

where the summation convention would only apply to the vector quantities. 
Note that when X = 0, to find X̂  we must use

lim [ 1 (1 _ J ^

Equations (AI.Y) are much more compact than the corresponding solution 
in terms of Cartesian vectors.

I

4
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APPENDIX II
The tensor moment integrals defined in Chapter 3 of Section I 

are as follows :-

a“ = I*{1}

= l“{w,} G* = lG{v }p p

K* = I*{vi2v } L* = I*{v„Zv' }

m“ = I*{w V }
yp y P

where 1°̂ { } = mS2

00

V t=o
v“ ei(wt-k.X) ^

As an example of how the integrations involved in the use of I { }
are carried out, we now derive the element G ] . The elements of A^

—  1

and Gp are then listed. Finally a method is given for deriving the

elements of C°̂ and D^ from those of A°̂ , and the elements of F̂ ,P P
and from those of Ĝ .P P

The unperturbed trajectory of a charged particle travelling in a

constant magnetic field B^z and passing through the point r = 0 at time
t is

X(t) = ^  [ sin (̂ t +(}))- sin  ̂]

Y(t) [ cos (f2t + 4>) “ cos (j) ]

Z(t) = V;,t

(AII.1)

where  ̂is a phase angle, 
Thus

V (t) = V, cos (f2t + (|))X

V (t) = -V, sin (^t + 4>)

V^(t) = v„

(All.2)
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We choose the wave vector k = (k̂ , 0, k,,). That is the x-direction 

is chosen to lie along the direction of kj_ ; there is no loss of 

generality since the x and y axes are arbitrary at this stage.

It is easily seen that the polarized V components are

V® =

V 1  ^ p-i(nt+4>)
(All. 3)

Similarly the components of v are

V _V, e ' = V-1

Vti
— 1 1 i(j) •V = —  V, e = V,

Therefore v - I  v,2 e “1
Now

and

k V
wt - k.X = (w - k„v„)t -  ̂ [ sin (Ot+b) “ sin t}>]

Ü

a^ a„ g
0̂ ( —  ) (--  ) exp{ - (aiVi2+ anVn2)}

IT IT

from Equation (l.12).

So
oo 00 2tt oo

1 V 2 p-i(!2t+24,)̂
M

V,= O V„= “ 00 (|)=0 t=0

, exp {i( [ w - k„v„ ]t - Ç [ sin (Qt+4>)~ sin<f), ] ) }vj_dVj_dy„d(j)dt
k Vwhere ' Ç = -*•
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The t-integral in this expression is

00
e , ê   ̂̂  k„v„ ]t {-iç sin (Qt+<j>)} dt

n=-00

where J^(%) is the Bessel function of the first kind of order n 

(see reference [27 ] ). Using this we'may write

00 oo
I. = I J (ç)e exp [i {m-k„v„ - (n+l)fî}t ] dt

n=-oo

I J
n=-oo

00
exp [ {m-k„v„-(n+1 )̂ }̂t ] 
i{w-k„v„ - (n+l)0} (All.5)

t=o
The limit t = oo in the above expression is equivalent to a time in 

the infinite past according to our original formulation of the problem.
The principle of causality asserts that "effect" must follow "cause"; 

in this case the "cause" is a perturbation in the electromagnetic field 
in the infinite past, while the "effect" is the perturbation distribution 

function f^. With reference to the principle of causality then, we

assume that f̂  grows from zero in the infinite past to its value at t - o, 

and therefore that all quantities derived from f̂  must also have zero 

values in the infinite past, since they must "follow" the perturbation ■ 

in the electromagnetic field. In (All.5) this implies that the 

exponential in square brackets gives a zero result when evaluated at 

t = oo; note that this is equivalent to saying that w has a small 

positive imaginary part. With this assumption (All,5) becomes 
00

= i I J (C)e (w~k„v„ - (n+l)fi)“*1 (All.6)
n=-oo

44
;

I
'4

We now make use of the following Bessel function identity;- |

sin 6 ^ ^  J pine (Ail.k)
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Now consider the ^-integral;-
/■2it

(j)=0

p-i(n+2)t _ pic sin <f,

00 t

L  f

00
I

m=-0D

2 it i (m-n-2 ) (j) d(|)
(f)=0

00

Thus the v,-integration becomes

V,

JL

OO

ç=o

a.Q

(where is
the Kronecker delta)

