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ABSTRACT

Magnetic reconnection is a fundamental physical process by which stored magnetic
energy may be released. It is already known that different reconnection regimes result
from changes in the nature of the plasma inflow towards the reconnection site. In this
thesis, we examine both how the outflow region responds to changes both in the inflow and
outflow boundary conditions and also how introducing compressibility affects the results.

We find that if the inflow is converging, the outflow velocity is least, the width of the
outflow region is greatest and the ratio of outflowing thermal to kinetic energy is greatest.
Also, there is one free outflow parameter which would naturally be specified by the velocity
of plasma leaving the reconnection site. We suggest that reverse currents seen in numerical
simulations may result from the specification of an extra boundary condition.

In addition, we find that the main effects of including compressibility are: to enhance
convergence or divergence of the inflow; to increase the maximum reconnection rate where
the inflow is converging; to increase the flow speed near the reconnection site where the
inflow is diverging; to give faster, narrower outflow jets; to increase variations between
regimes in the energy conversion and to increase the ratio of thermal to kinetic energy in
the outflow jet.
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CHAPTER 1

. INTRODUCTION

-

1.1 The process of magnetic reconnection

Studies of magnetic field reconnection have been pursued for many years now, but there
still remains a great deal to be learned about this fundamental physical process. Its
importance lies in its ability to release stored magnetic energy, changing the topology of
the field and allowing lower energy states to be accessed. It is thought to be important
in many different phenomena, both in astrophysics and the laboratory (for reviews see,
for example: Hones, 1984; Priest, 1984, 1985). To mention a few examples, it may be
occurring in solar flares, at the dayside magnetopause and in the geomagnetic tail (see,
e.g. Forbes & Priest, 1982) . A little further from home, it may become important during
star formation and in stellar coronae (Mestel, 1985; Bonnet and Dupree, 1981) and in more
exotic topics such as structure in jets and magnetic viscosity in accretion discs (Asseo &
Sol, 1986) .

Reconnection of magnetic field lines occurs in small regions of high magnetic field
gradient, where the ‘frozen in’ approximation breaks down and the field diffuses through
the plasma. Thus, when as shown in Figure 1.1, two regions of oppositely directed field
lines are brought together, reconnection can occur in the current sheet (or diffusion region)
which forms between them. The newly reconnected field lines are highly curved and
accelerate plasma away from the diffusion region at approximately the Alfvén speed. Thus,
although the reconnection takes place in a very small region, the resulting reconfiguration
of the field lines affects the global structure of the magnetic field and releases energy from
it into the thermal and kinetic energy of the plasma.

Emanating from the diffusion region are two pairs of slow-mode shocks; these cannot
propagate in a direction perpendicular to the field and so stand in the flow, increasing
the velocity and decreasing the magnetic field strength of the plasma which flows through

them. In what follows we shall consider these shocks to divide the region of study into
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Figure 1.1: Fieldlines (solid) and streamlines (dashed) in Petschek’s reconnection model.

_two parts: an upstream part, where the field lines are moving towards the diffusion region
and a downstream part where they are moving away from it.
The early models of reconnection have been reviewed several times (see e.g. Sonnerup,
1979; Hones, 1984; Priest, 1985; Shivamoggi, 1985) and we will not attempt to repeat
this here. What we shall do instead is to summarise briefly those papers which are of

particular relevance to the work in this thesis.

1.2 Some basic definitions

Before embarking on a mathematical description of the reconnection process, it is worth
gathering together the basic equations and definitions that will be used in the rest of this
thesis. All of the models that we will be discussing are based on the MHD equations.

Thus, for a compressible, steady-state, infinitely conducting plasma, we have:

V.B=0 (1.1)
EF=-vXB (1.2)
(v-V)p+p(V-v)=0 (1.3)
p(v-V)p—7p(v-V)p=0 (1.4)

2
p(v-V)v=-Vp—-V [%] +(B-V)~€- (1.5)




Equations (1.1), (1.3) and (1.5) describe the conservation of flux, mass and momentum;
(1.2) is a simplified Ohm’s law (which becomes E 4+ v x B = j/o if finite resistivity is

included) and (1.4) is an adiabatic energy equation. Written in another way, (1.4) becomes
P s
('U.V);; =0

which states that p/p” is a constant on a streamline. Equation (1.4) can also be written

in conservation form: ¥

ExB
v. [(f:Tp + 1pv?)v + - ] =0 (1.6)

where vp/(7 — 1) = p + e is the enthalpy, e is the internal energy per unit mass and
E x B/pu is the Poynting flux. Here, we have neglected ohmic heating and losses due to

radiation and conduction. Finally, we can write the current explicitly as
uj=VxnB

In (1.4) and (1.6) 7 = cp/cy is the ratio of specific heats. We shall also use the following

definitions:

1. the sound speed, ¢, is given by:

o\ 1/2
()"
p

2. the plasma beta, which is the ratio of plasma to magnetic pressure, is given by:
_ 2pp,
IB o ﬁ)
3. the Alfvén speed is:
B

4. the magnetic Mach number is:

v

M= —

V4

(where v is a typical plasma speed);
5. the magnetic Reynolds number is:

Lv
Rme e

n

(where 1 is the magnetic diffusivity)
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6. the internal energy per unit mass is:

p

MR VT

; and (1.7)

7. the equation of state is:
kppT
P=n

(where kp is Boltzmann’s econstant and m is the mean particle mass).

If the plasma is incompressible, there are no density variations and these basic equations
take a different form. The incompressible limit can be obtained rigorously by taking
cs/v — oo (or, equally, ¥ — o0). Thus, (1.1), (1.2) and (1.5) are unchanged, while,

assuming that the pressure perturbations are finite, (1.4) gives
(v.V)p=0. (1.8)
Thus, (1.3) becomes
V.v =0. (1.9)

and we find that pressure perturbations are no longer associated with density perturba-

tions. From the steady-state adiabatic heat equation:
p(v.V)e — %('v.V)p =0 (1.10)

we can see that, in the incompressible limit, if p and p are finite, then there will be no
changes in the internal energy following the flow. In this case, the energy equation simply
reduces to the equation of motion (1.5). In addition, since from (1.10) and (1.8) we know
that

V.(ev) =0 (1.11)

then (1.6) becomes:

Ex B
v. [(p+ Frv¥)v + ” ] =0, (1.12)

Although setting ¥ — oo does recover the incompressible forms of the above equations,
this is purely a mathematical device, since in reality ¥ is of order one. Another way of
obtaining this limit is to note that if 8 > 1 then, since ¢2/v%4 = v3/2, this implies that
v4 K ¢,. If all the plasma speeds are very much less than the Alfvén speed. this in turn
implies that v € v4 < ¢;. Thus, if 3 is large. we would expect the plasma to behave as if
it were incompressible. This does not, of course, mean that in an incompressible plasma

B has to be large: it would equally well be possible to have v < ¢, and v4/c, = O(1).
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Figure 1.2: The Sweet-Parker model of reconnection.

If we use § — oo to obtain the incompressible limit, then we will have an incompressible
plasma in which B is large. This is rather different from taking the limit ¥ — oo, where

we could have an incompressible plasma with 8 arbitrary.

1.3 Previous models

Studies of magnetic reconnection can be traced back to the early the models of Sweet
(1988) and Parker (1963) . Here, the magnetic field is annihilated in a current sheet
formed when two regions of oppositely directed magnetic fields are brought together. If
pi and po are the pressures at the inflow and outflow of the sheet (z = 0, |y| = £/2 and
|#| = L/2, y = 0 in Figure 1.2) and py is the pressure at the neutral point (z = 0, y = 0),
then pressure balance across the sheet requires that

2
pit+-=pN
24

For the outflowing plasma, Bernoulli’s equation gives (since, to lowest order, there is no
magnetic field)
2
PN =po+ [%
Equating the inflow and outflow pressures gives the outflow speed as

3,

- i —_— + .
°T Gy T

v
e




Thus plasma flows out of the current sheet at a speed equal to the Alfvén speed at the

inflow.

Assuming incompressibility, conservation of mass gives

L

such that, for small reconnection rates, the current sheet is long and thin. The width
of the sheet is determined by a.balance between the rate at which the magnetic field is

convected in and the rate at which it diffuses away. It is given by

Thus from (1.13)
M; = R;}-/z (1.14)

where Ry, = Loy /7.

This highlights the main problem with the Sweet-Parker model. For most astrophysical
applications, the global scale length, L. (which in this model is equal to the length of the
current sheet, L) is very large and correspondingly the reconnection rate M; is very small.

This difficulty was overcome by Petschek (1964) who realised that slow-mode shocks
(or their incompressible equivalent, discrete slow-mode compressions) would emanate from
the diffusion region (see Figure 1.1). These stand in the flow, decreasing the magnetic
field strength and increasing the velocity of the plasma which flows through them. The

boundary layer between these two shocks is very thin and so, from 1.1

By B,

and
B 9B
By > T

Petschek assumed that

1. the outflow velocity is a function only of z;

SV

. pressure gradients can be neglected;

w

. the plasma is incompressible

and obtained from the y-component of (1.5)

B; By

pUiv =

(=1




Thus, since from the steady-state assumption, the electric field is uniform, we have v;B; =
v9Bp and so the outflow velocity is just v4;. This is just equal to that from the Sweet-
Parker current sheet, although in that case, the plasma acceleration was due to the action
of pressure forces, whereas in this case it is due to the tension in the reconnected field
lines.

Petschek then calculated the field outside the boundary layer by noting that since the
magnetic field inside is known (a:nd tlie normal component of the field must be conserved
across the shock), then the normal component of the field on the inflow boundary of the
shock is also known. Since the magnetic field in the inflow is potential this is sufficient to
specify the inflow field.

In Petschek’s model, then, the diffusion region could be much smaller than the global
scale length and so much larger reconnection rates could be achieved. Petschek estimated
the maximum reconnection rate possible with this model by evaluating the change in the
magnetic field strength as it approached the diffusion region. He found that

B; = B.e —'---;—ﬂleBe In (%)

Putting B; = B./2 gave Petschek a maximum reconnection rate of

s
8In Rye

M} =
which is much larger than the Sweet-Parker value and lies between 0.01 and 0.1.

One extension of Petschek’s model which is particulary relevant to the work in the next
few chaptersis that by Green & Sweet (1967) . They considered the effects of a non-uniform
inflow and concluded that if the inflow magnetic field decreases with distance from the
y-axis, then the downstream field will be curved in a direction opposite to that in Figure
1.1. This requires a reversal of the tangential magnetic field direction at the shock, but,
as shown by Kantrowitz and Petschek (1966) there are no stable, physical solutions of the
conservation equations for shock waves with this property. Green and Sweet concluded
from this, that, in the generalised case of a non-uniform inflow, Petschek’s solution is
invalid.

Petschek and Thorne (1967) resolved this difficulty by suggesting that in cases where
the downstrean solution required a reversal in B, that this could be achieved by finite-
amplitude intermediate waves which would stand in the flow, ahead of the slow shocks.
These waves would also be required if there was a component of the ficld out of the » — y

plane. or if there was an asymimetry across the z-axis.
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More recently, the effects of asymmetries have been investigated by Semenov et al. (1983b)

and Heyn et al. (1986,1988:preprint). They find that rotational (Alfvén) waves, slow
shocks, rarefaction waves (expansion fans) and a contact discontinuity may occur, depend-
ing on the inflow conditions. Also, Semenov et al. (1983a) have produced a compressible
form of Petschek’s model, including a lowest-order downstream solution.

Even higher reconnection rates than those in Petschek’s model (possibly of order one)
were proposed by Sonnerup (1970) (see also the family of models by Yeh and Axford (1970)
of which Sonnerup’s is the only nonsingular member). In this case, the inflowing field lines
are straight, rather than curved as in Petschek’s model, and the necessary change in their
direction is accomplished by two sets of waves: discrete slow-mode compressions similar to
Petschek’s and, upstream of these, slow-mode expansion waves. Although this model has
the advantage that it is exact, it has the disadvantage that the expansion waves must be
generated at corners in the inflow region. They travel inwards to intersect at the diffusion
region. It is difficult to think of a physical situation in which this would arise naturally.

