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ABSTRACT

The work of this thesis is concerned with the investigation of
the propagation of waves in a magnetized plasma containing various
parameter gradients, and with the stability of ion acoustic waves in a
weakly collisional plasma with & strong temperature gradient.

The thesis is divided into three sections. In the first sectioﬁ
the intention is to derive in a compact and unambigucus tensor form the
dispersion relation describing the propagation of waves in s magnetized
plasma containing three—dimensional density and temperature gradients,
an B ~ B drift, end differing temperatures parallel and perpendicular
to the magnetic field., This is achieved by introducing and extending
the polarized co-ordinate system first proposed by Buneman in 1961, and
then carrying through the standard procedure of integration along
unperturbed trajectories, The "local" approximation of Krall and
Rosenbluth is used in order that an analytic result may be derived.

The dispersion relation obtained includes certain moment tensors whose
elements may be evaluated independently of the gradients involved in the
problem, These elements may then be listed and the list referred to in
order to obtain the elements required for a specific problem.

The second section is concerned with the use of the theory and
results of J.P. Dougherty to show that in the high-frequency regimes the
introduction of a small amount of collisions into a plasma is sufficient
to disrupt the gyro-resonances which allow the existence of Bernstein
waves at'ﬁultiples of the gyro~frequencies perpendicular and near-
perpendicular to the magnetic field. It is-shown that a collision
frequency v such that (kp)™2 < 5- < (kp)~! where kp >> 1 is sufficient
to do thisy; k is the wave-unumber, p the Larmor radius, and 2 the
gyro~frequency. It is also shown that in this case the ion~acoustic
dispersion relation is valid even for propagation perpendicular to the

magnetic field.




In the final section the result of the second section is used to
derive a dispersion relation for high-frequency wave propagation in s
weakly-collisional plasma containing an electron temperature gradient.

The dispersion relation is solved numerically for various electron-ion
temperature ratios and electron temperature gradient drift velocities.
Earlier predictions, based on analytic calculations for small temperature
ratios and drift velocities, are confirmed and some new results presented.
In particular, it is shown that a temperature gradient is a more effective
destabilizing agent then a simple drift between ions and electrons.
Dispersion plots are given, along with analytic and physicél explanations
of their form; finally neutral stability curves are presented.

The thesis concludes with a summary of the results obtained,
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INTRODUCTION

Plasma physics is a young science. The use of the term "plasma"
to describe a partly or wholly ionized gas is not yet half-a-century old;
yet plasma physics is the apex of a pyramid of scientific thought and
experiment. Just below the apex lie the ideas of Vlasov and Landau,
Alfvén, Tonks and Langmuir, Appleton and Hartree; deepening and
broadening the pyramid beneath are the minds of Debye and Larmor, Maxwell
and Boltzmann, Faraday, Gauss, Ampere, Volta v.v.... . At the base of
the pyramid lies the foundation upon which the whole structure is built:-
the minds of the Greek philosophers, in which the generic ideas of logical
thought and theoretical science were born. Plasma physics may be young,
but it has a pedigree that cannot be bettered.

In any fully-ionized plasma there are short-range interactions between
a charged test-particle and individual particles close to.it; there is
also a long-range collective interaction between the test-particle and the
averaged electromagnetic field of all the other particles in the plasma
(or at least of all the other particles within the Debye sphere of the

test-particle, where the radius of the Debye sphere is of order

AD g | =l : , K being Boltzmann's constant, T the mean temperature,
br n, e?
0
n, the particle number density, and —-e the electron charge). Short-range

interactions have the effect of changing the trajectory of the test-particle

over a relatively short time-scale, while the effect of the averaged

Coulomb field is éxperienced over a much longer time-scale. The collective

interaction may be pictured as a smooth, gradual change in the trajectory

of the test-particle, with the short-range interactions as a series of

small but finite deviations superimposed on the slow collective change.
Depending on the density and temperature of the plasma, one or other

of these effects may dominate. If short-range interactions are so important

that the collective interaction can be neglected, the plasma is termed a
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"ecollision-dominated" plasma; it may be described by a model which
considers local values of quantities such as mass density, net flow
velocity, mean temperature and so on. This is Jjustified because the
test-particle is only affected by particles adjacent to it, and has no
significant interaction with particles at a large distance. In essence,
this description treats the plasma as a continuous fluid whose properties
are averaged over a volume large enough to justify neglect of individual
particle motions.

In the limiting case where short-range interactions may be neglected
when compared with the collective interaction, the plasma is termed a
"eollisionless" plasma. Fluid descriptions break down here since they
are dependent on collision dominance; however in the so-called "cold-
plasma" regime (where the coherent flow velocity of the plasma is much
greater than the random thermal velocities of the constituent particles)
a quasi-fluid description is possible, although the cold-plasma model is
highly idealized.

Models of the plasma state have been deyeloped from the basic idea
of an infinite, homogeneous, isotropic, fully-ionized, collisionless
plasma with non-zero kinetic temperature. Simple and unrealistic as this
may seem, the basic state is still capable of supporting a bewildering
variety of waves and disturbances. These may be characterized by

deriving a dispersion relastion for the plasma. This relation takes the

following form:-.

D(w, k, P> Pyo p3.---) =0

where l w is the wave frequency
. 2 -1
k is the wave number, that is (wavelength)
pl, pz, ps.... are parameters such as temperature,

density and so forth.
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For example, consider the relation

w2 = 2 4 y2.2

pe
where wpez =-EEJ%%:§i

and mpe is known as the electron plasma freguency.
m is the electron mass.
c is the speed of light in wvacuo.

This relation describes the propagation of transverse (or electromagnetic)
waves in our basic plasma with zero kinetic temperature.

Situations may arise in a plasme in which the effects of collisions
do not dominate the collective interaction mentioned earlier, and yet in
which they cannot be neglected entirely. By their random nature,
collisions tend to disrupt coherent effects that may take place in a plasma;
for instance the dispersion relation for a completely collisionless plasma
may contain a resonance occurring at some particular frequency, giving
rise to a propagating wave mode. The presence of even a very small amount
of collisions may be sufficient to randomize the resonance so that the
mode is destroyed; and collisions are always present in any real plasma.

Neither the fluid description nor the cold plasma model is equipped
to deal with such a situation. Moreover, both of these descriptions
contain averaging processes which lose many properties of the plasma; it
is therefore of great interest to investigate a plasma in terms of kinetic
theory. This is a more fundamental description than anything discussed
so far, in that it tries to deal with the microscopic particle nature of
the plasma rather than considering averaged microscopic properties.

The use of kinetic theory, along with the introduction of applied
electromagnetic fields, spatial gradients in density, temperature,
magnetic field and so forth, results in a much more reaiistic model, but
also in a greatly increased complexity of the dispersion relation.

The basic quantity in kinetic theory is the distribution function




i
of a plasma particle species, denoted by f(r, v, t). This quantity
is such that the product f dr dv gives the probable number of particles
to be found within an increment dr of the point with position vector r
while travelling with a velocity within an increment dv of the velocity
v at time t. The six-dimensional space including all points with
co-ordinates (r, v) is called phase space. The dynamics of a particle

species in phase space is normally described by the collisional kinetic

equation

s of F af _ [ af
8+Y'Br+—'v—[8t]
= m = c

where F is the macroscopic force on a test-particle due to external fields

and to the long-range collective interaction, while { %%']c is the rate

of change of f due to microscopic interactions between particles, that is
due to collisions. Detailed derivations of this equation are given in
many works, for example in reference [1].

A collisionless plasma is described by the Vlasov egquation [2 ], or

.collisionless kinetic equation, which neglects the term [ %%-J , giving
C

of
—_— %
€ L

5 +

= 0

|2
B
718

This may be linearized by setting f = f, + £, and F = F, + F,, where f,
and Fy are equilibrium values, £, and F, being small perturbations.
Substituting these in the Vlasov equation and neglecting products of small
quantities, the linearized Vlasov equation is obtained:-

_ vV . — Wl e e = ow

ot - or m v

ofy of, Fo af, _ Y 0
m

Landau [ 3 ] solved this using Fourier-Laplace transforms; an expression
for the electric field E was then obtained from fl. In principle, this

expression may be written in terms of ‘transforms as




E(r,t) = [ j B(k,p)el BT " Py gy
k'p
= J E(k,t)e = F ax
k
where E(k,t) = l E(E,p)e_lpt dp

Now E(k,p) has poles pj(g) with residues Rj(g), where pj is in general

complex, say pj = wj ¥ iyj. Therefore, using Cauchy's Residue Theorem
-ip.t

E(k,t) = L R, e Y

— % J
J

“Tub ¥ v

= Z R: & J J

j J

The Maxwellian distribution function is defined as

3
. bk a Yie _ m?
M 0 | 2nkT eXp 2RT

This distribution describes a homogeneous, isotropic plasma species in

thermal equilibrium. Using the Maxwellian as his f, » Landau found that
Yj < 0, and so E(k,t) decays as t tends to infinity, since a negative
exponential factor is included in it.  Any other plasma paramefer that
can be derived from f, decays in a similar manner. Now Yj > 0 for any J
would imply unlimited wave growth, or instability. Thus waves proepagating
in a Maxwellian plasma are stable. The decay phenomenon described above

is known as Landau damping.

A physical explanation for this effect can be obtained by examining
the distribution functions shown in Figure (1a). For a wave with phase
velocity vp, the number of particles of a given species travelling
slightly slower than the wave is greater than the number travelling
slightly‘faster. The electric field of the wave tends to accelerate the
slower particles and decelerate the faster ones, the net result being
that the wave loses energy, and is damped. Thus a negative slope of the
distribution function implies damping. In the case of the Maxwellian

distributions of Figure (1a) the slope is always negative, and damping



e
occurs for waves of all phase velocities.

If a net drift velocity v, of the electrons relative to the ions

d
exists, the electron distribution is shifted in the positive v-direction

as shown in Figure (1b). The part of the electron distribution from

v=0tov=yvw

a has positive slope. An isolated positive slope could

result in inverse Landau damping, so that waves might extract energy

from the electrons, and their amplitude would then grow. A negative ion
slope also exists, however; growth occurs where the effect of the
positive electron slope is enough to overcome the effect of the negative

ion slope. Thus instability occurs if v, is large enough. Drifts

d
and distortions of the distribution functions occur when the plasma
contains applied electric and magnetic fields, and when there are
5pa§ial gra@ients in temperature, density, etcetera. Under these
conditions the chance of instability occurring is greatly increased.
Differing ion and electron temperatures have an effect on plasma
stability in the following way:— Consider Figure (2a) where T, << T 3
the ion gradient is very steep and negative for small positive v, and
becomes negligible as v increases. This leaves only the weaker electron
damping, so that a small electron drift can cause instability. Figure
(2b) shows the distribution functions for T, . T, The electron gradient
is small for phase velocities near zero, but the ion gradient is steep
enough to cause significant damping. The ion distribution alsc has enough
spread to cause considerable damping for vp ~ Vi where the ion thermal

velocity vy is no longer very small. Thus an electron drift of at least

¥
vy " Vv; would be necessary to cause instability (note that Vi~ KTi,e 8
L]
mi,e
Thus plasmas that are unstable when T, <« 1 tend to stabilize as Ei
T 1
e €

increases.
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The study of all types of instability has become of the first
priority in recent years, since it was realized that most of the troubles
of the controlled thermonuclear fusion programme stemmed in one way or
another from plasma instabilities. In the first section of this thesis
we consider a collisionless plasma with various general particle drifts,
and derive a dispersion relation to describe the possibie wave modes that
may propagate in it. In the second section we investigate one of the
cases mentioned earlier, in which the existence of a small collision
effect (in megnitude much less than the collective effect) is sufficient
to disrupt a resonance leading in the collisionless theory to a set of
propagating wave modes, the Bernstein modes. In the third section we
investigate in detail the effect of a large temperature gradient drift
on the wave-mode known as the ion acoustic wave in a thermal plasma
including weak collisions.

We may note here that the method we use to solve the linearized
Vlasov equation is equivalent to Landau's Fourier-Laplace transform
method, and results in a four-fold integral over three velocity components
and time. If the time integral is performed first, followed by the
velocity integrals, a solution may be obtained in terms of Bessel functiocns.
If the velocity integrals dre performed first, a time integral known as
the Gordeyev integral (or some modification of it) is involved in the result.
For a general problem the former approach is usually the most profitable.
However for a more particular problem, perhaps concerning a simple
configuration or a limited parameter range, the Gordeyev integral approach
is often to be preferred. For the general drift problem in Section I we

use the Bessel function approach; in Sections II and III the Gordeyev

{v.)
el

Q

integral approach is used in the regime kp >> 1, where p =

is the Larmor radius, and (vT) is the mean thermal velocity perpendicular
L

where

p B
to the magnetic field B. The cyclotron frequency Q is ﬁ:

q is the charge of the species considered.
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SECTION I :- A dispersion relation for a plasma with various
spatial inhomogeneities.

Chapter 1

In this section we derive a dispersion relation for a fully-
ionized, collisionless, non-relativistic plaéma which includes general
gradients in density and temperature, and also differing temperatures
parallel and perpendicular to an applied magnetic field.

The kinetic equation describing a particle species in such a plasma

is the collisionless kinetic equation, or Vliasov eqguation:-

(I.1)

1%

df
¥ .,
Loigs*

g2l
l
il
o

In this equation r and v denote position and velocity respectively, so
that (r,v) is a position in phase space. The species distribution
function is f(r,v,t), while F represents the net macroscopic force acting
on a particle of the species. This force includes the effect of external
forces and of the internal averaged collective force due to particles of
all species, but.excludes microscopic short-range particle collisions.

The particle mass in represented by m.

To solve (I.1) in the linear theory, we must examine the effect of
small perturbations on a plasma which is initially in an equilibrium state.
We therefore make the following substitution:-—

£f(r,v,t) = fy(z,v) + £,(x,v,t)
 Flz,yst) = Folr,v) + Fy(z,v,t)
where f, and F, are equilibrium values, and f, and F, are small

perturbations such that

Using this, equation (I.1) becomes




{ —8‘%“- + Vo, T + =~ gf— ]
91, Aty Fo Ay F, afy
tlgg gyt~ w !l =5 ow (I.4a)
By 9t
The term i is taken to be a product of small guantities, and
is therefore neglected compared with the other terms. To find the equation
for the equilibrium state, we merely set f; = 0, giving
afy afy Eo afy
v + v . ——-—32 + —"H . ""—""'ay: = 0- (12-)

This is the equation which the equilibrium distribution fy must satisfy;
the equation giving the perturbation distribution f, is therefore, from

equation (I.fa)

ofy ofy Fo ofy Fi 3fy
% T X ¢ or L % T m " W (Eed)

The solution of this equation, fi(r,v,t), contains in principle all the
information required to describe the perturbed plasma.

Equation (I.3) may be written in the following form:-

u
" ¢fy
where hlzsw,6) = - O
and [E%;-] is a differentisl operator acting along the characteristic

u
curves of the partial differential equation (I.3). It may be thought of

" time differential operator; that is, the

physically as the '"convective
rate of change of a quantity measured along unperturbed particle orbits in
phase space. Thus for a given value of (r,v,t), equation (I.3) gives the

" rate of chenge of f; as "seen" by & particle at the phase space point

(r,v) at time t, but moving along the unperturbed orbit through (r,v).
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Our solution of (I.3) follows that given by Clemmow and
Dougherty [4 ], except for certain notational changes made for later
convenience. If we wish to find the value of f; at some point
(r°,v°,t”) in phase-space and time, we must integrate along the
unperturbed orbit which passes through (g’,y‘), arriving at that point at

time t°. If (i(t),i(t)) denotes this orbit, fj at (r”“,v”,t") is given by

£y rtayi 6T = It h (r,v,t)at (T.h)
- o

Obviously F, depends in some way on fl’ ;nd so (I.y) is actually an integral
equation with f; implicit in h. We therefore require further information
in order to specify the function h independently of f;. This information
is contained in Maxwéll's equations, which must apply to the plasma as a
whole. However, there is no straightforward way of eliminating f; from
h at this stage, so we adopt the following procedure:-

F; is taken to consist of given perturbing fields, and the résponse
of the plasma to these fields is to be calculated; subsequently the fields
~are to be made consistent with Maxwell's equations giving a self-consistent

overall description. Thus h(r,v,t) is a known function at this point.

We now define the Green's function

Bl Tt ™07 E7) 83(r - r)83(v - v) e(t”- t)

where e(1) ! } A

0 1L <0
The equation (I.4) may be written as

£ (e v t7) = J J J G(zr,v,t,r", v ,t")h(r,v,t)dr av dt
o I P

where the integration limits are (- @, @) in all seven variables.
Let X(t) and V(t) be the position and velocity functions defining
the unperturbed orbit passing through r = 0 with velocity v at t = 0.

Then the unperturbed orbit passing through (r”,v”) at time t~ is




1%
1

and therefore

fl(g‘)!":t,)

Setting t° -

£1(x7,v7,87)

where we have

e

X(t" - t)

Y

5 T = %)

r* + Xt - t)] 3 [V(t" -t) -¥"] e (¢° ~t)

1 —

¥

S0

bir® = Xt =t),vot 1 &3 [y*~¥(t"-t) ] dv at

hlrm= X(677),y,t7-t77 1783 [y"-¥(t"7) ] dv at~~

h [r?- X(t),v,t°~t ] 83 [y"-V(t)] dv at

replaced the durmy variable t°7 by t.

A function g{r”,t”) may be written in Fourier-Laplace integral form

as

J f glk,w) exp [i(k.r” - wt”) ] dk duw
k

The equation for f(r”,v’,t”) written in this form is

J J fl(g,y’,m) exp [i(k.r"-wt”) 1 dk dw

k

i

W

W

1R —

W

(o8]

@

t=0

=0

[ {] [ rtemer o v e

. exp [i(k. [r"- X(t) ] - w(t’™~ t))] dk dw

- J { I I h{k,v,0 ] 6% [y V(t) 1 exp [i(ut-k.X(¢) ] 93—’-&}

cexpl i(k . " - wt”) ] dk do
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Equating Fourier-Laplace components gives

foc}

£, (kv %w) = J J hlk,v,u] 63 [v~-- V(t) Jexp [i(wt-k.X(t))]dv dt
v t=o0

In order to invoke Maxwell's equations, we must work in terms of charge

and current densities rather than £. They are given respectively in

terms of their Fourier-Laplace transforms by

It

q I £,(k,v %) v

,!0

p, (k,w)

and

q J Y'fl(ka!‘aw)éz‘

-

é1(}5’“’) (z.5)

1<

Considering only the effect of electric and magnetic fields on the plasma,

the force F in equation (I.1) is given by

F = q(E + %- vV ~ B) [ in Gaussian units ]

where.% V.

g

is the force on a particle due to the interaction between

its velocity v and the magnetic field B.