(All.7)

ç3 e x p  ( - “Y - y  ) J ^ ( ç ) J ^ ^ g ( ç ) d ç

Standard Bessel function identities [ 28 ] give the following expressions

2(n+l)
^n+2 Jn+l(s) - Jn<«)

and (c) - V ' )  - Jn'(G)

Therefore

Ç Ç 0.Ç
We may now write I as the sum of the following three integrals:-

oo 2
;3 . M a U k  J^2(c) exp ( - ™  c M  ac

ç=o

-2= (â s) . 2(n+l)n
GO

p=o

where ç = sp and s = ( ---- }

_ 2pe  ̂ J^2(sp)dp

2 1

nra.



(a,s)  ̂ (n+l)
OD

p=o
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P'e"' ip  { (SP)} ap

(a.)-2
CD

p=o
p^e P J^2 (gp) dp

oo 00

(a_j_)  ̂ [ pe P J^2 (gp) dp -t- 2 I p2e P fp{j^^(sp)} dp ]
p=o p=D

Thus

on integration by parts

I = I + I -f V, 1 2  3

-2 r 2(n+l)n(a.) " [ - 1 ]
00

p=o
p2e P J^2(sp) d.p

- (a,)-2 [ 2+1 + a ]
00

p=o

We now make use of the following identities (see [ 27 ] ) :
oo s2
pe P Ĵ 2(sp)d.p = 2 e  ̂ 2 ^

00
and P^e P {J^2(sp)} d.p - 2= e" ̂  [!_'( #1 ) - ) ]

where Î x̂) is the Bessel function of the second kind of order n. 

Therefore

[ (ss2 + In + n(n+l)s  ̂ ( 2 )

- { çs2 + g(n+1) } ) (All.8)
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Finally the v„ integral is:~

oo -a„v„^ _
= I e (w - k„v„ - (n+l)o) dv„I

V„=~‘00

1
kif

oo
e-p" ( p - dp . 1

p=-œ

where p = a,,̂ v„

Now the plasma dispersion fimction Z(z) is defined hy
1 oo 2

Z(z) = TT  ̂ f e ^ (p-z)  ̂dp

Thus
P=-OD

7T̂
:v„ = - ki; " (%n+l) (All.9)

where z +
k„ a,,-*

Combining (All.6 ), (All.7)» (All.8 ), (All.9) and collecting together
■X̂all the numerical factors gives the following expression for %

— 1
c2

00 . 2 ~ T 2 4
- 'I ^^0 G [{58% + §n + n(n+1)s I ( -f ) J
n=-co  -- ^  ̂ -

"

- {58% *!• g(n+l)}I^' ( |- ) ] Z(z^+^)

We evaluate the other elements'of > and those of A^, by similar 

procedures* The results are

Æk„s °
g2

0 CO inn 7T „2
A = I - -i; e i ) { 1 + Z{z„)}

n=-oo
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, - s2 I

' " - - f '  f : |
and -\

5 I

« : % L ' S  5  K ’ ~ r > ' . * r v i ' ' v , >  ,;|

“ i L - Æ . 5 ” - - t V I j

00 ing j
= I ~ ~T7̂  r ~  ^ [ {çs^+in + n(n+1 )s }l^- { s s2+&(n+l)}T^']Z(z^^^) ]

— 1 n—~co ■*“ I
S“ 100 in̂  1 “ T 2 2 i

G° = I -"ZT^ (a.)-: e ((n - §  ) |  } [1 + Z(z. ) ]1 n=-oo v^k„s ^ n ^ n . n n
I
100 inn 1 “ T ^

= % - I Z  (&")'' ® In ' =n + =n ' ■ in=-oo I
i

• X. ■ j
I

g00 inn a„ - r* ,
G = I " "IT" o [(ss^-gn + n(n-l)s  ̂ }l (n-1 ) }l H Z( z ) |1 n=-oo n n n i |

v4

= X. - + r I n ' }  [ ̂ + V , ^ (  V , ) l

<  = f  - è  ÿ  V } ^ \ - l 'n=-oo

where s = f ---  ]
Ofa

k,2 2 0) + mfi2 _________
j Z = 1 -g2o ^ k„ a„

and the argument of all Bessel functions is ^

"g2 ;
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Note that, since F

and G {v }

the elements of F are easily found in terms of those of G :

Fj. = G, ; = a„ ; F_̂

Now
a^ an 2

= 0̂ ( ) ( ir) Gxp [-(a^ v^2+ a„ v,/)]

and

~  {exp [-(aj_ a„ v,,̂ )] } = ŷ 2 exp [-(a^ a„ v„2)]

9 Bn {exp [-(a^ v^2+ a„ v,,̂ )] ] = v„2 [-(a^ Vj_2+ a„ v„2)]

Hence

" « no ( —  ) ( —  ) V%j^2 exp [-(a^ Vj,̂ + a„v„2)]
00

mO

_ iq.

