
GLOBAL OPTIMIZATION USING INTERVAL
ARITHMETIC

Ismail Bin Mohd

A Thesis Submitted for the Degree of PhD

at the
University of St Andrews

1987

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/13824

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/13824

Global Optimization Using Interval Arithmetic

Ismail Bin Mohd

Thesis submitted for the degree of Doctor of Philosophy

of the University of St Andrews

ProQuest Number: 10170717

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.
ProQuest 10170717

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

.A ’$, jAbstract

This thesis contains a description of algorithm, MW, for bounding the global

minimizers and globally minimum value of a twice continuously differentiable function

f : Rn R1 in a compact sub-interval of Rn . The algorithm MW is similar to

the algorithm H of Hansen [Han -80a] in that interval arithmetic is used together

with certain of Hansen’s ideas, but is different from Hansen's algorithm in that MW

bounds the Kuhn Tucker points corresponding to the global minimizers of / in the

given sub-interval. The Kuhn Ticker points are bounded with prescribed precision

by using either of the algorithms KMSW [VheW-85c] or MAP [SheW-85b].

Numerical results which are obtained from Triplex [BaCM-82a] [MorC-83a] im

plementations of Sf and MW are presented.

Ack n owl ed gemen t s

In the Name of Allah, the Most Beneficent, the Most Merciful.

Praise be to Allah, the Lord of the Worlds, and Peace be upon the

Master of the Apostles, his Family and Companions.

I am pleased to thank my supervisor Mr. M. A. Wolfe for all his

help and encouragement during my time as a research student.

I am grateful to the University of Agriculture Malaysia and the

Department of Public Service Malaysia for their financial support.

I also wish to thank my mother, my father, my wife and .my children

for their patience.

I Ismail Bin Mob d hereby certify that this thesis which is approxi

mately 80,000 words long has been written by me, that it is a record

of work carried ont by me, and that it lias not been submitted in

any previous application for a higher degree.

June 1986

i hereby certify that the candidate has fulfilled the conditions of

Resolution and Regulations appropriate to the degree of Ph.D. of

the University of St Andrews and that he is qualified to submit

this thesis iu application for that degree.

June 1988

I was admitted as a research student under Ordinance No, 12 on

17 th December 1982 and as a candidate for the degree of Ph.D. on

17^ December 1932; e higher study for which this is a record

was carried out in the University of St Andrews between 1982 and

1986.

6th June 1986

Contents

1 Introduction... 1

3 Preliminary results...................... ... 47

3 Hmiscn’s Global Optimization Algorithm 59

4 Computable Error Bounds For

Nonlinear Programming... Hl

5 The Algortthms MAP and KMSW.......................................133

6 The Algorithm MW.................................. 182

f Numerical Results .. 331

Appendices

Appendix A : Notaaiou..368

Appendix B : Pseudo-code..374

Appendix C : Exjxnplep... . 388

Appendix D.............................. 393

References . 402

I

-1 ~

CHAPTER i

Introduction

There are three types of error in numerical computation, namely data error,

rounding error, and truncation error [Han-69a.]. The first error is caused by lack of

precision in the data, the second error is caused by computing with numbers rounded

or truncated to a finite number of digits, and the third error is caused by truncating

infinite sequences of algebraic operations after a finite number of steps. More detail

can be found in the book of Vandergraft [Van-78a].

Data error, rounding error, and truncation error can be bounded by using

rounded interval arithmetic instead of ordinary machine arithmetic ([Moo-66a][Moo-

79a]).

in this thesis we consider the use of interval arithmetic for solving the global

optimization problem a description of which is given in §1.1. in order to solve the

global optimization problem there are available methods which do not use interval

arithmetic : an outline of these methods is given in §1.2. An outline of existing

methods in which interval arithmetic is used is given in §1.3. in §1.4 an outline of a

new interval arithmetic method for global optimization is given. in §1.5 a plan of the

remainder of the thesis is given.

2 -

1.1 Description of the Global Optimisation Problem

The following' definitions make it possible to distinguish between unconstrained

and global optimization.

Definition 1.1 : Let f : D C Rn —> Rl be a given function and let S C Rri be a

given set. The point a* G 5 is a global minimizer of / in 5 if and only if

/(*) < /(G (V^SOD)

Definition 1.3 : Let f : D C Rn -+ R1 be a given function and let 5 C R” be a

given set. Then a* G 5 is an unconstrained local minimizer of / in S if and only if

3§ > 0 such that

/(g*) < /(*) (Va g R(G, g) c s n D)

where the open ball B{x*ys) with centre z* and radius e is defined by

R(z*,g) = {a; G R"" | ||a; - Gjj < e}.

The global optimization problem consists of determining a global minimizer x*

of / : D C Rn ■—> R1 in a given set S C Rn. if x* € dS where dS is the boundary

— 3 —

of S, then the determination of x* is a constrained globs^.1 optimization problem. If

x* € inl(S) where int(S) is the interior of 5, then the determination of x* is an un

constrained global optimization problem, and a* is an unconstrained local minimizer

of / in 5, as well as being a global minimizer of / in S.

If / is strictly convex in S and a* G 5 is an unconstrained local minimizer of /

then x* is unique in S and is the global minimizer of f in S. In general, however, /

might have several global minimizers x*1,..., x*m G 5, so that /(x*1) = ... ~

and for » = !•• •, m

/’(x**) < /(4) (Vx eSnD).

The global optimization problem which is considered in this thesis may be ex

pressed as follows.

minimize f{x)

subject to x € S
1.1

where / : D C H" -+ R1 is a given function and 5 C D is a box (See A.27.).

— 4 -

1.2 Algorithms in which Interval Arithmetic is not used

Algorithms for the solution of global optimization problems in which interval

arithmetic is not used may be divided into two classes, namely the class of determin

istic methods, and the class of probabilistic methods |Gom-77a].

The class of deterministic methods may be subdivided into the classes of space

covering methods, region-of-attraction methods, trajectory methods, and function-

mo dification methods.

Of the space-covering methods, which are based upon the Lipschitz Condition

- f{y)\< £\|*-y\| (xyes), 1.2

Shubert’s method [Shu-72a] is very efficient for one-dimensional problems, and Ev

tushenko’s method [Evt-7ia] is useful for up to 2 variables only. Other space-covering

methods are described by Archetti and Betro [ArcB-78a],

Region-of-attraction methods are based on how to identify the set of initial points

from which it is possible to estimate particular minimizers by means of some local

minimization algorithm. The methods which use this idea are described by Treccani,

Trabattoni, Szego [TrTS-T2a], and Cories [Cor-75a],

Trajectory methods are based on integration of a differential equation, whose

trajectories lead either to critical points of the objective function or to points from

- 5 -

which minimizers of this function can be obtained by a local minimization algorithm.

The methods which use this idea are described by Branin [Bra-71a] [Bra-72aj [B.ra,H-

72a], and Hardy [Har-75a].

Function-modification methods, which are based upon the idea of descent from

a local minimizer, are described by Goldstein and Price in [GolP-71a]. They define

a method for determining the global minimizer of a polynomial and then generalize

the method to an analytic function of n dimensions.

The probabilistic methods use the fact that if sufficient points are distributed

uniformly but at random over any set of finite measure then the likelihood of any

particular subset, with positive measure, containing at least one point tends to unity

as the number of points tends to infinity. The methods which use this fact are the

pure random method [Bro-5Sa] [And -72a], the Monte Carlo method [RubW~77a] and

the Chichinadze method [Chi-67aj.

In order to reduce the cost, probabilistic methods are combined with determinis

tic methods such as the multistart method [DixS-78a], Hartman’s method [Hart-72a],

the method of Becker and Lago [BecL-70a], Torn’s method [Tor-78a], Price’s method

[Pri~78a,], Gomulka’s method [Gom-78a], and the method of Fagiuoli, Pianca, and

Zecchin [FaPZ-78aj.

Another approach which belongs to the class of probabilistic methods is the

method of Biase and Frontini [BiaF-78a] and the Bayesian method the application of

which is described in [MoTZ-78a],

— 6 —

1.8 Algorithms in which Interval Arithmetic Is used

In this section, outlines of the algorithms in which interval arithmetic is used for

bounding solutions of the global opt.imiza.iiou problem given by 1.1 are described.

1.8.1 The Method of Robinson

Robinson [Rob-73al has shown how to use interval arithmetic for computing

error bounds for an approximate Kuhn-Tucker point (a?T,uT,wT)T of the nonlinear

programming problem

minimize f(x)

subject to
►

&(»)<0 (* = l,...,ro)
and

h/(x) — 0 (j = 1,..., r) J

1.3

where 1 G D C R\ « e R", 0 G R" and / : D C R* m : Rn R1

(t = 1,.m), and hf : Rn —> R1 (y = 1,r) are given continuously differentiable

but not necessarily convex functions.

Suppose that 1.3 is solved approximately to obtain a numerical solution

(xT, «T , wT)7 at which the Kuhn-Tucker conditions pFi^^Vd^>-68^]

7 -

/'(a?) -h if7 {/(:«) + wTh,(z) = 0

</(») < 0

w7 0(a) = 0 > JL .4

h(x) ~ 0

u > 0

are approximately satisfied and that 2 = (zr, ur ,wT)T + d where d is an (n-Fin+r)-

interval vector “with m(dj =0 (Z = 1,..., n + m + r) and lu^dy) = w(dn_j.7„+J.).

Computable sufficient conditions which are based on the interval Newton operator

N_ [Nic-71a] for the existence of a unique Kuhn-Tucker point («*r, if*7’, w*7’)7’ in z

which satisfies 1.4 have been given by Robinson [Rob-73a].