Thus
1
Fo = a(Ey +7 ¥ ~ By)
= 1
and El = Q(El o Bw §1)
i I : 1 3 y
giving h(r,v,t) = - (B, (r,t) + T v« B (r,t)) . 3, (0.
The integral for j, is therefore
T o
5 Ceay) = = L V(t) [ E (kw) +~v B (ko) 1 . £ (k,v)
v t=o
. exp [i(at - k . X(¢))] dv at (1.6)

where we have substituted for fl(g,g‘,w) in equation (I.5), using the
Fourier-Laplace transformed version of h. Maxwell's equation of

electromagnetic induction is

1 2
A —_— — - T
Y~E + s BE B 0. (T.7)
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Suppose we assume fields of the form

E(x,t) =

{5)

o+ E (z.t)

B(z,t) B (x) + B (z,t)

0

Thus we have a constant equilibrium electric field and a steady
equilibrium magnetic field.
Equation (I.7) reduces to

VB e o

E ol (1.8)

The Fourier-Laplace integral forms of El and §1 are

E,(z.t) = J J B, (k,0) exp [ i(k . r - ot)] &k dw
E w

and B, (r,t) = J B, (k,w) exp [ ik « ¢ - wt)] dk dw
k ©

Substituting these in (I.8), taking the differential operators inside
the integral signs, and then equating Fourier-Laplace components results
in the following equation:-—

B (ksw) = 2 k a Bi(k,0) (I.9)

Using this in (I.6), we find that

@
e =-E [ ww [ e
v

t=0

€ |=

{x_u (k gl(g,w))}] 5 ()

. exp[ i(wt -k . X(t)) ] dv at (1.10)

When the integrations are carried out, the right-hand side of egquation
(I.10) gives a vector whose components are linear combinations of the

components of E;. We may therefore write
il(lf’w) = &(lf,w) . El(lj,w) (1.108)

This is a generalized Ohm's Law, and we define g(k,w) to be the

conductivity tensor for the plasma species concerned.

The totel current is given by

i (k) = ] alk,w) . Eq(k,w) : (I.10b)
species
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Chapter 2

In order to derive an algebraic value for g, we must insert a

specific expression for the equilibrium distribution fo(g,y) into (I.10).

We consider initially the following inhomogeneous equilibrium distribution:-

v
2 2
folr,v) =11 + {e + 6, [a,vi- 1] + 8y [an vy - 1) (x +§E] 1£y (I.11)
vhere r = (x,y,z) and v = (vx,vy,vz) are in orthogonal Cartesian
co-ordinates. The quantities v, and v, are defined by
vZ = vi + v§
e el

. aBo
We take B, = O and By = By z, where B, is constant; then @ = —— is the
Eo Bo & B 2 0 e

cyclotron frequency. The quantities n(x), "(x) and T+(x) are
respectively defined to be the density, and kinetic temperatures parallel
and perpendicular to By ; ng, TJ' and T; are their values at x = 0, since
the origin of our co~ordinate system may be chosen anywhere in space.

We now define Ty to be the Maxwellian distribution for differing

parallel and perpendicular temperatures, that is

3
a 2 2
fM = no[ L ]( Rl ] exp { ~ Loy gy & a, v")} (I.12)
W m
m
where a; = EE—EI
0
e e
e 1t
" 2K TO

fo must be chosen in such a way that it satisfies the zero-order Vlasov
equation (I.2). We show in Appendix (III a) that the f, given by
equation (I.11) satisfies (I.2), and also that for small values of €, §,

and § the following relations hold:-
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113

n(x) ng(1 + ex)

R

T+ (x) L (1 + 8, x)

T"(x)

R

T (1 + 6" x)

Thus we may define € to be a density gradient

§, to be a perpendicular temperature gradient

§,, to be a parallel temperature gradient.

[ The requirement that the gradients be small is only necessary when a
combination of density and temperature gradients is used in f,3 when €
or one of the 8's occurs alone, this requirement is ﬁnnecessary (see
Appendix (III a))].
The effect of using such a form_for fo has been treated elsewhere (for
example reference [51]1). The aim of Section I is to derive a
conéuctivity tensor involving general three-dimensional gradients in
density and temperature, with differing temperatures parallel and
perpendicular to By , and to derive it in such a way that the result is
concise, convenient and easily reducible to a cdnductivity tensor for a
simpler situation. To do this we require a notation which allows the
retention of a compact tensor form even when describing an inhomogeneous,
anistropic plasma. We use the polarized co-ordinate system originated
by Buneman [ 6 ] and developed by Dougherty [ 7 1. This system and
its associated tensor behaviour is described in detail in Appendix (1)3
here we merely define the components of a vector in the system. Note
that Greek letters are used for indices, and that upper indices denote
contravariant indices, while lower indices denote covariant indices.
Suppose that the vector b is represented in rectapgular Cartesian
co-ordinates by the components (bx’by’bz)' Then the contravariant

vector b* in polarized co—ordinates is given by the components
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P :
bl =2 (bx +3 by)
0 = b
Z
-1 -3
P =22 (b -1ib)
x y

The covariant vector bu is given by

"
= BB s
b, 2 (bx i by)
b0 = bz
- + 1
b_1 =2 % (bx * by)

The metric tensor for the system is 61,_“, so that raising and lowering
of indices is achieved merely by changing the sign.

The requirement now is to find an f;, expressed in terms of
polarized co-ordinates, which contains general gradients and temperétures,
yet which satisfies (I.2). Firstly, suppose we have a steady situation,
so that the density and temperatures are given by n(xr), T+(r) and T"(r).
(Note that the position system r is not a vector in general, since it
does not transform according to tensor laws). If we write r as r’ in
polarized co—ordinates, the gradient operator - %;b adds a covariant
index to any tensor quantity that it operates on (see Appendix I).

Define the gradients in n, Tt and T" as follows:-

-1 3 L
(ng) " 0w e
-1 23
1 S = i*
(T0 ) s T+ 8 »
or
ny—1 2”_ - 1
(T ) % s = 9 e
or {

where ng, Tgt and T," are n, T* and T" evaluated at the arbitrary origin

of the co—-ordinate system. Thus €, is the density gradient vector, and

St, 63 are the temperature gradient vectors.

Considering the simplest non-trivial case, that of constant gradients,

we attempt to generalize (I.11) by proposing an f; of the following form:-
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|—h
!}

v v _p
{1+ (av +[a, v2 - 1] 63 +[ay v& - 2] 6:)(r + by ¥ )} 'y

{1+ yv(rv + a: W)} £ (1.13)

M
where v = (e +[ay v,2 -1 8t + [ an s = ¥ ] 53 )

and the Einstein summation convention is used.
v o, .
As noted before, r 1is not a vector. However, since Ev’ 63 and 63 are

vectors, and fj is an invariant, the tensor quotient law implies that

the system (r° + a: v’) must be a vector.
The system a: is chosen in such a way that the fg given by (I.13)
satisfies (I.2). We now require the quantities afo . 3y ana °%o
ot or ov
for substitution in (I.2). Firstly 9%y is zero. Now consider
3t
e and ——
ar oV
of } 22? .
2):r-‘J ¥ ar“ e
- v
Yv u M
= Y]..l fM
of Y af
0
S [(rv +a° v ——E— + Yy a’ ] fM +[ 1+ yv(rv o vp) R
av“ g v i B 8vu
fM is given by (I.12) so that
an s 2 2
—5 =7 fy gt (Ba VT aw v )
ov
Now VLZ = v 24y 2 = oylyl
x y
Vn = (V0)2
We define Wu = 31 E—h (e, v_,_2 + ay Vn2)
ov
where w, = a, v1o= a, v,
Wg = an Vg
w_ .= a, vl = a; v,
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We also define the vector w' with components (a, vy, 0, a, v_;) and
" -

the vector w; with components (0, an. Vs 0)

Thus we have

BfM
it m — 2 fM W
avﬂ H
aYv 'QVLZ 3Vn2
Now —— = a, 63 + ay 63
v av v
= 2(8+ w + &" w" )
v ou v
of,
Therefore our final expression for —— is
v
oty

— { Y aY 2(rv ” aV vp)(Gl wt o+ 8Y¥ w")
3v* Vo P v o v

-2 1+ Y, (¥ + a: vP) ] Wﬁ } f (I.1h)

M
For the case of a plasma in which the zero-order fields Ej and
By are constant, (I.2) takes the form

3f, 3,

1 -
5 v o o (B ES e ) « — = 0 {T.15)

The existence of a component of E, parallel to B, would result in the
acceleration of particles to relativistic velocities in the direction of
§0, and would alsc result in arbitrarily large currents and charge

separation. The Maxwell equations

B R (I.16)
at S

V~B = 2
2 e

and V. E

Lmp (I.17)

It

weuld then imply large field fluctuations. Thus the assumption of an
E, component parallel to B, is inconsistent with our non-relativistic
and linear approximations. We therefore take EO perpendicular to By

The simultaneous existence of E, and B, results in the particle

c(Ep ~ Bp)

species as » whole drifting with a velocity N U (see

reference [8 1). 0
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The effect on the distribution function is to replace v by v - v,

in the expression for f,. This replacement and the existence of EO
itself in (I.15) greatly complicate the derivation of a conductivity

tensor. However, v, may be eliminated from the analysis by transforming

0

to a frame of reference whose origin is moving with velocity vj,. This

transformation eliminates v, from f;, and also eliminates the zero-order

electric field from the convective derivative [%E- . We discuss the
u

transformetion in more detail in Appendix (III b).

Our procedure now is to make the above transformation, to derive

a conductivity tensor in the transformed frame, and then to carry out

the inverse transformation once the final result has been obtained.

Details of the inversion will be given at that point.

Under the transformation, equation (I.15) becomes

3t 3f

.___+'!._0+-g—'\_r“f§0
ot or me v

af,

1
o

(1.18)

where we have dropped the dashes used in Appendix (III b) to denote

transformed variables.

Substitution of the values derived earlier for Efg_, %y
ot orH
af,
and -——- results in the following equation:-
v
M - ig _uBy
v, £y e VB(BO)X
\Y] v v _p 2 t "
. + Loyl 4 g
[YV au 2(r + s )(Gv v ¢ wu)
_ Vo, VP s
2 {1 +yv(r +a.p v )} wu] £y = 0 (1.19)

where (v - go)u has been replaced by its tensor form - i euBAvB(BO)A,
euBA being the permutation tensor in polarized co-ordinates (see

Appendix (I)). We now choose a rectangular Cartesian reference frame

such that B = B, é ; that is Bj is (0, By, 0) in polarized co-ordinates.
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Equation (I.19) may now be written as

M ig _uBo v T
v = e B a + + Lot "
Ty VBO{ Yy & 2(r apv)(éku-PGv
v vV _p _
-2 {1 + (r’ +a v w =z 0
{14y, xa )} v ]
ugo g kg L0 -1,1,0
Now e Vg w; = e's > vlw{_1+ e sty v wy
= a, (v_lv1 ~ W, )
290
Similarly MO L = 0
- B u
and therefore euBO v wu = 0
qB
Also.__jl = Q
me

Thus (I.20) reduces to

H uBgo Vi
v - 1Qe a = 0
" Vg Yy
or v (YB - et y a°) = 0
v o
Since Vo Z 0 we have
B _ :o.MBO Yo
Y iQle _Yv au =5 0
Now v, =g, * [ 8 v2 - 11 8t + [ ay vé - %
o L _ 1 2 2
- (E\’ _6\) 26:; ) * a_‘. 63 V_'_ + a" 63 V"
or Yo =8 2 hv v_,_2 1 zv Vi
- = Y R "
where gv Ev Gv 3 Gv
hv =a, 6
9; et a" (S"

"
W
o

] 8l

(1.20)

(T.21)

(r.22)
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Substitution for T, in (I.21) gives

B

HBo B8

oz v _ 16 HBO v 2
(g iQe g, 2 ] + [ h iQe hvau 1 v,
B _ ... HBO v 5
+ [ 2 iQe zvau I vy v; = 0

This equation must be satisfied identically by all possible values of

Vor Yy and Vi Such a situation can only occur if the coefficients

of 1, v 2 and v, v

0 1 | are identically zero. Thus we have three equations

of the same form to solve; consider the first equation:—

gB = iQeuBo g, a: = 0
In component form this is

gl - iQeMs150 g, a: g 0

g° - ige!?9° g, a: = 0

g1 -ige!*”1.0 8, a: = 0

0,0
10, 03 so we have

Now e = 0, implying that go

1

¥ 1 =1 =
g 1Q[g1a_1+ g_la_l) = 10
v WV 1 -1) = (1.23)
gt +ia(ga) + g ,a7]) =0
go = 0
The equations for vP  and 28 are identical in form, so that
8 o
h™ =0 => 2a, 53 = 0
L -
. => 60 = 0
Similarly =0 = 68 = 0
Therefore g° = 0 => gy = 8% = 3 §g = 0
=> €, = 0
The elements of as may be chosen in any way that satisfies (I.18).
Considering (I.23), the simplest way is to choose ai = - ;%5' and
a:i = {% , while setting all the other elements equal to zero. This

choice also satisfies the equations for hB and 26 .
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The vector a: vp now has the elements

al v* =al vl +al v0 & al e
» i N |
= ig ¥V
a? v = o
P
= 1 -1
P =
ap v = Tq v
. _i_vpo <
Now consider the elements of the vector 9e vb 3
w e pEoBelim g 5 B gl
Q p ' -1
PRI . |
- e’
- — eO,p,O v = (0]
o}
2k Tl @ ek @TlLe0
1Y) p ]
= —‘l—v_l
iQ
1 0
Thus av vp oo eVp v
P Y] p
— v . . -1, v.0
Similarly au can be shown to be identical to - o e "
Substitution for a: v° in (I.13) gives
- v i _vpo
. {1.+ T (r il vp)} £y (I.24)
where = + h. wv.v + 2 v2
Yy & v 1 -1 v 0

with g , b, and & as defined by (1.22).

We note here that the only forms of the gradient vectors €, 5; and
6: which satisfy (I.18) are those with g, 8% and 6§ identically zero.
This means that no gradients in density and temperature can exist along

the direction of the zero-order magnetic field Bg. The physical
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explanation for this lies in the fact that [—%;- fy must be zero.
u

Thus f;, as "seen" by a particle moving along an unperturbed trajectory,
must be independent of time, and therefore must be a function of "constants
of the motion."  These are.quantities which are time-independent when
evaluated on an unperturbed trajectory; the quantities x + z%- and
Yy - Zg arising in f; through our choice of a: are constants of the
motion. However, the equivalent expression for a z-dependent function
would be z - v t. This is a constant of the motion, but any z—dependence
in f; would then immediately bring in a time-dependence, so that f; would
no longer be a steady-state equilibrium distribution. This implies that
f, has no z-dependence, and therefore that f, cannot include a gradient
in the z-direction, as we have shown analytically.

By writing f; in terms of rectangular Cartesien co-ordinates and

using the method outlined in Appendix (III a), it is easily verified that

the following expressions hold for small gradients:-

n n0(1+sxx+eyy)

L = L L L

T T (1+5xx+6yy)
- "

™" = TS (1 + S;X + Gy y)

5% it a7 13

where €
1

| TR 1 -1
€. B =1 D £* — €
¥ ( )

with similar expressions for the other gradients. This shows that

the gradients defined in our expression for f,; can in fact be identified

with corresponding gradients in the actual plasma parameters.




Chapter 3

In order to derive an expression for jl(k,w) from (I.10), we

. o . . 1 .0
require a specific value for “ . On substituting - X gV for

v L

a: in (I.14), we have

0
e\’p v ) (6"‘ wt + 6" w,n
o v T vV ou

i v.0 v i
+ PR —
Yo © g # 2(r 5

QL
%
o
i
1
D|r

-2 [ 1+ Yv(rv - %-evDO vp) 1 WU } fM (1.25)

The r dependence in this expression causes great analytic difficulty

if it is left in. The result in the electrostatic case is a complicated
integral equation; the electromagnetic case is, as usual, much more
troublesome. We follow Krall and Rosenbluth [ 9 ] in assuming a local

approximation in which £, is taken as before, but ! (and therefore fl)
vk

is taken as being independent of r. Krall and Rosenbluth showed that
the local approximation is valid if ~§I- << 1, where 6 ié g typical
parameter gradient and k, is the component of k perpendicular to Bp.
This condition is equivalent to saying that the perturbation fl goes
through many oscillations in the scale length for significant change

in £ (r), and therefore over a few oscillations there is no r-dependence

of fl.