Vasyliunas (1975) suggested that a Sonnerup-like solution could be achieved with a
slow-mode expansion spread throughout the inflow region. In Petschek’s model, on the
other hand, the inflow undergoes a fast-mode expansion and Vasyliunas suggested that
the differences between the two models could be understood in terms of differences in their
inflow regions. If, as in these cases, the density is uniform, then the ratio of the magnetic
field strength to the length of a field line is a constant (since B/! = ). For Petschek-like
reconnection (see Figure 1.1) he assumed that as the plasma flows in towards the diffusion
region, the field strength is uniform at either side of the region, but decreases on the
axis. Thus [ decreases and the streamlines must converge. The pressure is, however, also
uniform at either side, so it must decrease on the axis. The fact that this fall in pressure is
linked with a decrease in magnetic field strength means that this is a fast-mode ezpansion.
On the other hand, for Sonnerup-like reconnection, the field is uniform on the axis, but
increases at cither side. Thus ! increases and the streamlines must diverge. Since the
pressure is also uniform on the axis, this means that there must be a pressure drop on
either side. Hence, since we have a fall in pressure linked with an increasing magnetic
field, this is a slow-mode expansion,

This idea, that different reconnection regimes result from different inflow conditions
was explored further by Priest & Forbes (1986) who developed a whole family of incom-

pressible models of which Petschek-like and Sonnerup-like soutions are particular cases.

w
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Figu}e 1.3: Different classes of solution (from Priest & Forbes 1986).

The different members of the family are characterised by a parameter bo, which essentially
is a measure of the transverse velocity on the inflow boundary. For example, by = 0 gives a
Petschek-like solution, by = 1 gives a Sonnerup-like solution and 0 < by < 1 gives a hybrid
regime with a fast-mode expansion on the y-axis and a slow-mode expansion at the edges
(|z] = 1) of the system (see Figure 1.3). Also, by < 0 gives slow-mode compressions with
slower reconnection rates , while bg > 1 produces slow-mode expansions known as a ‘flux
pile-up’ regime, in which the reconnection rate can be faster, the diffusion region is long
and the flow diverges as it comes in.

In the limit as by becomes very much greater than one (although here nonlinear effects
become important) it seems that the solutions tend towards the stagnation point flow
solution of Sonnerup and Priest (1975) (see also Parker (1963) and Priest and Sonnerup
(1975)). This is an exact solution of the resistive MHD equations for field annihilation in
a current sheet. The field lines are straight and the flow diverges as it comes in, forming a
stagnation point at the neutral point. The reconnection rate is arbitrarily large and there
is both a slow-mode expansion at low values of y and a fast-mode compression, associated
with nonlinear effects, at large values of y.

More recently, Gratton e# al. (1988) have generalised the stagnation point flow solutions
to allow for viscous effects, while Heyn et al. (1988, preprint) have introduced a normal

component of the magnetic field as a perturbation and solved the resulting equations




numerically.

The Priest-Forbes family of models has therefore been an important step in our under-
standing of previous reconnection models and their relation to each other. Since it forms
the basis for much of the work in this thesis, we will devote the next section to a brief

summary of the method and results.

1.4 The Priest-Forbes family of reconnection models

We here review briefly the main features of the Priest & Forbes model of reconnection,
whose inflow region occupies the region |2| < 1, 0 < y < 1. The solution is obtained by
expanding the basic MHD equations for an incompressible plasma (see (1.1), (1.2), (1.5)

and (1.9)) in powers of the inflow Mach number, M,, such that
v =’!)0+6‘01+621)2-|----,

where v1/vg = O(1) etc. and € is a small parameter of order Af,. Expanding about a
uniform magnetic field (B = By, &) and a stationary plasma (vo = 0) in the inflow region
therefore gives as a solution of (1.1) to (1.4) for the magnetic field, electric current, plasma

pressure and plasma velocity:

By = i @y, sinh [(n + 2w (1— y)] {bn — cos [(n + %)7:'&‘] } ’ (1.15)
n=0
oo
Biy = Y ancosh [(n + H)r(1- y)] sin [(n + %)7-‘.’2] : (1.16)
n=0
Hjr = Y anba(n + }) cosh [(n + Dn(1 - )] , (1.17)
n=0
= —% i @yby sinh [(n + Pr(1- y)] ; (1.18)
Cin=0
Tay = MeDyg, (1.19)
Toe = — M, [ﬁly - ;171:::] . (1.20)

where
4, sin [(n + %)WL]

Un = T »
L(n + 1)272 cosh [(n + 32-)7.']

(1.21)

We have re-cast these equations in the dimensionless variables B = B/B,, 7 = /T Aes
P=p/pe, = 3/Be and 5 = p/pe. We identify Bo. v1, po and pp with the values of the
magnetic ficld strength, velocity and pressure at large distances from the diffusion region

and denote them by a subscript e (e.g. By = B.).

10




By is given by M, B,, L is the length of the diffusion region and the global scale length
(L) is taken as unity. As noted by Jardine & Priest (1988a) the second-order magnetic
field component may then be obtained from the solution of

By, d?
V2B, = _HPlwd'py
WTUUBL

As can be seen from (1.15), §1.17), (1.18), or (1.20), the boundary conditions on the
sides ¢ = + L., namely the functional forms of B, j1, p1 or voz, determine the values of
the constants b,. In particular, we here follow Priest & Forbes in setting b, = bo for all
n. An important point to note about these solutions is that, because of the method used
(a perturbation about straight field lines), they are only valid for field lines with a small
degree of curvature, of the order of M,. Because the discrete slow-mode compression
can only advance into the plasma at a speed proportional to the normal component of
the magnetic field, By, the position at whiéh the wave will be stationary depends on
the curvature of the upstream magnetic field. As a result, we would expect the wave
to advance a distance of the order of M,, which will therefore define the width of the
downstream region.

One further remark about these solutions concerns the boundary conditions used i.e,

ey

. Big even in x (and therefore By, odd in )

N

. OB1y/0z =0onz =1

3. Biz=0ony=1
4. Biy=f(z)ony=0
where
f(z) = 2By LL£e<l
= 2Byz/L 0<2<L

This choice of By was made from considerations of the speed of the shocks. It is used to
determine the value of @, and will be used later in the jump relations.
Using these solutions, Priest and Forbes were able to evaluate the field strength at the

entrance to the diffusion region, B;, from

B; = DBe+ D;,(0,0)
= B+ Z an(bo — 1) sinh[(n + 3)x]. (1.22)
n=0
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Now, since the electric field is uniform,

v; B; = veBe (1.23)
and
B 2
M; = M, (-Bi) (1.24)

Hence, for each value of by there is a unique relationship between M. and A;. Thus, for
solutions with bo < 1 there is a'maximum value of M., while for solutions with by > 1
there is a maximum value of M;. For the case by = 1 there is no change in the magnetic
field on the y-axis and so B; = B..

The length of the diffusion region can also be calculated from (1.24). The balance
of diffusion and convection of magnetic field lines within the diffusion region gives its
thickness as

L= /v (1.25)

while mass conservation gives

Lv; = Lo (1.26)
Eliminating £ from (1.25) and (1.26) gives for the length of the diffusion region:

NV A
L=
v}

or, from (1.23)
L= nvAeB?
veBe

Thus (1.24) gives
1
T N S (1.27)
Rme M2 MP?
The main result, then, from this piece of work is that the inflow boundary conditions
are crucial in determining the type of reconnection which is taking place and hence not

only the form of the solutions but also the reconnection rate itself.
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CHAPTER 2

WEAKLY NONLINEAR THEORY

-

2.1 Introduction

The demonstration by Priest and Forbes of the role of the external boundary conditions
in determining the reconnection regime raises some important questions about the recon-
nection process. For example, given that the upstream boundary conditions determine
the form of the upstream solution and the reconnection rate, what is the role of the
downstream boundary conditions? In some numerical experiments (e.g. Biskamp (1986))
conditions are specified at both the upstream and the downstream boundaries and cer-
tainly the results do not appear to resemble those of analytical models. Another question
then might be whether we are free to prescribe anything downstream and if so, what
are the effects of different choices? How does the choice of inflow parameters affect the
downstream solution?

In this chapter we shall answer these questions by finding a solution for the downstream
region and matching it to the existing upstream solution. This matching is carried out
using the jump relations across the wave which separates the two regions. These coupled
solutions then give a global picture of the reconnection process and show not only how the
downstream region responds to changes in the inflow, but also how altering the downstream

boundary conditions affects the result.

2.2 The downstream region

For this region also we expand (1.1), (1.2), (1.5) and (1.9) in powers of M, in this case
about a uniform flow with vg, = v4e, the external Alfvén speed. In addition, since the
width of the region will be of order A/, we rescale the y-coordinate as y = ey’, where € is
a small parameter of order M. The resulting formidable set of cquations can be reduced

to a tractable form as follows. From equations (1.1) and (1.9) we deduce that By, is only

13




a function of z (as indeed are voy and vy, although in this case symmetry demands that

these are both zero everywhere). Then, using the result from the jump relations that

Bgy = 0 on y = Mca (i.e. at the wave), (1.2) implies that
B()y =0

and

By, = M.B,

(and hence from (1.1) Boz = Bo(y)).

The y-component of (1.5) gives po + B3,/2u = ¢1, a constant (again using the jump

relations) and hence pg = po(y). The z-component gives dBg./dy = 0 and hence from

syminetry
Boy =0
and
Po = ¢1,
while finally
= mz),

which is therefore determined by the jump relations.

We may therefore reduce the expanded forms of (1.5) to (1.1) to five equations:

|
i
I

1 4 M. aB
pv_4e£}+ (up)t/2 9y

e = M Gupy A
v, _ _9u
e = g,
aB = _aB?.u
L ok,

) Bi.| _
gy{l’zﬁ- 2;] = 0.

From (2.7), (2.9) and (2.6) we can obtain a single equation for B,

9*B 29°B
L Pe L AffY Pla —
9z* 1 Jy? ’

whiclh has the general solution
BIJ'(-Ts y) = f(y I —’\Ie'l) + _{l(?} A 31’6""‘)5
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(2.4)

(2.5)

(2.6)
(2.7)
(2.8)
(2.9)

(2.10)

(2.11)
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where f and g are arbitrary functions.

The particular form of this solution, in which the jump relations are used as a boundary
condition on the wave, is outlined in Appendix A. The essential result, in the limit (L < 1)
where the length of the diffusion region and hence its influence on the downstream solution

is negligible, is that over the greater part of the downstream region:

1
Biz(e,y) = By, [,,M (y+ M z)l Bie [m(y = .Mea:)]
- Dtard.
> ansinh [(n + 1)r] {_ - {(n + Dy + ’\Iea:)]

n=0 2M,
(n+ %)7'"(?/ - M.z)
20,

+ cos [ (2.13)

and

Ve = (;L;l)—lﬁ{B [DM(y+M'm)]

+BY, [;ﬁ—(y - M.2)| - Bt.(a)]

1 (n + Dr(y + Mez)
= (#p)l/zza" sinh [(n—[— )"]{bo [ 2 2;38 a;]

- [(n +1 )’_’23 M, m)] + cos [(n + -;.)m]} : (2.14)

where a superscript u refers to a quantity measured just upstream of the wave, on y = 0

of the upstream solution. In addition, we have from the jump relations:

B2
+ == 2.15
Pet oo (2.15)

DPo
and (2.16)
B
mo= p‘l‘+—eBi‘z

- Z an sinh [(n + = ] cos [(n + %)'h‘fl] , (2.17)

n=0

while Ampére’s law (7 = V x B/p) gives

Hjo = _6By
and hence from (2.13)
s 1 (n+ 5)w(y + M)
Mjo = —-Ue §(1n n + 3 ) sinh [(n -+ 2),.] {~ { N
(n+ Dr(y - M.z)
L : (2.18)

15

PRI T o)




We may also find v,y from (2.6) and (2.8):

_ Y dp M. "
vzy(m’ y) - P 4e _(ggb ([t/))l/z B].I’ (—-19)
while (2.7) gives
Boy(z,y) = Me(pp) 014, (2.20)

where arbitrary functions of integration have been removed by invoking symmetry or by
using the jump relations.
All that is needed now to complete the solution is a knowledge of the exact form of the

jump relations and their role in linking the upstream and downstream solutions.

2.3 The jump relations

If we assume a steady-state, two-dimensional, incompressible plasma, then the jump rela-
tions may be obtained by integrating (1.1), (1.2),(1.5) and (1.9) across a one-dimensional

wave to give (e.g. Jeffrey & Taniuti, (1964))

Un = ~—VAn, W
[on] = 0,
[v] = —W[B,], > (2.21)
[B:] = 0,
[P+2] = o,

J
where v4, is the Alfvén speed based on the normal component of the magnetic field,
subscripts n and ¢ refer to components normal to and transverse to the wave respectively
and [X] denotes the change in a quantity X on crossing the wavefront.