Moore [Moo~79a] has suggested that the interval Newton operator TV [Nic-

71a] which has been used by Robinson [Rob-73a] could be replaced by the interval

Krawczyk operator K [Kra-69a|.

1.3.2 The Method of Skelboe

Skelboe [Ske-74a] has described an algorithm for computing a lower bound on

the value of the objective function f given in 1.1. The algorithm is applied to — f for

-8-

computing an upper bound on the value of f.

The method of Skelboe [Ske~74a] is based on the following definitions and theo

rems.

Definition 1.3 : Let / : D C Rn —* R1 be a given mapping and let / be continuous

in D where D C D is a convex set. The mapping / : 1(D) 1(R) defined by

/U) = {/(3') I ® G »} (a € 1(D)) 1.5

is called the untied extension of /. __

Definition 1.4 : Let f : D C Rn — •> R1 be a rational function. A rational interval

function / : 1(D) —> J{i?) which is obtained from the rational real expression which

represents / by replacing, for % = 1,..., m, x E R with x{ G I(R) and real arithmetic

operations with the corresponding interval arithmetic operations is called the natural

interval extension of f.__-------------------------- 7 □

Theorem 1.1 : If (l) / : D C Ril —> R1 is a rational function; (2) / : 1(D) -+ f(R)

is a natural interval extension of / then (V« — (:«!,... , an) € 1(D))

(4 £ (_(—!)•) — /(—))•

— 9

Proof: A proof of Theorem 1.1 is given in [Moo--66aj. □
Theorem 1.2 : If (l) / : DC DP —> A1 is a rational function; (2) / : I{D) —> I[R)

is a natural interval extension of /; (3) ff)x) (a G 1(D)) is in centred form (See A.26.)

then > 0 such that

/(U) ~ /U) -r e 1.6

where w(e) < a |[w(&)||2, 0 G e and f_(x) is given by 1.5.

Proof : A proof of Theorem 1.2 is given in [Han~60a]. □
Theorem 1.8 : If (1) / : D C Rn —> is a rational function; (2) / : 1(D) -+ 7(f)

is a natural interval extension of (3) j G occurs only once in the

expression /((x_) and to the first power only, and

N
= U 4°

t=l
1.7

then

/Un •
N ,

%_l.£p£.,+i,--■,*„) = LJ /.(“!> %-l>4°'«/+!•••• >*»)• h8
i-1

Proof: A proof of Theorem 1.3 is given in [Ske-74a]
'□

— 10 —

Theorem 1.4 : If (1) f i D C Rn —> j?1 is a rational function; (2) / ; f{D) — I[R)

is a natural interval extension of written in centred form; (3) each of the variables

. ,zn occurs exactly once in the function / and to the first power only; (4)

each of the variables , xp is subdivided into N intervals of equal width so that

N ,
= IJ sjwith ta(apj)) = w(x)fN {i = 1,... ,p), 1.9

j=i

then 3a > 0 such that

N N
U U ‘’ s • • • , •4*’>) > 2?+l> • • • > *-n) = ’

t'x=l i„—.i

where 0 € eN and

wfev) < (a/N2) ||w(r)H3 .

•) .?.») " —n 1-io

1.11

Proof: A proof of Theorem 1.4 is given in [Ske-74.a],

It follows from Theorem 1.4 that if « € I(Rn) is a given box then /(»_) can

be computed with a precision which is limited only by the precision of the machine

arithmetic and the available memory by tairing N sufficiently large. Let

—11 —

N N

tp =]

Then C y^N\ and ?(—) (iV —> oo). Let m > 1 and g > 0 be given. For

A'l*) = 2fcm. (A = 0,1,2,...) compute ^Ar(A)\ until for some A> 1, | —

w^y^)) I < sw(y^^ ^). Then bounds /(a) to the required precision.

This procedure for bounding /(a) requires a prohibitively large number of evaluations

of /*

If p of the variables of / are to be bisected as in 1.9 then Np subdivisions are

obtained. Therefore, Np function evaluations are needed to compute the expression

on the left-hand side of 1.10.

Suppose that it is required to determine a lower bound on / : .D C Rl —> R1

over x 6 L(P). The interval x is divided into N sub-intervals £^v,1\ ..., x^N,N^ with

Suppose that / - /(a), that = /U(?Ml) (/ = 1,... ,7V), and that

and /2’2) have been computed. Now by Definition 1.8 and Theorem 1.1,

so

-12-

Suppose that p2,1^ < p2,2'. let L -- (p"’X\ 7/2,2^) represent an ordered linked list

of infima. Then p2'1^ is currently the best lower bound on //.

Since p2’1^ < p2,2\ we compute and p4,2\ We do not need to compute

P4,31 and p4’4) because since p2’2) = p4>3) up4’4) it follows that

y(4,3) c y(4,4) c p2’2).

Therefore

7 C y^ = J p4>‘>
t=i

C p4’1) u /(4’2) U p2’2)

whence

Suppose that p4,2^ < /P’1^. Now p4’1) C p2’1) and f^4'2^ C f^2'1^ so <

yp’2) < p4,1\ Since p4’2^ < /r, p2,1^ is deleted from L and p4’1^ and p4’2^ are

inserted into L so as to retain the ordering'. Thus if p4’1^ < p2,2^ then

^ = (P4’2),PM),P2’2)), 1.12

13-

< /J4,1)if /p’2) < /p’2) then

1.13

and if /Jf men

1.14

If L is given by 1.12 or 1.13 then Z^8’3^ and /8’4) are computed. If L is given by 1.14

then and are computed. This procedure is continued until the difference

between the first elements in successive lists L is less in magnitude than a pre-assigned

tolerance. Skelboe’s algorithm is easily generalized to functions of several variables

and the Algol W program which he gives in [Ske-74a] is able to bound the united

extensions of functions of up to 30 variables.

1.3.3 The Method of Dussel

Dussel [Dus-72a] has described an algorithm for bounding the global min-

imizer and /*, the global minimum value of the continuously differentiable strictly

convex function / : D C R” — R1.

- 14 -

It is assumed that f : 1(D) —> /(ft1), and dif : 1(D) —► I(R*) (i = i,...,n)

ace inclusion monotonic interval extensions of f : D C Rn —> I?1 and of dif : D C

R'1 -•» Rl (si -- 1,..., n) respectively. Let

sf<7?l(ft) = <

f 1 (0 < hj)

0 (h; <0< hs)

I -1 (hs < 0)

1.15

where h — [/ij, hs}. For degenerate intervals, this reduces to the ordinary sign func

tion for real numbers (a degenerate interval is an interval containing one point only).

Let

b(i,a) — {# | x € x G 1(D), Xi = o} 1.16

for i = l,...,n and x-n < a < &is- Clearly b(i, a) — (xt,..., jh-n a, ^4-1,. ■ ., &n).

The function f has a unique minimizer in each b(i, a) n). Let

' 1

sign(z) = < 0

(*>o)

(* = o). 1.17

< -1 (z < 0)

The following result is proved in [Dus-72a].

- 15 -

Theorem 1.5 : If f[y) — min{/(a) | x G h(i, a) i G {1,..., n}} and a* is the global

minimizer of / then

si<jn(a - a*).
□

The method of Dussel consists of a sequence of cyclic bisections of a (cyclic choice

of co-ordinate directions), choosing at each bisection the half which still contains a1*.

This half can be chosen by using 1.17. In order to compute stgn(dif(yj))i we note that

(sign(di_(X)) ~ ±1) => (sign(dif(y)) — ±1 (\y G a)). That is, if si0ft((t/(&)) 0 0

then tfy^dt/(&.)) == sign(dif(y)) (Vy G a). The problem of finding y to minimize

f(x) for x G 6(7 a) is again a problem of the type 1.1, but of dimension n — 1. We do

not have to find y accurately, but only need to know a box x containing y such that

sign(di£(x)) 0. This b ox can be obtained by applying cyclic bisection to the box

6(7 o).

Dussel [Dus-72a] has given a computer program written in Triplex Algol 60

which implements his algorithm.

1.3.4 The Method of Moore

Moore [Moo--76a] has discussed several techniques which have been used in al

gorithms for bounding the range of values of a function / : Rn -> If1 in a given box

X G T(.Z?n), and has considered how the techniques which he has discussed might be

incorporated into a method for bounding the range of values of f in a.

-16-

Moore mentions the following* ideas.

(i) /(£) £/(&) ([Moo~62a][Moo~66aj).

(ii) If -v (i — are given by

~$u + [j ~lJ]w(xi)/N (j = 1,...,/V) 1.18

and

[£W,CzW]= U ... U f(x<$
Jl = l Jn=l

■njr 1.19

then /($) C CA27)]. Furthermore, 3cv > 0, independent of TV, such that

maxfZ/W ._ (/(y))s, (/(&))/ — L^} < a/N 1.20

([Mo o-6 2a] [Moo-86a]).

(iii) If each component of x occurs at most once and to the first power only in f(x)

then ([Moo-62a][Moo-66a])

ZU) = ZU)* 1.21

L h

- 17 -

(iv) If fc(x) is the centred form (See A.26.) of /(») then [Moo~66a] }'(&) C

[LcN\UcN^], where

ie>.e’]=u---u /,«>•-
Jl=l ?'«=!