We set r° = 0 in (I.25), so that

3%,

il B i 00 25 b
- = - 2W o .J_‘. v o e 00 1 LT} _
g { i Q Yv e U o & Vb(ﬁv W; + 6ku Yku)} fM (1.26)

It is shown in Appendix (IIIc) that the term involving eVDOVb in (I.26)
can be neglected if k,0 > 1 where p is the Larmor radius. For k,p < 1,
we must consider only small gradients in order that the local
approximation holds. These small gradients can be represented

. 0 . )
approximately by the term y ev; in (T.26),




OQur final expression for 90 iy therefore

Bvu

of 7
0 i v.0
= - -~ + .
S { a Yv e " 2wu } fM {T.27)
oV

Substitution of this in (I.10) gives

2 i .0

foexp [ iot -k . X(t)) 17y at (1.28)

We may note here that we have neglected the effects of magnetic field
gradients in deriving (I.28). Parameter gradients result in particle
drifts, giving equilibrium currents. The Maxwell induction equation
(I.;6) then implies that a gradient in B must exist to balance these

currents. We show in Appendix (III d) that it is permissible to neglect

magnetic field gradients provided B = 8“5 << 1, where P is the plasma
B
0
pressure. Other consequences of assuming B << 1 are also dealt with in

Appendix (III 4).
In polarized co-ordinates k - El may be written as

A . AaB

Therefore

[y~ aB) 1" ==i v (- B)) ]

= ="t TRy g (E,)

A p T 1°B

Substitution of this expression in (I.28) gives

2 .
o _ g o 1 U _ 1 upA _.TB
g e I I g ) o e gy # kr(El)B ]

v t=o

exp [ i(wt - k . X(t))] dv dat

v.0 . z
o Y, © i 219.wu ] fM




2
” ig o n_ 1 up. AT,
N { mQ [ J vl %W w® a B 'p x|
v  t=o
o0 : eVLO = gigwu ] fM exp [i(wt -k . X) ] dv at } (El)ﬁ

In polarized co-ordinates (I.10a) takes the form
3 = a¥ (m))°

Comparison of this equation with the preceding one enables us to identify

og with the expression in curly brackets. Therefore
2
a _ ig Mo ap. AT
OB o J J ;'8 [ 6 T8, e vp k ]
v t=o
V.0 z
. e - 210w
o g u]

3 fﬁ exp [ i(wt - k . X)] dv dat

We now define the vector operator ol | } to be

oo
LGP0 A
1* { }=i§-f j V“fMexp[i(mt—l_c.}_()]{ } dv dt
v t=o
and so
o _ LQ ¥ _ 1 up. _AT. v.0_ . 1
08 I { [ GB 5 2 ° 8 vka] [Yv e " 2152wu 11

Now, using equation (I.22)

1 _Upe« _AT. V.0 §
s -1 % -
[ 8 o e 8 vk 10 v e 3 Zlﬂwu ]
— 2 vlo -
= [ B & hv s zv vl ] e g 21QWB
oA cues e Wil 2 2
kil B g e i kr { g, vp + hv Vi vp + Lv Vi vp ]

2iQ  up. _AT.
w A B T L P

Operating on this expression with T }, we get
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O

V.0 o ) o ;
&= + —
o e 8 { g, A hv ¢ o+ zv D] 2191?'B

1 wp. AT. 0.0 o o o
- + h K +
5 € ¢ ge " kT | g\,Gp h\: " vap ]

+ 2%8- eupi eATé kT Mﬁp (1.29)
where we define the following tensor moment integrals
A% = 1% (1) ¢* = 1% (v,2} p* = I% {v\?}
e L A o
o= vy e Pmiv) o (2.30)
Mﬁp - Ia {WU Vp} J

Thus for any given set of gradients, the conductivity tensor can be
‘expressed in terms of members of the standard set of moment integrals.

These members may be evaluated separately, listed and referred to
as and when required for a given problem. In Appendix (II) we evaluate
and list the components of some of the simpler tensor moment integrals,
and give-some idea of how the more complicated integrals are evaluated;
considerations of space do not allow us to carry through the evaluations.

The equation (I.29) shows how the use of polarized cc—ordinates
has enabled us to derive an expression for cg with several useful properties.
Firstly it is compact, clear and unambiguous. Secondly, the gradients
appear as coeffieients multiplying moment tensors whose cowponents can
be evaluated separately from a given problem, and can be listed for easy
reference. Thirdly, by following through the analysis and applying the
tensor quotient law, it is easily seen that (I.29) is a tensor equation
which holds its form under any tensor transformation. Therefore og

may be evaluated in another co-ordinate system merely by transforming

the necessary tensors according to the appropriate transformation law,



_28_
and then substituting them into (I.29).

The total conductivity tensor for a multi-species plasma is

given by s where

B

S

o _ o
S 2 g

species 8

A dispersion relationldescribing possible waves in such a plasma is
obtained as follows:-—

We have the Maxweil equations

9B,

V - E1 & = A —_—
- - Y
and V2B = o 8 + b jl
- - Cc S—— c PO
ot

The Fourier-Laplace transformed version of the second equation is obtained

in the same way as we obtained equation (I.9) from the first equation.

The transformed versions are

§1 (Esw) =

€ o

E & El (g’w)

]
1

and  k ~ B, (k,0) (k,w) 1 (T.31)

L L.
= w 4
Substituting for B, and jl in (I.31) and writing the résult in polarized

co—ordinates gives

2 .
LE- E~Bia® = - B (8)% + 2 g% (58
= - g 4 AL g g
o2 B w B8 1
2
= - &g (E1)B (1.32)
g

where we hsve defined the dielectric tensor 6 : by

i
foc]
+
92]

a
& B B
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We show as an example in Appendix (I) that
[k~ (k~E) 1% = [kaks—kZGZ] (£))"

Substitution in (I.32) gives
a c? o
[§B+—a—{kk

~ 12 &0 B .
i o kGB}](El) 0

This is a system of linear equations in the components of (El)8 $

the condition for a non-trivial solution for (El)8 is the following:-—

2
a < a k2 g% -
aet[§B+m2{k kg kGB‘}] 0
or, in terms of Sg
hri o c2x? o c? o _
det | " s‘3 + (1 2 )5B + wzk kB] = 0 (I.33)

We include the effects of E ~ B drift velocities by making appropriate

Lorentz transformations of the individual species conductivity tensors

a: making up S: . Suppose for a given species the E ~ B drift velocity

is y,. We define an orthogonal Cartesian frame of reference moving

(¢

B

We use k' and w' to represent the wave-vector and frequency in this frame,

with velocity Yoo and carry out our derivation of 0. as previously.

y ‘UL
so that we have & four-vector (g', l% Y4 We now transform to a frame

in which the species considered is moving with velocity vj. In this

frame we take the four-vector to be (k, 22).  The transformation of

the four-vector is given by the following equations:-—
. k. v Yo

k' =k+(y - 1) — v, - ¥ —uw
c2

w' =y (w-k.v)

[}
—
=
|
~—
i
ot

where Y [ see reference (10) ]

In our non-relativistic case y = 1 so that
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N
' sk - v

el

I ~
w W k. Y

The first equation may be written as
Yo -
1 ~ - ——— s
gk - B{—=) ()

Now XE_ << 1, and we normally consider the regime %k < 1. Thus we
c

are justified in using the approximation k'~ k , so that the

transformation becomes the simple Doppler shift

k'

R

k
(T.34)

1]

w -k

1
[0} '
- -0

So, to modify equation (I.33) to include E ~ B  drift velocities, we

o

B

each species separately. We then denote the resulting total conductivity

merely Doppler shift the expression for o according to (I.3L4), for

tensor by {Sg} . Our final expression for the dispersion relation is
L

. 2.2 2
det [ Eﬁi {sg}L + (1 - 9~§ ) ag + E;-kaks ] = o (1.35)

W w
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SECTION II :- the effect of weak collisions on the
Bernstein modes.
Chapter 1

In Section I we derived a general dispersion relation in the
context of a completely collisionless plasme involving various spatial
parameter gradients. As observed in the Introduction, such a collision-
less dispersion relation may contain descriptions of wave modes which
depend on resonance effects, and which may be destroyed by the presence
of even a very small amount of collisions. In this Section we introduce
éuch collisions, and in the high-frequency regime we investigate their
effect on particular resonance modes which are present in the final
dispersion relation of Section I, namely the Bernstein modes. These
occur at multiples of the ion and electron gyro-freguencies, propagating
perpendicular and near-perpendicular to the magnetic field B, in the
plasma.

In this context the general dispersion relation of Section I is far
too complicated to be dealt with as it stands; we therefore introduce &
small collision frequency and investigate the effect of this on the
Bernstein modes that exist in an otherwise collisionless, homogeneous,
magnetized plasma.

The intention is then to apply the results of this investigation
to a particular case of inhomogeneity, namely that of a temperature
gradient in a magnetized plasma. If the cyclotron resonances which
generate the Bernstein modes are destroyed in this particular case, it
is reasonable to assume that they will not be significant in the general
dispersion relation derived in Section I; therefore in using any reduced
form of equation (I.35) in the high-frequency regime, we need not concern
ourselves witb possible effects due to instabilities in the Bernstein

modes. In the following work, we make use of techniques‘and results
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published in 1964 by J.P. Dougherty [T ].

The Bernstein (or electron-cyclotron) modes were first described
in 1958 by I.B. Bernstein [ 11 ], who solved the linearized Vlasov
equation by the Fourier-Laplace transform method.  The method of
integration along unpgrturbed trajectories as used in Section I is
equivalent to this, and will be used in the subsegquent analysis.

Following Section I, we note that the perturbation charge density
is given by £

0, (z_*',t')=qj J h(r, v, t) dv dt
v t=-c0 :
where (r, v) is the unperturbed trajectory passing through (r', v')
when t = t'. In general

v.B of
Blg, mad]l = 2 (E # Soje F
C

3y

To derive the Bernstein modes, we follow Clemmow and Dougherty [4 ],
using the electrostatic approximation (in effect letting c¢ tend to
infinity) and replacing E by -V¢ , where ¢ is a scalar potential.
This gives
_ 2 t! 3f
pl(;',t‘)=§f f v . 0 av at

oY
v t=-0

By a similar procedure to that used in Section I it is possible to take
Fourier-Laplace components of this (equivalent to assuming that the
variables are harmonic functions, that is.they are proportional to the

function exp [ i(k . r - wt) 1.) The resulting equation is

ig% ” 9%

p, (k,w) = exp[ 1 (wt - k. X(¢)) ] &k . — 4dv at
. IR v
v t=o -

where X(t) is the unperturbed trajectory passing through r = 0 with

velocity v when t = 0.




The components of X(t) are linear in those of v so that
k. x(t) = v . pt)

where p(t) is easily obtained, and is the same for all particles since

v has been extracted. Integrating by parts with respect to v we find
that .
. o
pylk,w) =- E;i J J k . p(t)exp[ ilwt - p . v) 1y dv dt
v t=o

Taking f, to be the Maxwellian distribution

2
" m _mv
fo= mo (zng) exe [ - 35

the v integration is the Fourier transform of a Gaussian distribution,

which gives when carried out

‘ oo

[ k . p(t) exp { iwt -
t=0

no q2¢
m

«T
2nm

p1 = - p2 } dat

No generality is lost if we choose our axes such that

k = (k,, 0, ky); particle orbit theory gives for X(t)

v V. =V, v
X(t) = ( =X sin Ot + =X (1 - cos Qt), —= (1 - cos Qt) + =L sin Qt, v_t)
= Q Q Q Q 2
k.l. k.!. 2
. Thus p(t) = ( = sinQt, E?"1 - cosQt), k, t)
and
2 (e 0]
ngQ°¢ :
o, = - o J [Ei_iigfig + ky? t2 ] exp { iwt - g(t)} dt
t=0

1

2
where g(t) 22, [2k* (1 - cos@t) + k,2 t2 ]
m 02

= k,2 p? (1 - cosit) + % k,2 p? t2

(p is the Larmor radius as defined previously)
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Thus § -
n,q%¢
0
= - Qﬁ 1 -
P, : e J praliae {iwt - g(t)} at
t=0
o)
noq2¢ .
w - prl S exp {iwt - g(t)} at 1
t=0
Poisson's equation is V2%¢ = - Ln ) Py (r,t)

species

or, in terms of Fourier-Laplace components

k2¢ = kn ) 0, (k,0)
species
where k2 = k"2 + k*z

Suppose we consider a plasma with thermal electrons and a cold, stationary

background of ions. The ion distribution function is £, = n

5 J G(Z)’ and

the electron distribution is Maxwellian. Using Poisson's equation and

our final expression for p,, the dispersion relation for this plasma is

k.2 k2 e
1 #+ ~= 4+ == [ 1+ iw I exp { iwt ~ g(t)} dt] =0 (11.7)
k? %2
=0
han e2
where k.2 = ___B___
i,e T
i,e
00
The integral J exp {iwt = g({t)} at is the Gordeyev integral [12].
t=0 '

We may define a dimensionless form of this integral by setting t = Qt.

Then the dimensionless Gordeyev integral is

@

G = J exp {iw't - g(1)} dr {IT.2)
T=0

where w' = %:

Unfortunately, for general parameter values, the integral has no

concise analytic result. In certain limited parameter ranges, however,
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analytic expressions can be derived. The results obtained in
Appendix (IIIc) suggest that gradient effects are most significant
within the local approximation in the regime (k,p)? >> 1 ; it would
therefore seem to be of interest to examine the Gordeyev integral

in this regime.

To derive the Bernstein modes, we must look at wave propagation
perpendicular to the magnetic field; that is we must set ky = O.

The dimensionless Gordeyev integral in this case is

oo

G = I exp {iwt - k2p2 (1 - cos t}ar . (11.3)
T=0
vhere k? = klz

The usual way of deriving the Bernstein modes from this integral is to
use the identity
oo
exp (A cos Qt) = ) In(l) exp (inQt)

n=-~o
where In is the Bessel function of imaginary argument and A in this case
is k2p2 ., The integral may then be easily carried out, and the
asymptotic forms of In used. However, we intend to investigate the effect
on the Bernstein modes of introducing a small collision frequency; the
results involve modified Gordeyev integrals of greater complexity, for
which the Bessel function approach is much more difficult. We shall
therefore épply an approximation technique to equation (II.1) to indicate

the origin of the.Bernstein modes, and then use the same technique to

examine the effect of a small collision frequency on these modes.
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Chapter 2

The dimensionless Gordeyev integral for ky, = 0 is

%)
@ = J exp {iw't - k2 p2(1 - cos 1)} ar
T=0
and we intend to examine the regime k%p2 >> 1. The function 1 - cos T

has the form shown in Figure (3a). Our basic assumption in the

epproximation technique we now use is that the integrand in G, contributes

S i i ; | :
significantly to the integral only in regions near 1 ~ cos 1 = 0, since

the integrand contains the factor exp {~ k% p2 (1 < cos 1)} and
k2 p2 >> 1, This assumption is supported by later computational results

for the case with a collision frequency included. Thus we need only

examine regions where cos T = 1 ; that is where T = 2nm + ¢ with
| # | << 1 for = 0y 1§ 2y swnss
Define the number Sn (n =0, 1, 2, «¢+.) to be the size of a

domain of significance around the point t = 2nw. By this we mean that

Gn is large ehough for the following inequalities to hold:-

5 21=6,
J exp[ s(t) ] ar »>> J exp[ s(t) 1 ar
o] 60
- 21ats 2n(n+1)-6 44
and exp [ s(t) ] dar »>> exp. [s(t) ] ar
2nn—6n 21rn+6n

for n > 1, where s(t) = iw't - k2 p? (1 - cos 1).

G1 may now be written as

60 -
G = J exp [ s(t) ] ar
o
2mn+§
n

" oo
) J exp [ s(t) ] ar
n=1 2ﬂn—§n




or, replacing T by 2mn + ¢ so that
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1 cos T >
the following approximation holds:-—

§
J = exp {iw'¢ - k2 p? gf-} d¢

Gy =
o)
0 19
n 2
+ )  exp {enmiw'} exp {iw'¢ - k2 p? -g'-‘ } d¢
(s o] rS 2
+ ) exp {enmiuw'} o exp {- iw'¢ - k%p2 g~:} d¢
n=1 S
LA
Now 1-—.cos 1 = > TR e so that the integral involving

9.
exp {~ k%p? g-} is more convergent than the one involving

(II.h)

exp { - k2p2 (1 - cos 1)} ; the Gn's must also be the sizes of domains

of convergence for the integrals in equation (II.k).

Therefore
¢ 2 = 2
J & exp {iw'¢ - k%p2 %—-} a¢ = I exp {iw'¢ - x2p2 g—} d¢
< o)
Por M = 0Oy 1y 2y wes
Consider the integral
e}
. 2 2 $2
A= exp { + iw'¢ - k2 p2 5—-} d¢.
0
Change the variables as follows:~
! S~
g = — ¢ =1 (ic - p).
/Ekp
B g2 [ o
Then I = T e e dp
iz-o0
= -~ z(z)
/§kp

where Z(z) is the plasma dispersion function of Fried and Conte [13a ]




-38-
Thus from (II.h)

@ s - —-L*Z(-—ﬁ) cf exp {enmiw'}
: V2kp /§kp n=o

. w
& b © —w! onmiw!
V/2ke ( vY2ko ) n-);1 % | m_m }
ve) V2kp (1—exp [ 2miw']l) V2kp (1-exp [ 2niw']l)

If (1 - exp[ 2miw' ] ) is of order unity, then the c¢ontribution that
G, makes to a dispersion relation such as (II.1) is quite small because
of the factor (k;ﬂ_l. However, if (1 - exp [ 2miw' ]) is of order
(kpj—r » then the contribution is much more significant. This condition
results in the following
cos 2migp' = 1
=> ® = nf for n =0y £ 1T H By saws

Bernstein showed that dispersion relations involving G; have solutions
wifh real w and k for w * nQ (n # 0). These are known as the Bernstein
modes, and they are undamped for propagation perpendicular to go.

Let us examine the regime k,%p2 >> 1 and ky?p2 > 1. We have

o
G = J exp {iw't - %,202 (1 - cos 1) - 3k,2p272} ar

o
Making the change of variable 1 = 2nm + ¢ as before and using the same
approximations gi&es

(00
(a0}

G = J exp { iw'¢ - 3k2p242} ap + ) exp {2miw' - 3k,%p2(2mn)2}
o n=1

‘3
. i

fes)
% [ I exp {¢(iw‘ - kn2p2. 2nm) - %k202¢2} (st}
o

CO

+ J exp {- #(iw' - k,2p2. 2nm) - 1x2p2¢2} a¢ }
)
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For n = 1, (2mn)2 = 40; we also have ky%p? > 1. Thus

exp [- 3 . (2m)2 k4202 ] < exp [-20] for n > 1, and so the only

significant term in G is the n = 0 term. Therefore
G = -fn exp {iw'¢ ~ 3x2p2¢2} a¢
‘o
- - i 7 _?
V2k%p V2kv,

as before, where v_ is the mean thermal velocity.

1L

For cold, stationary ions the following dispersion relation

results:—

K. % K>
1.4._..:.'_._..e_Z’( ) = Oy

K2 2k?2 Yekvy,
This is the dispersion relation for ion acoustic waves in an unmagnetized
plasma with cold stationary ions. Figure (4) shows the angular regions
relative to the magnetic field in which the different types of waves

are important. For k, = 0, there are undamped Bernstein waves at

w=n for n # 0, and the damped n = 0 wave is in fact the ion acoustic
wave. For k“292 << 1, the Bernstein waves are damped, but still of the
same order as the ion-acoustic wave. For ky2p?2 2 1, the ion acoustic

wave dominates; the Bernstein waves are damped so quickly that they can

be ignored.
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Chapter 3
To investigate the effect on the Bernstein modes of introducing
a small amount of collisions into the plasma, we make use of theory
developed by Dougherty [T ]. We provide here an outline of his
procedure.