Writing these in terms of 2 and y-components and expanding in powers of M, gives

(see Appendix B for details)

tanag = 0, (2.22)
tanay = M., (2.23)
Bl(
tanag = Bzy, (2.24)
g, = G, (2.25)
iy =, (2.26)
By M DY :
d = 2y .d _ e eidhyy 5 o=
=2y oyt~ Fa e (up)t/2” (2271
B§, = 0, (2.28)
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- - B‘fx = B;‘:z: - (up)llzviirv (2'29)

£ Bf, = B+ (up)/ (v — 05), (2.30)
B, = B, (2.31)
B, = M.B,, (2.32)
B3, = M(+B, - Bi,), (2.33)
Py = pe+5;~ (2.34)
= p‘1‘+7€Bi‘m, (2.35)
P o= Pt [vBeBm(B L) - (BS,)* + 3M2B2] (2.36)

where superscripts « and d refer to upstream and downstream, respectively, a is the angle
made by the wave to the z-axis (see Figure 2.1(a)) and the = signs refer to the orientation of

4 and B¢ (see Figure 2.1(b)). Note the two possible downstream orientations, depending
on whether By > 0 and vy < 0 or By < 0 and v, > 0. In order to decide which are the
appropriate signs for the downstream solution obtained in Section 2.2(b), we note from
equation (A.9) in Appendix A that

Bd d
v, — —(MP3T/2 + p_il; = €3,

a constant. A choice of the negative sign for Bf, in (2.29) would then give B¥, = a
constant, which from (1.15) is clearly incorrect; choosing the positive sign gives instead

v{, = a constant. In addition, from (2.19) we have, using (2.29) and (2.35)

i . dBL. M, { 1 [ 1
By = (up)llz @ (ﬂp)1/2 B 21‘{[&"(1/ + ."{el‘)
~Biy [,,M (v - .Mea:)] } (2.37)

which is positive. Hence the downstream solution is of the form shown in Figure 2.2.

From (2.37) and (2.27) we may also find BY,:

By, = Moz _ 5 (2.38)

From(2.24) this defines tan ay and hence, by integration (since tan a = dy/dz on the wave)
the value of a at every point on the wave and hence the wave shape. Thus the position of

the wave is given by

7 = A (2.39)
A‘[C u u
y2 = B, (Bla. -3 / B, (1.1-)
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Figure 2.1: The magnetic field and plasma velocity vectors.
(a) Upstream, (b) downstream of the wave (where a is the angle made by the wave to the

x-axis).
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(a) Sketch of the field lines and flow

velocity vectors in the downstream region.
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(b) Variation of the second-order y-component of

ottt sl

velocity vy with y at z = 1.
Figure 2.2: The magnetic field and plasma velocity downstream.
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Figure 2.3: Varjation of the shape of the discrete slow-mode compression with bg.

Me : 4 3sin[(n + 3)ra] i
B, n%% an sinh [(n + g)vr] {—2bo + (4 D — cos[(n + §)7z] {2.40)

Figure 2.3 shows the resulting shape of the wave for several values of bg.

2.4 The effect of varying upstream conditions

Now that we have the complete downstream solution to first order, it is possible to examine
the response of the solution to changes in the upstream configuration. The general form
of the downstream region is as shown in Figure 2.2(a). To first order, the streamlines are
straight and the maximum velocity is attained on the z-axis (see Figure 2.4). We also
find that the field lines are curved in such a way that the tension acts to propel plasma
away from the diffusion region. This is in fact what would be expected from the work
by Green & Sweet (1967) (see also comments in Chapter 1) since the upstream magnetic
field strength always increases with z. To second order, the flow is converging (see Figure
2.2(Dh)). The lowest order current density is always negative, decreasing in magnitude with
z from a maximum near the diffusion region and increasing close to the wave (see Figure
2.5). The perturbed pressure (p;) also decreases with x, in this case to zero at x=1 (see
Figure 2.6).

Surprisingly, perhaps, to first order, not ounly the pressure, but also the magnetic field

aud current density are independent of the type of upstream configuration. This can be
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Figure 2.4: Profile of vy, across the downstream region for several values of bo.

seen quite clearly from equations (2.17), (2.13) and (2.18), which have no bp-dependence.
In addition, since vy, involves only terms independent of g (from (2.19)), it also will be
insensitive to the form of the upstream solution. In fact, to first order, the only downstream
variable which depends on bg is the velocity (v15): this increases in magnitude linearly
with bg (see Figure 2.7) while retaining the same profile across the region shown in Figure
2.4. For by > 0.3, we note that vy, is positive and the downstream flow is greater than
V4e, the Alfvén speed based on the upstream external magnetic field.

One other result of a variation of the upstream boundary conditions is a change in the
curvature and the position of the wave. While to first order the wave is simply straight, to
second order it appears curved and varies with bg as shown in Figure 2.3. As bg is increased
through a slow compression to a flux pile-up regime, the wave closes down, making the
downstream region narrower, and its curvature increases.

All this, of course, has immediate implications for the energy conversion process taking
place as plasma flows through the reconnection site and its dependence on the particular

upstream configuration. This will be discussed in Chapter 4

2.5 The effect of varying downstream conditions

Wlile the downstream solution is certainly affected by the choice of upstream conditions,

it is also sensitive to the choice of conditions downstream. From Section 2.3 it can be
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(a) Across the downstream region (with z = 1).
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Figure 2.5: Variation of the electric current (ujo) downstream.
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Figure 2.6: Variation of the perturbed pressure p; along the downstream region (with

y=0).

-y v,

15+

10+

Figure 2.7: Variation with by of the perturbed downstream velocity vy,.

The velocity is measured at @ = 1, y = 0, and v, is the upstream Alfvén speed.
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seen that the five jump relations (2.21) will not determine the six unknowns downstream
(the two components of velocity and magnetic field, pressure and wave position (a)) since
v, is arbitrary. To lowest order, we have taken this to be the external Alfvén speed,
V4e, While the first-order choice is only restricted in our analysis to solutions which give
a short diffusion region (L < 1), since in this case, Bj, ~ 0 at 2 = L and hence from
(2.29) v, ~ BY.(L,0)/(up)*/?, which for I < 1 is just va;, the Alfvén speed based on the
magnetic fleld strength at the inflow to the diffusion region (for details see Appendix A).
Hence the downstream solutions we have considered so far are in fact only a particular
class for which these choices of v, and vy, apply; a different choice would have given a
different configuration.

In summary, then, a free parameter exists in the downstream solution which may
be specified by a boundary condition there. This result supports the work by Forbes

& Priest (1987) who examined the role of boundary conditions in both numerical and

analytical models of reconnection. From a consideration of the characteristic slow-wave |

paths they also concluded that there is a free parameter downstream (see also Soward
& Priest (1977) for an analysis of the characteristics). This essential result is unchanged
by the inclusion of the effects of compressibility (see Chapter 5). In the compressible
case, there is an extra jump relation which is obtained from the energy equation (which
reduces to the mechanical energy equation or momentum equation in the incompressible
limit). The inclusion, however, of density as an extra variable means that there is still one
undetermined free parameter downstream.

This is an extremely important point to bear in mind when interpreting numerical
models of reconnection, since the result may be strongly influenced by an imposed down-
stream boundary condition, such as the specification of the normal velocity at the outflow.
Using a diffusion region model developed by Sonnerup (1988) we shall show in Chapter 3
that the free parameter may be prescribed by the velocity of plasma leaving the diffusion
region (see also Jardine & Priest, 1988b). If, therefore, as in the numerical reconnection
experiments of Biskamp (1986), the normal velocity is also prescribed at the downstream
outflow boundary, this will cause a mismatch in velocities at the diffusion region and hence
a region of reverse current. Indeed, Forbes & Priest (1987) have shown that many features
of Biskamp’s experiments can be understood in terms of their unified reconnection models,
so that his claim to have disproved Petschek’s mechanism is false; ratlier, Petschek’s model

is once of a much larger family of models. An important issue which is beyond the scope of




the present work is the temporal development of reconnection, for which numerical exper-
iments are invaluable: for example Ugai (1987) has shown how fast steady reconnection

can develop in response to a localised enhancement of resistivity.

2.6 Summary

In this chapter we have extended the Priest & Forbes (1986) family of models of recon-
nection to the next order in the~ expansion parameter. Attached to the diffusion region
in these models is a discrete slow-mode compression in each quadrant which divides the
region of interest into an upstream and a downstream part (See Figures 1.3 and 2.1). In
the upstream region the different members of the family, characterized by a parameter by,
can have markedly different configurations, from a slow-mode compression (bg < 0) with
a converging flow to a flux pile-up regime (b > 1) with a diverging flow. While to lowest
order the downstream region is insensitive to the value of bg, taking the next-order contri-
bution has demonstrated that in fact a more general family of solutions exists downstream
for each of the Priest & Forbes solutions.

To first order, the downstream configuration is of the form shown in Figure 2.2(a): the
wave and the streamlines are straight and the field lines are curved. To second order,
the wave is curved and the flow is converging. Both the pressure and the current density
decrease with increasing @, but whereas the pressure is constant across the width of the
region, the current density reaches a maximum on the wave (see Figure 2.5). As by
is increased through a slow compression to a flux pile-up regime, the magnitude of the
downstream velocity increases linearly, the wave curvature increases and the width of the
downstream region decreases. In contrast, the magnetic field, pressure and current density
are, to the orders calculated here, unchanged; as indeed is the second-order y-component
of velocity, which determines the degree of divergence of the flow.

Perhaps the most interesting feature to emerge has been the existence of a free pa-
rameter downstream. From an examination of the role played by the jump relations at
the wave in relating the upstream and downstream solutions, we have shown that one
boundary condition may be specified downstream. This result is extremely important in
analytical or numerical models of reconnection, since they may be strongly influenced by

the choice of this boundary condition.
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CHAPTER 3

COMPARISON WITH NUMERICAL RESULTS

-

3.1 Introduction

Since the early models of Petschek and Sonnerup there have been several numerical ex-
periments on reconnection. We will not attempt to review all of them here, but rather to
describe a few as illustrative examples.

Quite recently, Biskamp (1982; 1984a,b; 1986) has published some numerical simula-
tions which show features which would not be expected from previous models (see Figure
3.1). The inflow region is highly-nonuniform, the current sheet is long and thin and the
outflow region is wide, with a very slow flow (approximately 0.2 v4; for the case R, = 873
in Biskamp, 1986). At the outflow edges of the current sheet are small regions of reverse
current (see Figure 3.1). Plasma flowing out of the diffusion region at approximately v4;
appears to be deflected by these currents and flows instead in two fast jets along the sepa-
ratrices (the magnetic field lines which pass through the neutral point). As M, or R, is
increased, both the length and width of the diffusion region increase (which is exactly the
opposite of what would be expected from Petschek’s solution). Biskamp concluded from
this that Petschek did not have a valid solution and suggested that the reason for this was
that the diffusion region was not properly matched into the solution.

A rather different conclusion was reached by Lee & Fu. Their numerical experiments
(Lee & Fu, 1986a,b and Fu & Lee, 1985) were similar to Biskamp’s in that they found that
the length of the diffusion region increases with 3Z,. They realised, however, that as A,
is increased, the nature of the inflow changes, from one having a fast-mode expansion to
one having a slow-mode expansion. Using the way the dimensions of the diffusion region
varied with Af,, Forbes & Priest (1987) were able to show that as A/, varied from 0.05 to
0.20, bp varied from -2 (slow-mode compression) to 4 (flux pile-up). They also examined
Biskamp's results and showed that his scaling of the diffusion region with AL, or R,,.could

be explained by a progression through different reconnection regimes.
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a) b) )

Figure 3.1: Streamlines (top) and field lines (bottom) from Biskamp (1986).
Values of R,,. are (a) 1746, (b) 3492 and (c) 6984.

Figure 3.2: Current density plots from Biskamp (19S6).
The current is concentrated in the diffusion region and the shock. Note also the region of

reverse current near the diffusion region.
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3.2 Reverse currents and separatrix jets

But what of the other unexpected features in Biskamp’s work? Schindler & Birn (1987)
suggested that the separatrix jets result from nonuniformities in the upstream field and a
self-consistent model for them has been developed by Soward & Priest (1986) .The presence
of reverse currents, on the other hand, (seen also in Forbes & Priest, 1982a; 1983a,b) can
be explained in the light of the results of Chapter 2 (see also Jardine and Priest, 1988a). It
was shown there that in the downstream region there is a free parameter, for example the
z-component of velocity, which can be specified as a boundary condition. The velocity of
plasma leaving the diffusion region is, however, determined by the inflow parameters and
so this would seem naturally to determine the one unknown downstream. If, as in the work
by Biskamp and Forbes & Priest, the velocity is also specified at the outflow boundary
|z| = 1 of the downstream region, there will, in general, be a mismatch in velocity at the
exit to the diffusion region (and therefore, from E = ~v X B , @ jump in the magnetic

field strength there) which will give a current spike.