V t=o
exp [ i(wt - k . X)] dv dt

00

mf2 " 3l } V" exp [-(aiVi2+ â v̂ Z)]

a. [ a.-' A“ ]

V t=0
exp [ i(wt - k . X)] dv dt

or cr = [' A 9A 
9a I (All. 10)

Similarly
D -•£ M.9aii

[ ia. 9G__!

9a,
P ]

[ a,
9G , P 1
9a„



. . . . . .  - • • ‘ . . . . . . 1I
“9^~ X'i

Hence the elements of all the tensor moment integrals except

may be derived from the elements of and merely by differentiating

them with respect to a^ or a„, and then substituting in the appropriate

formula. Unfortunately the third order tensor must be evaluatedyp
in a similar way to A and Ĝ . More complicated Bessel function 

identities are necessary, but in principle the method of evaluation 
is the same.

M
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appendix III

9t 9r 9v

Sfo Sfowhile   = (   , 0, 0 )
9r 3x

9x M

With B„ = B„ 5 , ^   ̂B„) . _ 1  = ill -V   - V - i  ]
9v  ̂ 9v 9vX y

V
{-2a.j_ V ( 1 + A(x + ̂  ) ] + 2v_ 6̂  (x + )} f,3fo T

.. X fi * ■ M
^^x

Sfg V . V
  = {~2ai Vy [1 + A(x + 0% ) ] + ~ A + 2Vy 5j_ aĵ (x + ̂  )}

Therefore

and so

i T  -• i T  ' -  ' ; r  ' " x A ^ M - x A ^ M
= 0

1

(a) The zero-order Vlasov equation in this case is i..j

i  • ! ■ S  . (V - S.) . If - 0 U m . D- :4'
'V'v ^and fg = [I + A(x + ̂  ) ] f̂^

where A - (e + 5̂  [a^v^Z - 1 ] + 6„ [ a„v„^ ~ § ] )
In order to substitute this'fg into the left-hand side of (AIII.l) 
we need the following’e x p r e s s i o n s 4

3fo 3fo afo

■■I
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Thus our fg satisfies, (AIII.l).

To derive expressions for n(x), T (x) and T (x) from f^, we use

the following definitions

n(x)

n(x) K T-*- (x) =

2 n(x) K T" (x) =

V
2 m Vj_̂  fg ^

5 m v,,̂  f̂

(A III.2)

(A III.3)

(A Ill.k)
V

Consider (A III.2):-

n(x)
V

00 00 2tt

V,=0 V„="00 (&=:0
[ 1 + (e - 6j_ - gôn)x + (s - 8̂  - iô„)

-f- a_j_ X Vj_̂  + ô„ a„ x v,,'

%

n 1 1 1 y Ü

Hence we require the following integrals:-

+ ~ Ô , a^ v^^ v_ + " <S,t v,,2 vj f̂ V̂j_dVj_dv„d(f>y M

V

V
V,^ V f dv y M

v„ V f-, dvy M
V

Now V = - V, sin cj>, so that integrals involving v contain

2tt
sin (|) d<j), which is zero. Therefore I^, 1̂  and 1̂  are all .zero,

,4jj
S
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a, a„ 2n oo 00

0̂ W  ( 7") {-aj.Vj,2}dVj_ exp {-a„v„2)dv„
v,=o v„=-oo

00

2it

i=o
d4>

X JV.-O

OO
(since exp {- a„v„2}dv,i = ( ” )̂  )

“00
-a.v

riQ [ e

n.

x'x oo

By the same argument as that used to derive equation (All.10) of 

Appendix II, we may write

I. = [

I. = [&

31]
9a,

911 
9a„

]
n.
a.

n,_ 1

Thus
n(x) - [ 1 + (s - 6̂  - g 6„)x ] Î  + 6j_ aj_ X Î  + 6„ a„ x

= U q [ 1 + (e - - i 5„)x ] + 6^ X ng + g 5» x ng

That is n(x) = Uq [ 1 + ex ]

Equation (AIII.3) is

2 n ( ^
fo âz

In this case integrals involving v^ are again zero, and we must evaluate
the following: 

I.. =
V

AZ
n.