Dougherty begins with a Boltzmann equation as follows:-

of of of of
—_— %y, = S S e —— .
3t Vi . T % v, (3%) (II.5)
J J ¢
where Einstein sums of Cartesian tensors are used, and aj is the
macroscople acceleration vector. %% ) is a Fokker—Planck
c
collision term given by
of 3 1 J
=) = =— {1 -Af+3} — (B,
(at)c V. { Alf 2 v, (Blg £) }
1 d
where A, = = viv. - u.)
i i i
end B, u ( =MLy
ij m ij

v 1is an inverse time, independent of velocity

.ui and T are the local drift velocity

and temperature respectively, given by

nu, = I v. ¥ dv
i g e
3 nkT = J m(v - u)? £ dv

where n is the local number density of particles, defined by n = J f dv.
Equation (II.5) is linearized, and written in the form
DFy = h
where D is a linear differential operator, and f; is given by

f=fy+f, fj being an equilibrium distribution function. Thus
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where Dm1 is an inverse differential operator.

a set of quantities

=
T jone ok & J"i....D (vi,...8) &

DR

where at most two suffixes are needed before or after H.

Dougherty defines

Bach suffix

(if any) labels the component of v to be inserted in the appropriate

place in the integral.

The theory gives for f;

£ = (a +\>u)D ( f)+_....~\)ll31 [—m—D"l( 21‘.’)—31)_1:*." ]
1 KT 3 6 T, T L ) 0

(I1.6)

and the following expressions for the perturbation quantities n;, u, and

T, (n0 and T, are equilibrium values of n and T and aj is now the

perturbed macroscopic acceleration vector)

e dty,

YTy o m
. = —--(a. + vu.)H., + ———H,. - 3H
1. kT J T, (KTO JJ )
\)Tl m
., = + T R D -
B u. KT (a.J vu ) i HJ T (KTO 18y 3. H)
i m n vy m
+ 1= — i » P, oy T I« TN
Ry s 3Ty {KTQ (ag * vuJ)llH —E”'(KTO 11733 311H) }
T, 0
We write .___ as VTz, where Vo is the mean thermal velocity of the

particle species considered.
Dougherty in that we derive an expression for the charge
while Dougherty solves for the perturbation velocity u.

Solving equations (II.T) for ug gives

M. .
34

where
13 =
; 3v [ 3WP2 iiHJ HJ 11 VTZ iHjj DlH 1
M.. = = sHz ol
i) “T 1) 1 1
n, + \’(Tgin + HJ.j ]- 3H - ;;L, 11Hjj)

Our procedure now differs from that of

density p(r,t),
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Substitution of u, back in (II.7) gives

: ir 1
b 1 + sl = Hy a,
7, ] Vq? [ g = ijj 110 3VT2 1183 5 ] 5
T
0 1 1
— [..H+ H,.] - g o
ng + v ( vq? [11H HJJ ] 38 3vqf 11HJJ)
T
Note that n, is implicit in . and — , even though it is not explicitly
0

involved in the expression for fy.
To derive a dispersion relation, f1 itself is not required; +he
perturbed charge density p(r,t) is sufficient, and this is given as

follows, using equation (II.6):-

O(I9t) Rt | J f1(£>¥at) 4av

VM. .

= q[—» (1 +~—dde y 1 a D! (v.£f) av

v n - yM.. 0

T 0 dd
o T -1 | :
+v =— (= D (v2f,) &v -3 | D £, dv )] (11.8)
In general a. =3[ B+ l-v « Bk

1 m - . = ] 3

where E and B are the perturbéd electric and magnetic fields respectively.
To investigate Bernstein modes, we follow Chapter 1 of this Section by
making the electrostatic approximation and taking Fourier-Laplace
components, which is again equivalent to assuming a harmonic dependence
of the form exp [hi(E o P k)] .

The expression for a; becones

) i g,
: 5 m a

)
n

sk wfs
m ari

where ¢ is an electrostatic potential independent of v.  Thus

e ‘
a; = PR (11.9)
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taking a harmonic dependence for ¢ as in Chapter 1. Therefore

= _ -ig -1
j B D (v.fo) a&v = k¢ J D~ (v.fy) &v
= =ig
m i ¢ 8
Al ID'I (v2f ) & H
50 v v o= i
0" — Jd
-1
and J D (fp) av = H
T
Substitution of these values and the expression for T into (II.8)
0
gives in terms of k and w
-ig? k. ¢ VM, .
plk,0) = _~= 7§ 7 (14 —dd ) g
sz np—vM.. j
T
i 1
vl + sl =iH = o Hi —~3H
\ [ ny-vM, 1l 3vg? 117 51 [VTZ 3570
1
% — 5 & == i .
ng + v( %[11H+H I ~38 ;{E 11HJJ)
-iq2¢K vM Viz—p ..H, = H.)(—p H.. - 3H
= lgiz‘l I e H.+ Bvy? 117 J)( 2 753 :
nv no—vM.. J
T JJ 1

no = \)(3H + o R -

e T ke ..H + H..
BVT o A V% [11 JJ])

We now convert all Cartesian tensors to the polarized co-ordinate tensor

form developed in Section I. In terms of these tensors, Mij becomes
1 A8 1 £
MA 1 ; 3v | H 3V 0 H6 11 HU 3V ) EHU ]
= oy H +
a2 Y o M .8
0“3\)[H*E2(H+H)+"—1;€H6

where upper indices are contravariant and lower indices are covariant;
repeated indices (one contravariant and the other covariant) are again

Einstein sums.

S
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The charge densicy is

1 1
8 — € —_ .8
.0 wM v(3vy? CH,-H ) (vy® B~ 3H)
pli,0) = 242 > [ 2 B * = i
mv,, no—\)M6 ny = v (3H+ ?; H(S T[ H+H 1
1 €
v L 3;% eHA HA )
Define Ax =
1..€e.8 1 € 6
n, v(3H+3vq B~ L E*HT)
T iy
_1 ; SR | 4 Ak
Then M) = { "2 -3 ("H 3v2 Hg A } (11.10)
T T
and
8
“ vM
o) = wZ |1+ —= JE + (L u-sma lxt (1nan)
ng- vM6 T

These expressions involve a k with general direction. We would liké
to investigaté the effect of collisions on Bernstein modes in the region
where they are most important, namely with k, = O so that they are
undamped in the collisionless case. Thus in order to find p(g,w), we

must evaluate the following set of H-functions with k, = 0 :—

A 6 ; A 6 €y §

A
Dougherty shows that the general H-function X"'Hu can be evaluated

LR

as follows:—

. - (1I.12)

{[e
I
o
i
o

I = n, J exp [ - @(t) - ¥(t) + iwt ] at . ‘ (1T.13)
.0
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2 - 2 -
o(t) ='% 2 { 5 (vt =1 + e vt) + ks [ cos x + vt - e Vtcos(ﬂt—x)]}
m v2+Q2
-[v-1iQx 1t

o A A A (1 -e )

¥(v) = T { 30,0 + 3 py0" +1ky0 v - im
ik sl [v +i02 1%, o Ay (v o+ dan)s }
AP v + 10\ B 8y

X = 2 ’t,a.nm1 ( -

E-) and 0<xsm

Note that Greek indices are used as algebraic quantities at some points

in the expression for V¥(t); see Appendix (Ib).

For ky = O
2 S
$li) & by i [ cos x +9& =& °F cos (it ~ %) ] (II.14)
VT \)2+ 92

Since ¢ and p are eventually set equal to zero, ¥(t) disappears from the
final result of any integration.

The simplest H-function is H itself, given by

oo
H = n, J exp {~ ¢(t) + iwt} dt
)

and in general

X CX.') Aoo-
”.Hu = Mg J Fu (t) exp {- o(t) + iwt } dt
' o
where A".'F () = [ % %__ ! %-h - e—W(t) ]
Hews OA q fo) g=p= 0

We now proceed to derive one of the required F's and to list the others,

in order to prevent tedious repetition. The necessary F's are the
following:—
A €, 0 6 € A8 e 8
Bao Fol JF0 Bes Fgo By Fpo Py
where all the functions are to be evaluated with k, = 0, that is with

0 — —
k =Xk = 0.
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Consider the case .of xFu t-

Eo==l3g ghoe ]
H QOA ap g=p= 0
32y Y 3y
R gy B = S
o
GA P BUA 3p s=p=0
Now
3y _ 2 (1 - é{v+nm}t) —[U+ﬂmyt}
= W p +k . + 0 e
s T H u v o+ 10U u
o)
- _ o~ Iv+iqu] t
Therefore 2 =y 2k ! = -
3 U T M v+ 1iQu
P
g=p=0
Similarly
a_\l; ;vzk)‘ 1_e"[\J+IQ)\] t
BOA o v o+ 10X
g = Q:O
2 e
34y ; - sz GA " [vHiQu]l ¢
BoABpu H
FEpED
Therefore
AF = v o) (SA e"‘(\)"’iQ].!)t & I k)\k t = e_'[ V+19>\] t 1 - e—[ V+:I.Q]J]t J
u T u T U v kA0 v o+ 10
and
§p =y 2 [ (VMR | vt | (v -df)e ]
8 T
_ ~(v+in)t,2 (v=i0)t 2
=t [l S L. &% T y &/ )
(v+i)? (v-in)?2

Now klkl =k 1 k_, = 2k?> where k%> = k.2



Therefore
§ _ 2 =Vt
F6 = [ e (1 + 2 cos
%kszz
- — { (v -iQ)2
(v2+ 02)2
Finally
6 E -
FG = vT2 [e e ( 1+ 2 cos
2y 2
B i Vp v2-02
\)2+92 V2+92
5 2§ e—vt
v24+02

_h7_

Qt)

[1_8—(v+iﬂ)t]2 + (v+i)?2 [1_e—(v~iQ)t}2 }

Qt)

(1 - o VE cos Qt + e—e\’t cos 20%)

2z sivos ~ e 7 sin 2at)} 1

Similarly, the following expressions may be derived:—

) Y e—(v+inx)t
F = iv+k
A 7 r

% 1L v + 10QA ]

—(v+igAa)t
i A 1 - e
A, = 2
F Ry B v o+ 1iQA ]
Py 2 o *
EFE = VT2 (3 - 5 [1 - 2e Yo ene e @ S 1)
v240?
S
= FG
€& = 3 4 { 2e~(v+iﬂh)t [1 - e“(\)_lml)t 1]
e A * Vi v - 1%\
~(v+iQA)t 2 .2 ~ -
[ —ve+ Ton ] [ K Yo (1 - 2e W cos QU + e Qvt)
\)2 +92

ABl s € A
Fe is the same as eFA except that k replaces kA'
.8 _ " T 2 -2vt
8F6 = Vi [vT U QVT (30 + 2V) + (9 + 2e [2 + cos 20t] )]

2 - =
wiene = o (1 - 2e Vb coB it + e 2vt)

v2+Q2
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2 ] 202 i Py
end Vo —Ea g V0 [ 9 fove AT w20 ~2e™% 4
vZ+q? v2+4Q2
. B2 [ sin (1 - e—2vt) 1}
w2402
If we define
T . A
3v, 2 g
i
- W €
CA - HA 3y 2 eHl
T
and D = H - U ( *H + HG ).+ = sH6
: 3y 2 € ) gy 4 e 8
T T
then A= VG
A
3vD —n,
and M= —— {*m -3%24 }
H v 2 u U
T
implying M e e [ % 23 %]
) 2 $ §
Vo

Examining the expression for p(g,t), we see that the following functions

are required:-

A A A A
k CA’ k HA’ Hk’ CCA’ D
F-functions for all of these except ACCA are easily derived by combining
the F-functions for the component parts of each. ACC is a product of

A

two integrals, and therefore must be treated separately.

We list the appropriate F-functions below:-

A ikszz ' kszz -vt “Dasfisie.. -vt -t
k CA > { (1-2e cos Qt+e. Y(v [1-e cosQt] +Qe  sin
3(vZ2402) (v2402)
T B (v [e-Vt cos Ot - 1] + 2 sin Qt)}
ik2v 2
k)‘HA - z [v(1-e VP cos at) + ge VT sin Qt}

vZ+Q2
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K b . ¥
XHA > VT2 (e™VE [ 142 cos at ] - I [ = 9% (1-2e VPcosat+e eV Pcos 20t)
v2+02  v24q2
o - "
#2800V (5 ogin ot - e VY sin 2at) }
. k2V 2 2 2‘
— . + — -
D+ l'{2e S [24cos 20t ] - b sk JOVE [ ¥ (cos Qt [ 1+e 2\’t] ~2@ vt)
9 V242 v2-02
2V@_ in ot(1 - e 2Vt
v2402
Kiv ' " 2
+ T (1 -2e7 cos gt + e 2V }
(v2402 )2

Using the definitions of AC and C,, the function ACCA may be written

)\’

as follows:—

A nozkz o
cc, = > k ok J 7 , exp {iwt - #(t)} at)?
o
o0
+ ( J F -1 exp {iwt - @(t)}at)? ] (11.15)
o)
where ; 1 and } _] are given by *
s S 2l - :
iv kv 2{v-iQ) » _ v :
;; y g G FS i (1 - Qevt cos Qt + e 2Vt)(1 - e (v-+19)t)
3(v2+02) vZ + @2
=« plvie ig)(e~(v+19)t _ e—2vt)}
S ar 2 Loy 2 £ ’
iv, k?v, 2 (v+iQ) _ _ o
At : (e TS pomttl + OO = e b Ly
. 3(v2 +02) v2 + 92

- ) = iQ)(ewchiQ)t _ e“2vt)}

It is easily (if laboriously) verified from the expressions listed above
that all the integrals involved in p(g,w) have F- ar;?'- functions

which are linear sums of the following exponentials:-—



- - 4+ 1
iy s vt’ . (v £ iQ)%

(2) e—Qvt, e—(ev + 1Q)t’ e—(2v * 2i9)t

(3) e-(3v + iQ)t

Thus p(k,w) may be written explicitly in terms of the following set of

dimensionless "modified Gordeyev" integrals:—.

las)
(1) J eex;t,>{-\>'1-<l>(r)+:'L((§f;‘il)r}ch1
o)
£00
(2) J exp { — 2v't - &(1) + i( %-i m)t} dt
o)
: (I1.16)
fo'e}
(3) exp { = 3v't ~ &(1) + i( %-i 1)t} ar
o
Poo
(4) exp { -~ bv't - o(r) +i Z1}ar J
o
where £ = 0, 1
m = 0, 1, 2
T = Qt
,.and v! = %%

We now define a general dimensionless "modified Gordeyev" integral:-

00
= I exp { iw*t - rv't - ¢(1) } dr (IT.17)
o

M

14

gt 1, 2, 3, 4. Any of the integrals

where w¥* = 3y s =0, 1, 2 and r

in (II.15) may be obtained by using the appropriate values of r and s in

CTT: 16)



The dimensionless expression (1) is given by:-

2 9 22
ky“p ' k,“p '

o(t) = oz (vt = 14T e (cos x + vt - eV Teos(1y))
to)2 [(vZH7 ] B
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Chapter b

In Appendix IV we show that for kp >> 1 and (kp)_2 £ vl << 1

the integral G,, given by equation (II.16) may be approximated thus:—

M
6, = et g BBy (I1.18)
/Ekp /Ekp

where Z(z) is the Fried-Conte plasma dispersion function.  When
evaluating p(k,w), integrals of the form

o.e]

= ]
e VT sos mt exp {iw't -~ o(1)} dar

(where w' = ) are approximated by

DlE O0Y—

_le(w"ﬁm) Z(L'in_)]
/gkp /Ekp /§kp

and integrals of the form

(o/0]

posy 1
f e ™' T sinmt exp {iw't - o(7)} ar
)

are approximated by

1 w ' +m w'-m
s i R Rk ) e gy | s )
2/§kp /Ekp JEkp

It is straightforward, though lengthy, to write down expressions

A A A

in terms of Fried-Conte functions for k CA’ k HA’ H,, D, and

>t’

o0
[ &, exp liwt - o(+)lar.
1T

For example, the expression for AH is

A
2
nov, L ' t (i
e LA St R LR DI A~
/§kp fﬁkp /Ekp 2kp

YRR It =~ 8 52y s e S e e
" V2kp V2kp V2kp : V2ko /2xp

—piv' ([~ 2ivi((z ( &2t )z (&0 yo3 [z ( 202 yyp (222 Yy )}

2kp V2kp Voko ko
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The other expressions have a similar form.

w' & m

Taking ¢ = b

<< 1, we may expand the Fried-Conte functions

in a power series as follows:-—

2(c) = vt exp (¢2) - 2001 -2 ¢2 .ol

2

in® - 2r to order ¢ r (I1.20)

”

:
in? (1 - ¢2) - 2z to order 2

114

etcetersa

Substituting (II.20) to order ¢ in (II.19)

2 1 )
AHA ~ BV -1 {3in® - 32, k2p2 [ term O ([E%" 17) at most
2 /Bko kp
1 —
+ 2iv' (in? - iziﬁgfgg-)]}
ngv, 2 i -1 i n=2
3 T [o(v'ke) +0([kp ] ") +0(v') +0([kp] “ )1
Q

5 . : ~2 e
The leading order term is O0(v'kp), since (kp) ~ s v' < (kp)™! [see

Appendix IV ]

2
A . B0V

Thus HA ( 5

v'kp) ' (TZeo%)

where we use the sign "~" to denote that the leading order term of the
expression is given on the right-hand side.
Carrying out similar expansions for the other required expressions,

we find that

(oe)

j F, exp {dwt - o(t)}at = . { oy, M4d _ 3n(ow'~1) }V
o 3v2(kp) kp (ko2
+ (II.22)
> 2 ;
I‘?—-l exp {iwt - o(t)}at = —E&— { o/5 . M- 3m(2w'+1) }
3v2(kp) kp (kp)2 /.

o]



Thus from (II.15)

2.2
A T 4 3V2n i
B A 2vel 2u! -
#5 5 e 1Y g WM il
and so >‘cc}‘ -~ 0(ny2p2(kp) %) (II.23)
Similarly for D
ng -i 1 5.3 -2 4 2 ~2
p & L = { g [6in® + O([kp 1 “)] - 9 (kp)“ [ 0{[lkp 1 © ) or less ]
Q V2kp :
+5 (ko) [ O([ko 17" ) or less ]}
That is

D~ 0l §= (ko))

and therefore

3WD - n, = 3v'QD - ng
: -1
= - ny(1 + 0(v'(ke) 7))
~ 0(ng) (I1.2L4)
A
1
Now ‘ca, = @ X_Z0A
3vD - ng

lezk"z
i O(vnﬂgo(p) )

s 0 Qv'nopz(kp)_z ) (11.25)

using (II.23) and (II.24).