3.3 The effects of a velocity mismatch

In order to find some qualitative estimate of what the effects of specifying such a boundary
condition would be on the coupled models of Chapter 2, we first need a better model of
the diffusion region. One approach is to use a series expansion method (see also Biskamp
1986 and Sonnerup 1988) .

As an example to demonstrate the method, we could try expanding the resistive MHD

equations as

|
I

ao(%) + ax(Z)7* + a4 (BT + - -+
¥ = h(@7+bs(@)F + (T + -
where 4 and ¥ are the flux function and stream function, respectively, such that B =

VAX 2zand v = V¥ x 2. We also nondimensionalise in the usual notation as § = y/£,

z=2/L,B=B/B;,v=1v/v, ¥ =V/V;L[, = A/B;L.
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The three lowest powers of y (3%, 4! and y?) then give, respectively:
g

1—afM?-2a;—ahh; = 0 (3.1)
by (MPYY + 6b%) — by (M2V] + 6bs)
—2ay(MZ2ay + 2a5) + ah(2M?2a) 4 24a4) = 0O (3.2)

2&21)1 = Mfa’z’ = 12(14 = aébl = 3aob3 = 0 (33)

where we note that (3.2) may be rewritten using (3.1) and (3.3) as

! 1\2 ! ni ’
v~ {_lib&i} by = %{[_bl{/ 42 b A% 4 (al)? + 3“:)“(’)’2 - apa g’] M?
1

' {11
—2a69—1- + 2(a6)2b'1 —ay - ﬂ’—{’-1-} (3.4)
bl bl

Thus if, for example, ap and by are chosen, these three equations will determine as,
a4 and bz. Thereafter, each higher power will determine another unknown. The choice
of these two coefficients is dictated by the facts that they must be of a sufficiently simple

form that the integrating factor in (3.4) can be evaluated and also that, since

By, = —M; (a0+a2 + a7t + - )
B, = 2a7+4a3°+---

B, = (b"-{-b )

% = -3¢ (b1+3b3y +0)

we know that

=t

. ¥y is odd in 2z, even in y

N

. By isodd in 2, evenin y
3. vyisevenin 2, odd in y

4, By isevenin &, o0dd in y

With aj = by = — tanh T we then have
7. = —— (- tanh(Z) + 3057 + -
: L
Ty, = sech(ZT)g—047° +---

B, = (14 MP)sech®(T)7 + 4a47° + -+

T, = A (tanl(F) + (1 + MF)sech?(T) tank()7? — a7 + - - )
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where

e X 2 B 2 2¢=i] _ 1 x
ay = ~1—?:(1 + M7 )sech*(7) {ﬁ!,- [1 — 3tanh (a,)] 1} + Zta.nh(:z,)b;:,

l)
by = % tanh(Z)sech(T) In

tanh (g)l -+ %tanh(i)sechz(i) + I tanh(7)sech(T)

and XK is a constant.

This would then give the velocity and magnetic field strength within the diffusion
region as functions of z and y. The problem with this particular example is that és z — 0,
b3 — oo. It does, however, demonstrate the kind of approach which could be used. Using
the results of Appendix A a downstream solution for a finite diffusion region could then
be found.

The solutions we have available, however, are for cases where the length of the diffusion
region is of the order of M, (see Chapter 2) and so the variation across thf: width of the
diffusion region may (for these models) be neglected. Taking, then, the outflow velocity
to be just its value on the axis (v4;), we can see that since the electric field is constant,
a mismatch in the axial value of v, will be associated with a mismatch in B,. Thus,
B, must change within, essentially, a diffusion length, 1/v. For a velocity v4;, a global
scale length L., a magnetic Reynolds number R, = v4eLe /7 and a diffusion region length
L=L,.) RmeMel/ 2M,-3/ 2, this is just, to lowest order, §2 = (ML )® (where we have followed
the analysis of Chapter 2 in selecting the case L/L, = O(A,)). Hence, by Ampére’s law,

the current produced is

| 6B, §B, ] <
=0 [(]\ffeLe)3 YA (3.5)
In particular, since By, = —(up) /2 M v14, a mismatch in vy, would give a current
ov
Lo | e 2 _—tle | .
ui = 0 [~(ua)? 3255 2. (3.6)

Now, the current within the diffusion region is approximately
3 dB..| &
i = |- =

and so if vy, > 0 a mismatch in velocity will give rise to a current opposite in direction

(3.7)

to that within the diffusion region. Obviously, this approach cannot give quantitative
predictions for the Lighly nonlinear regime of the numerical experiments. The essential
result remains valid, however: that the specification of the normal velocity at the outflow

will lead to a mismatch and hence a reverse current at the diffusion region.
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CHAPTER 4

GLOBAL ENERGETICS OF FAST MAGNETIC RECONNECTION

4.1 Introduction

Now that we have a global family of reconnection models, one of the most interesting
aspects of them to explore is the way that energy is transferred in the reconnection process.
We would expect that ttfe energy of the inflowing magnetic field would be converted into
the kinetic and thermal energy of the outflow jet, but the details of this process are unclear.
In examining the energetics of these solutions, we will show how the energy conversion
differs betweeen the various reconnection regimes'énd explore the contribution of the wave

to the energy conversion.

4.2 Energy transfer

In an incompressible, steady-state plasma, conservation of energy may be expressed as

v. [(p+ 1o 4 Z Z B] = (4.1)

Integrating this over a volume and using Gauss’ theorem gives, in the two-dimensional

case,

¢ L an2 & 1,02 EB,
/B [(p-}- 300" ) vy + } de = — /D [(p + 2pv* )0, = : ] dy, (4.2)

which simply states that the total amount of energy which flows into the region through

EB,
I

the upper boundary (BC in Figure 4.1) must be equal to that which flows out of the side
(CD).The first term on either side represents the thermal energy, the second the kinetic
energy and the third the magnetic energy.
If we now dimensionalise as
P2 PPe, ¥ =T, B = BB,
with

E =,
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Figure 4.1: Schematic diagram of one quadrant of the reconnection model.
and expand both(4.2) and the length DY in powers of M., such that, for example,
Y=Yo+e¥:+Ys+...

where ¢ is a small parameter of order M, and

Y1 Yy
%= o(1), 3 = 0(1), etc.

we obtain, after splitting the side boundary into two parts,

O(e):
(Be)m + (z)mag = [(1+ Be)m + (1)xinl (4.3)
O(€?):

L 1B (3 4 ) + (2Bre)ag] o
¢ - —
v _-/0 [(—-ﬁeiﬁ) th (QBWmaS] dy

+ﬁ ()Yx [((1 + Be)T1z + EfWPz‘L) th 5 (3511)"‘“3] dy

T2 (1 Bl + (D) (+4)

e

(where we note that a term in veB2/2u has been cancelled on both sides). The subscripts

‘th’, ‘kin’ and ‘mag’ label the thermal, kinetic and magnetic contributions.
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We note here that we have chosen to study only cases with L &« O(M,) ie. { <
O(M2). The reason for this is that, as shown in Appendix A, some of the characteristics
of the downstream solution propagate out from the diffusion region into the downstream
region. Thus, if the diffusion region is of significant dimensions, then some part of the
downstream region is traversed by these characteristics and so the solution for the whole
of the downstream region can only be known if there is a full solution for the diffusion
region. Given that this is not available, we choose to make the diffusion region small.
This ensures that the ‘region of influence’ of the diffusion region is also small. In fact, this
‘region of influence’ of the diffusion region corresponds to the finite thickness of the wave,
which we have neglected. The problem arises if we attempt to match a diffusion region of
finite width to a wave of negligible width; this matching is only possible if we also neglect
the width of the diffusion region. '

Equafions (4.3) and (4.4) express the global energy conservation of the system. The
terms on the left-hand side represent energy flowing into the system through the upper
boundary, while the terms on the right-hand side represent a flow of energy in or out
through the side boundary. In (4.3), then, thermal and magnetic energy enter through the
upstream (top) boundary, while thermal and kinetic energy leave through the downstream
side boundary; there is no contribution from the upstream side boundary. To this order,
then, the energetics of the system are fairly simple: the magnetic energy of the upstream
region is converted in equal parts into the thermal and kinetic energy of the downstream
flow. We note that all of this energy conversion takes place at the wave; there is no energy
conversion within either the upstream or the downstream region. To this order, the total

amount of energy flowing into the upstream region is

[ [0+ 2ovtyo + 2] o
0 1
and the ratio of thermal to kinetic energy flowing out of the downstream region is
1o pva dy

1S Lpv2e, dy
While the total amount of energy converted depends on the rate at which plasma is
introduced into the system (essentially v.) and on the value of the external plasma beta
(3e). the ratio of thermal to kinetic energy produced in the downstream region depends
only on J.. The value of bg, which characterises the type of upstream solution, has no
effect on the energetics at first order.

At second order the sitnation is a little more complex. As can be seen from (1.15). (1.18)

33




and (1.19) the left-hand side is zero, indicating that to this order there is no extra energy
flow through the upper boundary, while the terms on the right-hand side depend not only
on f and M., but also on byg. The way in which the energy conversion depends on the
reconnection regime can best be understood by considering the upstream and downstream
regions separately. In the upstream region the balance of energy flowing through the side

and through the wave respectively can be expressed as

- U—u: "4y G I;u nu Y
‘/.0 [("‘ﬂe]%:) e (2Bly)mag] dy = — ‘/(; [ﬁe (]‘?ﬁ' = pl)th = (ZBlr)mag] dz
where the right-hand side is evaluated at y = 0. This may be rewritten using (1.15) to
(1.20) as

4Me  tanh[(n + 1))
L n=0 [(n + %)7'-]2

3 Lz in{(n i g
w4 g (—po s ltRA) (28t e
(nt5)r th (n+§)1r mag
4M, X tanh[(n + 3)7]
L n=0 [(73-'—%)71']2

i L T sinf(n 3 =
" { ((2+ - ﬂ_t<_+zu) . (_?_,,0 d u_;_zz_l) } 2
th mag

sin[(n + 3)w L]

sin[(n + )7 L]

(nt+3)w (n+3)w

When b is negative there is a slow compression upstream such that the flow is strongly
converging and the magnetic field strength decreases towards the diffusion region. Corre-
spondingly, from (4.5), the thermal energy increases and the magnetic energy decreases as
plasma flows through the region. As by is increased beyond zero into the slow expansion
regimes (for example, the flux pile-up regime, where the flow is strongly diverging and the
magnetic field strength increases towards the diffusion region) there is a decrease in ther-
mal energy and an increase in the magnetic energy of the plasma as it flows through the
region. Thus to this order while the amount of energy flowing out of this region depends
(from (4.5)) on M., B. and bo, the ratio of thermal to magnetic energy depends only on
Be.

Across the wave, conservation of energy requires that

[01 [ﬂc (-7 + ), + (255) mg] do
1
T [) [((1 - ﬁe)ﬁ;‘r + ﬁeﬂ')‘h
+(2BLO - L),

+2 (B, - E‘r(o))mg] dz
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(where superscripts u and d refer to upstream and downstream quantities respectively)

or, using the results of (1.15) to (2.40)

4M, X tanh[(n + §)7]
L ,,2:6 [(n+ )=

{ (( + Be)bo — ﬁesm(n+ )“) A (Zbo = Z_Sin("+'1'2 )ﬂ') }
th mag

sin[(n + 1)7 L]

(nt9)=

A & tanh[(n—{- 3)7]
- ,Z:o [(n + )]

{((1 + Be)bo + (1 — ﬂc)fi“_(itz.):) _ ( _ g4 Snlntg )q)
th

(n +2)"' ("+2)"

s o__z__s‘“("”f I . (4.6)
(n+2 )= ma
&

Here, the form of the upstream solution affects the energy conversion mostly through

sinf(n + $)rL]

the size and magnitude of the tangential component of the magnetic field (to this order,

essentially By,). Thus if

4M, S tanh[(n + 2)7‘] { sin(n + ,—})ﬂ'} o
L oy [(n+ 2) ] [(n+ 2)TL] (——""“""n+ %)7!' <0 (> 0)

the thermal energy will decrease (increase); if

aM, tanh[(n + 1 )7']
L % [(n + 3)x]?

the kinetic energy will decrease (increase) and if

in[(n + 3)7 L] {bo - 24 %ﬁ} <0 (> 0)

4M, X tanh|(n + 3)7]
L = l(n+ 7]

sin[(n + 1)x L} {bo -1+ Z%i%iri} >0 (<0)

the magnetic energy will decrease (increase).
Within the downstream region, the situation is slightly different, in that the energy

conversion is independent of the form of the upstream solution. Conservation of energy

may be written as

/ (@ -0+ 8m), + (2T - B, 42 (B - B1.(0),,] &
= u- / { (1 F rge)llx + 1381)1) (3vlr)mag} dy

)th o ( 1 )kin}

Y>
M,

R e X S PP AN OO TR,



or

4M, X tanh[(n + % ] . AT
- T l),,-])z ] sinf(n + 1)r L] { ((1 + Be)bo + (1 — ﬁe)_q,z)_‘)

n=0 (nt3)m

+<b0 2+ sm("-i-z)ﬂ’) T ( 2aam(n+2)1r> }
mag

(nt+3)= (n+3)=
— 4A'[ ta‘nh[(n"l' ) ] sm(n+ )=
- I n%% [(n+ 1)n)? 2] sinf(n + 3)7 L] {((1+ Be)bo — (1 + ﬂe)_“z_( s ) .