91,
9a.

2n,
a>x
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dv = [ g —1 -  ] =I7 ^^7 ^0

V ^ ®-'î 9a,; 2a^a„

Then

— -ÿ —  T^(x) = [ 1 + (e - - a 6„)x ] I7 + Ôj_ aj_ X Iq + ô„ a„ x Ig

Uq 2ng Hq
=5 [ 1 + (e - ôj_ - g 6„)x ] + X + Ô„ X
^x x̂ 2a ̂

2o
a, [ 1 + (e + ô^)x ]

i

That is T (x) = Tg [ 1 + (e + 6^)x ] [ 1 + ex ] ^

with aj, = and n(x) = n. [1 + ex]
2<Tq

We may expand [ 1 + ex ] ~̂  as follows:-

[ 1 + ex ] “  ̂ = 1 - ex + (ex)2 - (ex)3 . . . .

Then

[ 1 + (e + Ôjl)x ][ 1 + ex ] “  ̂= 1 + X + (ê  - ô^e)x2 + 0(ê  x̂ )

Thus if we assume that e and are small, we may neglect terms of order
(ex)2 or (6̂  x)^ provided (ex, 6̂  x) << 1, giving 4

T^(x) = Tg [1 + 6̂  X ]

Similarly,-fron (AIII.U) we find that

t " ( x ) = T o  [1 + 6„ X  ]

Note that if e = 0 no approximation is necessary, and we may write
X X ,•>T (x) = Tg [ 1 + 6^,,, X 1



E' = E ; B' = B"*lt “tl “I! “Il
V V

E' = E + 21 » B ; B' = B  ̂  ̂ E
S» JL i

where i» and x mean parallel and perpendicular to (see reference 

[ 29 ] ; Y = 1 here)
c(E - B )

Now, since Vn = ■— — —---- , and we are interested in the effect

of the transformation on E and B , we take E = 0 = B . Then E = E
~0 “ O — II — II — X — 0

and Bj_ ~ Iq ’ Substituting these values in (AUX.6) and noting that 

?0 * -0 “ the following relations hold:-

E* = 0 B' = 0
TII “ II

E' = (E . B )B = 0
“ X -0 “ 0 “ 0

E'o^ E . B
B' = (1 -   )B + ^  E

V  0 B /  -0

=(5o ' s.) 
Ï0 = --- ^ 7 —

1
-99“

(b) We have a frame of reference in which the zero-order Vlasov %

equation has the following form:-

!2. + y . 2 i  + 1  ( E + i_ll° ) . Ü  = 0 (A1 1 1.5)
3t ■ 3r “ ® 3y

This frame of reference is now transformed to a second frame moving 

with a velocity y _ c^~0 -0  ̂with respect to the first frame.
Bo

The transformed values of the fields E and B in the original frame are

denoted now by E’ and B*, and they are related to E and B as follows:-

( A I I I .6 )  1

I



0̂ _ I -n -0 iTherefore —  = — -̂---- 'c

— 100“

E - B.

B,'0

V ^
and B- = { 1 - ( _  ) )B(|

c
VoIn our non“relativistic approximation —  «  1, implying that B’ -

Hence the zero“order fields in the frame travelling with velocity vq 

relative to the original frame are

E’ = 0 and B’ - B

In this transformed frame (AIII.5) becomes

3fo' 3f„' 3f„’
^  + i -  (ï ' B^) • i7-i me

where f^’ is independent of Vq

■1

I
Eo 4

■ I
Î
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3fo(c) Equation (1.26) gives the following expression for ---
9v̂

9f
—  = -  + i  + f  « " % ( <  <  + < '  -  \
9v̂

The term in w^ alone [term (l), say ] is the term that would occur if 

no gradients existed in the plasma. We would like to compare the term

e^^° [term (2) ] with term (l), and with

~  V (6 w + 6" w" - Y w ) [term (3) ] in the hope that somep v y v y  v y
simplification is possible. However, terms (2) and (3) as they stand

are very similar, and there is no obvious way of comparing their

magnitudes in a meaningful sense. We must therefore resort to

examining all three terms after integration along unperturbed trajectories

has been carried out. This integration is a fourfold one involving
Vĵ, v„, ([> and t.