1 > SR |
M, = V2 {8, =37 AA}

0( B0 yrxp) using (II.24) and (II.25),

Q
Therefore vM; ~ O(no(v')zkb) ‘ (I1.26)
vM;
and so T o( (v')2kp) since (v')2 < (kp) ™2 .,
n0~vMA
vMi -
Thus 1 + —= * 1 for (kp) s v' < (kp)? {11.27)
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From (II.11) using (II.27)

ig2 8 A
plge) = = S [ H o+ (dgE - 4EIA T K (1I.28)
= mv, A Vi 8 A
: A
We may write k AA as
A \)kAC v A
kA)\ = A ol k CA
3vD-ng, 0
using (II.2k)
Now kACA mey be written as
A (%)
k CA = n, [ klkl J E}i exp {iwt - &(t)} dt
o
00
+ k-ik_l J;&i exp {iwt - ¢(t)} at ]
o
Dg [N . :
= 2 [ o/2 v - 2 using (11.22)
3/2 kp
1 1
Thus kAAA g e SR [ 2/2 v' - §ﬂg_]
3/5 kp
and kA, . 0(Qw' =) (II.29)
A kp

for v' < (kp)—l .

Using the F~function derived earlier for H(S it can be shown that

§
- 5 B -3 - o s L (L1.30)
Vip 8 o kp
and using the F-function derived for kAHA
kAHA ~  0(ng) for v' < (kp) ™ ? C1L.31)
Thus the expression
_!_ S = A r 1 _2.‘«
[ 52 Hy -3H] Ak 0 (ngw (kp)2) (II.32)

L

from (II.29) and (II.30).
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Comparing (II.32) with (II.31), we see that

2 ® - 3H ] AAkA may be neglected when compared with K E

: 8

il 4 :
VT A

Now the expression for k)‘HA in terms of Fried-Conte functions

is as follows:—

in g gy
E, = - —2 w [z (&) - z(2)) (IT.33)
2/2 /Ekp /Ekp
Consider the functions
' : Y. 2
x = --E2 [ g (&) . g (e=il),
2/2 V2kp V2kp
\J
end Y = - } z' (=)
/Ekp
In terms of small argument expansions
3 2, =
3 ' 1
£ = 4 o Snel . e'ied oo .
Voko (kp)?

1
-27 1\2
e w 4 e Anel o leldS %

V2kp (kp)2

=2

Thus X - Y ~ 0{ [kp ] ) << 1 in our approximation and so X = Y;

that is we may write (II1.33) as

R

A in w
k'H - | )
A ) Vokv

Equation (II.28) now reduces to

noAq2¢ Z' ( w )

olk,w) = v
Wt 2k,

(II.34)

As in Chapter 1 of this Section, we use Poisson's equation and the
electrostatic approximation, with a harmonic variation in the electrostatic
potential ¢ of the form exp {i (k . r - wt)} . The resulting equation is

k2¢ = lhm Lo oelk,w) (11.35)
species
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Thus the dispersion relation for waves propagating perpendicular to
a constant magnetic field By in an electron-ion plasma in which

kp >> 1 and (kp) 2 < vt < (kp)—l is given by substituting the
appropriate values of p(k,w) from (II.34) into (II.35).

The dispersion relation is then

.2 N
o1 Iy w e w
1 4+ 7' ) o+ == 2 ) = o (II.36)
ok? /2kvi 2k2 /2kve

where Ve s is the mean thermal velocity of the given species. i
.2

BEquation (II.36) is the dispersion relation for ion-acoustic
waves travelling in an unmagnetized plasma with warm ions, and is the
same dispersion relation that holds in the region of Figure (4) marked
kn2p2 > 1 in the collisionless case. Thus it seems that for kp >> 1
the effect 6f introducing a collision freguency v' (such that
(k)72 < v' < (kp)"}) is to disrupt the gyroresonances that allow the
existence of undamped Bernstein modes for k, = O. If this holds for
undamped Bernstein modes, it must hold all the more strongl& for thé
region of damped Bernstein ﬁodes (marked k. 2p2 << 1 in Figure (4)).

The statement of our result is as follows:-—
For the regime kp >> 1 in a magnetized electron-ion plasma, the
introduction of a coilision frequency v (such that (kp) % < §'< (kp)ml)
results in the replacement of the Bernstein mode dispersion relation by
the normal ion-acoustic mode dispersion relat.ion even for propagation _
perpendicular to the magnetic field.

Certain recently — published work lends support to the idea that
Bernstein modes and the Bernstein instability are unlikely to be important
in practise. Lempe et al [ 13b ] showed that in the linear theory there

is a smooth transition from the Bernstein instability to the ion acoustic

instability as the magnetic field B tends to zero, and that when
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non~-linear turbulent fields are introduced, the electron
gyroresonances for modes with kpe > 1 are smeared out. Two—
dimensional computer simulations [ 14 } have also shown the finite

amplitude stabilization of the Bernstein instability.
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SECTION IIT :~ Temperature gradient driven ion acoustic instability.

-

Chapter 1

It is well known that ion acoustic waves may be driven unstable
by introducing a relative drift velocity between ions and electrons.
The problem‘was originally investigated by Fried and Gould [15],
who solved the dispersion relation numerically and gave a neutral
stability curve showing the critical drift velocity as a function of

electron to ion temperature ratio, Te/T é Although this analysis was

e

for an unmagnetized plasma the same general conclusions may be applied
to ion acoustic waves in a magnetized plasma provided that {a) the drift
velocity is parallel to the magnetic field [16 ] or (b) the drift velocity
is perpendicular to the magnetic field but the waves are effectively
unmagnetized, that is k, >> penl s Where Pe is the electron gyroradius
[171. In the opposite limit of kyp, < 1 either the ion acoustic
instability or the modified two-stream instability may arise depending
on the ratio k"/k [18 1. A large number of recent papers have
examined this latter limit (k_tpe < 1)3; in particular the effects of
drifts caused by plasma inhomogeneities ha&e been examined [19 ], [201],
(211, [22].

In this Section we examine case (b), that is a perpendicular drift

and k, p_ >> 1.  The result of Appendix (III c) supports the idea that

the maximum effect of a gradient drift within the local approximation occurs

when k;9e>> 1. The significance of inhomogeneity drifts in this limit was
examined analytically by Priest and Sanderson [23] for Te/Ti>> 1. In that
paper, hereafter referred to as I, it was shown that weak inhomogeneities
in electron density and magnetic field (see also [ 17 ]) have a negligible
effect on the ion acoustic instability, but that an electron temperature
gradient could have a very significant destabilizing effect. Since

the physical explanation of this lies in the distortion of the electron
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distribution function (see Chapter 2 of this Section), it was suggested
that a sufficiently large temperature gradient might drive ion acoustic
waves unstablé even in an equal temperature plasme (Te ~ Ti) and for
very small or zero net drift velocities. (note that it is only
necessary to consider small gradients when density and temperature gradients
occur together; see Appendix (III a)). The numerical investigation of
this prediction is the chief aim of this Section.

We restrict attention to the physically significant temperature
gradient, choosing the density constant and the magnetic field
inhomogeneity vanishingly small. The latter is achieved in a similar
manner to that detailed in Appendix (III d4). Equation (AIII.9) of

Appendix III is

(ITE. 1)

where Ya is the net drift between ions and electrons, and ;B is the
average VB drift velocity. In this Section we consider equal
temperatures parallel and perpendicular to B, so that B8, = By = B.

Considering the electrons (III.1) becomes

Yy = B (EIT.R)

where Be = e » the electron pressure being Pe' Thus if Be << 1

~

we may neglect the magnetic field inhomogeneity, and choose B = By z

where B0 is constant and x,y.,z are Cartesian axes. The temperature
gradient and the steady state electric field are in the x—direction.
By integrating the first velocity moment of the electron distribution

function (given in Chapter 2) over velocity space, a value for v. may

d
be obtained. Combining this with (III.2) gives the equation

v = vy - ¥ (III.3)
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cE :
0 ~
where v = —— ¥y is the E . B drift velocity, (E0 and B; being
Bo o
the steady state electric and magnetic fields respectively)
sv 2
and v o= §
=~ Qe el

) M
where § is the temperature gradient, v ( ;g_) the mean electron

thermal velocity, and Qe the electron gyrofreguency. ?he electric
field is necessary to establish equilibrium; valthough this could also
be achieved by an opposing magnetic pressure gradient, the resulting
configuration would be less unstable than the one we consider,

The results presented in this Section consist of a series of
graphs showing the frequency w = wp * iy plotted against the wave-number

k for various values of the following parameters:-

the ratio of ion temperature to electron temperature 5

L3,
/T'
e

the normalized temperature gradient drift velocity vT/
Ve

the normalized net drift velocity vd/
Ve

5 . k

the sine of the angle between k and B */

k

-

We take the ion-electron mass ration to be 1836, thus considering a

hydrogen plasma throughout. We also show how critical values of Vi

for neutral stability mey be obtained for a given temperature ratio,

and we provide stability diagrams for different values of \FE
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Chapter 2

We consider a Maxwellian ion distribution, and an electron

distribution function fo as follows:~

n (V = W )
£y = - 3 {1+~6—- N (2—3)2"3]&*u1}
(omv 2) 12 20 v 2 . Q -
e e e e
¥ 1 : 2
s gxp [ o» — Yy~ 3,07l (IITI.4)

2v
e

This expression comes from (I.11) and (I.12) of Section I with e = 0,

8§, = 8y and T(,-L = TO". An E ~ B drift voi has been introduced into

the distribution. Figure (5) shows how the temperature gradient §
distorts the electron distribution away from the Maxwellian and introduces
a positive slope, thus making instability more likely (from I).

We may now carry through an argument essentially similar to that
given in the first part of Chapter 1 in Section II. A dispersion
relation is derived of the form

TR @ K 0 (TTT.5)
where K. is the ion contribution and Ke the electron contribution.
Following through the argument with the modifications introduced by
warm ions and drifts in the electron distribution, it is found that
Ki and Ke have the foilowing forms: -~

k.2
K, = —= [1+1i %- 61 (111.6)

i k2 i

where G, is the dimensionless Gordeyev integral given by equation (II.2),

k2 i(w-k, v,) ik, v
K, o= == [ 1+ o o) ¢ ——F %u a(u) ] (III.7)
k? _ e e =1
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where G(u) is as follows:-—

00
aly) = I dr exp {iw't - uk,%p? (i-cos 1) - %ukuzpz T2}
e
o -
(ﬂ_k.’.vO
Here w' = *———?;-- , assuming a wave vector of the form
e

k= (O: k,, Ky).
We now take klzpi2 >> 1, and to exclude the Bernstein modes in
the collisionless case, we must restrict attention to the regime

k..zpi2 > 1. Equation (III.6 ) reduces to

2 3
K R -lij; 7! ( L ] (III . 8)
1 2k2 A Ekvi

using the same method as in the final part of Chapter 2 in Section I.
Similarly, when klzpez >> 1 and we exclude Bernstein modes in

the collisionless case by taking k,.zpe2 2 1, Ke becomes

"
‘ k 2 (w - k,v, - = k,v.,)
K =—§—[1+ L St L 2l
» k Y2kv B
e
k, v,
s el g gV ip 1] w0 (111.9)
2/§kve

where z_ = (v - klvo)//gkve
Substitution of (III.8) and (III.9) into (III.5) results in the

following dispersion relation:-

2 2 Je B
- ki - ( /;k ] . ke % w = kv 5 klvT L)
ok2 Vi K2 /2_kve S
k, Vi

z Z'"(z )] =0 (III.1C
2/§kve % ¢

Note that, as in the calculation of reference [ 13a], the magnetic field

now appears in the dispersion relation only through the drift velocities.
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Equation (IIT.10) describes ion acoustic waves in the region
ky2p2 2 1 in the collisionless case. However, we see from (III.6)
and (III.7) that K. and K inveclve Gordeyev integrals and modified
Gordeyev integrals which are independent of the drift velocities.
It was shown in Chapter 2 of Section II that cyclotron resonances
resulting in Bernstein modes arise within the Gordeyev integral
itself, and in Chapters 3 and 4 of Section II .that the introduction
of a small collision frequency v (such that (kp)_2 < %- <’(kp)_]) is
sufficient to disrupt these resonances within the Gordeyev integrals
resulting in the ion acoustic wave dispersion relation sven for k, = 0.
We carry over this result into the present Section, and assume the
existence of a collision frequency v (as above) which destroys the
cyclotron resonances within the Gordeyev integrals in Ki and Ke'
This allows us to relax the collisionless restriction that k,2p2 2 1
for exclusion of the Bernstein modes, so that from now on we may use
the dispersion relation (III.10) to describe waves propagating
perpendicular and pear~perpendicular to the magnetic field. That is,

we take the ion acoustic wave dispersion relation to be valid even for

Computational solutions of (III.10) under various parameter changes
were obtained on the U.K.A.E.A. Culham Laboratory I C L L4-T70 computer
using the interactive root-finding programme of Martin [ 24 ]. We
give the results of these computations under two main headings, namely:-

(a) The effect of a temperature grédient drift velocity
and (b) Stability diagrams.

(a) The effect of a temperature gradient drift velocity

As mentioned previously, a Cartesian reference frame has been chosen
such that the magnetic field lies in the z~direction; the y-axis lies

along the net drift velocity direction and slong the direction of k,.
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Thus the ratio k-‘-/k is equal to sin 6 for ion acoustic waves
propagating at an angle 8 to the magnetic field. As 8 increases,

ky

Ef-also increases to the value 1.

Figure (6) shows the normalized growth rate Y/we plotted

v v,

against 1%k for Ei = 0.5, 0.866, 1 and for ;Q = 0, ;2~= 0.5,
e k e e
T Ynn,e? w 2 k,

i 2 g 9 5 =
~~= 0.3 {(where w 4= —— sand k ¢ = = ). Yor — = 0.5
T € m & v k

e e e

ion acoustic waves are stable (that is y is always negative and the

k g
waves decay). As 1 increases, the waves go unstable over a range
k

of wave-numbers, and the maximum positive growth-rate occurs for Ei = 1.
k

Ti/Te were investigated,

Other values of the parameters vT/ve, vd/ve,
and the same effect was found to occur in each case. The explanation
for this is that ion acoustic waves extract the maximum amount of energy
from the drift motion when propagating parallel to the net drift velocity

{151. In figures (7) to (15) we consider only maximum growth rates,

k .
and so we choose 1/k = 1 in each case.

Figure (7) shows how a plasma with no net drift (vd = 0) and

L%

1/‘I‘e = 0.3.1is driven unstable over a range of wave-numbers by

2

increasing the value of vT/ve. For -L = 0.1, ion acoustic waves
Ve

decay; but for ji_ = 0.5 an unstable wave-band appears. Figure (8)

v
e

-
shows & similar situation. A net drift of ‘;Q = 0.5 is not sufficient
e

to counteract the stabilizing effect of a tempersture ratio of order unity;
v
even with _T = 0.5 ion acoustic waves still decay. However, taking Vip
v
e

Q
equal to v (that is, the gradient & = e/ve) we find a considerable
positive growth-rate. TFigures (7) and (8) are typical examples of a

number of sets of results obtained, all of which show the same effect
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occurring for a variety of parameter values.

Pigures (9), (10) and (11) show how the real part of the frequency
wp is affected by increasing vT/ve; Figures (9) and (51) are for the
situations described in Figures (7) and (8). In Figures (9) and (10),

against k for v, = 0 are

over the chosen range of k, the curves of w T

R
convex relative to the k-axis [ due to computing difficulties, no

Vp = 0 curve was found for Figure (9) 1. As -v_, increases, the convexity

T

is seen to deérease in all three Figures, until the curves become concave.
For VT/Vé = 1, the concavity is very obvious, though it may be seen in
Figure (7) that over the final part of the vT/ve = 1 curve, a convexity
is again becoming apparent. In a normal ion acoustic wave, the phasé
velocity decreases with increasing wéve—number. We note from the above
results that the effect of a large electron temperature gradient is to
modify the wave in such a manner as to give increasing phase velocity

with increasing wave number.

(b) Stability diagrams

In figures (12) to (14) we give a detailed picture of the transition
from complete stability to complete instability over the chosen range of

wave-number, for 'd = 0 and Ti/Te = 1.5

v
e
Vip
Figure (12) :- at = 1.25 we have complete stability, while
e
Vip
sl = 1.41 we have complete instability.
e
Figure (13) :~ expanding the growth-rate scele and including more
Vi
values of T s we see how the y against k curves peak more and more
e
Vip
sharply as we increase the value of ;— .
e
Figure (14) :- finally we expand the growth-rate scale still further,
Vg - Y
and plot a series of curves over a small range of — . At Y = 1.283,

e (=]
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the curve just crosses the k-axis, giving a small unstable wave-band.

v,

J i
As = increases, the unstable wave-band covers a wider range of
e

wave-number and has a greater maximum positive growth~rate, Ultimately

the unstable wave-band will stretch from k = 0 past !%k = 1, as
'V'T e
demonstrated by the == = 1.41 curve in Figure (12). From Figure (15)
e

we see that the same peaking effect occurs for non-zero net drift
velocity. It may be noted that the peaking behaviour of the y against
k curves only becomes obvious when IIIi/Te_> 1. Below this value, the
transition from a completely stable state with no appreciable peak to

an unstable state occurs over a very small range of vT/ve. For example,

the transition occurs between ZE = 0.932 and IE,= 0.933 for ?i =1,
v v T
e e
”
-4 = 0.1,
v
e

The point of neutral stability for a given temperature ratio occurs
vhere ion acoustic waves are on the point of instability; - that is just

before the transition for ’

Zi =< 1, and where the peak of the y against
T
e Ti
k curve Jjust touches the k-axis for E*-> 1 Fried and Gould [ 15 ]
Te

showed that for a simple drift (vd =% in our case) the points of
T,

. i
neutral stability for the range 7~ = 0.05 to 20 occur at k = 0.

e
We see here that the peaking of the y against k curve due to the
introduction of a large electron temperature gradient leads to the

occurrence of a neutral point at some k greater than zero. We

may note that these neutral points occur where the phase velocity
T %

w, d
v. = v. (where v_= =B and v. = ( —&-) J. Obviously we now have
P 1 P k % mi

a straightforward computational method for finding neutral points.
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v, T.
We vary T/ 1/T

Ve until, depending on the value of o> Ve either

find a sudden transition from stability to instability, or we find

the curve whose peak touches the k-axis; the accuracy in finding a
neutral point depends only on how much computing time the operator

wishes to spend on each point.

T
Neutral points were obtained for various values of l/Te in the

v v :
cases ;Q = 0 and ;Q, = 0.1. The results are shown in Figure (16).
e e

For a plasma with a given net drift, electron temperature gradient and
temperature ratio, ion acoustic waves are damped if the plasms lies
below the relevant curve, and grow if the plasms lies above thc curve.