. 14
~(bo -3t} (4.7)
(n+§)ﬁ kin

Thus, to this order, the thermal energy and the kinetic energy increase at the expense
of the magnetic energy which is released as the tension in the curved field lines accelerates
plasma away from the diffusion region. Although the final ratio of thermal to kinetic
energy which flows out of the downstream region depends on f., the change in energy
which takes place within the downstream region is independent of either f., A, or bg.

If we now return to the energetics of the system as a whole and consider the sum of
the O(e) and O(e?) contributions together, we can see that the total amount of energy
which flows into the upstream region (and is therefore available for conversion into other
forms) increases as either M, or S, is increased and decreases on going from solutions with
bp < 0 to those with by > O (see Figure 4.2). This corresponds to a change from a strongly
converging flow, which draws plasma in through the side boundary, to a strongly diverging
flow, which pushes plasma out. Of the energy which flows out of the side boundary, the
ratio of the (total) thermal to kinetic contributions i.e.

Jo pvsdy
fg’ %pv%x dy
also varies with by (see Figure 4.3), decreasing linearly with bg, such that, within the
downstream region, thermal energy dominates for by < 0.3 and kinetic energy dominates
for bp > 0.3. As M, is increased, and the size of the perturbed components increases,
these variations with bg become much more pronounced; this behaviour is also seen in the
variation of the total energy converted with by (Figure 4.2). Finally, Figures 4.2 and 4.3
also show the variation of the downstream energy ratio and the total energy converted
with B.: an increase in f. simply rescales these energies, without changing their intrinsic

variation with bg or M.
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4.3 Summary

We have examined the global energetics of the recent weakly nonlinear models for fast,
steady state reconnection described in Chapter 2. This shows that, to first order, the
energy conversion is insensitive to the type of solution (such as slow compression or flux
pile-up), which is characterised by a parameter by. To the next order, however, both the
amount of energy produced and the ratio of thermal to kinetic energy produced. depends
strongly on the type of solution. In addition, there is a dependence at both orders on
the value of the external Mach number, M, and the external plasma beta, S.. These
variations are such that in the region of accelerated plasma downstream of the wave,
thermal energy dominates where M, and . are large and the upstream flow is strongly
converging, whereas kinetic energy will dominate where M, is large, 8 is small and the

upstream flow is strongly diverging. The total amount of energy converted is greatest

when both M. and f. are large and the upstream flow is strongly converging.
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CHAPTER 5

COMPRESSIBLE MODELS OF RECONNECTION

5.1 Introduction

In many reconnection models (including those just described in Chapters 1, 2) the as-
sumption of incompressibility is used, partly because it can be the only way of rendering
the problem tractable and partly because it is assumed that compressibility will not es-
sentially affect the reconnection process. In reality, however, reconnection is often taking
place in a fully compressible plasma (such as the solar corona) and so it is important to
l{mdersta.nd what the results of neglecting compressibility are.

In this chapter, we examine the effects of including compressibility on the global re-
connection models of Chapters 1 and 2. We follow the analyses of these chapters closely
in order that in the limit of ¥ — co we might recover the previous incompressible results.
This allows us to assess the validity of the incompressible assumption in studying different
aspects of the reconnection process and to show the modifications that are introduced

when this assumption is relaxed.

5.2 The upstream region

We expand the MHD equations (1.1) to (1.5) for a compressible, steady-state plasma in
powers of the inflow Mach number, A as described in Chapter 1. Expanding about a
uniform density and magnetic field (By = Bo,&) and a stationary plasma (vg = 0) gives a
solution of (1.1) to (1.5) for the magnetic field, electric current, plasma pressure, plasma

velocity and density as:
o 20
Dix =) apsinh [(n + Hr(1- y)] {b,, — cos [(11. + %)7‘-1]} ,
n=0

Dyy = i @y, cosh [(n + 3)w(1 - y)] sin [(n + %)mt] i

n=0
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1y = Z anbn(n + §)x cosh [(n + Lw(1 - y)] ,

n=0
= —% > anbsinh [(n + B)r(1 - )] ,
€ n=0

-'52y = Afelea

— 2 ——
Doy = —M, [B]y - (1 - ch;) uj:z:] 5 (5.1)
— i Py — Py
3 =7~ M (5.2)

¥
where we have used dimensionless variables as described in Section 1.4. Note that the first
five equations above are identical to (1.15) to (1.19) found by Priest & Forbes.
The boundary conditions used to obtain (1.15) to (1.19) and (5.1) to (5.2) are similar
to those used by Priest & Forbes, i.e.

[y

. Biy even in x (and therefore By, odd in z)

(V]

; OBy f0e=00on2=1
3. Biz=0ony=1
4. Byy = f(z)ony=10
where
f(z) = 2By L<L<z<1
= 2Bnz/L 0L2< L.
By = M.B, is the component of the magnetic field normal to the shock. This choice of

f(z) was made from considerations of the speed of the shocks; for the case of a compressible

plasma we generalise this to f(2) = xBx and obtain for the constant a,:

2k M, sin [(n + %)FL]
T T 1)272 cosh [(n + %)ﬁ] .

(5.3)

As will be shown later, £ has a maximum value of 2 in the incompressible limit of ¥ — oo
and so the effect of introducing compressibility is to decrease a,. Apart from this rescaling
of ¢y, however,equations (1.15) to (1.19) are identical to those found by Priest & Forbes.
The main difference is in the perturbed transverse velocity, va,, which is enhanced by the
factor (14 v%,./c?). This factor tends to 1 as ¢, — oc, so that in the incompressible limit
we recover the Priest-Forbes solutions.

Since the density can now vary, the ratio of the magnetic field strength to the length

of a ficld line need no longer be constant (since B/l = ) and so changes in the magnetic
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field strength can be absorbed by density changes. This effect is most clearly seen in
considering the hybrid regimes. In the incompressible case, as plasma flows in towards
the diffusion region, the field strength decreases on the axis where the flow converges,
but increases at the sides where the flow diverges. In the incompressible case, however,
although the variations in the magnetic field are the same, they are no longer accompanied
by the same changes in the direction of the flow.

The reason for this is the ch'ci,nge in vg,. Writing only the n = 0 contribution, (5.1)

2
Top = — M, [ang— cosh [g(l - y)] {sin [gw] - (1 - %) 721()0:1:}] :

Thus, in the incompressible case ((1 4 v%./¢?) — 1) we have the result that while, for

becomes

bo < 2/w the flow is purely converging and for bg > 1 it is purely diverging for
2
—<byg<1,
T

Taz can change sign as z increases. The flow converges near the axis and diverges at the
sides |z] = 1. In the compressible case, however, this condition becomes

-1 -1
2 Vie Ve
W(1+ c2> <b0<(1+ o2 :

8

Hence, as the ratio vge/cs; increases, the range of values of by over which this hybrid
behaviour occurs decreases, until, for v4. > ¢, (or 8 € 1), the flow is purely converging
for the compressions (b < 0) and purely diverging for the expansions (bg > 0). In this case,
changes in the magnetic field strength are reflected in a change in the density structure
and the flow pattern is more directly governed by variations in the plasma pressure.

One other consequence of the inclusion of compressibility is that it modifies the way in
which the reconnection rate varies with the type of solution. This is traditionally measured
by the external Alfvén Mach number Af., which is simply the dimensionless rate at which
field lines are carried towards the diffusion region for a given value of v4.. The particular
choice of solution (or, equivalently, the choice of boundary conditions) will determine how
the imposed flow is altered as it approaches the diffusion region, to give a local Mach
number, A7;. As described in Chapter 1, Priest & Forbes showed that for each by there is
a unique relationship between Af, and AZ;, such that, for example, for by < 1, there is a
maximum possible value of Af,. whereas for by > 1 there is a maximum value of AZ;.

This relationship is derived by considering that the electric field is uniform and hence

=, (B
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Figure 5.1: Reconnection rates in compressible and incompressible plasmas.

The magnetic Reynolds number, R, is 5x107.
where B;, the magnetic field strength at the diffusion region is given by Equation (1.22):

B; = B+ B1(0,0)
oo
Be+ Y an(bo — 1)sinh[(n + 1)x].

n=0

As shown by (5.3), however, the value of a, is reduced in the compressible case and hence,
from (1.22), the amount by which the field changes as it is carried towards the diffusion
region is also reduced. Thus, for regimes with by > 1 (B, > 0), the effect of introducing
compressibility is to increase B; and hence decrease AM;, while for by < 1 the opposite is
true. As can be seen from Figure 5.1, however, this is just a small correction and does not

affect the overall behaviour of the reconnection rate.

5.3 The jump relations

The next step in finding a global solution is to look at the jump relations across the shock
which forms the lower boundary of the upstream region. It is these jump relations which
will be used to match the upstream and downstream solutions. Following Jeffrey and
Taniuti (1964) . we write the jump relations for a compressible, two-dimensional steady-

state plasina as
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[r] = —v(r), (5.4)

[vn] = m[7], (5.5)

[0} = :;_’;[Bt], (5.6)

[Bn] =0, (5.7)

. B)= i%}[)ﬂ_—(%}, (5.8)

[p] = m[va] - %[Bﬂl, (5.9)

mpt'i')‘ + (p)T] = -Z%[T][B:]Z, (5.10)

where, as before, [X] = X9 — X¥, (X) = }(X?+ X*) and v characterises the jump in
density. The mass flux is m = pc,, where ¢, is the characteristic wave speed and 7 = 1/p

. Since the shock is stationary, we may write m = pv,. These jump relations may then

be rewritten as:

p* = Bp® ‘ (5.11)
d Y
vy = _.E (512)
d u Bﬂ d u
Vg — U = l_lpu—’v;{Bt o= Bt} (5.13)
n
B = B (5.14)
4 _ ppe (o) —(v4)?
o= BBty Rogy )
Pt = p*— ptol(va - vd)
1
—ﬂ{(ﬂé")2 - (B}  (5.16)
u od U oo du s |
e -~ -ty = Sl (5.17)

where the shock strength R = (2+ v)/(2 —v).
As described in Jardine & Priest (1988a) and in Chapter 2, these may be expressed in
terms of in & and y-components and expanded in powers of Af,. The resulting equations

are most easily tackled by looking first at the lowest orders of each expansion. Thus, from

(5.11):

0(1) 7§ = PiRo (518)
O(¢) 7 = PRo+ Ry (5.19)
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while from (5.16), with F;‘y = kM, and tana; = (M, where a is the angle made by the

tangent to the shock with the z-axis,

0(1) tanag = 0 (5.20)
. _ (14 Ro)Be(Pd — 1) + (Bo — 1){1 + (Bon)?)
O(e) (k—¢)? = 0 0 2Roﬂc(z3‘50— 5 (5.21)
and from (5.15) :
Of] *  Bh sl (5.22)

(1~ Ro(k—¢)?)’
In order to be able to compare our results with those from the incompressible analysis,

however, we must choose Bp, = 0 in the downstream region. Hence

k—(=1 (5.23)

and so (5.21) becomes
1+ B
Be

= (5.24)
Comparing this with (5.17):

o)  pi=PLel2Bo= (- Ro)(y— V)] - (v~ 1)(1 — Ro)

5.25
BB+ (1= Bo)(r — D S
gives
v(Be +1)
Ry = ————v—>—, 5.26
0 7(ﬂe e 1) =1 ( )
We also have from (5.14)
o) By, = 0 (5.27)
o) B, = M (5.28)
and from (5.12)
0(1) %, = 0 (5.29)
M,
0(6) T)‘ily = _fs F %gxcﬂf[c- (5.30)
As we will show later, however, T1, = 0 in the downstream region and so, from (5.30)
S
e Ro¢
but. from (5.13)
o1 w.=1

r 0.l




and so

1
(=g (5.31)
and
PRCEW. 3 (5.32)
Ry

Thus, in the limit v — o0, we find Ry — 1 and k — 2 and so, as discussed before,
has a maximum of 2 in the incompressible limit. With the results of (5.18) to (5.31) we

can now simplify the higher orders in the expansions, such as, from (5.15)

7  mu
O(e) —B-fa: A fc.)Ro {ﬁi‘ - 2By, -2 ( O L Blz)} . (5.33)

M, M. Ry
Using this and (5.24) we find that the first-order contribution to (5.16) gives

DU

ff]f = -j)‘;‘ + ) %) 5 (5'34)

SIS

and comparing this with the first-order part of (5.17), i.e.