There are no gradients in the v„-direction- so that the v„
integration does not involve terms (2) and (3). The ^-integration is

9fndimensionless, and  ̂ is independent of t, so that the ^-integral

gives no contribution to the dimensional properties of the full integral,

while the term involving may be extracted from the t-integral,
9v̂

Thus we need only investigate the v^-integral.

Suppose we represent, terms (1), (2) and (3) by the following 

simplified forms containing the essential properties of the respective 
terms

T

^T



— 102—

where and represent the appropriate parameter gradients, 

the Vĵ -integration takes the following form (see Appendix II):-

Now

oo

V ,=o
e Vx

- 5-  } •

where (q = 1, 2, 3) is one of the terms , T̂ , Tg.

) is the appropriate dimensionless combination of

Bessel functions associated with T

v,^ is whatever power of v, is necessary for the integral.

kj. Tj.We now change the variable, setting Ç = — -—  . ' The resulting

integrals are as follows : 

Tj integral :-

1
.n

2̂ 2 n

CD
exp {- 1 Bj(ç) dç

2k^2p2

where p = [
2a^ «2

] is the Larmor radius for the particle species

concerned.

T̂  integral

.n

k, n

OD

;=o
exp { - } B (?) d?

Tg integral

00

C=o

2ki%p2

exp {
2k,2p2

} B, (;) dc
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Since the Bessel function integrals are independent of plasma

parameters apart from the factor exp { - — —̂  } which is common to

all of them, we assume that thèy have the same order of magnitude, so 

that the magnitudes of the terms investigated depend on the coefficients 

of.the integrals.

We order the terms in the following way;- 

Term (l) : Term (2) : Term (3)

T, T

The condition that the local approximation (as used to derive (1.26)) 

holds is that r \ We must therefore examine different
I  5% 21  J ^ '

regimes of kj_p.
(a) kj_p > 1 :- in this regime term (2) is the dominant gradient term,

and term (3) may be neglected when compared with terms

(1) and (2).

(b) kj_p ^1 here the validity of the local approximation is only

certain if we take small enough gradients that

<< 1 ; thus as we decrease k^, we must consider

smaller and smaller gradients in order that the local

approximation is valid.

Suppose we neglect term (3), and approximate ---
Dv̂

by

9v
This is a good approximation in region (a); in region (b) we must consider 

small gradients anyway, in order that the local approximation holds.

Thus the above equation is a good approximation in region (b) within the 

limits of the local approximation.
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(d) The introduction of temperature and density gradients 

into a magnetized plasma results in particle drifts perpendicular 

to the magnetic field B and to the gradient directions (these drifts 

may he evaluated hy performing the integral ^̂ 0 J
y fo where f̂

is given by (I.2U)). If y^ is the net drift velocity, there is an 

equilibrium current given by

£o = 1 "0 Za

The Maxwell equation involving current is

1 . 4. .

Therefore in the equilibrium situation we have

io = Ï  ̂5

Ya = TtV ho  ̂ B (AIII.7)
This implies that V a B is non-zero for non-zero net drift; that is •

B must have an r-dependence.
Suppose we choose a linear r-dependence for B, say 

B = Bq (1 + e:- r.)

where B̂  = Bg z (with Bq constant)

is the Cartesian gradient vector (Ei*,C2 ')E3')

r. is a Cartesian scalar product,1 1
Then V B = Bq(s  ̂’ , - , O)

Thus no magnetic field gradient is necessary in the field direction, 

since all drifts are perpendicular to this direction.

Using a representative magnetic field gradient s’, the x and y 

components of (AIII.T) have the form
ce’ Bq

V, = --------------- (AIII.8)
'I  q
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The VB drift is given by

e ' v7
0

(see reference [ 30 ] ) 
We define an average VB drift as follows;-

“ n.
V

a

E ’ K

m Q

Thus (AIII.8) may be written as

d (AIII.9)
8 tt n ^ K  T  

B,
0 X . .where 3, =   is the ratio of perpendicular plasma pressure

and transverse waves (E, perpendicular to k)

0 5
to magnetic field pressure. ' VJ

■I
We see from (AIII.9) that if we assume v^ to be small compared ^

with v̂ , this assumption is justified provided 3̂  << 1 ; so the 

condition for neglecting the effects of a magnetic field gradient in the 
integrations along particle orbits is that 3j. must be much less than 
unity.