It may also be noted that the formula V4 + % Vi given in I for the
"effective drift velocity" is verified by the diagram over the whole
range of Vip investigated, with a relative error of modulus less than 3% ;

this error is about the same as the sum of the computational and plotting

errors. Thus for small values of Zg at least, the formula holds

Ve
i
remarkasbly well when T is of order unity, even though it was proposed
. 2 |
for El- << 1. We see from this formula that an increase in Vi has
e

a greater destabilizing effect on ion acoustic waves than the same

increase in Vqr

o0
PRI
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Chapter 3

In this Chapter we give explanations of the results outlined
in Chapter 2, from (a) the analytic point of view and (b) the physical
point of view.

(a) Analytic approximation to ¥y

k-l.
An analytic approximation to y for Yy 0 and —— = 1 may be

k
obtained from the dispersion relation (III.10) by making the following
assumptions:-—

(1) vy << wp (2) v <<vw (3) v,~v_ .

P e T e

The first implies an examination of the region close to neutral stability;

v
the second is supported by values of ;R derived from the computational
e

results of Chapter 2. The third is required for the peaking effect to
be obvious. Although the approximation is not accuraté enough to rival
the computed results, it provides an insight into the reasons for the
peaking effect.

Consider the Fried-Conte function Z(z) where z = x + iy and y << x.

Using a Taylor expansion

y2
Z(z) = 2Z(x) + iyz2'(x) - St EMlx} & e
= Z(x) + iyz'(x)
w iy
Now = EEL« + .
V2kv, /okv.  V2kv.
n 1 o ®
L, iy
= = _p +
2 . V2kv,
3 X
1 v iy 1 v
So Bz ) o8 BL = Fp] e aske gl [ Tp) (I11.11)
V2kv, 2 v V2kv, 2 v,

using assumption (1)
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Meo oY 1T 1 Ve, iy
/Ekve V2 Ve V2 ve /Ekve
w o L Vpoy 2L
/5 v_ Jgkv
e e
using assumptions (2) and (3)
Therefore
b .. (G iy 1
Z(-—-——.—__—__) =~ 7 (—-— ——) +'¢Z'[""‘ ’v-") (III.12)
/Ekve V2 e VEkve V2 e

using all three assumptions.
The standard expression for Z'(z) is
z'(z) = -2(1 + z.Z(2))
and substituting the approximations (III.11) and (III.12) into (III.10),
the following expression for Y/we may be obtained-from the imaginary

part of (III.10):-

ﬁ- = -%%ﬁ% (II1.13)
e
where
Alx) = x,Imz(x) - C
k. m, 3 T 3
Blz}y = o5 == { miz=) (7] [x-3 Rez(x).(1-2x2) ]
L - e £
1 3
= ReZ(b) [1 - (=2+ 1) . 2b2+ /2 b3 }}
= (@) :
T,
¢ = 3 Ei Im 7(b). [2b3 ~ 3 ]
e
s 1%
V2 v,
1 v,
— m
bR =g o
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In regions where the peaking effect of the y.agains£ k curve
is obvious, B{x) is positive over the range of k investigated.
Por small k/ke it is large, and it decreases as k increases, Tﬁe sign
of y is therefore determined by the sign of A(x), and for given Ti/Te
and vT/ve in the regions investigated, C is fixed and positive (note that
x . Im Z(x) is positive, so that A(x) and therefore Y/we should alﬁays

be positive when C is negative, that is when YT/Ve > V3 ; & set of

computed results for-zgk'= 0.1 and Ei_= 2 was obtained in which %
e L e
5 Vip P
changes from negative to positive at ;e 1.73). For El = 1,5 and
e &

-
;2 = 1,283, C = 0.717 and the function A(x) takes the form shown in

e

Figure (17). As noted previously, for these -values of Ei andlzg
’ T v
e e

the phase velocity vp, and therefore x, increases with increasing k;
thus the peaking behaviour of the Yy against k curves is shown to be &
result of increasing phase velocity. In this approximation IYI + 0

as k + 0 since B(x) involves a factor Eg +  No computed results were

k
. : Y2k : e i
obtained for'ﬁE— < 0.065 because of computing difficulties, but the
5 :

trend of the y against k curves up to this point agrees with the

approximation.
v
The general variation in ;R with k is shown in Table (3), for
i
T v, oy v o
values of “i and _T close to neutral stability ( 4 = 0 in all
v v
e e e

cases). The subscripts on the variables in Table (3) represent the

following parameters values:-

: Ti o Vip : Ti Vip
{1} S o vl Ol 5. e o QUGHY {2} = T = 1.5 7 =0.229
e e e e
s v, T. v,
(3} = =10 5 £ =025 ) = =5 E= 1283
L =] e e e



T v, v
For large values of E%- and ;2-, ;? is sensitive to changes in k,
: S e i
Ti Vip
and is increasingly less sensitive as T and s decrease. The
e e
v
approximation (III.13) depends heavily on ;2 . In case {U4} of
7

v 5 .
Table (3) the rapid change in ;R results in a well-defined peak in
i

the y against k curve (see Figures (13) and (14)), while for lower

T. v, v
values of Ei and = g smaller changes in —B , allied with a decrease
e e 1

in C, result in the peak being flattened and spread out over a large
range of k. In fact, in regions such as {1} of Table (3), where normal
ion acoustic behaviour is apparent, the peak no longer exists.

b) Physical approach

The physical explanation of the peaking effect lies in the distortion
of the electron distribution function. In a simple small displacement of
the peaks of the ion and electron distribution functions, ion acoustic
waves have decreasing phase velocity vp with increasing k. In the region
of low vp (k = ke) , the growth due to the small positive slope of the
electron distribution is cancelled out by ion Landau damping; instability
appears at larger vp(k + 0). However, as mentioned previously, the

effect of a large temperature gradient drift velocity v., is to modify the

T
ion acoustic wave in such a msnner that vP increases with increasing k.
This effect enables us to explain the peaking effect of the Yy against k
curves for large Vi directly from diagrams of the ion and electron

distributions as follows.

Consider firstly Figure (18a). This shows the qualitative forms
of the distribution functions when _Ei is ﬁ 1, and both zg and ZE
T ' v v

e e e

L v
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are Zero. In this case, vp decreases as k increases. Therefore,
near k = 0, vp is large and the gradient of the electron distribution
function is small and negative, so that electron Landau damping is
small. As k increases, vP decreases; the electron gradient becomes
more negative, and electron damping increases. Finally, the ion
function takes over and damping increases rapidly. It is therefore
easily seen that the y against k curve will have the general form

shown in Figure (18b); this form is very similar to the computational

curve ghown in Figure (7) for fg = 0 and Xg = 0.1, with Ei = 0.3
v v T
e e e
. . . v, v ) e
in this case; Figure (8) for T =0 and _d = 0.5 shows a similar
v v
e e

form., In the case of small ZE s therefore, we have a monotonic
v

e
damping curve until large k is reached, and no peak appears on the
(k,y) curve in the regions investigated.

Figure (19a) shows the forms of the distribution functions for

v, P

v ;
;i = 0, 2 +1 and Ei ~ 13 Figure (19b) shows the resulting (k,y)
e e e
Vp
curve. The .effect of taking e of order unity is to reverse the
' e
variation of vp with k. We may divide the positive v-axis into four =

regions (a, b, ¢, d) as shown, and examine each separately;

Region (a):- For k near zero, .7 is small, There is low ion damping,

and it can be shown (by differentiating the distribution function with
respect to v) that the electron distribution élope is zero or very small,
though positive, in this region. The net result is small damping.

Region (b):- Increasing k increases vp, so that strong ion damping occurs,
though the positive electron slope is still small., The net result is

strong damping.
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Region (¢) := The increasing positive slope of the electron
distribution function overcomes the negative trend of the ion slope,
so that the net damping decreases until a minimum demping point is
reached when vp is near the peak of the electron distribution function.
Region (d) :~ Ion damping is now small, but the slope of the electron
distribution function has become negative, so that damping increases
rapidly.

Thus the form of the (k,y) curve given in Figure (19b) results

directly from the shapes of the distribution functions given in Figure

(19a); the computational curve plotted in Figure (14) for Zg = 0,
v

e
Ti Vip
7= Lfend = = 1.28 is obviously of the form given by Figure (19b).
e e
Vip
As T is increased, the peak of the electron distribution function is
e

moved further to the right in Figure (19a), into a region of smaller ion
damping, so that the peak rises until it touches the k-axis (as happens

in Figure (14)), giving a point of neutral stability; finally a region

of instability is produced (again see Figure (14)). Points of neutral
stability occur at v = 0.98 v, for i = 1.25, and at v = 0.97 v.
b 1 Er' P 1
e
L

for El- = 1,5, A similar explanation holds for V4 # 0, except that a
e

smaller gradient is sufficient to achieve the same effect.

We may note that the boundary between the regions in which v
increases and decreases with k is determined by the curve of constant v
in Figures (9), (10) and (11). This is a straight line between the
concave and convex curves, and must also be the bhoundary between the
regions in which a peak in the (k,y) curve exists and does not exist.

The geometry of plasma inhomogeneities and electric and magnetic
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fields assumed in theée calculations has wider applicability to
experimental situations than just the collisionless shock experiments
referred to in I; see, for example, references [25 ] and [261].
Observations in these experiments, however, appear to be restricted
to waves with k, By 1, so that the theory of Liu [21 ] is perhaps

more appropriate.
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SUMMARY OF RESULTS

a) In Section I we extended the "polarized" co-ordinate system for
use in describing the propagation of waves in a collisionless plasma
with general density gradients, temperature gradients both parsllel
and perpendicular to the applied magnetic field, and an E ~ B drift.
The use of polarized tensors enabled us to derive a di;persion relation
which was compact and unambiguous. In this dispersion relation the
gradients appeared as coefficients multiplying moment tensors whose
components could be evaluated separately from a given problem, and
listed for easy reference. The dispersion relation for a simpler
situation than the general case could then be found merely by
substituting the appropriate moment tensor elements. Also the
conductivity tensors derived in Section I are in tensor equation form,
and so may be evaluated in any other co-ordinate system merely by
transforming the necessary tensors according to the appropriate
transformation law and substituting into the conductivity tgnsor equation,
The full dispersion relation was derived within the local
approximetion, and under the condition B, << 1 in order that gradients
. in magnetic field might be neglected, to simplify the situation, It
was found thét no gradients in density or temperature can exist in the
direction of the magnetic field, to ensure that the equilibrium particle
distribution £q is a function of constants of the motion. It was also
found that within the local approximation the effect of parameter
gradients was strongest in the high-frequency regime k,p > 1. For
k, p < 1 the local approximation is valid only for very small gradients.
b) In Section II we used the results of J.P. Dougherty to show that
for a wave-band within the high~frequency regime kp >> 1 in a magnetized

electron—ion plasma including a small collision frequency v such that
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'(‘kp)'-2 < %- < (1«:;:))“'1 » the cyclotron resonances which generate the
Bernstein modes propagating perpendicular and near-perpendicular to
the magnetic field are destroyed; as a result of this the dispersion
relation involving Bernstein modes may be replaced Ly the ion-acoustic
dispersion relation even for propagation perpendicular to the magnetic
field.

c) In Section IIT we extended the result of Section II to a plasma
with unmagnetized ions, and with electrons subject to E ~ B and
temperature gradient drifts. We then verified that the inclusion

of the electron temperature gradient increases the likelihood of ion
acoustic instability, and showed that, given a net drift of %ve, a
gradient of magnitude Qe/ve can drive ion-acoustic waves unstable
even when Ti = Te. Given a greater net drift, a smaller gradient
produces instability, though the gradient drift is a more effective
destabilizing agent than the net drift velocity. Also, a large
gradient reverses the variation of phase velocity with wave number

for ion gcoustic waves,

Next we showed that the existence of a large gradient changes
the behaviouf of the growth-rate curves in such a manner as to create
easily-calculated points of neutral stability at wave-numbers greater
than zero, and we provided analytic and physical explanations of this
effect, which also results in the creation of isolated unstable wave~-
bands at values of the gradient greater than the critical value.
Finally we provided diagrams from which the stability of ion-acoustic
waves in a given plasma may be determined. These verified the formula

Vd'+'§ vy for the "effective drift velocity" over a range of Ti/Te

greater than could have been anticipated from the analytic calculations

of ;.




-78-
APPENDIX T
a) In dealing with problems in magnetized plasmas, the zero~order
field B, defines a preferred direction in the plasma, since charged
particles are constrained to move in helices aligned along'the direction
of Bg. Orthogonal Cartesian co-ordinates and their associated tensor
system have no preferred direction, that is no cylindrical symmetry in
this casej; this makes compactness of notation and the retention of tensor
form very difficult to achieve when these Cartesians are used to describe
magnetized plasmas, ‘
The first possibility to come to mind when discussing cylindrical
symmetry is the familiar one of cyclindrical polar co-ordinates (p,0,z)

defined in terms of the orthogonal Cartesians (x,y,z) by

p2 = x2 + y2
6 = tzzo.n_1 Y/x
Z = Z.

In this case the z-direction defines the preferred direction.

The definition of-the element of length ds in tensor notation is
(as)2 = g ax" ax" (AI.1)

where lower indices are covariant, upper indices are contravariant and

we use the Einstein summation convention. The tensor g _ is the metric
’ r

tensor for the system of variables x .

For orthogonal Cartesians the metric tensor is

i © B8

(g,) = o 1 o0
O.C.

8 O 7

Contravariant and covariant components are identical in this system. For
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cylindrical polars the metric tensor is

—
éj;
I
o
©
(S}
O

In this case we must distinguish between contravariant and covariant
components.,

Suppose we require to differentiate a vector Xr with respect to
the components of the position system xs, s8Y. In general we must

define a covariant derivative in order that the result of the

differentiation is itself a tensor. This covariant derivative is "given
by

5 =_af1;_{m}x (A1.2)

where {rms } is the Christoffel symbol of the second kind

m _ 1 _mp ; agsg agpr agrs
{rs}_ag [ e ® iatih """p"—]
ox 3x ax
and g"® is the metric tensor for covariant differentials. For
oX
. . my - S
orthogonal Cartesians 8y, 1S constant so that {r s} = 0 and Xr,s axs .

FPor cylindrical polars { = # 0, and so the full covariant

r s}
derivative (AI.2) must be used.
We would like to have a co-ordinate system which includes a
preferred direction like cylindrical polars, but which also retains the

simple derivatives of the orthogonal Cartesian system; this is

achieved by the polarized co-ordinate system introduced by Buneman { 6 ],

and extended by Dougherty [T 1. The elements of the position system

(x!, x%, x™!) are given in terms of (x,y,z) by the following:-
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—
il

570 Ly o dy)
x% = 2 (AT, 3)

xl = 2_% (x - iy)

Note that the component labels are (1, 0, -1) instead of the usual
(ly 2y 3V

From now on we use Greek indices to denote polarized co-ordinates
and Roman indices to denote orthogonal Cartesians. We define the metric
tensor in polarized co-ordinates to be gku’ and the metric tensor in
orthogonal Cartesians to bhe 2. dmn' To find an expression for gku’

we look at the invariant length element ds.

(ds)2 = By ax™ ax”
(AT.4)
= gMJ dxx dxu
Now g ax™ ax” = ax2 + ay2 + dz2  and from (AI,3)
ax = 2"% (@t & ax )
-3 S §
dy = - i2 ® (ax! - ax )
dz = dax’
Therefore
dx? + dy? + dz2 = ax! ax™! + ax”! ax! + ax0 ax?
& v
= gku dx” dx from (AI.h)

Comparing coefficients of the differentials we find that

Bi-1 T 1 s By =V 3 gy

and all the other coefficients are zero.
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Therefore
_ o 0 1 ¢
&
0 1 0
3 5 5 , }AI.S)
= 8

As=U 4

If we have a vector AA, the associated vector Au is given by

B, = 8 i
Therefore Ay = 8 AL 8y A% w6, AT
= A_l
Similarly A = A0 ana A, = Al

Thus indices are raised or lowered merely by changing sign. We may
note that the invariant (ds)? in polarized co-ordinates contains
products of differentials with different indices, so that the system
is non—orthogonal.

By using polarized co-ordinates, we now have the x’-direction
as a preferred direction, while the (x!, x ') co-ordinates together
play the same role as the (p,0 ) co-ordinates in éylindrical polars;
they define the plane perpendicular to the x0-direction and retain
cylindrical symmetry. The advantages of this system are that
contravariant and covariant components are very simply related (by
a change of sign), and glp has constant elements. The Christoffel
symbols are therefore always zero, and covariant derivatives reduce
to ordinary partial derivatives.,

We note here the general tensor result that the position system
x° is not a vector, but that covariant differentiation of a tensor with
respect to x° does result in a tensor with an extra covariasnt index.

Therefore in the case of polarized co-ordinates partial differentiation
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of a tensor with respect to x’ results in a tensor with one more
covariant index than before.
One further point to be noted conzerns the question of choosing
the contravariance or covariance of vectors and tensors when transforming
from (say) Cartesian tensor notation to polarized tensor notation.
Our procedure is to arbitrarily choose basic physical vectors to be
contravariant, and then all other gquantities are chosén according to
the Einstein summation convention.

For example, suppose we have the eguation
J = g- E
We let j and E be represented by ju and E in polarized co-ordinates;

then the equation takes the form

Thus the conductivity tensor 05

is chosen for us by the summation
convention,

b) We now derive some properties of polarized tensors, defining

certain useful scalars and tensors. Firstly, we define

g = det [ &y ] = -1 from (AI.5)., Next we define the permutation
Auv
tensors e -and eAuv to be such that
AUV - . - s
e =+ 1if (A,u,v) is an even permutation of (1,0,-1)
or = -1 if (A,u,v) is an odd permutation of (1,0,-1)
e = 0 otherwise
AUV
Now eluv is a relative (or pseudo-) tensor of weight 1, while e

Auv

is a relative tensor of weight -1. We now define corresponding

absolute tensors, the e-systems, such that



AUV

o3 R |-

e = 1ie

e % = Auv Apv

AUV

v

Raising and lowering of the indices of permutation tensors is achieved

through multiplication by the appropriate metric tensor, for example

eA.v = s expv
) Pay—H
U = P y~H
= gP» e
g Apv
g ¥ F AV i
Since the metric tensor is an absclute tensor, e g and eA 5 are

relative tensors of weights 1 and -1 respectively, and are such that

\

elﬁv =+ 1 if (A,~p,v) is an even permutation of (1,0,-1)
or » = -1 4if (A,-u,v) is an odd permutation of (1,0,-1)
e ¥ = 0 otherwise

Aov

The vector product of two tensors ax and b" is defined as

< WYP = PAM il o pAN
(a ~ b) aAbu ie akbu
(AT.6)
Ap AL
aa~b = ¢ = ab
( )p pap &P * Bagy

As an example of the use of these expressions, we derive the following

result:—

. . o O 00 2 B
[k~ (k~E)] [ k%, = k265 1 (8))

Now

It

[k~ (kA E)I1% =-1e¥ k) (k. Ey)

u

— _ 3 JOpU . Y B8
= - 1e kp [i euYB k (El) ]

_ Gpu Y B
= e k k'(E
T

§% % kY(El)B
v8 P



—-8h~
© where
¢ O when two of the subscripts or superscripts are
the same, or when the superscripts do not have
the same two values as the subscripts.,
+ 1 when (a,p) and (y,B) are the same permutation of

the same two numbers.