1.22

and 3(3 > 0, independent of N [Han-69a] such that

maxf!^ - (/(i))s, (/(£))/ ” < (3/N2. 1.23

(v) If the components £p_bi,... ,xn, (l < p < ».) occur at most once and to the first

power only in f[x) then £(x) C [L^, where

N N
,w,um]= (J .

fl=l
u a*

fp—1

a(/V) a
PJ'p U) .24l/l ’

and 37 > 0, independent of N [Ske-74a], such that

maxftfW - (Z(i))s, (/(£))/ - 4W)) S l/^2- 1.25

- 18-

(vi.) Suppose that g : £{D) —* l(72n) Is the natural interval extension of the gradient

g : D C Rn —> Rn of f : D C Rn 22J, Recall the monotonicity property of /,

namely that if gi(x) > 0 (V,? € for some i 6 {l,..., n} then (Va G &)

-•,»„) < /(»), 1.26

and

/(«!,..., Xi-i, xiS, , xn) > f(x). 1.27

Therefore, if for some i (l < * < n), (£t(&))/ > 0 then the minimizer and maximizer

of f occur on the boundaries di(£) and d^(z) respectively, where

<?;(&) = 1.28

and
T’isU) = [®iSj ^*5]) • • -1 £n) 1.29

Similar statements are valid if < 0. Furthermore, we can intersect those parts

of the boundary of x in which the minimum and maximum values of f are known

to lie. Thus, if the minimum value of f occurs on the boundaries d'-J (&),..., <9** (&.)

(1 < & < n) then it occurs on the intersection

1.30

where — , , . ~ jk ~ I or j\ — ... =z jk ~ 2, whichever is appropriate.

These observations can be used to reduce the dimensionality of the problem in

particular examples. This technique can also be used on the sub-boxes of % obtained

by using 1.18.

(vii) Suppose that for every i — 1,..., n we have either

or

where xW■iJi (* = 1,..

and

and that

(ffi(M"’,---.Ml))s <o

(sjMl........Ml’))/ > o

1.31

1.32

n) are given by 1.18. Suppose that S and T are defined by

s = O'l (ffjtMl--- 1 < i’ < ft}

t= {»•!(& (Ml-- • •>Ml))/>o. 1 < i < ft}

SuT = n}.

1.33

1.34

1.35

Then f attains its minimum value in

20 -

at the point u = (Ui)nxi with

Ui =

1.36

*</ + (N - l^s-x^/N (i € T)

an + Jf(auj — xu)/N (i e Z?)
1.37

and its maximum values in the same sub-box at the point v = (ujrxi with

f a,/ 4- A (xiS~ a/jJ/NZ (» / T)
vt= < .

a*/ + (it — i)(ats - Xii}/N (i € 5)
1.38

We can obtain bounds on the values of / at u and v using / as in (i). Thus

/(«) G f(u)

and

/%) G f(v).

Also, if /(«) C [uj,os] and f_v) C [6/,6s] where [ci./,«s] and [6/,6s] axe obtained

- 21

by using rounded interval arithmetic evaluation of / at u and u then on the sub-box

given by 1.36 the values of f are contained in the interval

(viii) Suppose that by using the technique of ((v) the sub-box X of t& is obtained but

X is not a point box (i.e. a box which contains only one point). Suppose that the

minimum and maximum values of / on X lie in faces of dimension 1 < p < n (if p — n

then this is % itself).

In the sub-box X, n -p arguments of / are fixed real numbers, and the remaining

p arguments a,--,..., at-p of / (l < A < ... < A < n) range over intervals. Suppose

that p,. = a£l, Up — :cip. Let

- f\x 1.39

where f\% denotes that / is restricted to £. Then djh[y) (j — 1..., p) attains both

positive and negative values on X.

Consider the matrix

J(y) = 1.40

22 -

{jk — 1, If 3Q ([Moo-62aj[Moo-86a][Han-C5a][Han-89b][HanS--67a]) such

that .

I \ e a} C Q.k 1.41

(A k = 1,... ,p) then there is at most one local extremum of / in x_ and, rf in i, it is

also in

i “ in {m(i) — Oil(m(i))} 1.42

where ll is an interval extension h! of h. This gives rise to an interval version of

Newton’s method [Moo-66a]. If £ = 0 then / has no extremum in the interior of s'

and the minimum and the maximum values of / on i occur on the boundary of i.

If /BQ such that 1.41 holds then it might be possible to find one for a sub-box

of i upon further subdivision. Once having found a suitable Q and j% 1.42 can be

iterated with or without re-evaluation of Q on the possibly smaller sub-box i'. We

can stop at any iterate and evaluate / or / , the centred form, on $ to obtain bounds

on an extremal value of / in the original box x.

-23-

(ix) We cca acccmplish ttie rrsulfcs of fhe teehuique (viii)witliout using (Q. We can use

an interval extension J of J itself and solve the system of p linear algebraic equations

with interval coefficients

Mb ~ ~b! (m(i)) 1.43

where M ™ (m}-k)pxp and

U(N))n Q j (N * 1— - ,p). 1.44

We can use the methods of Hansen [Han-G5a] [HanS-6'Za] [Han-69bj to find a

p~dimensional interval vector b containing the set of solutions to the system cor

responding to real matrices chosen from the interval matrix M. We can then take

£ = An {m(N) + 6} 1.45

(instead of $ = An {m(N) — ^jh!{ni{Q}} as in 1.42). Again, if $ ~ 0, then / has its

extrema on the boundary of N. Otherwise we can continue to iterate 1.45, stopping

at any desired iterate to evaluate f or /c on £/.

- 24 -

Another alternative interval version of Newton’s method for systems of equations

is the method of Krawceyk [Era-69a]. We can use the iteration formula

x' = An {m(A) — Y]{m(x)) 4- — ro(!.))} 1.46

where

& = 7 - yj(a), 1.47

I is the identity matrix, and Y is an arbitrary nonsingnlar real matrix. We can choose

Y as an approximate inverse of The choice of m(A) is not essential.

(x) The method of Moore can be tummarized aa follows.

If there is a way of re-writing the given expression for rn) in such a

way that each variable occurs at most once and to the first power only then (iii)

can be used to find the range of values of f in one function evaluation using interval

arithmetic. However, in general, this will not be possible.

If (g.(A)).9 < 0 (i 6 5) and (g<(A))/ > 0 (? GT) then we can proceed as follows.

(l) IfT U S =={{,...,«} then the teckniqus. oo (vn) cca bb uusd directly to obtain

the range of values with, two function evaluations to the accuracy of the machine

arithmetic used;

- 25 -

(2) if T U S = 0 then we can attempt to apply the techniques of ((vii) - ((x) and

Skelboe’s method [Ske-74a] on A;

(3) ooherwise the ^ec]hT^iqtue ((d) can be used to find a part o£ the boundary oi A

containing an argument giving the minimum value of / on A { and another part for

the maximum of /).

In case (2), if the first iteration of Krawczyk’s formula does not produce a smaller

box than X_ then we could bisect the box A in a co-ordinate direction for which g.(A)

has maximum width.

In case (2), / must also be bounded on the boundary of x consisting of 2n faces

of dimension ? ~ 1. •

We can then, as Skelboe [Ske-74a] does, find the lower bound of / and then

repeat the process with —/to find the upper bound.

More detail can be found in [Moo-76a].

1.3.5 The Method of Mancinl and McCormick'

Mancini and McCormick [ManM-76a] have given computable sufficient condi

tions for the existence of a unique critical point z* of a given twice continuously

- 26 -

differentiable /uncliun f : if” —> R} in a convex compact set D; they prove the

following theorem.

Theorem 1,6 : If (l) / : D C Rn —> R1 is a given mapping with / G C2[D)\ (2)

D C D is a convex compact set; (3) f”x) is positive definite on .D; (4) for -some

X S D

N(x) — {N — { • I f"{x + {x - £)s)ds}I x e D} 1.48

and iV(N) C D, then 3 a;* G N{x) such that

/'(**) = 0, 1.49

/C?*) = inf /(*), 1,50

and x* is the unique critical point of / in D. Furthermore, if (5) x G int{D) or (6)
A

N(x) C irit(D'j) then

tf$ev, (Vi g [0,1]) 1,51

- 27 -

where

(/=={« G 72" I w == /'(;) (a G D)}

and
/(«) “ f(z*) = f'{x) I t{f"{g^{f'{X)))y'1dtf,!{)T, 1.52

Jo

in which g : 72"' — 721 is such that

f)) = n (Va G -D),

and

/WW)) = « (v« g u),

Clearly the application of Theorem 1.6 depends on the ability to computation

ally verify the hypotheses and to compute lower and upper bounds on the right-hand

side of 1.52. According to Mancini and McCormick, if the function / is factorable

[Me—83a] and the set D is a box then interval arithmetic can be used to verify the

hypotheses and to compute an interval bound on the right-hand side of 1.52.

1,3.6 The Method of Ichida and Ffjii

Ichida and Fuji) [IchF-79a,] have introduced three algorithms, namely Algo

rithms A and B for bounding the global minimizer of the objective function, and

Algorithm C for bounding the global minimizer subject to constraints.

- 28 -

An outline of Algorithm A is as follows.

Suppose that f : 1(D) —> I(R) is an interval extension of / : DC Rn —> Rx. Let

x C 1(D) be a given box and let e > 0. Li and L2 are linked lists of pairs («,/(«)),

ordered so that

Li, initially empty, ultimately contains (x, f(x)) such that ||w(^.)|| > e and

L2, initially empty, ultimately contains (x_, f_(x)) such that ||w(a)|| < £■ Compute

/ = /(£) and insert (&>}) into Li. Then proceed as follows.

(1) If Li = 0 then extract all the pairs from L2. If L2 contains

then lj£:i and Ui=i /(&**) which contain x* and /* respectively, are formed and

the algorithm is terminated. If then extract (x. f(x)) which has the smallest

lower bound (f(x))i from L±.