To determine the types of waves described by our final dispersion 

relation and the possible couplings between them, we must remember that 

we did not invoke the electrostatic approximation in deriving the 
conductivity tensor. That is, it was not assumed that Ê  could be 

replaced by - V(|> where  ̂is a scalar potential. This means that the 
dispersion relation describes both longitudinal waves (E parallel to k)
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Lashmore-Davies [31 ] and Callen and Guest [ 3? ] have shown

that the necessary condition for non-negligible coupling between

longitudinal and transverse waves is that w > ck, where
1

“pe ' (
Utt ng e

m } is the electron plasma frequency.

Now

pe
c2 k2

4IT Uq ê

m c' e (kp^)2
(n).

8 ît n o  K  ( T , )1 u X e
(kp̂ )2

That is

where

tope
ĉ  k̂ (kp^)2

(vJ
> = (

k(TJ i 
)m

(AIII.10)

and

(Tj_)̂  is the perpendicular electron temperature

eB,

me

In order that magnetic field gradients may be neglected, we 

must have (ĝ )̂  «  1. Also, for density and temperature gradient 

effects to'be significant, k^p^ must be > 1, which implies kp^ > 1. 

Thus from (AIII.10) we have
2Ü)

ĉ  k̂
«  1

or c k

In the region kp^ < 1, non-negligible coupling is possible, but the

temperature and density gradient effects are no longer significantly
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large within the local approximation. The situation is as follows:'

(3,) << 1 and kp < 1 e e (3.) << 1 and k,p > 1 e e

Possible non-negligible coupling, 

but insignificant gradient effects 

within the local approximation.

Significant gradient effects within 

the local approximation, but negligible 

coupling; the dispersion relation 

separates into independent 

electrostatic and electromagnetic modes.
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APPENDIX IV

In this Appendix we apply to the integrals in (II.15) a 

similar approximation process to that given in Chapter 2 of Section II, 
Let T = Ot and v' = ~ where v' is small compared with unity.

Also let 0)* - ” ± s where s = 0, 1, 2

Now define the general dimensionless "Gordeyev" integral
)
exp { -rv*T - <ï>(t) + iw*T } dr (AIV.l)

oof

where r - 1, 2, 3, U 

(r and s take the values required to give any of the integrals in (1 1,15)). 
From (II.Ik)

$(t) = . — -—  [ cos X + vt - e cos {Çlt - x) 3
T v^+ 0%

Vq,
Setting T = Ot and defining p = —  to be the Larmor radius this gives

$(%) = —  --  [cos X + v’t - e  ̂  ̂cos (t - x) 3
1+(v')2

Our basic assumption in this case is that when k%p2 >> 1, the integrand 
in G^ contributes significantly to the integral only in regions where

f(x) = cos X + v’t - e  ̂  ̂cos (t - x) ~ 0
The equivalent function in Chapter 2 was 1 - cos t , and it can be seen

that for small v' and small t , f(x) is close to 1 - cos x. As x tends

to infinity, f(x) tends to the straight line cos x + u'x. The general 
form of f(x) is shown in Figure (3b). Note that f(x) has only one 

zero for x > 0, at x - o, whereas 1 - cos x has an infinite number of 

zeros at x = 2mTT (m = 0, 1, 2, ....). However, f(x) has minima at 

X ~ 2mir (m = 0, 1, 2, ,...) with only the m = 0 minimum actually 

touching the x-axis. Computed results for x^(m = 1, 2, ..,,), the 

values of x at the minima of f(x), indicate that x does not deviate 

from 2mm by more than one part in 10*̂ until m is about 2,000.
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As in the case with no collisions, may he represented hy an 

infinite sum of integrals over small domains of significance. However, 

ac T increases the minima of f(x) occur at steadily increasing values

of f(x). Qualitatively, we would expect a large contribution to the

integral G^ to occur in the region near x = 0, and any other significant 

contributions to come from the regions around a finite number of 

successive minima. The number of these minima required depends on the 

values of v’ and kp; we would like as small a number of significant 

minima as possible consistent with small v’ and large kp, in order to 

simplify the final result. A lower bound on the value of v’ in terms 

of kp can be derived as follows
Define f*(x) = f(x) - v’x

- V ’X ( \*- cos X - e cos(x - x)
-V'X / . . \= cos X “ e (cos X cos X + sin x sin x)

For small v', cos x ~ 1 and sin x << 1 »

Thus f*(x) - 1 - e  ̂̂ cos x
and minimum values of this occur when cos x - 1 .