Z_)‘il = 2.*.(1_]130)(7_1){[2?‘11" (77*1""5(11)(7"'1)] _T’g [2-5'1‘4-(,'0*1‘-5‘11)(7— 1)]
43¢ (20— (1= Ro)(y - ) - T2 [t 5 4 201 - Ra)(BY, - T}

gives, after some algebra,

ng_ta:nagmfi'x P, A (1- Ro)_,,
M, M. ~ Ro 2(y-1) Ro
7 Hu ﬁ'{ Rl
e By S 5.35
Ro(y—=1)" " 2 2Ro(1 - Ro)(y—-1) (5:39)
which, substituted into (5.33) gives
b _ e (u_ o Ry .

Bla: = ¥~ 1 (pl "’le) + (1 = RO)Z('}' Sip 1)' (036)

Finally we have, from (5.14)

B ! U =d
Bl = M, [( 2y, B4 D) el (5.37)

M, M. Ry Ro

from (5.12)

M, (Ry = R
T e et i Gl 3 =
Ty o (Ro + By, + 01 + T tan a2> (5.38)
and from (5.18)
— By, tana By
a5 oY _ =u _ Tl 2y lanag Dy, 4 B
Uiz "‘B]:zr P1 B]:r A ( A.’[e Ju-e RO v (339)
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5.4 The downstream region

As in the upstream region, we expand (1.1) to (1.5) in powers of A, about the same lowest

order configuration as was used in the incompressible case. Thus we choose g, = 1 and

Boz = 0 with 58 = Rg. Once again we rescale the y-coordinate as y = ey’ where ¢ is a
z Lo g ) Y Y

small parameter of order M.. Several results can be seen straight away from (1.2) and

(5.27). Firstly,

Boy =0
while from (1.3), invoking symmetry,
voy = 0
and so from (1.2) again
§1y = const
= M,

from (5.28). Finally, from (1.5), (5.24) and (5.34)

and

This leaves six equations, namely,

8By, , 0B2y _
Tttt gt = 0

Now, (5.40) and (5.41) give

which, with (5.44) gives

(5.40)
(5.41)
(5.42)
(5.43)
(5.44)

(5.45)

s RS
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which has the general solution

A, M,
Byz = f(y + —752) + 9(y — —752)
1z Ré/z R(l)/z
where f and g are arbitrary functions. Using the boundary conditions

Bz =0o0ony=0

Byy=B onyg= Mix (whlch from (5.31) is the lowest-order wave position)

we obtain (see Appendix C for details)

x<
- e E9R, M. —=d §9Ry M,
B = ST (w+ 2| -7 | ey
* q; ML+ 2T T g M1+ RYHT  RY?
= wd o
= H{ R [otu(e) — ()] + [Bhate?) — Bha(e)]
Be T[4 .
-1-212%)/2 [1)1(0 )= Bi(e )] (5.48)
where
Ro(y + 2z
o u kAR
M.(1 4+ RY?)
Ro(y ~ Hpz)
& = —L
M.(1+ RM?
and
1/2 i 5.49
S e
Also, from (5.44) and (5.46) we obtain
T 1 —d —d -
fe = 2p1/z{ Ry? [02,(c*) + 0a(c™)] + [Biale?) + Blale)]
= - :,2 [m(c+)+z">‘{(c')—21‘ff(m)]}- (5.50)
Subtracting (5.48 from 5.50) and evaluating the resulting expression at the shock
g
gives
o e ool B
Ve = W ¥ 2R0P1 = D(—€z) + 1/2(“ z) + "R P (- £z). (5.51)

This is a constraint which must be satisfied if the ﬁlst order upstream and downstream
solutions are to match. If we use (5.39), (5.36) and (5.34) to substitute for %Y, f;ia and
7. we can write (5.51) as
(e3 = c2)i(x) + (e3 + c2) Ra(€r) =
20
z Uy sinh [(n - ]5)7.'} {—(co +¢1) cos [(n e %)ﬁ:r]

n=0
+(co — ¢1) cos [('n + %)w&m] - c4bo} : (5.52)
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where

co = 2(1~Ro)*[(1+ Ro)(y—1)=1+2Ro7fe]
g = 4(1- R0)2R1/2'yﬂe

ez = (L= Ro)*(v—-1)—(1+ Ro)

cg3 = ZRé/z

C4" = SRS/Q(I o Ro)

(for the method used to solve this equation, see Appendix D).

Thus, it is the first-order matching of the two solutions which determines R;(z), the

i

perturbation to the shock strength, just as it was essentially the choice of B, = 0 which

determined Ry. As one would expect, the shock strength simply adjusts to accommodate

the existing downstream solution.
Now that vy, and By, have been found, the other unknowns of the downstream solution

follow easily. From (5.42) and (5.43)

o a7 e d &
A kA =

which, using (5.44) and the fact that 7o, = 0 on y = 0, gives

dp .Af "

(5.54)

This now allows us to find the second-order shock position, since evaluating (5.54) at

the shock and eliminating 74, from (5.54) and (5.38) gives

il (R ol o
xﬂ%}'— (-R%'*'%{lln:'i'mr'*'-l}lx) 2 (0'5‘:’) :
Since ag = dyz/dz, integrating (5.55) gives

B M, 1—3(1— Ro)(y — 1)] /w N - N
Y2 = By =1 {[ 5= Ro) : Ry(2)da + 'Z% y sinh {(n + 5)7.']

X [(3 — 29)Roboz — (3 — 2Rg)(y — 1)z cos [(n + %)7:1]

in [(n + )72
iy = ) — ([i :L ;))TM]J } : (5.56)
: b) T

ﬁtana = Be
M, A7 8

In addition, the first-order density can be found from (5.43), assuming that 7,(1) = 0:

mn= (RO = 1)36]—)(11 . (3

(&3
t
~3
~—
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and thus, from (5.19)

_(Ro— 187 — Iy

21 To (5.58)
and from (5.2) the upstream density becomes
- _ (Ro-1)Bp{~ R 7 - %
i 2 3 5.569
1 RO y ( )
Equations (5.40) and (5.41) also give
Bay = I?—gy + M (V12 — fi‘x) (5.60)
and from (5.45)
B..)2 — (B2 )2
py = 7§ — Bl = (Bie)” (5.61)

Be

Finally, the current density can be found from the solution for By., since, from

J._VxB
u

we have

. _ _0B

Jo = =gy*
which, using (5.48), (5.39), (5.36) and (5.34) to give

= 1 ca +¢3) [Ry(ct) - =
Bie = o o) e - Ba(e)

+(e1 = o) i ay, sinh [(n + %)11‘} (cos [(n 4 %—)wc"‘}

n=0
—cos [(n - %—)wc"])} (5.62)
(using the notation of (5.53)), is just

4M.(1 - Ro)2(1+ Ry/?)(y - 1)

+(e1 — o) i an(n+ §)wsinh [(n - %)n] (sin [(n + %)wc’*]
n=0

Jo =

{(er + ) R} (1) - Bye)

— sin [(n + %—)Wc—])} (5.63)

We note here that since we have assumed a particular form for the downstream density
variation (see equation (5.57)), we have already chosen the ‘frce parameter’ mentioned
in Chapter 2. There, the unknown parameter was determined by choosing 27, such that
there was a velocity match at the outflow of the diffusion region. Here, the choice of

7;(1) = 0 is made in order to simplify the equations. but it will not ensure that such a
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velocity match exists. This could be done by retaining the arbitrary function of y in (5.57)
which was removed by the above assumption. Equation (5.50) for v, would then include
this function of y through the expression for v§, (5.50). If the variation of vy, with y
at the outflow boundary of the diffusion region were known, then this function could be
evaluated and a velocity match would be ensured.

The fact that the free parameter has been specified in different ways in this and the
previous chapter means that a.ltho‘augh the incompressible limit of the compressible solution

should resemble the results of Chapter 2 in character, it will not be exactly the same.

5.5 The effects of compressibility

As was the case in the upstream region, the inclusion of compressibility does not affect the
essential character of the downstream region. In fact, to first order, both the pressure and
the y-components of the velocity and the magnetic field are unaltered (see also Semenov
et al, 1983a for a comparison with the results for Petschek’s model). The main reason
for this is simply that the width of the downstream region is of the same order as the
perturbation and so, at the lower orders, there is little variation across it.

The a-components of velocity and magnetic field strength do show some difference
and of course there is now a density gradient in the z-direction, but the variation of the
solutions with changes in the reconnection regime (or equally bg) is not affected. The
perturbed z-component of velocity vy, still increases linearly with by while both By, and
v9y show no explicit b dependence. It is perhaps worth noting here, however, that there
is some slight dependence of all parameters on by due to the fact that the length of the
diffusion region, I, which enters into the expression for each parameter, does vary with
bo. This is a very small effect, however, particularly where, as chosen here, I << 1. We
also find that the lowest-order current density, jo, is independent of by, while the second
-order shock position, y, varies linearly with bp. This is exactly what was found in the
incompressible case.

The main effect, then of including compressibility is not to change the way that the
solutions vary with the different reconnection regimes, but, within each regime, to affect
how the magnetic field and the plasma interact. In the upstream region. introducing
compressibility and therefore allowing changes in the magnetic field strength to change
the density of the plasma, alters the way in which the magnetic ficld is able to influence

the transverse velocity. In the downstream region, there is a similar situation. Here. the
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Figure 5.2: The perturbed z-component of the downstream velocity vs. z.

Curves for different values of . are shown for the compressible and incompressible cases.

newly-reconnected field lines are highly curved and the tension in these field lines, which
acts to reduce their curvature, accelerates plasma away from the diffusion region. As
the field lines straighten out, they transfer some of their energy to the plasma, which is
accelerated and heated. _

If the plasma is incompressible, then the tension force cannot change the density of
the plasma, only propel it. In this case the curvature of the field lines decreases more
slowly than in the compressible case, where the fieldlines straighten out closer to the
diffusion region and accelerate the plasma more effectively. This behaviour can be seen in
Figures 5.2 and 5.3 which show how the perturbed 2-components of velocity and magnetic
field strength vary with distance from the diffusion region. Two different values of v are
chosen : 7 = 5/3, representing a fully compressible plasma and v = 10, representing an
almost incompressible plasma. Figure 5.3 shows the variation of By, or, equally the field
curvature, since By, is a constant. For both values of v, the curvature decreases to almost
zero away from the diffusion region (z = 0), but in the incompressible case this decrease is
slower. The effect of changes in the field curvature can be seen in Figure 5.2 which shows
a greater acceleration of the plasma near the diffusion region in the compressible case.

The absolute value of the z-components of velocity and magnetic field (as opposed to

LI

o L P RN, POV Lar b D T S e W WO S S S G PR W L 3



R R B B e T T O B B v
003 [+ —
;\ Incompressible: § = 1.0- — — 7|
-L‘} ﬁ e 01 ............. |
”H Compressible: § = 1.0 - — - -~ N
.002 ’T'\ B =01 —
X ER |
m EE m
£ ]
VA -
001 & N %\ -
0

Figure 5.3: The perturbed z-component of the downstream magnetic field vs. z.

Curves for different values of 3, are shown for the compressible and incompressible cases.

their variation with z) also differ in the compressible and incompressible cases. The reason
for this is that from (5.26) the lowest-order shock strength Rjp is a function of 7 such that
in the limit ¥ — o0, Ry — 1. Thus in an incompressible plasma, the shock strength (and
hence the jump in the transverse components of velocity and magnetic field strength) is
reduced. Hence setting vy — oo gives a larger value of By, downstream and a smaller value
of 5.

The lowest-order current density is also slightly different in the two cases. In both,
there are current maxima at the shocks and at the diffusion region, with a minimum on
the z-axis. In the compressible case, however, where the field line curvature decreases
rather more rapidly away from the diffusion region, the current density also reaches its
minimum closer to z = 0. The plasma density, on the other hand, is very different in the
two cases, since in the incompressible limit there is no density perturbation at all. For a
compressible plasma, the total density varies as 1 — 2[(Rg — 1)/ Ro) cos(n /2)z (taking only
the first term in the summation in (5.57)). Thus, it increases from a minimum at z = 0
to a maximum at z = 1 as the tension force compresses the plasma.

The variation of the field curvature is also reflected in the variation of vy, as in equation

(5.54) and Figure 5.4, being largest where the field strength is largest. The same is also
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true of the second-order shock position, 92, which from (5.38) is largest where v,y is largest.