(2) Determine k C {l,..., n} such that

- 29 -

max
l<i<n Ms,-)}

If w < g then insert (x, /(<)) into Lg and go to (1); otherwise form the sub-boxes

X(l) = [*//, Xm],£fc+JL, • • • , X,Jr

and

X(2) ~ (—1,...^_i, [xm, fsb Xfc+1, ...,Xtt)r

where Xm - ?n(a.), and. then compute

/(C _ /(xS1)) and 2) == /(x^)).

(3) Let x}{ = m(xpd) and let x~ m(<.(2)). Compute p^ — /(x^). s <

then (z.(2\ /(2)) can be eliminated because z® and do not conaain x* and /*

respectively. Therefore if < fjthen insert (x/1),/^) into Li and go to (1).

Otherwise, go to (4).

(4) Compute = /(xTn<). If f^s < then (xp\ can be eliminated because

x^1) and do not contain x* and /*' respectively. Therefore if then

insert (x^2\/^2^) into Li and go to (1), Otherwise, go to (5).

- 30 -

(5) Insert and into Li and go to (1)
’□

If the objective function contains many global minimizers, say x*1,..., x*m, then

the solution U£Li obtained from (1) of Algorithm A is very wide and must be

divided into subgroups separately by using Algorithm B [IchF~79a].

An outline of the Algorithm B [IchF-79a] is as follows.

(l)' Suppose that the solutions a*1,... ,x*m are obtained after applying Algorithm

A to the box x.

(2) ' Select x*1 as the first member of a group of sub-boxes and add a sub-box x*J (j —

2,..., m) to that group if it has a common boundary with a sub-box which is already

in the group. This process is repeated until all the sub-boxes »** (i = 1,... ,m) are

collected into groups.

(3) ' Compute the range of values of f for each group and the union of these ranges

gives the desired global minimum bound. The global minimizer bounds and the global

minimum bound can be made sufficiently small by using Newton’s method [Moo-66a]

on the groups mentioned in (2)\

If S in 1.1 is irregular in shape [Ic.hF-79a] then Algorithms A and B cannot

be used unless S can be transformed into a box. However, the transformation can

be done in special cases only. To overcome this disadvantage, Ichida and Fujii [IchF-

79a] have suggested the use of the Lagrange-multiplier technique which is described

in Algorithm C.

— 3i

Recently Icliida and Fujii [IchF-S5a] have described another global optimization

-algorithm in which an interval Newton method is used.

1.3.7 The Methods of Hansen

Hansen [Han-79 a] has described an algorithm for bounding the global minimizer

of a function / : D C > R1 with / G C2(D) where D C D is a bounded closed

interval. Hansen assumes that f and f" have only a finite number of isolated zeros

in the given initial interval A G 7(D). An outline of this method is as follows.

Hansen's algorithm [Han-79a] iteratively deletes subintervals of x until the re

maining intervals are sufficiently small and contain the global minimizers of f. In

order to delete subintervals of x the following techniques are used.

An interval f G 7(72) such that the global minimum < fs, is com

puted initially from / -= [(/(£f))s AH(]))s] if (/(A/))s < (/(»s))s and / =

[(/(<s))5» [(/(A,s))<] other-wise, and is updated continually. The interval / is used

to delete sub intervals x of X such that x* $ x. If f(x) > fs (Va G x) then f(x) > f*

[\x G z) so x* (f x.

The concavity property of / is used by Hansen [Han-79a] to delete the sub interval

x of A by computing f ~ fr(x). If f£ < 0 then / is concave in x and f cannot have

a minimizer in the interior of x. Therefore the interior of x can be deleted.

The interval Newton method [Moo-66a] and the extended interval Newton

method [Han-78a] are also used to delete subintervals of x.

- 32

Hansen [Han-79a] also has used a quadratic approximation of tlie function / in

order to delete subintervais of x. More detail can be found in [Han-79a|. Hansen's

algorithm [Han-- 79a] is implemented in [Moh-84a].

Hansen's algorithm [Han-79a] has been extended by Hansen [Han-80a] in order

to bound the global minimizers of / : 72'" 72< The implementation of Hansen's

algorithm H for the n-dimensional case [Han-80a] is described in Chapter 3 of this

thesis.

1.3,8 The Method of Hansen and Sengupta

Hansen and Sengupta [HanS-80a] have extended Hansen's algorithm, 77, [Han-

80a] to solve the problem

minimize f(x)
y 1,53

subject to Pt(;r) < 0 (t ~ 1,..., m) J

where / € C<(D) and pi G Gl(D) (i = 1,... ,m) in which D C D is an open convex

subset of the feasible set (Chapter 4).

In order to give an outline of this method we need the following definitions.

Definition 1.5 : The point x E x C 1(D) is certainly feasible if and only if

< 0 (i = l,...,rn).

- 33 -

Definition 1,6 : The box x G 7(D) is certainly feasible if and only if (p..#))# < 0

(f ~ m).

It follows from Definitions 1.3 and 1.4 that if x is certainly feasible then

(Va G 2.)? x is certainly feasible.

Hansen and Sengupta [HanS-80a] have shown that the monotonicity and non

convexity tests which are described in [Han-80a] can be used in the constrained case.

If a is not certainly feasible then the interval Newton method ([Moo-66a]]HanS-

81a]) cannot be used (at least not easily) [HanS-SOa]. For this reason, Hansen and

Sengupta [KanS-80a] have used a linear interval extension rather than a quadratic

interval extension [Han-80a] for f in order to delete parts of . which do not contain

a global, minimizer of f. Hansen and Sengupta [HanS-SOa] have also described how

to use the constraints given in 1.53 for deleting points which arc not feasible.

In order to improve the value of the upper bound / where / is computed as a

degenerate interval / which is to be used as described in §1.3.7, Hansen and Sengupta

[HanS-80a] have suggested using a non-interval algorithm to find a better replacement

for /. They have also described in detail how to use a line search for updating f.

Furthermore, Hansen and Sengupta [HanS-80a] have explained briefly how to use

their method to solve linear programming and integer programming problems.

-34-

1.3.9 The Method of Asaithambi, Shen and Moore

Let f: DC Rn —> R1 be a given mapping with f E 6*1(D) where D C D is an

open convex set. Let / : 1(D) —+ I(Rl) and f : 1(D) —> I(Rn) be continuous inclu

sion monotonic interval extensions of f : D —> j?1 and of f1 : D —> Rn respectively.

Let xE 1(D) be given.

Asaithambi, Shen and Moore [AsSM-82a] have described a method for computing

the range of values

/(&) = {/(«!, • ♦ •, xn) | Xi E Xi n)}. 1.54

By Theorem 1.2 we obtain

1.55

but the width of f_(x) may exceed the width of the exact range of values 1.54 by an

unacceptable amount. Define the excess width e of an interval [a, b] on the range of

values J_(x) C [a, 6] as

e = u/([a,6]) - w('f(x)). 1.56

- 85 -

By 1.54 and 1.56 a and b are the minimum and maximum values of / in A respectively

if and only if e — 0.

In order to obtain the smallest possible value of e, the following ideas are used

by Asaililambi, Shen and Moore.

(1) Compute a lower bound on the minimum value of / over A and then apply the

algorithm to — / to bound the maximum value of f.

(2) From the initial box A, a list of sub-boxes is generated whose union must contain

the global minimizer. The elements in the list are generated in pairs; each pair is the

result of a bisection in a single co-ordinate direction of some previous box in the list.

The elements are entered into the list in order of increasing lower bounds of /.

(3) The sub-box x of A is bisected at the first direction in which x has maximum

width.

(4) Suppose that the sub-box x of A is bisected into x^ and x'2\ If (/(x^1^))/ > v

where i? = /(x) for some x G x/2\ say the midpoint of x{‘2{, then can be deleted

since the global minimizer must lie in x^2\ Ttiis is called the midpoint test.

(5) If for 1 < (< n (f.(x))r > 0 then replace Xj with [»#, xtn] and if (/*(x))s < 0

then replace x{- with [x»s,Xi,s). ■

(6) The mean value form [Moo--79a]

36 -

n

1.57
t=i

corresponding to / is combined with (5) to produce the monotonicity test form

[Moo-79a]

Z,vn.te) = [/(«)./(»)] + XyZ’WU'i - '•»(%)) 1.58
i€T

where T is the set of integers i such that f.($ properly contains zero, and for i =

1, . . . , tt,

Z

(ztj, v) — <

(%ih a;s)

[XiSi Xii)

((/; W); > 0)

< o) • 1.59

l (m(^),m(^)) (i GT)

(7) The compptation is when there is no furtl^er increase in the current

lower bound on the interval extension.

(8) Durbin tt^€J oomputation of given by 1.58, the set T and the reduced box

y with

3 -

Ui, ?A j

Ut
y = <
~L

(* 0 T)

(G T)
1.60

are found.

The algorithm in which the preceding ideas are used is given in [AsSM-82a].

1,3.10 The Method of Cornelius and Lohner

Let / : [o,5] C T21 —> R1 be a given mapping. Cornelius and Lohner [CorL-84a]

have described a method for finding an interval /i(i.) which contains the range of

values of /, that is

/(i.) = {f{x) | £ «} C £v(s;), 1.61

on a subinterval x C [co, 6).

In order to obtain high accuracy / must satisfy additional assumptions. Let /

be m times differentiable and let each (A = 1,.m) have an interval extension

for any interval x C [a, &.