— V ’ XNow 1 - e > 0  for x > 0 where 0 is some number greater than zero, 

implying that f*(x) > 0 for x > 0 and thus

f(x) > v’x for X > 0 ' (AIV.2)

Define g(x) = exp { iw*x - rv’x - — • f(x) } (AIV.3)
1+(v *)^

CO

so that G_, M dx g(x)

If we replace f(x) by v'x in (AIV.3), the inequality (AIV.2) enables us

to state the following 

J = f • k p 1dx exp 1 iw*x - ru’x -   v’x }
1+(v’ )2

00
dx g(x) = I- (say)



Define

Now

oo
K = di exp { -

110-

1+(v')
v ’t }

1 exp { - k^p^v'e } for 0 < v* << 1
k^p^v'

K > max [Re(j), Im(j) ]

> max [ Re(l_), Im(l_) j
Thus Or may now he approximated hy the finite integral 

M

dx g(x)

provided K << min [Re(L), Im(L) ] (AlV.k)
Obviously if v’ << (kp) ^, a large value of 6 might be necessary to 

ensure that (AlV.k) would be satisfied for all possible L. Thus to 

make certain that.only a small number of minima need be included, we 

choose the following lower bound for v’

V» > ( k p ) ~ 2  (AIV.5)
[Note that in Section III we choose v’ < (kp)  ̂in order to satisfy the

condition v' << 1. A definite upper bound on v' is necessary there so
that we may have a clear ordering of the expansion terms]
We have 0

~ dx g(x) (AIV.6)
o

In a similar way to that given in Chapter 2 of Section II, we define a

domain of significance 6 around the m-th minimum x , The integral G.m m M
may now be written as

M * I
where dx g(x)

and m

X -!-6r m m

X -6m m

dx g(x)
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In this case 6 = x + ô , where n is an integer > 1.n n -
Within the m-th domain of significance we make the change of 

variable

x - X m  + <j> (m = 0, 1,2, ....)
where |̂ | << 1

Then
- V  ’ (x +(j))

f(x) = cos X +  ̂- e ^ cos(x^ + # - x)

2 —v’x ,2 2
as 1 -  ^  +  V  ' ( x^+(|) ) -  e  1 -  V  * 4> -  —  +  (j)x -  ^  ) (A I V . T  )

taking x^ - 27rm and neglecting terms involving products of greater than 

second order in ^, x> v’.
For the case m = 0, Xg = 0 and

- [ X - 2v’ ]*
3

Now V ’ = tan ̂  ~ ^  ^2 2 6
Thus X “ 2v’ - - ̂

and f((j>) ~ ^  .

If we now neglect terms of second order in v’, x sind (j) compared with
unity, we get

a2f(<j)) = l~

The expression g(x) becomes g((j)) where

g(̂ ) - exp { iw*0 - rv’(|) - k^p^ }

- exp { iw*^ - k%p2 ̂  }

neglecting v'<|) compared with unity; we retain the term' in since
k^ p 2 ^ 2  >> (f)2 ̂

Thus

I0

Ôr o
d(}) exp {iw*^ - gk^pZ^Z} (AIV.8)



< exp {-(k^p^+r)V'T̂ }
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Considering now the case m f 0, if we replace the factor e 

in (AIV.7) by its maximum value, unity, and carry out the same procedure 

used to derive (AIV.8), the following can be stated:-

^ d(j) exp {iw*4> - ik̂ p̂ cj)̂ } (AIV.9)

-^m

Since the integrand of the integral in (AIV.9) is the same as that in
(AIV.8), 6q and 6^ must be of the same order. . Therefore the integrals

in (AIV.8) and (AIV.9) must also be of the same order.