One aspect of these solutions which has not been discussed at all so far is their variation
with the plasma beta. Roughly speaking, in a low-beta plasma it is the magnetic field
which will provide the dominant force acting on the plasma, whereas in a high-beta plasma,
it is the plasma pressure which is dominant. As explained in the introduction, a high-beta
plasma will behave incompressibly. Thus, as shown in Figures 5.2, 5.3 and 5.4, increasing
Be has the same effect as increasing 7. Because we have used a perturbation expansion and
have assumed that § is order one, we cannot show results for large 8. We would expect,
however, that as § is increased for both the compressible and incompressible cases, the
values of velocity, magnetic field strength, etc would become the same for both.

We find also that the reconnection rate varies with f., through the dependence of a,
in (5.3) on Rp. The effect is again similar to increasing v, i.e. increasing [, decreases
the maximum reconnection rate for regimes with an upstream compression (bp < 1) and

decreases the maximum value of M; for regimes with an upstream expansion (b > 1)

5.6 Summary

We have investigated the effects of including compressibility in models of magnetic recon-

nection. Comparing these results with the incompressible models of Chapters 1 and 2 (see
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also Priest & Forbes, 1986 and Jardine & Priest, 1988a ) shows that compressibility mod-
ifies the reconnection process quantitatively, without changing its character. The overall
behaviour of the solutions is in fact very similar to that found in the incompressible limit
and shows the same variations on going from one reconnection regime to the next.

The main modifications are to the way that the reconnection rate varies with the
imposed boundary conditions (which determine the reconnection regime) and to the way
that the magnetic field inﬂuenceé the flow. For a fully compressible plasma we find that,
in cases where there is a compression in the inflow region, the maximum reconnection
rate is increased, whereas in cases where there is an expansion in the inflow region, the
maximum value of M; is increased.

The actual form of the solution which is obtained for any given inflow boundary con-
ditions is also changed. In the inflow region the flow is made more strongly converging
or diverging by the inclusion of compressibility. In the outflow region, the field lines are
curved, as in the incompressible case, but here, since the tension force can compress as
well as propel the plasma, the field lines straighten out rather more quickly and there
is a correspondingly greater acceleration of the plasma close to the diffusion region. As
might be expected, the density, which is uniform in the incompressible case, increases with
distance from the diffusion region.

These models have also allowed us to investigate more fully how varying the plasma
beta can affect magnetic reconnection. In the compressible case, increasing 8 tends, in
the upstream region, to reduce the convergence or divergence of the flow and, in the
downstream region, to decrease v, increase By, and increase the magnitude of v, The
reconnection rate is also affected, such that increasing f tends to decrease M, for regimes
with bp < 1 and to decrease Af; for regimes with bg > 1. As 8 is increased these changes
become less, until, once 3 is sufficiently large, there are no further variations. Thus, in
the incompressible case, none of the above parameters varies with # and only B, and pe,

the lowest-order upstream magnetic field and pressure are affected.
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CHAPTER 6

GLOBAL ENERGETICS OF COMPRESSIBLE RECONNECTION

6.1 Introduction

In Chapter 5 we examined the effects of compressibility on our coupled reconnection mod-
els. These effects will, however, also be manifest in the energetics, since in a compressible
plasma, the internal energy of the piasma can change. In this chapter, then, we explore

the energetics of the compressible solutions and compare our results with those for the

incompressible case.

6.2 Global energetics

In a compressible, steady-state plasma, conservation of energy may be expressed by Equa-

tion (1.6), i.e.

v L 2 ExB]
v.|[(—p+1 =0,

Integrating this over a volume and using Gauss’ theorem gives, in the two-dimensional

case,

(o3 EB c EB
Y 1.2 a:] / [ % 1.2 y]
—p 4 5pv°)v, + dz 4+ D+ =pv Uy — dy =0, (6.1
/B [(7_113 2PV )y I D (7—11 2PV)e e J (6-1)

As in the incompressible case, this simply states that the amount of energy flowing into
a region is equal to that flowing out. Within each set of square brackets the first term
represents the thermal energy, the second the kinetic energy and the third the magnetic
energy. Both the nondimensionalisation and the expansion of (6.1) are carried out in the
same way as in the incompressible case.

To lowest order in this expansion, (6.1) has a very simple form. In the upstream region

it reduces to

%2- { [(:—i)‘h + (‘2)"“18] = [(:—jel )th + (Q)mag]} =0, (G.?)




where the first set of terms in square brackets represents the energy flowing in through
the top boundary (BC in Figure 4.1) and the second set represents the energy flowing out
through the shock. In the downstream region, this becomes

ve B2

o {[(3 + 1), + ] = [(E+1) , + D]} =0 (6.3)

where the first set of terms in square brackets represents the energy flowing into the region
through the shock and the secor:xd set represents the energy flowing out of the side. To
this order, then, there is no energy conversion at all within either the upstream or the

downstream regions; it is only at the shock that energy is converted. Here, (6.1) becomes

()0t O - [ +1), r W} =0 @9

such that, at the shock all the magnetic energy is destroyed and divided equally into the
thermal and kinetic contributions. Thus to this order the energy conversion depends only
on M, (through the veB2?/2u term) such that increasing A, or the rate at which plasma
flows into the upstream region, increases the amount of energy that is converted. Within
both the upstream and downstream regions the total energy depends on M., ¥ and S, but
the ratios of thermal to magnetic (or kinetic) energy depend only on v and f.. Increasing
v decreases the thermal contribution, while increasing f, increases it. In the limit v — oo
we recover the incompressible results of Chapter 4 and of Jardine & Priest (1988b) .

At the next order the situation is rather more complex. Within the upstream region
we find that there is no energy flow through the top boundary (BC) but energy flows

through the side and shock boundaries as

‘l)e.B2 . i §12 Sin(n+l)” sin(ﬂ+'1')1r
S ansinh(n + )7 3 2% b (1452 — {2 3
2’“’ n=0 5 ( 2) = ( ("+%)7" b ( ‘Yﬂe) th (ﬂ+%)7’ mag
7B Sin("'l’%)” ) sin(n+l)n- !
- —bp 1+ £ + 2 by — ——2— =0 1685
e ( (n+%): i ( 3=) th ° (n+%).—: mag ( d)

where the same convention applies to the square brackets. This shows that within the up-
stream region there is a transfer of energy between the magnetic and thermal components
such that the thermal energy increases if g < 0, whereas the magnetic energy increases if

bo > 0. This corresponds to the fact that in regimes with by < 0 there is a compression in

the upstream region with a converging flow which carries thermal energy in through the
side boundary. The opposite is true where U > 0: here there is an expansion upstream
with a diverging flow which carries thermal energy out of the region. Because the system

is in a steady state. an increase in the thermnal energy must correspond to a decrease in
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Figure 6.1: The change of thermal energy with bg in the upstream region.

the magnetic energy and vice versa. Thus, to this order, the energy conversion depends
only on v or fB. through the x term in (5.3). Increasing either of these simply increases
K, rescaling the amount of energy converted without changing the nature of its variation
with the reconnection regime (see Figure 6.1). We note that a negative energy change
denotes a net outflow of energy and hence an increase of energy within the region.

The effects of compressibility become much more pronounced when looking at the
energy conversion at the shock. At second order, the energy flow into and out of the shock

is described by

Z ansinh(n + L)

2” n=0
o (_fw+4_)bo+ga_cm>_r +2 b~ Bt
o Yo(nig) DT ) g
| (-2t 4 1) b4 7 sin(ntg)r [0 Ra(e)d=
7-1 Re(r=1) (n43)s ' Rol1-Ro)(3-1)

; 1 1
=3 4 4B sin{nt+3)7  (14+Ro) [ Ri(z)dz
+(<;L.T—mﬁnm> bo= (1 - iy +9) Sehle _ R opse)
in
4R 4+f. sm(n+ )= 2‘[1 R, (z)dx = .
+(H-—15(1—"'R3)'b + ’71 (n+ ?1.- + (.,_01)(1_)30)2 =0 (6.6)
mag

where again the first set of terms in square brackets refers to the energy flow into the

shock, the second set to the energy flow out of the shock.
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At this order the energy conversion depends crucially not only on bg but also on v and
fe. This is hardly surprising, since the very nature of the shock depends on its strength,
R, which is itself a function of these variables. Figure (6.2) shows how, to this order,
the variation with by of the amount of energy converted changes as v or f3, is altered.
In all cases, as bg is increased from the upstream compression regimes (bg < 0) to the
expansions (bg > 0), the kinetic and thermal energies produced at the shock decrease,
while the magnetic energy produ:ced increases. As [ is incredsed, these variations become
more pronounced. When S is small, these variations are greater in the compressible case,
but as 3 is increased and the plasma begins to behave incompressibly, the results for both
the compressible and incompressible cases become the same.

Within the downstream region, the energy conversion is rather simpler. Expressing the

energy flow in through the shock and out through the side, respectively, as

Ro(v-1) (n-{—%)w Ro(1-Ro)(v-1)

n=0

. 1 1
=3 , 4v(Be+1) _(4vBe _ 2 sin(nt5)m (1+R°)f Ry (z)d=z
+((’r—1+ (v-1) )b° (77—1 a1} T ) (n+%§,, T TR -Te)
- CITL

+( 47(5e+1)b + _,l&sm(n+2)r i Zfol Ry (x)dx )
mag

(v-1) 1 (a4+2 )— (v=1)(1=Ro)?
(Be+1) (v—=2) sin(n+l)— r Ry (z)dz
- [((”‘71—1 ’7“1) bo + (Ro(')‘ -1) * R;{-v-l)) (n+%§“ 4 RO(ol—Ro)(-y——l) h
t
(v—3) 2 sm(n+ )= r Ry (x) dz e
+((‘r-1)b° + (m=yy +3) mil)e T el Ro)(v-l))ki ]} = -5
n

it can be seen that the thermal energy will increase if 4 > 1 (which is always satisfied)
while all of the magnetic energy is simply absorbed into the kinetic energy.

Once again, including compressibility has a noticeable effect on the energy conver-
sion. This essentially comes about because the downstream solution is determined by the
boundary conditions at the shock, which are themselves determined by the values of v
and fB.. Thus as shown in Figure 6.3, increasing 3. tends to increase variations with bp.
When [, is small, these variations are greater in the compressible case. The change with
bo of the magnetic energy converted is just a mirror image of Figure 6.3, since there is no
change in the thermal energy converted with bg.

Figure 6.4 shows the ratio of the total flux of thermal to kinetic energy flowing out of
the downstream side houndary. As might be expected, increasing ;3. increases this ratio
(since wore of the energy goes into the thermal component). When 3. is small, this ratio

is greater in the compressible case.As noted above, however, once 3. is large enough, there
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Change in thermal energy at the shock

Figure 6.2: Changes in (a) thermal; (b) kinetic and (c) magnetic energy at the shock.
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Figure 6.3: The change of kinetic energy with bg in the downstream region.

are no longer any density variations and hence no variations in the internal energy. At this
stage, the results for the compressible and the incompressible cases should be the same
(this limit is not shown because, withir the limitations of our expansion, 8. must be of
order one). From (6.7) it can also be seen that the gradients of these lines will also depend
on whether v < 3 or ¥ > 3. Thus, if v > 3, the ratio of thermal to kinetic energy flowing
out of the downstream region decreases with bg, while if 4 < 3, this ratio increases with

bo.

6.3 Summary

Using as a basis the incompressible results of Chapters 1, 2 and 4 (see also Jardine &
Priest (1988c) ) we have examined the effects of including compressibility on the global
energetics of the reconnection process. To lowest order, where all the energy conversion
occurs at the slow shocks we find that there is no change in the amount of energy converted,
although the total energy content of the regions upstream and downstream of the shocks
is increased.

At the next order, there is a slight increase in the energy conversion in the upstream
region, but the effect is much more apparent in the downstream region and at the shocks.
Here, allowing compressibility increases the variations in the energy conversion with the

reconnection regime. Thus, for a slow compression regime, the magnetic energy increases
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Figure 6.4: The ratio of the total flux of thermal to kinetic energy in the outflow jet.

at the shocks, while the thermal and kinetic energies decrease. For the flux pile-up regime
the opposite is true. Within the downstream region, all of the magnetic energy is absorbed
into the kinetic energy, while the thermal energy increases at the expense of the kinetic
energy. Again, the amount of energy converted is increased by allowing compressibility.

The ratio of the total thermal and kinetic energies flowing out of the downstream region
is also affected: in a compressible plasma this ratio is higher and increases on going from a
slow compression regime to a flux pile-up regime, while in an incompressible plasma, this
ratio is lower and decreases with this change in regime.