If <(., .) : 1(72) X 1(72) —> 72 is a metric (See A22.) then o(7(w). /.v(—)) i9 i

measure of the amount by which (.T.) overestimates /(#). If 1 (a) satisfies

38 -

^(ZUkkU)) < cM*))a 1-62

with fixed n G N and c — c([<a,6]) > 0 (c([a,5]) means that c depends on [«,&]) then

/(«.) is called an n~th order approximation of /(s).

The following theorems the proofs of which can be found in [Moo-66a] and

[Moo-79a], a,re needed in this discussion.

Theorem 1,7 : If / : [a,6] C R1 —» J?1 satisfies the Lipuchitz condition ([Moo-

66a] [Moo-TOa])

/.c) - f{y) |<£|-x~y| (%j/ G [<%>])

/'i
where L is a constant then the natural interval extension / : /([a, 6]) 7(72) of f

satisfies (Vr G 7([(,O]))

Hs) Q /«), 1.63a

xl/U-k/fe)) X <(iy(z) (ci > 0), 1.636

and

- 39 -

w(/W) < C3w(») (c*2 > 0)- p 1.63c

From Theorem 1.7 it follows that if for some sequence w(x®) — 0 (A -— oo),

then 0 (k —> oo) at least linearly with

Thnnenm 1.8 : Let / : [a, 6] C R1 -> Ri be differentiable and let f : /([a,6]) ->

I(R1) be a continuous inclusion monotonia interval extension of f : [a, 6] —> Ri that

satisfies Theorem 1.7. Then for the mean value form

/y(e) = f(y) d- Z(W(k “ y) 1.64

for fixed y G z, there holds (V- G J([a, 6]))

7(3^) C /„()>

«(?te)-/sW) - C3(WU))2 (c* > 0).

1.65o

1.656

Thus it for some sequence w(x^) —> 0 (A —> oo) then f (xffl)) —> 0

(A —> oo) at least quadraiicslly with w(xf-k)).

40 -

We shall describe the basic approach used in the method of Cornelius and Lohner.

Let f have a representation of the form

/(*) = g(x) + r(.?) (V» € [a, &]) 1.66

with continuous functions g and r. Let r : /([«,&)) —► 7(7?) be such that

r(a) e r(z) C r([u, &]) (V.r € x C [«, 6]). 1.67

The functiou g can be interpreted as an approximation of /, and r as the correspond

ing' remainder term, The intervals r(#) and r([a, 7>j) bound the remainder term over

a and [a, 7] respectively. ,

The remainder form / : 7([a, &]) —► 7(7?) of the representation 1.66 of f is

defined by

/„($) = 9 (») + r(z). 1.68

In order to compute / (») we do not use an interval extension of </(.r) but rather

we use the exact range of g on x. However, r(rv) can be an interval extension of r(a)

— 4J. —

or any other inclusion, for r(.r) on x]CorL-84a]. The use of g(x) implies that, in

practice, we can choose only very simple functions g, for example the polynomials of

degree at most 5 or monotone functions.

Theorem 1.9 : Let the continuous function / : [a, 6] C P1 R have the represen

tation 1.66 and let /v(2.) he the remainder form 1.68. Then (Vx G J([a,?>]))

■ /U:)C/v(x),

and

a(2M Z.U)) X ^(r(x)) < 2|i:^i^.)|.

1.69a

1.696

Proof: A proof of Theorem 1.9 is given in [CorL-84a].
□

For the numerical applications of Theorem 1.9, it is important to use simple

functions g in order to bo able to compute £(x). On the other hand w(r(x)) should be

sufficiently small for /is) to be a close bound for / (x). Cornelius and Lohner [CorL-
/

84a] have suggested using the Her-mite interpolating polynomial for this purpose.

Let Pa (c) be the unique polynomial of degree a > 0 such that

PE5j)(x() = fU}(Xi) [j = 0.. mt - 1; ? = 0,..., k), 1.70

- 42

where x0, ... ^’/c G x are /r + 1 distinct points and mo, *are such that o + 1 ••=

Z^-o mi* If / is « + 1 times continuously differentiable, than (V.r € ic)

h
f(x) -ips(x) + (1/(s + 1)!)/® +l) (£(.?)) JJ(r - Xifi\ 1.71

i~0

where - (a;) G x. Let ds+ife) and dg+([a,6]) be intervals with

e Ji) c £j++.1(|a,&]) (V Ex e /([«,&])). 1.72

If 1.71 is taken as a representation of / of the form 1,66 then the interpolation form

/v (2) ascofdino' ft f.68 i s definer by

A
Z.„a(a.) = £5(») + (i/« + i)0^s+iU^) H ($ ~ #))"’> 1-73

t=0

where
mt

(x-Xi)"11 = {jte.- *j).
1=1

- 43 -

If /(®+1) has an interval extension over x satisfying Theorem 1/Z, and if

is an arbitrary fixed point in so that

;2(^i) e/(*+*)(£), I.74

then we use

/(») = fo-t-iM + (1/(5 -{- l)0(/(s+1) (£(•?)) - /t.(s+l)) JJ“ *<)"*'’ L75
t=0

where
fc

Wi(*) = Ps(«) + (h(s+1)/U + 1)0 Hf® “ ^)m’’ L76
t—0

as a representation of the form 1.66 and define the interpolation form f ($) according

to

/„» = 2,+1W + (i/(»+.i)!)(/(s+1>fe) - fc(s+1)) nu- *••)’"'• i.n
t—0

The following result shows that both 1.73 and 1.77 can be approximations of high

order.

- 44 -

Theorem 1.10 : Let/ (ft) be defined as in 1.73 such that 1.72 holds, and let / (ft)

be defined as in 1.77 such that Theorem 1.7 holds for /(^H-1). Then (Vft £ 7([o,h]))

ZU) C/vJft), 1.78a

a(Zte)>ZVdU)) i*78&

with as-|-i = a3-(..i([a, &]) > 0 and

ZU)C^(ft), 1.79a

^(ZU)’Z„aU)) &h-2(«'U))h'2 l796

with ps+2 - ^4.2([a, b]) > 0.

Proof: A proof of Theorem 1.10 is given in [CorL-84aj.
□

The approximations /^ (ft) and /^ (ft) can be improved by refining the method

of evaluating the products in the remainder terms and this is desribed in detail in

[GorL-84a].

— 45 —

One of the most commonly-used forms for the approximation of /(#) is the mean

value form / (a) given by 1.64, whose convergence is quadratic when f sa■iis(iee

Thnoenm 1.7. The discussion of this approach is given in [CoeL-S4a],

Cornelius and Lohner [CorL-S4a] state that their method can be applied to the

n.-dimensioeal case.

1.4 A New Algorithm for Global Optimisation in which Inter

val Arithmetic is used

Reore.ily, Shearer and Wolfe [SheW-85a] have described some computable exis

tence, uniqueness, and convergence teeie for systems of nonlinear algebraic equations,

and have also described an improved form, KMSW, [SheW-85c] of the Keawczyk-

Mooer algorithm [Qi—80a] and an improved form, MAP, [ShnW-85b[of the Alefeld-

Platsfdee algorithm [AlcP-83a] for bounding solutions of systems of eoelinear alge

braic equations.

This thesis contains a description of a new algorithm, MW, (‘oi the global op

timization problem 1.1. The algorithm MW incorporates ideas due to Robinson

[Rob~73a], Hansen [Han 30a], and to Shearer and Wolfe [ShnW-S5a], [SheW-85b],

[ShnW-SSc].

Computational experience indicatas that MW is usually more efficient than thr

slgoriihm H of Hansen [Han-3Oa].

46 -

1.6 Plan of Thesis

Chapter 2 contains preliminary results which are used throughout the thesis.

An implementation of algorithm E is described in Chapter 3. In Chapter 4, problem

1.1 is expressed as a system of nonlinear equations and inequalities in a manner

similar to that which has been used by Robinson [Rob~73a]. The system of nonlinear

algebraic equations and inequalities which is obtained in Chapter 4 is solved by using

the methods due to Shearer and Wolfe [SheW~85a], [SheW-SSb], [SheW-85c]; this

is described in Chapter 5. The new Wgorithm, MW, in which the ideas which have

been described in Chapters 3, 4, and 5 are used, is described in Chapter 6. Numerical

results are given in Chapter 7.

The notation which is used throughout this thesis is described in Appendix A,

The algorithms in this thesis are expressed in a pseudo-code which is based on S-

algol [ColM~8‘2a] and which is described in Appendix B. Appendix C contains the

global optimization problems corresponding to the numerical results which are given

in Chapter 7. Appendix D contains pseudo-code from which the functions, gradients,

and Hessians corresponding to the problems which are given in Appendix C can be

computed and an explanation of the procedures time and decode [ColM-82a].

47 -

CHAPTER 2

Preliminary Results

This chapter contains certain results which are used throughout this thesis. The

notation which is used throughout this thesis is described in Appendix A.

Configuration 2,1 : Suppose that x(~ I(Rn) is a sub-box of x. Then the smallest

box x! containing the boundary points of a which lie in x is given by the following

configurations (for n = 2).

$1/ X!S x i

(«) •?/ — &

^1/ %1S

(6) — &

- 48 —

X.H #1

X 2

%2S

X-21

I I

■*.1 Xis

I I! i

(c) / = ([x1/} tfu], ;V2)T (<) a' = 0

There are three other configurations similar to (a) and one other configuration

similar to (6). In both (a) and (5) and similar configurations d — a. There are three

other configurations similar .to (c), where in all of these configurations d C x and in

configuration (c) d “ xi/bx?,)7'* configuration (d) d == 0.

Furthermore, for n > 2, if x and X share at least two common faces then d — a,

if x and x share exactly one common face then d C x, and if x and x share no

common face then d ~ 0.