- 1 when (oc,p) and (yv,B) are.opposite permutations of

L the same two numbers.

Comparison of elements verifies the result:-—

L O L RN

GYB Yy 8 GB 67
Thus

: a o P o P Y B
A AE o - 6
[ &k~ (k _1)1 [ &, 8, 8p 6,1 Kk (E1)
w [ a¥g, = w2 lm )"
g B 1

as required.
One further useful property is that in certain circumstances
the tensor indices may be used as algebraic quantities, condenéing
the notation even further. For example, suppose we look at the

unperturbed orbit of a charged particle in a constant magnetic field Bg:-

= X Va.B, and X=V
me - = = =

i< -

with V=v and X =0 at t = 0.

Writing these in terms of orthogonal Cartesians, and then transforming

to polarized co-ordinates, we get the equations

vl = -jovl xl = v!

VW= o x0 = y0

vl = iqy-l x1 =y
with corresponding initial conditions (Q = EE& "

ne
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In polarized vector notation this is

VA = - inka and XA = VA
with Vx = VA and XA =0at t =0,
Solving these we find that
vk A e—lﬂlt
‘ N _ (AT.7)
— XA - (1 e—lﬂkt)

where the summation convention would only apply to the vector quantities.
Note that when A = 0, to find XA we must use

1lim [

~iQAt
30 [ =70

1 ;
x = 1iQt
Equations (AI,7) are much more compact than the corresponding solution

in terms of Cartesian vectors.
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APPENDIX IT

The tensor moment integrals defined in Chapter 3 of Section I

are as follows:—

A% 1%} c® = 1%+, 2) p* = 1%{¥,2}
o o o a
F, =1 {w G = I4{v. }
B ¢ 8} p { p
Kg = I%v,2v } Lg = I%v,2v }
M = 1w v }
up H P
) ®
where I { }= =2 J J v* £ el(wt_g'x) { } dv at
me _ M av
v t=o
As an example of how the integrations involved in the use of % }

are carried out, we now derive the element G_i . The elements of A%

and Gg are then listed. Finally a method is given for deriving the
o o o o 0

elements of C and D~ from those of A, and the elements of Fp, Kp

and Lg from those of Gg.

The unperturbed trajectory of a charged particle travelling in a

constant magnétic field B,z and passing through the point r = 0 at time

t 1is
v, -
X(t) = & [ sin (2t + ¢) - sin ¢ ]
v
¥(t) = §i- [ cos (Qt + ¢) - cos ¢ ] " (AII.1)
Z(t) = wut J

where ¢ is a phase angle.

Thus

Vx(t) v; cos (Qt + ¢)

(A1T.2)

i

Vy(t) ~v, sin (Qt + ¢)

Vz(t) Vu
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We choose the wave vector k = (kx’ 8y Kyl That is the x—direction
is chosen to lie along the direction of k, ; there is no loss of
generality since the x and y axes are arbitrary at this stage.

It is easily seen that the polarized V components are

N

vl = Sk v, e”1(9t+¢)
V2
Ve = ¢y b (AT11.3)
s =
v = 1 v, € 1(9t+¢)
2 )
Similarly the components of v are
vi = & v, e . ¥y
/2
'V'O = Vn
v-l TR | v, e = vy
Vo
Therefore V} Ty = 3 v,;2 e_1(9t+2¢)
Now
A k v - -
wb =~ kX = (0 - kyvy)t ~ _+ * [sin (9t+$) ~ sin ¢]
Q .
and
1
: - n _2
fy = D (w—-} ) exp{ - (a,v,%+ ayv,2)}
. '“' 'n,
from REquation (I.12).
So
00 o 2m [0 0]
-i(Qt+2¢)
al 1 .2 il
-1 J J J J = e u
V= 0 Vp= = © $=0 t=o

coexp {i( [w = kywy 1t - ¢ [ sin (Qt+4)- sing. 1) }vidv,dv,dédt

kv,
f

where ' =




Bl
The t—-integral in this expression is

(e o]
J Siat i [ w=kyvy 1t exp {-ir sin (Qt+¢)} dt

o}

We now make use of the following Bessel funetion identity:~

iz sin 6 & in® .
et = I 9.(x) e (AII.b)
n=«-
where Jn(;) is the Bessel function of the first kind of order n
(see reference [271). Using this we may write
fole)
& -ing
I, = ) J (c)e f exp [i {w-Xkyvy - (n+1)}t ] at
n=-00
o
o~ _ @
= —in¢ €XD [{w_k"vn_(n'*"])ﬂ}t ]
nz—oo ;n(c)e [ i{w-kyvy ~ (n+1)Q} (ALL.5)

t=o0

The limit t = oo in the above expression is equivalent to a time in
the infinite past according to our original formulation of the problem.
The principle of causality asserts that "effect" must follow "cause";
in this case the "cause" is a perturbation in the electromagnetic field
in the infinite past, while the "effect" is the perturbation distribution
function fl‘. With reference to the principle of causality then, we
assume that f, grows from zero in the infinite past to its value at t = o,
and therefore that all gquantities derived from f, must also have zero
values in the infinite past, since they must "follow" the perturbation -
in the electromagnetic field. In (AIT.S5) this implies that the
exponential in square brackets gives a zero result when evaluated at
t = 003 note that this is equivalent to saying that w has a small
positive imaginary part. With this assumption (AII.5) becomes

w

I =i } 30 (ukev, - (a1)2)”? (AIT.6)
n=-co
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Now consider the ¢-integrali-

2m Y ; .
I¢ - .I & i(n+2)¢ | Git sin ¢ b
¢=0 '
e} Y| ;
m=-a 1
oo
= _z Jm(;) Lems s (where 6m,n+2 is
m=-c0
the Kronecker delta)
= anJ () ; (ATI.T)

Thus the v,—integration becomes

L5 2
o 3 u o,
&, J g edexe (- 7 © ) 3 ()3 (et
t=o

Standard Bessel function identities [28 ] give the following expressions:—

~ 2{(n+1) -
Loge 351 = Sesidl A8 J.(z)
- 2 = !
and  J_.. (z) £ J (z) J ()
Therefore
2(n+1)n n+tl 4 ;
J(g) g (g) = SBRUR o) - B & {5 2(g)} - 5 2(g) ]
+2
n n ! r2 n r ar n n
We may now write Iv as the sum of the following three integrals:-—
L
o0 i ’ a Q2
9] 2{n+1)n ol
I, = = ord . SRR 7 2(g) exp (- 2) a
: f T © 2 J2(z) exp ( w g2 | de
£=0 B

®
o~ )
= (a,s) 2. 2(n+1)n J pe P an(sp)dp
p=d

1
2

)

k,

where [ = gsp and s = (
Qzal




2
O 2.,7P° 4 2
I, (a,s) © (n+1) J poe 3o { g2 (sp)} a0
P=0
a
I, = - (a,)7? J 03 ®" T 2 (sp) @p
3
p=0
oo . ® ;
" 2 =P 2. —P% 4 2
W gEg) [ J pe " J 2 (sp) Gp + % J ple dp{Jn (sp)} ap ]
p=0 ‘ P=0
on integration by parts
Thus
I = I + T +1I
v, 1 2 3
(D 2
= (a".)—z [ g.g.g—tll.r}. -1 ] '{ pze_p o Z(Sp) dp
52 n
p=0

s o g
e 0 gy [ ene ™ o 2(e) b
s s

We now meke use of the following identities (see [27]) :~

) 3 _ ;? 5
-p 2 w  q g 5
I pe J. (sp)ae z e i ( > )
o
A -y : :
2 p, |
2,7P¢ 4 2 w £ BB g
and J ple = {Jn (sp)} dp s @ [In ( 5 ) I ( 5 ) ]

o

where In(x) is the Bessel function of the second kind of order n.

Therefore
_ s? ,
" -2 2 S -2 S
L, = (a,) “ e [ {2 ¥ dn+n(a+)s™ } I (5 )
52

- { %82 + 3(n+1) } Ia ¥l = ) (AIT.8)

o L R



Finally the v, integral is:-
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e 0] —a..v,,2 o
s 1
b Lo [ e (m = k"V,, ) (n+1)§2) dV"
i
4
Vp=—00
[o0] ”
1 “ w + (n+1)0 =1
- -Etl J g ¥ ( P = ( "; ) dp
ky ay

p=-0o

where p = a..E

1
Vi

Now the plasma dispersion function Z(z) is defined by

A 3 o0
72(z) = 7 2 J
p=—@
Thus "
2
T
I o
Vn kn (
where z

n+1

st =
e ® (p-2z)"! ap

) (AI1.9)

Z
n+1

w + (n+1)Q

ky an

Combining (AII.6), (AII.T), (

all the numerical factors gives the following expression for G!

@ : 3
Gl - z "'11’10 a"
el n=-co -
k" 8..’.

AII.8), (AII.9) and collecting together

.

<
43
- " 2
e [{is2 + In + n(n+1)s 2} I (‘% )
1 1 g2
- {582 + z(n+1)}In' ( 5 )1 Z(ZI‘H"I)

We evaluate the other elements' of Gz , and those of Aa, by similar

procedures., The results are
o 1 " 2 2 2 2
3 - - ino ay 2 2 =] i _ _E_.. ? s
A nz~oo —~% rlyte T llndk )L L 5 L0 (e 11t
/Ek"s Ry
0 e e in o 5'2
- o 2 52 .
£ = ] - I ( > ) {1+ 2 2(z)}



and

. 4 *
fos) in ay 3 == o
- 0 * 2 52 s> s2 _ , (82
32
@ in, a -
- g =N z g2 s2 _ , _
) nZ—oo 2ky &, S {(1 T2 ) In 4 2 In } Z(Zn+1)
SZ
& 189 -3 T 7 2 g2
= s B 2% B !
n'z'-oo Y2k, s By ™ @ fa % 2 ) Th™2 1 L1 Za+ Z(Zn+1)]
e n
1 2
(e3] lno a." ‘-’2%' " 2 . _2 . 2 y
= Z—Oo ~ T B [{ﬁs +zn + n(n+1)s ]-In— {is +%(n+1)}]’n ]Z(an)
2
0 - S s
= )] -—(a) e {((a-2)1 +21 "} [1+2 2(z))
REeseh @k,,s 2 n 2 'n ‘n n
- 52
a 1n0 " -
= Z—oo - k" (&n) e I . Zn [1 g Z(Zn) ]
S2
@ in e
0 o 2 g2 S2
=Z —""*-(a._‘_)ae {(n+-—)I—--—I'}[1+z 7(z.) ]
n=-m V2k,s 2 n 2 o n
1 52
S . T2 i =3 3.8 1
= M e = " T o -3 (n- '
b E B M b A el )
fes) in 1 - -§-2 2 2
0 -3 2
=] = =—(8)Fe “{a=2)T #Z T P14z (s _.)]
n=-a /é_k,.s
S?'
Qo in a o dee
_ 0 " 2 g2 g2 s
B nz_m oy sy, o Wmp k5 Lt )
k_‘_z % w + mf
where s = ( ) 7 = -y
QZa& m ky ay
g2

the argument of all Bessel functions is >



Ncote that, since Fg

and

the elements of Fz are easily found in terms of those of Gg E

_93_
o
44 {wp}

o
P

G

o
I {vp}

o _ o o _ ¢, o _ a
Fl‘ =Ry Gr1 : F0 = ay, GO 3 F—l = g, G—-l
Now
aJ_ an %
fM =n, (—;) ( _1:-) exp [“(a‘_,_ V_,_z‘*' an V)]
and
~ g {exp [-(ay v,2+ an vi2)1} = v,2 exp [~(a, v, 2+ a, vn2)]
1
© Bay {exp [-(ay v,2+ a, v42)1} = v,2 exp [~(a, v, 24 ay vy2)]
Hence
1 (e8]
o iq? Ta b a2 2 2
c" = = no(;-r-—) (Tr—-) Vv,c exp [-(a; v %+ ayvp?)]
v t=o
exp [i(wt ~ k . X)] dv dt
2 a ay 3 e
5 L L)
s 25 iy L L] 1=z ) J J v exp [-(a,v, 2+ ayva?)]
5 * t=0
v =
exp [i{wt - k . X)] dv dt
= - 2. =1 a0
= 8% 3a, [a2, " A" ]
o o
a . A BA -
or ¢ = [ =— = ( ATI.10)
a, da,
Similarly
o o
s SR 1A %A
L Lz ay day, ]
a o
¢ -0 % - %
a; da,
o O
wos 13% - %)
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Hence the elements of all the tensor moment integrals except Mﬁp
may be derived from the elements of A% and Gg merely by differentiating
them with respect to a, or a,, and then substituting in the appropriate
formula. Unfortunately the third order tensor sz must be evaluated
in a similar way to A% and Gf;. More complicated Bessel function

identities are necessary, but in principle the method of evaluation

is the same.
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APPENDIX TITI

(&) The zero-order Vlasov equation in this case is

of B . L8 . ’
ol A 5x - by 0 (AIII.1)
¥
and f, = [T + A(x + 5 il | fM
where A = (e + 8, [a,v,2 =11 + &, [ayw,?2 -31)

In order to substitute this f; into the left-hand side of (AIII.1)

we need the following expressionsi—

Bfo afo of
Bt’az ’ v
Now :fo ” 0
t
afy af,
while e = oo e B0
or ax
afo
and el = A fM
o9x
of of of
A 0
With B, = B, 2z , -9-—(vAB)___=n[v—---v_.‘.).]
= e e = = ov Y oav * av
¥ x ¥y
of v v,
0 .
— = {-2a, v, [1+ A(x + ﬁx )1 o+ 2v. 8, a, (x + EI )} fu
avx
o %51 Yy
— = - { $+ = +
== {~2a, vy [1+Alx + g )1 s avy 8y, oy (% = )} i
4
Therefore
af of
0
@ [ v. — - v __E. ]l =-v._ A fM
v * v =
X J
and so
of of of
0
il B B s b XAy B & % Af -V Af,
ot or ¢ B av = %




Thus our f, satisfies, (AIII.

To derive expressions

the following definitionsi~

n(x)_

i

n{x) k¢ T+ (x)

2 n(x) ¢ ™" (x) =
Consider (A III.2):-
ax) = | ax
k)
lo's] ® on
- ] e
Vv,=0 Vy=—-00 $=0
+
+
Hence

Il = j fM.gx
Y

I, = J vy fM'g!
%

& 2

13 I v, fM-Q!
¥

Now ¢ = = %,

y

sin ¢ d¢, which is zero.

_96,

; 5

L 1"
for n{x), T (x) and T (x) from f,, we use

[
] £, dv (A III.2)
X
r . '
v
I 3 m vy? £, 4y (A III.h)
i
s
# (e =8, - 38)x + (e = 8, - 384)

§, a, x vLZ + 8y 8y X Vy2

3
Q

1 2

S8V, b 8y By Vi vy] £V 10V, dvidd

we require the following integrals:-

I, = I vy? £, dv
X

I, = J v,2 v fyy &
=

IG = J Vn vy fM-QI
<

sin ¢, so that integrals involving vy contain

Therefore 12, 15 and I6 are all zero.
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an %

, B3 J v, exp {-a,v,2lav, jw

s

€Xp {_anvnz}dvn J

v_'_ V“=-03

4 % a

I}

(since I exp {- a“'V'uz}d.V.-, = (_

-

1)
I
=
o
(0]
o)

wa(2) (2) () -k | &

5 2
(e a,v

m

an

+)av,

)% )

By the same argument as that used to derive eguation (AIT.10) of

Appendix IT, we may write

Il 311 no
ol T owm e

i oT
VR § P e T Y
L an 98y a,
it

Thus

n(x)=[1+(€"5_,'“%6n)xlIl+6_,_a._,_x13

That is n(x) = ng [1 + ex]

Equation (AIIIL.3) is

” :
21’1(::1!'(: T(x) i I .v..!‘2 fO gz

4

In this case integrals involving vy are again zero, and we must evaluate

the following:-

2 "o
I, = J v.2 fydy = I o=
¥
I ol
7 7
1. & H o B B [ ok = e ] R
8 t M a da
% 1 L

+ 8y 8y X Iu

n0[1+(€_5¢_%6n)xl +Glxno"'%‘snxn0

$=o



1§ —

n
5
=R
N .
2
-
—
&
I

1 % e~ 8 = 3 6,)x1 I, +6, a, x Ig + 8y ay x I,

ng 2n n

a, a, 2a,
2y
~ g L1 & (e # §3)x ]

That is T (x) =T; [ 1+ e+8)x) [1+ex])?

with a, = 2. and n{x) = n, [1 + ex]

We may expand [1 + ex ]'"1 as follows:—

[1+ex]™! = 1-¢ex+ (ex)2 - (ex)3 . . . .