Finally, allowing for compressibility has enabled us to examine fully the effects of
varying the plasma beta. As can be seen most clearly at lowest order, one result of
increasing S, is to increase the thermal contribution to the total energy. At higher orders,
we find also that this increases the variations in the energy conversion with bg. When S
is small, these variations are greater for the compressible case, but as  is increased and
the plasma becomes incompressible, the results for the compressible and incompressible

plasmas will become the same.
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APPENDIX A

THE DOWNSTREAM SOLUTION

-

From (2.12) it can be seen that the characteristics of the solution for By, lie along the lines
y = M.z +c. Hence these will divide the downstream region into three parts, depending
on whether the characteristics emanate from the diffusion region or the wave (see Figure
A.1). Region 1 is crossed only by characteristics from the diffusion region; region 2 by
characteristics from the diffusion region and the waves and region 3 by characteristics from
the waves only. Since these characteristics define the directions along which information
from the boundaries propagates into the solution, the lines y = £(M.z — 2M.L) define
the separate regions of influence of the boundary conditions.

Clearly, if we wish to select solutions for which the diffusion region has least effect on
the downstream region, we need L < 1, such that regions 1 and 2 are small enough to be
neglected. In this case, however, it is not clear what is the correct boundary condition to
use for region 3, which does not extend to the wave. To clarify this point, we consider all

three regions:
Region 1
The boundary conditions are

1. By, =0o0ony=0,

o

. Biz = h(y) on ¥ = L (where & is an odd function of y),

9B, _ _—
.T%I—Oona,—L.

We therefore obtain from (2.12)

w

Bia(v,y) = $h(y — Mex + ML) + 3h(y + Mea — M L). (A.1)
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Figure A.1: Characteristics for the SOi‘;ltiOIl for By, in the downstream region.
Region 2
Here the boundary conditions are
1. Big=h(y)on 2= L,
2. Byy = B{,(z) on y = M.z (where B, is given by the jump relations).

Since the y = M.z + ¢ characteristics are common to regions 1 and 2, (2.12) gives

Bia(a,y) = il - Maa + M.D)+ Bl [ (v + Meo)| - 3BL(D). (A2)
Region 3
Here the boundary conditions are
1. Biz=0o0n y=0,
2. By, = Bf,(z) on y = M.z
and noting that the y = —M.2 + ¢ characteristics will be common to regions 2 and 3, we

obtain, from (2.12),

1

1
Buu(e,) = B [53p(v + Meo)| - B [
—~ €

TIT (y — M,;a,-)] . (A.3)
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Now, the corresponding velocities can be found by substituting (A.1)-(A.3) into (2.6)

and the y-derivative of (2.7), i.e

v N 1 4 M. aB
B T T de (up)i/? 92 e
1

‘a—gg]f T M.(up)? Qg%i (A.5)

Integrating these and using for regions 1 and 2 the condition that vi, = v{, on ¥y = M,z

gives
1
vna(2,9) = o — W[h(y ~ Mz 4 ML) - h(y + Mcz — ML)
~h(McL) — h(~2M,z + M.L)] in region 1; (A.6)
1
vig(2,y) = viy+ W{Bd [?\I (v + M, 9')] — BY,
1B{.(L) - ihly — Mcx + J'MeL]} in region 2. (A7)

For region 3 we use the condition that at the boundary between regions 2 and 3 the
velocities obtained in the two regions must be the same, i.e. the velocity obtained from

(2.6) and (2.7)

ﬁi:Jr@'l)W{Bd [ZM (y+Mm)]+Blm [ZMe(y M, m)]} (A.8)

must be equal to that from (A.7). Evaluating (A.7) and (A.8) at y = M.z — 2M.L and

Vig = C—

solving gives
P1 d

Pae - T )1/2

(with ¢ a constant), (A.9)

and hence

viz(2,y) = vf, + (HPIW {Bd {VM ——(y + M, 'c)] + B¢ [zjfe(y— Me:r)] - B;i,,(a:)},
(A.10)

or, using the jump relation for B¢ (2.29), we have
g Jump iz ’

1 1 4
Bis(z. ) = B, [2]\1 (y + M, z)] + By, [Q.Me(y - _7\[6:1:)} . (A.11)

1
Ma(2, y) =

(A.12)

Hence in the downstream region if L < 1 then (A.11) and (A.12) will be valid over most

of the downstream region. Both vy, and By, are specified completely by the upstream
solution, and the choice of v{, only influences the narrow region close to the wave. In fact,

if the diffusion region is very small then at @ = L. B{, &~ 0 (since by symmetry it must be
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G {B {‘77\1 (y + M, 1)] + BY, {--\f (y — M, 'L)] i‘l(a,)} for region 3.
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zero on the z-axis). In this case, from (2.29), v§, &~ Bi.(L)/(up)*/2. In general we expect
jets of plasma in the regions close to the wave (Soward & Priest 1986), but their effect

will be negligible when L is small enough.
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APPENDIX B

THE JUMP RELATIONS

We may express the velocity and magnetic field vectors in components normal to and

transverse to the wave as follows:

vt = [—v¥cos[ir — (& — a)],v¥sin[}T — (@ — a)]],
b = [B“cos[3m — (Q — )], ~B"sin[ir — (Q — a)]],
v? = [—v?cos[ir — (M + a)], —v?sin[in — (M + )]},

b¢ = [B?cos[ir — (L - a)],~B*sin[ir — (L - a)]],
where @, Q, etc. are defined in Figure 2.1.
Writing the jump relations (2.21) in terms of these angles, we have

- cos[%m' - (®-0)] = vy cos[%ﬁ - (2= a)],

vYcosin — (2 —a)] = vicos[ir — (M +a)],

vsin[ir — (2 —a)] + v?cos[ir ~ (M + a)]
el (Rt e B
= (up)lfz{ BYsin[37 — (Q - a)]

+B9sin[ir - (Q - a)]} ’
B¥cos[in — (1 — a)] = B COS[%” — (L - o)

p=p 51/;[(13")2 — (BY?]

where
vsin® = —p¥, visind = —d
Y - e
viecos® = —v¥, vlcosd = ol
BYsin§} = By, BicosL = BY,
Btees = B, Bisinl = Bl

(B.1)
(B.2)

(B.3)

(B.4)

(B.5)

(B.6)




Equations (B.1) - (B.6) may now be written in terms of the z— and y— components
given in (B.6) and the resulting equations expanded in powers of A, assuming the fol-

lowing ordering:

upsiream
vy = vy + -
vy = vy + €vyy  Aee-
) B; = By + €Biz + €DBy, +---
By = €Byy + €By +--
P =p + e + €p +orj
downstream
Vg = Voz + €V1p + v+
vy = Voy + €viy + €vyy +--
B = Boy + €Biy + €By +--
B, = Boy + €Byy + €Byy +--
. P = p + e + €pp 4
The resulf;ing equations are
O(1) tanog = 0,
O(e) tanoy = ﬂ"‘;{, . (B.7)
O(e?) tanay = B;"—-gf—tanal Ae%uf-;
o(1) vy = 0,
O(e) #vy = —v}, —v§ tanay, (B.8)
O(?) vy = —vf tana; — of, tanay — vf;

0(1) #£B§ = 0,

O(e) +Bf, = B}, — B tana; + Bf, tanay, (B.9)
O(¢?) +B§, = BY, — By tanay — B tana; + BE, tanay + Bf, tanay;

0(1) p§ = p§+ 3((Bs. )2—(3 )%
o » = pt+Z=py, - Hepy,,
O(¢®) 1§ = p§+ 5;(2B8,BY, — 2BE. B, + (Bfo)? + (BY)? - (BL)? - (Bf,)?;

(B.10)
where the + signs correspond to the signs of v, and B, (see Fig. 2.1). Introducing the
assumption that vg, = v4e (and the corresponding result that t‘i’y = 0) now gives (2.22
to (2.36).
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APPENDIX C

THE DOWNSTREAM MAGNETIC FIELD

-

The equation which governs the perturbed z-component of the downstream magnetic field

le(may) is
e M M,

where f and g are arbitrary functions. The boundary conditions

1.Biy, = 0 on y=20
2. 5. = DY, on y = Mz/Rq
give
—f(-v) = g(u)
—d Rou
Bigl————=| = f(-€&u)+g(u
{M (1+R1/2)] (=€u) + g(u)
where
1/2 i
=2 <1.
1/2 11
Using (C.4) this is just
—d Ro‘u
o) = o)+ Tl | R ]
) ( ) iz 7‘.[(1+R1/2

q=0 M.(1+ RY?)

Now, as Q — 00, £2 — 0 since £ < 1. Hence, as Q — oo,

o > i [ Rou ]

and hence, using (C.4)

Flu) = —g(0) - ZB‘{J['—i’-"—}

A1+ R/
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(C.2)
(C.3)

(C.4)

(C.5)

R v et SR G G T g SN 2 R T Oy BN e g e



(since F'lix is an even function). Thus (C.1) becomes

—Ela: ay) Zle(ch+) _Bla.(ch )

q=0
where
Ro M,
F = 5
W (1+ B (v+ 1/2%)
and 1
” Ry

s M, %)
T M+ R R
Now, from (5.46) and (5.44), using (C.6)

B1a(2,9) = h(z) + =73 ST (Ee) + Bha(ere)
Ry™" g=0

and

Tialers) = 10) = 35+ T (eret) + Tha(re)

q=0

where h(x) and t(y) are arbitrary functions. Eliminating 7y, from (C.7) and (C.8) gives

e+ - ﬁe

= t(y) = @1, a constant.

Using this and evaluating (C.8) at the shock (y = M.z /Ro) gives

W o= a- 2‘; Pi(z) + ],,,Zﬂm(e%)+3u(£q+lw)

g=0
._d
— 1
= 9R 1/2 t i Rl/z quBlw(gﬂ z)
and hence
1/2 —d
+1 Be _ar.\_ Bialz)
gB (é.q Q:) ('vlz(m) + QR ]1(37) Ré/z al) .

This can be substituted into (C.6) to give (5.48) or into (C.8) to give (5.50).

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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APPENDIX D

THE PERTURBED SHOCK STRENGTH

The equation which determines Rq(2) is (5.52):

©_ tanh |(n + )| sin Ly,
(s s+ (s 4 oty = 2o $ 12 +[<2 )J - 5(2“ byrL]
n=0 n 5 T
X {"(co + ¢1) cos {(n 4 %)mp]

+(co — ¢1) cos [(n - %)7?{:1:] - c4bo} ; (D.1)

where the constants cg to ¢4 are as defined in (5.52). Writing the right-hand side, which

is a known function, as f(z), we have

f(2) = (ea — c2)Ra(z) + (c3 + c2) Ra(2) (D-2)
where we may expand R;(z) and R;(€z) as a Taylor series about # = 0 to give

f@) = 2e3R(0) + F22RY(0){(cs — c2) + %(ca + e2)}
+  FetRY"(0){(ca — ea) + E*(ea + c2)} + -+
where all the odd derivatives are zero from (D.1). It can be shown that (c3 — ¢2) >
&%(cs + ¢2) and therefore, since £ < 1, (c3 — ¢2) > £6(e3 + ¢2) etc. Hence we may neglect

the £%(c3 + ¢2) term for n > 4. This gives
f(&) 2 (e3 + c2)R1(0) + 32° RY(0)E(e3 + ¢2) + (3 — c2) R ()

and so

R](’L) 2

{f(l‘)— (e3+¢2) <R1(0)+ %;)11?'1'(0)>} (D.3)

€3 — €2

where f(a) is given by (D.1).
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RY(0) may be found by differentiating f(z) to give

f’(:c) - DM, tanh [(n + %)T\‘] sin [(n % %)WL]
= (n+ )7

X {(co + ¢1)sin [(n + %—)m:] — &(co — ¢;) sin [(n + %)7.'{:1;]} y

KM, &) {cos[(n + (L —a)]  cos[(n+ P)n(L + a:)]}
3 : np np
i ) {cos[(.n + %,3;@ —§z)]  cosl(n + %n);-(L + €z)] }

where we have neglected the tanh(n + 1)« term since this tends to one very rapidly. This

series may be summed (Gradshteyn & Ryzhik 1980, p. 38) to give

il =(], d
fi(= i {(c0+c1)log %%—'—Eft—:% — &(co ~ ¢1)log '::%g;%t—g%}
and so
7(0) = e oz {(@ten - €0 en}. (D.4)

Now, from (D.1)
£(0) = R{(0) {(es — 2) + E¥(es + c2) }

and so
17 kM, (CO + CI) 62(30 == cl)
3 ()= Lsin %2 {(63—02)+€2(03+62)} (D-5)
Since, also from (D.1),
Ri(0) = 29 (D.6)

963

Ry(2) is now known.
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