Lemma 2.1 : If f: D C R" —> R1 is- a given mapping with / & Gl(D) where D c D

is an open convex set, then (V%, y & D) 30{ G [0, 1] (% — .I,.,., n) such that

y(y) — /(a) -f- dif (yi ><■ * ♦) yi— , ^^^’«4-i) • • • 1 xn)(g/t — &t) 2.1
t=.i

— 49 —

where & — Xi + O(l/i ~ z*).

Proof : By Taylor’s theorem for i ==l,...,n3fi, £25 £3 such that

f(VL X2, , Xn) ™ f(x) + dif((t, X2 , Xn)(yi ~ %),

f (2/1 j 2J2) *'3) • • •) Za) = f (y! j £ 2) • • • ,®n) T £2/(2l ,£2, »S, Xn)(y3 - X2)

= /%) + £.l/(Ci» 4**, . . . , Xn)(Vi - Xi)3-

£2/(2l, £2 5 *3, . . • , Xn)(?y2 - #2),

and

/(2i)2)2,23! *4, »n) ~ /(2/I , 22, ..., Xn) +

<93 / (2Ji, 2/3, &, :B,..., an) (2/3 ~ z3)

3
= f(x) T £2 ^7(213 • • Vi-n Ci 3 . * >4?i)(z/i -4*-)

7=1

In general, we have, for i — 1,., n

- 60 -

n
/W = /(-) -h XZ>• • • ’Vi-i., 6.^+1. • -««)(» - a,-)

7=1
2.2

where for some 0{ € [O, l], & — X{ 4- O{yi — r’j).
□

Lemma 3.2 : Xf f: D C Rn —> Rn is a given mapping with / € C1(D) where D C. D

is an open convex set, then (V.u, y € D) 3% G [O, l] (i,j — 1,.n) such that

n
fi{y) = fi(4) + ‘ ‘ yj--^ - »■}, 2.3

y=i

(1 — 1..., n) where nj — Xj + 0t7(yy - Xj) (/, j “ 1,.n).

Proof: Lemma 2.3 is an immediate consequence of Lemma 2.1. □
.Definition 2.1 : Suppose that fjI(D) C I(Rn) —> I(R1) is a given mapping. Then

/ is inclusion monotonic, if and only if (xCyE 1(D)) => (f(dj C /(/)). q_ q

Lemma 2.3 : If (1) f:D Q Rn —> Rn is a given mapping with / G Gi(D) where

D C D is an open convex set; (2) f:I(D) —> is an inclusion monotonic

interval extension of f: D —> Af (Rn)\ (3) x G 1(D), then (Va;, y & X)

- 61

f('j) G /({;) 4- f(x)(y ™ x)

C/M) + 4

Proof : Let x, y G xbe given. By Lemma 2.2, for (i,j ==!..., n), 3% 6 [0 1] such

that

hM /j(^) ~h X.• • • iyj—hyiji*7+t>** -•>»<)»
i=i

where j ~ xj 4- Ojlj ~ Xj). If

/'(a) = (0//((&))«x«.

then for /, J ~ 1, n,

4/Ksi, • • ' , Uj—i, fay, *7-1-1, 3 . . , 4}) G djf_.(«),

since by convexity of 4, 6 ary. Therefore

n
%W G /((*’) 4- 4/t-(i)(y - {7) (% = 1, »),

-=!

52 -

whence

f(v) e f(x) + /;(£)(// - re).

Finally, (y e re) => (/'(&)(y - ;?) C /'(&)(£- re)). So

/to) e /(*) + /'(£)(&” *)• q

Lemma 2.4 : If (1) f: D C. Rn > Rn is a given mapping with f G C1(P) where

D C D is an open convex set; (2) f:I(D) -> I(M(Rn)) is an inclusion monotonic

interval extension of f’\i) —* A-/(Kn); (3) £ E ^(-^)» then (Va?,2/ € 1)

Z(y) e /(») + fH (£, z/)(.y - «)

C /(rij + /^U,2/)(i“-f)

c /(») -f/'U)(i ~ »)>

where X 1(D) I(M(Rn)) is defined by

•>2j)n>Xn<

- 53

Proof : The proof of Lornma. 2 A is similar to that of Lemma 2.8. ,_ ,□
Lemma 2.5 : If (l) f:D C R" —> R" is a given mapping with / G G[D) where

•*» A A A

D Q D is a convex compact set; (2) (x G D) => (/(«) G D), then 3a-* G D such that

a* = /(^).

Proof' : A proof of Lemma 3.5 is given by Brouwer in [Brou-12aJ
*□

Definition 3.3 : The sequence in. X[Rn) is nested if and only if C

(™ > 0).

Lemma 2.5 : If (M*)) is a nested sequence in /(#”’) then 3a* G /(22n) such that

x* C k) iyk > 0) and (k co).

Proof : C x^ C aft) implies

(VA > 0 A 2 — 1,.?i). Therefore, the sequence (%?,) (* = 1,.n) is monotonie

increasing and bounded above by Therefore 3n;*j < .-C such that x[{ x*f

(A —> oo). Similarly 3r% > xfp such that | x*s (k -> co). If for some i, x*j >

xfs it is easily shown that 3A > 0 such that xffl > x$ (V/c > fc) which contradicts

the hypothesis that xft) G I(Rn) (Vk > 0). Therefore xj < xf, (i — 1..., n) and

the result follows. , ,

- 54 -

Theorem 2.1 : If (!) f:D C #n -~- RP is a given mapping with / G C^D)

where D C D is an open convex set; (2) — J(M(R7)) is a continuous

inclusion monotonic interval extension of f':D — M{RP)\ (3) A G 1(D) is given and

A — {^((/(A.))}"1 exists; (4) K(A, A, z) c m£(A), or 7T(A,.A, Z) C &and ifj < 1

where x = m(x},
w(£)

and

J£(A, A, A) = A - A/(A) + (/ - A/«(A - A),

= x — Af(x) -1 R(X - A),

n
I i «(%)/«'(&•)};

-■=1

(5) the sequence (a--) is generated from

XW) = v® ~ A/(;V4) (- > o)

with G x arbitrary, then (a) 3^* G /£(/’, A,A) such that /(&*) — 0 and d is

unique in &; (b) x^ — x* (k co).

Proof ; A proof of Theorem 33.1 is given by Qi in [Qi—80a]
’□

— 55 —

Note 2,1 : Let A G MI(Rn), b € I(Rd) and n G N be given. The result of apply

ing the Gauss algorithm ([AieH-SSa] [AleP-SSa]) to the pair (.A, 5) is represented by

g(A,6) 6/(AT).

Definition 2.3 : Let f : D Q R” —* Rn be a given mapping with / G Cl(D) where

D C D is an open convex set. Let / : I(D) -4 I(Rn) and f : /(D) —> I(M(Rn))

be inclusion monotonie interval extensions of / :D —> RA and of f' :D —> M(Rd)

respectively. The Krawczyk operator K : /(AT) x M(RA) /(Rw) is defined by

I<(n A) - m.(y) -- A/(m(m)) I (/ - Af ($))(& - m(d) 2.4

where I is the n X n unit matrix.

Lemma 2,7 : Let A G M(Rn) be nonsingular. Then for 6 G /(AT) arbitrary

.A

Proof : A proof of Lemma 7 is given by Alefekl and Piatzoder in [AleP-83a].
□

Lemma 2.8 : If (1) f : D C Rn Rd is a given mapping with / G C3(D) where

D C D is an open convex set; (2) / : 1(D) I(RA) aud f : 1(D) —> I(M(Rn)) are

continuous inclusion monotonie interval extensions of / : D —> Rn and of f' : D —>

M(Rn) respectively; (3) the Krawczyk operator K :I(RA) x M(Rn) —> /(#”) is

- 56 -

defined by 2.4 and the Alefeld and Piatzoder operator K,,, : !'(/£”) x /(//(A”)) x
Af(R”) —(f(Jf”) is defined by

K# (&, M, A) = m(,rj -- g(A, {/(m((r)) - [A — MJ (rr — m(s))}) 2.5

then for any nonsingular matrix A € M(ff”),

Xfe A -1) C K,v(a, /'U),A). 2.6

Proof : By Lemma 2,7 and by 2.5 with M = /((#),

A * {/(rn(w)) - (A - /(dJ)kL “ m(w))} C g(A, {/(mfe)) - (A - £'(&))(& “ m(())})

" rn(x) - K.N(&f (W, A). 2.7

Furthermore by 2.4,

A“i{/(m(a:)) - (A - m(i))} = A~i/(m%)) - A“1(A - f(x))(x~ m(xj)

~ A“i/(m(%)) - (7 - A i/,Q)))(r - m(z))

rn(x) — JC(i, A i). 2.8

- 57 -

The result 2.6 follows immediately from 2.7 and 2.8.

Lemma 2,9 ([AleP~8.3aj) : If (1) f:D C if” -- if” is a given mapping with / G

CP(D) where D C D h an open convex set; (2) f}I(D) —> I (if”) and D:I(D) —>

i’(M(if”)) are continuous inclusion monotonie interval extensions of f:D —> if” and

of f:D A(if”) respectively; (3) G J(D) is such that w(j((°)) > 0; (4) —

is nonsigiilar; (5) 3cr G [0,1) such that

w(XatU(0)>/'U(0)),J9(0))) < awfe(0)),

then /'(a'0)) does not contain any singular point matrix.