Then

[1+ (e + &) 1[1 +ex 171 =1 4 8§, x + (2 - §,¢e)x? + 0(e? x3)

Thus if we assume that e and §, are small, we may neglect t;rms of order

(ex)? or (8, x)? provided (ex, &, x) << 1, giving
i L
T (x) = TG f1+6, x1
Similarly, - fron (AIII.4) we find that

" "
T(x)ﬂT0[1+6"x]
Note that if € = 0 no approximation is necessary, and we may write

1,

1 ’Y!
T (x) =T,

t
[1 %8,y %]

5,0y
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(b) We have a frame of reference in which the zero—order Vlasov

equation has the following form:-

—— F ¥ oe— 2 E, + }]. — =0 (AIII.5)
ot or L c ov

This frame of reference is now transformed to a second frame moving

; g E, & : .
with a velocity !0 = c(—O BO) with respect to the first frame,

2
B0
The transformed values of the fields E and B in the original frame are

denoted now by E' and B', and they are related to E and B as follows:-

E' = E 3 B' = B
-n “n ~n =l 1
v, v (ATII.6)
E' =E + 2 ~ B3 B" =8 - 0 ,.E
T, & e = Tk T e =
where n and 1 mean parallel and perpendicular to Yo (see reference

[291 ;3 Yy = 1 here)

e(E ~ B )
Now, since ¥ = Bl NG 2 , and we are interested in the effect
B2
of the transformation on go and §0, we take E" =0 = En‘ Then E; = Eo
and B, = B,. Substituting these values in (AIII.6) and noting that
Eo . §0 = 0, the following relations hold:-
EB' = 0 B' = 0
™n -n
E' = (E . B = 0
B = (g, . BB,
Ey? E . B
BE 5 W~ oy B, W oRETE B,
- 0 -
By By
E, ?
=11-(—} 18
BO
_ =lE; =« B,
Now Yy ™
BZ
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Yo | S 2o
Therefore i = e

Vo
In our non-relativistic approximation e << 1, implying that B' = B
L

Hence the zero-order fields in the frame travelling with velocity vy

relative to the original frame ars

In this transformed frame (AIII.5) becomes

1
Bfo' Bfo' of

0
sy + . ———— -~ . e o =
it v Yo e eB) . g °

where f,' is independent of v,.
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Bfo
(¢) Equation (I.26) gives the following expression for —— :-

Bvu
of - .
0 i V.0 2i vpo + L " " :
— = o o & = + =
: {2wu g e 5 e vp(&v v, * 8 v, Y, wu)}fM
oV

The term in wu alone [term (1), say ] is the term that would occur if

no gradients existed in the plasma. We would like to compare the term
i V.0 : y

s A [term (2) 1 with term (1), and with

gi;evpo v (61 wl + 8" w" -y w ) [term (3) ] in the hope that some

§2 PV M v U vV U

simplification is possible, However, terms (2) and (3) as they stand
are very simila;, and there is no obvious way of comparing their
magnitudes in a meaningful sense. We must therefore resort to
examining all three terms after integration along unperturbed trajectories
has been carried out. This integration is a fourfold one involving
V,s Vu, ¢ and t.

There are no gradients in.the vy=direction so that the v,
integration does not in&olve terms (2) and (3). The ¢-integration is

dimensionless, and Efﬁ, is independent of t, so that the ¢-integral

ov
u
gives no contribution to the dimensional properties of the full integral,
while the term involving 90 may be extracted from the t-integral.,
u
ov

Thus we need only investigate the v, -integral.
Suppose we represent terms (1), (2) and (3) by the following
simplified forms containing the essential properties of the respective

terms:i—-

1) 2 &y o3

(2) === B, = o ;

(3) ~—> T, = = .
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where 1, and T, represent the appropriate parameter gradients., Now
the v,-integration takes the following form (see Appendix II)}:-

o0 2

T B n ky, vy ). a
v, e o 5 - B, av,
v, =0 '
where Tq (@ =1, 2, 3) is one of the terms T,s Tys Tyo
k, v, -
Bq '( 5 ] is the appropriate dimensionless combination of

Bessel functions associated with T

n . ; :
v, is whatever power of v, 1s necessary for the integral.

ky vy
We now change the variable, setting ¢ = 5 .~ The resulting
integrals are as follows:-
T, integral :-
n = 2
1 Y n+1
22.—-—nJ 4 exp{—czz}Bl(c)d;
k,“p k, r=o 2k,“p
where p = [ ! ]% is the Larmor radius for the particle species
2a, Q2
concerned.
T2 integral -
1 Q n
28 Pl @
K, Ky =0 2k,%p
T, integral :-—
T n = 2
2 1 93 +2
wohi o SRR 5= J g exp{—“c—‘zz}Ba(c)dc
k, k%% x, 2k, 2p
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Since the Bessel function integrals are independent of plasma

2 .
parsmeters apart from the factor exp { - B } which is common to

2k, 2p?
all of them, we assume that they have the same order of magnitude, so
that the magnitudes of the terms in?estigated depend on the coefficients

of the integrals.

We order the terms in the following way:-

Term (1) : Term (2) : Term (3)
B! 2.2 : 'Tz
1 : . : -
ky ky

The condition that the local approximation (as used to derive (I.26))

holds is that [

> We must therefore examine different
) << 1

A

1
K,
regimes of k,p.

(a) k,p > 1 := in this regime term (2) is the dominant gradient term,

and term (3) may be neglected when compared with terms
(1) ana (2).
(b) k,p S 1 := here the validity of the local approximation is only

certain if we take small enough gradients that

T

-

l

y:
2 .
s — << 1 ; thus as we decrease k,, we must consider
k
L

=

1
smaller and smaller gradients in order that the local

approximation is valid.

of
Suppose we neglect term (3), and approximate — _
v
by
af0 i Vi » O
;_;. = - { 2wu + ﬁ'Yv e i } fM
v -

This is a good approximation in region (a); in region (b) we must consider
small gradients anyway, in order that the local approximation holds.
Thus the above equation is a good approximation in region (b) within the

limits of the local approximation.
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(d) The introduction of temperature and density gradients
into & magnetized plasma results in particle drifts perpendicular
to the magnetic field B and to the gradient directions (these drifts

; : 1
may be evaluated by performing the integral EO J v £y dv, where f

is given by (I.24)). If v. is the net drift velocity, there is an

4

equilibrium current given by
do T %P0 Ia

The Maxwell equation involving current is

=

1 2 m
Lo8 S g g J

°]

Therefore in the equilibrium situation we have

i

. c
i W
do hr =

v, =
-4 km q n,

or VB (AIII.T)

This implies that V »~ B is non-zero for non-zero net drift; that is
B must have an r-dependence.

Suppose we choose a linear r-dependence for B, say

' = + et r,
B EO (1 e; rl)

1

where B BO é (with B, constant)

0

si' is the Cartesian gradient vector (el’,ez‘,e3’)
ei' Ty is a Cartesian scalar product.

Then ¥ ~B = Byle, %~k % 0)

3
Thus no magnetic field gradient is nécessafy in the field direction,
since all drifts are perpendicular to this direction.

'Using a representative magnetic field gradient e', the x and y
components of (AIII.7) have the form

ce! B0
- O T (AIII.8)
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The VB drift is given by
e! v12
v -

& Q

(see reference [30])

We define an average VB drift as follows:-

<1
I

B n, vp fo &%
.4
2
e' (viply
Q
e!' ¢ T,
m Q

Thus (AIII.8) may be written as

. } EVB )
a By (AIII.9)
8w n K Ty .
where B, = > is the ratio of perpendiculsr plasma pressure
) B
0

to magnetic field pressure.

We see from (AIII.9) that if we assume ;B to be small compared
with Vqs this assumption is justified provided B, << 1; so0 the
condition for neglecting the effects of a magnetic.field gradient in the
integrations along particle orbits is'that B, must be mucﬁ less than
unity.

To determine the types of waves described by our final dispersion
relation and the possible couplings between them, we must remember that
we did not invoke the electrostatic approximation in deriving the
conductivity tensor. _ That is, it was not assumed that El could be
replaced by -~ V¢ where ¢ is a scalar potential. This means that theA

dispersion relation describes both longitudinal waves (gl parallel to k)

and transverse waves (El perpendicular to g).
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Lashmore~Davies [ 31 ] and Callen and Guest [ 3% ] have shown
that the necessary condition for non-negligible coupling between

longitudinal and transverse waves is that w o ck, where

"
b ng e2 2
W = ~——————-) is the electron plasma frequency.
pe m,
Now
2 2 2
T ) bmn, e 1 (v_,_)e
2 1.2 2 2 )
c% k m, ¢ (kpe) 93
8 ng K (T_,_)e 1
- E - e
2 2
B, (kpe)
That 1is
2
CN _ (B*)e
e? k2 (kpe)2 (AIII.10)
(vy), . k(T,) 3
where b, = N ~ v_,_)e = ( ——E;—— |

('I‘_,_)e is the perpendicular electron temperature

In order that magnetic field gradients may be neglected, we
must have (Bi)e << 1. Also, for density and tempe¥ature gradient
effects to be significant, klpe must be > 1, which implies kpe > 1.
Thus from (AITI.10) we have
w 2

.._P..e.. << 1
c? k2

W
or RS < 1
c k
In the region kpe < 1, non-negligible coupling is possible, but the

temperature and density gradient effects are no longer significantly
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large within the local approximation. The situation is as follows:-—

(By), << 1andkp < 1 (By), << 1andkp > 1

Possible non-negligible coupling, Significant gradient effects within
but insignificant gradient effects| the local approximation, but negligible

within the local approximation. coupling; the dispersion relation

separates into independent

electrostatic and electromagnetic modes.
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APPENDIX IV
In this Appendix we apply to the integrals in (II.15) a
similar approximation process to that given in Chapter 2 of Section II.

Y. vwhere v' is small compared with unity.

Let 1 = @t and V! a

il

Also let w* = %— t s where s =0, 1, 2

Now define the general dimensionless "Gordeyev" integral
00
GM = J exp { —rv't - #(1) + iw*t } at (AIV.1)
o

where r = 1, 2, 3, L
(r and s take the values required to give any of the integrals in (II.15)).

From (IT.1k)

2 =
o(t) = 1z . - [cos x + vt - e = cos (Rt - yx) 1
Y v2+ Q2
Vip
Setting T = @t and defining p = =T to be the Larmor radius this gives
242 sy
o(t) = S [aoB % + W ~ & © © cog g = x) 1

1+(v1)2
Our basic assumption in this case is that when k2p2 >> 1, the integrand

in GM contributes significantly to the integral only in regions where

-y !
£(t) =cos x +v't —e ® ‘cos (1t ~%x) =0

The equivalent function in Chapter 2 was 1 - cos T, and it can be seen
that for small v' and small T, f(r) is close to 1 = cos T. As T tends
to infinity, f(t) tends to the straight line cos x + v't. The general
form of f(t) is shown in Figure (3b). Note that f(t1) has only one
zero for v > 0, at T = o, whereas 1 — cos T has an infinite number of

zeros at T = 2mm (m =0, 1, 2, «v..). However, f£(t) has minima at

t=2mm (m=0, 1, 2, «v..) Wwith only the m = 0 minimum actually
touching the t~axis. Computed results for Tm(m 8 Jo Bo wvealy Toe
values of T at the minima of f(t), indicate that Tt does not deviate

v Ly . )
from 2mm by more than one part in 10 until m is about 2,000.
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As in the case with no collisions, GM may be represented by an
infinite sum of integrals over small domains of significance. However,
ac T increases the minima of f(t) occur at steadily increasing values
of f(T). Qualitatively, we would expect a large contribution to the
integral GM to occur in the region near T = 0, and any other significant
contributions to come from the regions around a finite number of
successive minina,. The number of these minimg required depends on the
values of v' and kpj; we would like as small a number of significant
minima as possible consistent with small v' and large kp, in order to

simplify the final result. A lower bound on the value of v' in terms

of kp can be derived as follows:—

Define f#(t) = f£(t) - v't
-v't
= cos X — e cos(t - ¥x)
-ty ¥
=cosx-e " ' (cos T cos x + sin 1 sin ¥x)

For small v', cos ¥ = 1 and sin x << 1.

ol X
Thus (1) = 1 - e > ‘cos T

and minimum values of this occur when cos T = 1.

-y !
Now 1-ev 7T 0 for T > 8 where 6 is some number greater than zero,

implying that f¥(t) > O for v > 6 and thus

(1) > vy for % 2 O © (AIV.2)
i 2 k2p2
Define g(t) = exp { in¥t - rv't - (1) } (AIV.3)
14(v1)2
foe)
so that GM = J ar g(t)
o

If we replace f(t) by v't in (AIV.3), the inequality (AIV.2) enables us

to state the following:—
o

2,2
J = J dr exp | iw*t - rv't - EPL.. why }
1+(v')2
6
m-
> J dar glt) = I {say)

0



2p2 )
Define K = J dr exp { - 2 V't }
5 1+(v')
= exp { - k2%p2y'e } for 0 < v' << 1
k2p2v|
Now K > max [Re(J), Im(J) ]

> max [Re(Ie), Im(Ie) 1

Thus G may now be approximated by the finite integral

8
L = [ ar g(r)
(o]
provided K << min [Re(L), Im(L) ] | (ATV.4)

Obviously if v' << (kp)_z, a large value of 6 might be necessary to
ensure that (AIV.4) would be satisfied for all possible L. Thus to
meke certain that.only a small number of minima need be included, we

choose the following lower bound for v!

vt > (kp)72 (AIV.5)
[ Note that in Section III we choose w' < (kp)“1 in order to satisfy the
condition v' << 1, A definite upper bound on v' is necessary there so
that we may have a clear ordering of the expansion terms]

We have 0

Gy * f ar glt) ' " (AIV.6)
o

In a similar way to that given in Chapter 2 of Section II, we define a

domain of significance Gm around the m-th minimum T The integral GM

may now be written as
n
GM=IO+ZIm
m=1

rﬁo
where I, = dt g(t)

m
and I = at g(t)
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In this case 6 = B Gn, where n is an integer > 1.

Within the m—th domain of significance we make the change of

variable
T ¥ (= 0y 1o By 5808
i where [¢] << 1
Then
: =v' (1 _+¢)
f(t) = cos x + v'(rmf¢) - e cos('rm + ¢~ x)
2 = g 2 2
s1- X s ur(na) me (1= - E e x5 (ATV.T)

taking Ty 2mm and neglecting terms involving products of greater than
second order in ¢, X, v'.

For the case m = 0, Ty = 0 and

2
£(¢) = 3= - [ x-2v' 14

3
= x- o~ .X- -— .X....
Now v' = tan > ) ¢
3
Thus x - 2v' = —<§~
432 XSQ
and  f£(¢) = 5—+ 7

If we now neglect terms of second order in v', ¥ and ¢ compared with
unity, we get

o) = &

The expression g(t) becomes g(¢) where
2
g(¢) = exp { iw*p - rv'¢ - k2p2 %— }

2
¢ exp { iw¥¢ - k2p? g—-}

neglecting v'¢ compared with unity; we retain the term in ¢2 since

k20242 >> ¢2,

Thus 60

I = J d¢ exp {iw*¢ - 3k2p2¢2} (ATIV.8)
o
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ST
Considering now the case m # 0, if we replace the factor e
in (AIV.7) by its maximum value, unity, and carry out the same procedure
used to derive (AIV.8), the following can be stated:-
§
Im < exp {—(k2p2+r)v'1m} J ™ 4 exp {iw*¢ - 3k2p242} (AIV.9)
=8
m
Since the integrand of the integral in (AIV.9) is the same as that in

(AIV.8), &, and Gm_must be of the same order. . Therefore the integrals

in (AIV.8) and (AIV.9) must also be of the same order.

I B2 '
Thus the ratio fﬂ v e [kSpStr v T
0
I -Tm m
That is EE - & = (0,002) (AIV.10)
% .

if we take the lower bound value for v', namely v' ~ (xp) 2
[ remember r << k2p2 ], and take g™ 2mm.,
The approximation (AIV,10) suggests that the term I, is the only

significant contribution to , and the computed results given in Table

GM
(2) for v' = 0.001, w* = 0,1 and r = 1 support this. Similar results

were obtained for v' = 0.01 and 0.0001.

Therefore we have

§
G, = J © ap exp {iw*p - 2242} | (AIV.11)

o}

Since 60 is a domain of significance for a less convergent integrand
than the one in (AIV.11), the upper limit may be replaced by infinity,

so that
@

J d¢ exp {iw*¢ - 3k2p2¢2}

o}

o)
R

1 i
el (AIV.12)
V2ko V2ko

as in Chapter 2 of Section ITI,



w3

The computed results for v' = 0,001, w' = 0,1 and r = 1 given in

Table (3) support the approximation given in (AIV.12)., We may note

that the values v' = 0.0001 and 0.01 were tried, with w* = 0.1, 2.1

and with r = 4; +this did not affect the accuracy of the approximation

significantly. In Table (3), we begin with the lower bound value of
k?p2 for the given v', and as is expected the approximation is more
accurate the larger the value of k?%p2,

{NOTE :~ All computed results mentioned in this Appendix were obtained
using the full integrand in (AIV.1). The integrals were
evaluated using Simpson's Rule with step length ~ 0.0003. It
was found that Gm ~ 0.1, and that the values of the portions of
the integrals between T, ¥ 6m and T =g were so small as

m+1 m+1

to cause computer underflow, implying that the values were

< 10 , verifying our initial assumption. The value %'= 0.1
was used as a test value since the results of Section III give
an ion acoustic wave frequency of this order. The Fried~Conte

function was evaluated using a routine given by Ferguson [33]}.
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TABLE 1. VARIATION IN v, Jv; WITH +/2k[k, FOR VARIOUS VALUES OF T[T, AND vp/v,

= B Bxn B &
k., v; /€1) v 2} v; /{3} v /{4}
0065 4-83 267 104 062
06 4-52 2:58 1-22 0-83
10 413 2:45 148 | 1:29

TABLE 2, I, AND J, COMPARED WITH [ FOR DIFFERENT VALUES OF kpa)*

ReIl lmI, Rela ImI.

(kp)? Re I, ImI, Rel, Im 1,
10° 10-® 102 10-1 10-8

25 x 10° 10— 10~ 10-%7 10

10* {1 10-52 <10-% <10-7

TABLE 3,  COMPARISON OF Iy AND — (#/+/2k p)Z(c*{+/2k p.)
FOR DIFFERENT VALUES OF (kp,)?

(kp)* I —(ilv/2kp) Z(w"|+/ 2k p)
10° 0-396384 x 10~ 0:396331 x 10~
+0:100035 % 1037 4 0999997 x 10-3{
2:5 x 10° 0-250676 x 10~ 0:250662 x 10~
+0:400057 X 104§ - 0-399999 x 104§
10¢ 0-125333 x 10 0125331 x 10~

<+ 0-100004 x 10~ =+ 0-100000 x 104§
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FIG. 3a :—- General form of the function 1 - cos T

f(r)

#(r) =cosy+v'T ~explvrlcas(r-x) flr)=cosyrv'r

Lir)=r't
cosy

1
w 2w 3rdm S 6r T

F16. 3D —GENERAL FORM OF /(7).
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FIG. 4 :- Regions of Bernstein wave dominance (k,=0 and k,2p2 << 1)

and of ion acoustic wave dominance (k,2p2 > 1).
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Fic. 5—Temperature gradient distortion of the electron distribution function.
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FIG, 18b :~ y against k curve for Vg =0
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