Thus the ratio f  ' F  ' Vig
I -T

That is -S ~ e * = (0.002)* (AIV.IO)

if we take the lower bound value for v’, namely v’ ~ (kp) ^

[ remember r << k^p2 ] , and take - 2irm.

The approximation (AIV.IO) suggests that the term Ig is the only 
significant contribution to Ĝ , and the computed results given in Table

(2) for v’ = 0.001, w* = 0.1 and r = 1 support this. Similar results 

were obtained for v' = 0.01 and 0.0001,

Therefore we have
6
° d̂  exp {iw*^ - gk2p2^2} (AIV. 11)

Since 6̂  is a domain of significance for a less convergent integrand 

than the one in (AIV.11), the upper limit may be replaced by infinity, 

so that
00

dcj) exp {iw*^ - gk^pZ^Z}

=  Z ( ~  ) (AIV. 12)
Ækp Ækp

as in Chapter 2 of Section II.
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The computed results for v’ = 0.001, w' = 0.1 and r = 1 given in

Table (3) support the approximation given in (AIV,12). We may note

that the values v’ = 0.0001 and 0.01 were tried, with w* = 0.1, 2.1 

and with r = k; this did not affect the accuracy of the approximation 

significantly. In Table (3), we begin with the lower bound value of 
k^p2 for the given v’, and as is expected the approximation is more

accurate the larger the value of k^p̂ .

{NOTE All computed results mentioned in this Appendix were obtained

using the full integrand in (AIV.l). The integrals were

evaluated using Simpson’s Rule with step length ~ 0.0003. It

was found that 6 ~ 0.1, and that the values of the portions ofm
the integrals between t +6 and x ,, - 6 . were so small as® m m  m+1 m+1
to cause computer underflow, implying that the values were 
< 10 , verifying our initial assumption. The value — - 0.1

was used as a test value since the results of Section III give 

an ion acoustic wave frequency of this order. The Fried-Conte 

function was evaluated using a routine given by Ferguson [33 ]}.
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Table 1. V ariation  in w ith  /̂Iklk, fo r  various values o f T{[Tt and Uy/t»,

V2k
k.

N  N  N  N
\y i/£ «  Xvilm \vi/m \vi/Vi/{4}

0065 4-83 2-67 1 04 0*62
0 6 4 52 258 122 0-83
10 4-13 2-45 1-48 129

Table 2 .  h and 7% compared w ith  !„ fo r  d ifferent values o f (kp,)*

Re A Im / i Re/a Iin /a

Re/o Im /o Re/o Im /o

10® 10-® 10-® 10-** 10-®
2 5 X 10® 10-13 10-u 10-27 10-®*

10* 10-®® 10-32 < io - " <10-*®

Table 3 * Comparison o f 7„ and ~-{il-\/2kp̂Z(oi*l‘\/2kp̂  
fo r  d ifferen t values OF {kp̂ y

(tp ,)' h ~(,ilV2kp,)Z(oflV2kp,)

10® 0*396384 X 10“* 0*396331 X 10-*
+  0*100035 X 10-®/ +  0*999997 X 10-® i

2*5 X 10® 0*250676 X 10-* 0*250662 X 10-*
+  0*400057 X 10-* / +  0*399999 X 10-* i

10* 0*125333 X 10-* 0*125331 X 10-*
+  0*100004 X 10-* I +  0*100000 X 10 -*/
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loN

V

FIG. la Ion and electron equilibrium distribution functions

loA/

FIG. 1b Equilibrium distribution functions with electron net drift v̂ .
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%

V

FIG. 2a Equili'bri'um distribution functions for T. << T
1 e

FIG. 2b Equilibrium distribution functions for T. ~ T
1 e
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éir

FIG. 3a :- General form of the function 1 - cos t

/(r)

/ ( r )  = c o s x fy 'r  -exp(-yycos(T-% )

cosx

TT 2ir3rr47T 5jt 6tt
Fig. 3b —General form of / ( t ) .
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«1

FIG. U Regions of Bernstein wave dominance (k„=0 and << 1)

and of ion acoustic wave dominance (k„̂ p̂  > 1).

-7T + 0

,VT=0

y.

Fio. ^ —Temperature gradient distortion of the electron distribution function-.
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  0, 0-5, 1.
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FIG. l8a :- Equilibrimn distribution functions with = 0
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FIG. 19a ;• Eq-uilitrium distribution functions for __T - 1
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