Proof : A proof of Lemma 2.9 is given by Alefeld and Piatzoder in [AleP-83a].
□

Lemma 2.10 : If (1) / : D C if” —> .if” is a given mapping with / G CA(D) where

D C D is an open convex set; (2) / : 1(D) J(if”) and / ; 1(D) -> .r(Af(#”)) are

continuous inclusion monotonie interval extensions of / : D -> if” and of f* : D -+

M(if”) respectively; (3) xC 7(D) and Y G M(if”) are given, and Y is nonsingular;

(4) P : D —> if” is defined by

P(x) — x — Vf (x)

5S

then

(a f)) => (P(;) e K(i, K)).

Proof: Let x ~ m(x}. Then by Lemma 2.3 and Equation 2.4,

£ x — Y /(£•) 4~ x — % — Y /'(&.)(% ~ x)

= £(s,K)

59

CHAPTER 3

Hansen's Global Optimization Algorithm

This chapter contains an implementation of Hansen’s algorithm [Han-SOa] for

bounding the global minimizer(s) of / : Rn -> R1 in a box A 6 /(D), where D C R.n is

an open convex set and / G C2(D). The problem of bounding the global minimizer(s)

of / in « defined by 1.1 is referred to in this thesis as Problem P.

Hansen’s algorithm may be divided into 10 steps, and these are described in §3.1

- §3.10. The steps of Hansen’s algorithm are described by using a pseudo-code which

is explained in Appendix B. .

3.1 Step 1. The Stopping Criterion

Three queues Li (i = 1,2,3) are used in Hansen’s algorithm. The head and tail

of queue L(are denoted by hi and i, respectively.

The queue Li, which initially is empty, ultimately contains boxes x G I(Rn)

for which |lw(g.)|| < where is given, and which might contain the global mini-

mizer(s) of /.

The queue L2, which initially contains the box & G I(Rn) in which it is re

quired to botind the global mimmizer(s) of /, will contain boxes x G /(/?”) for which

60 ~

||w(a)|| > and which are yet to be processed by the algorithm.

The queue L3, which initially is empty, will contain boxes x_ G I(Rn) which have

been completely reduced; a box x ~ (ajJnXi Is completely reduced if and only if

=0 (t = 1, ...,rc). The boxes in £3 might contain the global minimizer(s) of

/.

Since a minimizer of f in x might lie in a face of xy we must be able to retain

boundary points of x if necessary. We store the boundary points of x in an n x 2

interval matrix B_ — (bij)nx2^ with

&u = &/A/1 and ~ = 3.1

An upper bound f for /*, the global minimum of f in x_, is determined in

Hansen’s algorithm and is updated continually. This bound is computed as a degen

erate interval / € T(J?), and f* < fs- Initially, f is computed from

3.2

/ is also used in order to write the boxes in L3 which might contain the global

minimizer(s) of f as follows.

procedure write.L.3(L$ G Q,hzyt$ ENjE l(-R))

! This procedure writes the boxes x^ (j ~ h^... such that f^ < fs where

- 61 -

! /W =

! from the queue Lg.

! On entry, hg and (g arc the head and tail of Lg respectively.

1- for j ~ h'3 to <3 do.

1.1. Lg---- 1 ! Extract x^ from, L3.

1.2. £ :=/(£«)

1.3. if fs < fs dp

1.3.1. write xf3^

2- return (_

We sometimes extract a box at the ith position from the queue L± to be processed

where hi < % < Therefore the fth position in Li is empty. Therefore the boxes in

Li need to be rearranged so that all the positions from the (hi + l)th position to the

tith position are filled. The procedure close.up which implements this arrangement

is as follows.

procedure close.up{i,hi, tt E N ; Li e Q : E I{Rn))

! This procedure rearranges the boxes in Li such that all the positions from the

! {hi + l)th position to the tjth position are filled after extracting one of the

- 62 -

I boxes in £A.

’ On entry, i is the position number between hi and Z1(

’ On return, x^' is the box which is extracted from L±.

1. case true of

hi < * and i < ti :

1.1. Li —! Extract x^ from Li.

1.2. f°r J — i hi + 1 by — 1 do

1.2.1. Li j := Liy„x ! Lij is in the jth position in Li.

hi = i and i < ti :

1.3. Li---- £> x^ ! Extract from Li.

default :

1.4. write n Error in close.up”

1.5. stop

2. return

The preceding notation and ideas are used in the procedure terminate, which is

an implementation of the stopping criterion which is used in Hansen’s algorithm.

procedure terminate(f_€ I(R),e0,ei € R,L3 e Q, hs,ti,h,h,n € N ; Li,

L2 € Q,hi,h2 € N : x G I(Rn), w G R, f.too.wide B)

-63-

! This procedure implements the stopping criterion for Hansen's algorithm.

! On entry, /, Tg, hg, Zi, Z2> (g and n are as already explained, go > 0, and gx > 0.

! The input-output parameters Li, and h, (s — 1,2) are as already explained.

! On return, x is a box which is assumed to contain x*, the real number lu is the

! width of the box x, and the Boolean f.too.wid.e has the value true if for at least

I one i (Ai < i < (%, w^/Ii^^*))) > so, where x^(i — h1}., ti) are the boxes in the

! queue Li which might contain the global minimizer(s) of f.

1* •£*“ (0)ttx.i.

2. ta 0 '

3. f.too.wide false .

4. ifL2=0

then

! No boxes remain to be processed.

4.1. ■

then

! There is no box x with ||w(&)|| < gg

! and which contains a minimizer of f.

4.1.1. if 61 > 0

then

- 64 -

! The minimum value of f, rather than the

J minimi zer, is to be bounded.

4.1.1.1

4.1.1.2

f fs ~ £i

wdte [/, fs]

4.1.1.3 write.L.3(L&JisJ.z,f) ’ §3.1.

4.1.1.4. stop

else

! Si = 0 and Li =

5 Vvre need to check the program because if this

! is the case then we have lost the global minimi zer.

4.1.1.5. write 11 Error in terminate.”

4.1.1.6. stop

else

! Li 0. There is at least one box x with ||w(z)|| <

! which might contain a minimi zer of f.

4.1.2. */ si > 0

then

! We need to process all the boxes in Li since we wish to

! bound the minimum value of f only.

4.1.2.1. Li---- 1> x ! Extract x from Li.

4.1.2.2. /?i hi 4* 1

86 -

4.1.2.3. w ||w(:c)||

else

! gi — 0 and Lx 7- 0- TFe need to check whether or not

! w(/(^)) < go for G Li (f = h-,, f,).

! If there exists at least one % such that w(f(w^)) > Sq

! then we process the box xf^. If there is no

! such i then we write all the boxes from Li, and stop.

4.1.2.4. for i = hi to tY do

4.1.2.4.1. Lx----

4.1.2.4.2. /*) := /(»(<))

4.1.2.5. j := hi

4.1.2.6. repeat •

4.1.2.6.1. f.too.wide := w(f^) > Sq

while ~ f.too.wide and j < h do

4.1.2.6.2. y := j + 1

4.1.2.7. if ~ f.too.wide do

! Li contains only boxes x^(i = hi,f,)

! with io(f_(x*^)) < go, and J w(»^)|| < g2.

4,i.2.7.i. for i — hi to ti do

4.i.2.7.i.i. Li —£

4.i.2.7.1.2. write

- 66

min {/p}

write [f, /s]

wnfe.L.3(L3,h3,«s,2) ! §3.1.

stop

4.1.2.7.2.

4.1.2.7.3.

4.1.2.7.4.

4.1.2.7.5.

! Extract, from Li, the x® for which w(f(xSJ))) > Sq,

4.1.2.8. close.up(j,hi,ti ; Li : x^) ! §3.1.

4.1.2.9. x:^x^

4.1.2.10. hi:=hi-[-l

4.1.2.11. w ||w(^)||

else

! Extract x from L2.

4.2. L2 >x

4.3. h'2 h2 +1

4.4. w : = M$)ll

5. return .

3.2 Step 2. Monotonicity Test

Let x (z I(Rn) be a current sub-box of x resulting from Step 1. We shall use the

monotonicity property of the function / to delete the whole box x or to replace the

box x either with a degenerate box (i.e a box with at least one of its component a

degenerate interval) or with a point box (i.e a box containing just one point in Rn or

a box which has been completely reduced (§3.1)).

- 67

If f : Rn R1 has gradient g : Rn -* Rn and g;(z) > 0 (Va; 6 . G J(E”)) for

some i 6 n) then

y (2.1 j • • • > &t~i j»?/) i * * ♦; ~ y (z) (Va C x^> 3.3

Therefore if for some % (1 < i < n) , (g£(z))i > 0, where g : I(Rn) -+ 7(B")

is a continuous inclusion monotonie interval extension of g : Rn —> if", then we

can delete all of x save those points in x with Xi ~ a*; that is, we replace x with

(*1, • •«, [n-ii, ni/J, Q.., xn)r. If (g.(z))/ > 0 (« “ 1.n) then we may re

place x with the point box ([a./? 3tf])»xi- If (gJW)/ > for some * €{!,..., n} then

we may delete the whole of x unless the boundary plane X(= xn contains boundary

points of the initial box x. However, if (g. W))f > 0 and the global minimizer is in the

interior of the initial box . then we can delete the whole box x. Similar statements

are valid if (g. (z)). < 0 or if (g.(z))s < 0.

These ideas are embodied in the procedure monotonicity.test which follows.

procedure monotonicity.test(Bn G 7(M7(i?", E2)), n G N, ignore.boundary G B ;

Eg G Q, zG f(E"), / GJ(i?), is G N : delete.x G B)

! This procedure implements step 2 of Hansen's global optimization algorithm.

! On entry, B_ and n are as in §3.1; the Boolean ignore.boundary has the value true

68 -

• if the global minimizer is in the interior of the initial box; £ aad it has the value

■ false otherwise.

! The input-output parameters , «, / and (3 are as in §3.1.

! On return, delete.x = true if x can be deleted or if x is completely reduced;

! otherwise delete.x — false,

1. delete.x := false

2.

3. f:=0

! k is the number of co — ordinate directions t along which x^ is reduced

! to a degenerate interval.

4. i := 1

5. if ignore.boundary

then

! The minimizer of f lies in the interior of x.

5.1. repeat

5.1.1. 0 < gn or gis < 0 do

6.1.1.1. delete.x : = true

while ~ delete.x and i < n do

5.1.2. i := i + l

else

- 69 -

! The minimizer of f might lie on the boundary

! of x so boundary points must not be deleted.

5.2. repeat

5.2.1. case true of

0 <gu : ! 0 < (£.(»))/.

5.2.1.1. if xg $ btl

then

! xn is not in the boundary of x so the whole of x may be

! deleted because if x* is the minimizer of f then

J <7(2*) = 0.

5.2.1.1.1. delete.x := true

else

! All points in the Xi — direction save the lower

! boundary point may be deleted.

5.2.1.1.2. & :=

5.2.1.1.3. k k1

Q<9u - ' 0 < (g.(s))j.

! The minimizer of f could lie in the face X{ = %u of x.

5.2.1.2. $4 :=[xu,Xir]

5.2.1.3. k:=k + l

9is < 0 : ! (g.(x))s < 0.

— TO —

6.2.I.4. ij_ Xis 0 6(3

then

! Xis is not in the boundary of x so the whole of x may be

! deleted because if xf is the minimizer of f then

! g(x*) = 0.

5.2.1.4.1. delete.x := true

else

! All points in the %; — direction save the

! upper boundary point may be deleted.

5.2.1.4.2. xx := 6(2

5.2.1.4.3. k k -b 1

9is < 0 : ! (a (ii))s < 0.

! The minimizer of f could lie in the face Xi = Xis of x.

5.2.1.5. »,•:==

5.2.1.6. h := k -b 1

default :

5.2.1.7. { }

while i delete.x and i < n do

5.2.2. i := i + 1

5.3. if ~ delete.x and k ~ n do

\ If k ~ n then x is completely reduced to a point box

- 71

I which is either deleted or is inserted into L:y.

5.3.1. delete.x :™ true

5.3.2. /:=/U)

5.3.3. if_fi < fs do

! Insert x into L$.

5.3.3.1. 7 fs<fi do

! update f.

5.3.3.I.I. ?:=[/s,Zs]

5.3.3.2. z---- 1> 7/3

5.5.3.3. := G + 1

6. return

3.3 Step 3. Non-Convexity Test

Let x G I(Rn) be a sub-box of x. Suppose that G(x, x) 6 I(M(Rn)) is defined

didij\x_^ j • • • j ^4—1) • • • >) (i — /(** — lj • • • » ^))

(j < «(«’•= 3.4
j = l,...,t - 1))

10 (otherwise)

where didjf_ : I{Rn) —> I(Rl) is an inclusion monotonic interval extension of

did3-f:Rn Rl (l<M<n).

- 72-

In the non-convexity test which is described in this section we need to examine

the value of <7lt (x, x). By 3.4, all the diagonal elements of G(x, x) have arguments

different from (x^,... ,xn) save the element in position (n, »). Therefore in our im

plementation we need a separate procedure to compute ^^-(x,. x) (2 = 1«■).

We evaluate G^ ~ Ga(x,x) (j = 1..., n). If for some ?, (I = 1n). Gas <

0 then there is no point in x for which the Hessian of / is positive semi-definite.

Therefore / is not convex in any subset of x, and so / has no minimizer in the

interior of x. Therefore we can delete all of x save the boundary points of x which lie

in

Suppose that X is the smallest box containing the boundary points of x which lie

in x (See Configuration 2.1.). In our implementation, either xj = z, %! is a degenerate

box of dimension less than that of x, or xj — 0. Therefore, before we test the non

convexity of /, we need to examine the box xj as follows.

If xj — _ then the non-convexity test need not be used because, whether or not

/ is convex in x, we cannot reduce x further without losing boundary points of x.

If x — 0 then we delete all of % when f is not convex in any subset of x. If xj is a

degenerate box then we replace x with xj when / is not convex in any subset of x.

These ideas are embodied in the procedure non.convexity.test which follows.

procedure non.ccn.nexity.teet\Bj e I(M(Rn, R2)), n € iV, ©2 6 R,

ignoreboundary 6 B ; £i,L2 6 Q,xe 7(12n),

- 73

^1,^2 € JV i delete.x G B)

! This procedure implements step 3 of Hansen’s global optimization algorithm.

! On entry, B, n, and e2 are as in §3.1, and ignore.boundary is as in §3.2.

! The input-output parameters Bi, L2, ti and t2 are as in §3.1 and x is the current

S box.

! On return, delete.x ~ true if f is not convex in any subset of x, and x and B_ do

! not share any common point.

1. delete.x false

2. x.is.x.prime true

3. x.prime.emptytrue

4. f.not.convex false

5. if ignore.boundary

then

! The minimizer of f is in the interior of x.

5.1. g ;= 1

5.2. repeat

5.2.1. f.not.convex &))s < 0

while ~ f.not.convex and i < n do

5.2.2. i *= i + 1

-74

5.3. if /.not.convex do

5.3.1. delete.x true

else

! The minimizer of f might be on the boundary of x.

5.4. y.-=o

5.5. A-:=0

5.6. / := 0

! j is the number of faces shared by x and x, and k is the co — ordinate

! direction in which x_ and x share a face. I {l, 2} where l—l and 1 — 2

! denote the lower boundary point and the upper boundary point corresponding

! to bkl and bh2 respectively, where 6A.l and b^ are def ined by 3.1.

5.7. for t — 1 to n do

! We calculate j, the number of faces shared by x and x.

! If j — 1 then k, the co — ordinate direction in which x and x

! share a face, is needed.

5.7.1. if xn € 6tl do

5.7.1.1. j:=y + l

5.7.1.2. k := i

5.7.2. if_ Xis e. bi2 do

5.7.2.1. !

5.7.2.2. k-.= i

- 75

case true of

j > 1 : ! x.is.x.prime = true.

5.8.1. x.prime.empty := false

7 = 1

5.8.2. x.is.x.prime false

5.8.3. x.prime.empty := false

default : ! j = 0, and x.prime.emply — true.

5.8.4. x.is.x.prime false

5.Q. if ~ x.is.x.prime do

! Here j < 1 and k is the co — ordinate direction

! in which x and x share a face.

5.9.1. i := 1

5.9.2. repeat

5.9.2.1. f .not.convex := (&, (», «))s < 0

while ~ f.not.convex and i < n do

5.9.2.2. k i— i -{■ 1

5.9.3. if f.not.convex do

5.9.3.I. if ~ x.prime.empty do

! If x.prime.empty ~ true then we delete

! else we replace Xf. with bj{l (I € {1,2}) and

! insert x into Lx or L2, whichever is appropriate.

76 -

5.9.3.1.1. if Xfc G bja

then ! xn lies in ike face SJ;l of f.

5.9.3.1.1.L I := 1

else ! fS lies in the j'ace 6;2 Of f*

5.9.3.1..I.2. l:=2

5.9.3.1.2. Xj i— ——

5.9.3.1.3. iff ||w(e)|| < e2

then

5.9.3.1.3.1 LiX

5.9.3.1.3.2,

else

5.9.3.1.3.3

5.9.3.1.3.4

5.9.3.2. delete.x : = true

li H i "-1

X----{ £2

I2 ••— ^2 + 1

6. etuun

8.4 Step 4. Sub-box Deletion Using Function Values (l)

Let r € 7(7fn) be a sub-box of x resulting from Step 1 or from Step 3. In Step

4 we reduce or delete x as explained in §7 of [Han-SOa).

Suppose that J(,t) — .-) denotes the Jacobian ma^i^ix with elements

7 -

J-O'fe 3. “ WUn • • ®») 3.5

(£ j = 1,..., n). We compute G'(&) = G(z, x), where G(g, x) is given bj 3.4, by using

Jf x). according to

' 0 (i < y (y = 1 • • n] i — •, y—1))

Gy 13,3) = < fLii (& 3) (» .^y (b j = I,

, 22ij (&) «) () > 3 (j - i,,. ., n; J = 1, .. •> J-1)

According to §7 of [Han~80a], x can be reduced in one dimension, say the k-th,

at a time bj deleting all points y from x such that f{y) > fs ~ e±, and this can be

done by solving the quadratic relation

O, -f + Okk < 0 3.6

where
s*=e oa^-+2 z 2] Sn % - & 3.7

y=i
jfk

J=l ~=j
-ik) ijkk

k-11 i-~c 1 ™
& = SkC) + ^^^jU)i,- + % QiA&i&i 3.8

y=i j-fc + i
V

3.9

y ~ V - ® (yk X € x., ~ Xi -- Xi (l = 1,.... n. and E ~ f_ - ff)) - S If

gi > 0 then we do not need to know the point(s) x* at whihh / is globally minimum;

otherwise we know x* within the tolerance sg.

78 ~

According to §7 of [Han-8Oaj, by using 3.6, ik can be reduced to two intervals,

to one interval, or to no interval. In Step 4 of Hansen’s algorithm, the case in which

0 < Gkki, k G {1,..., ??} is considered. The case in which Gkkr < 0, k G {l,..., n}

is considered in Step 6.

In Step 4, for those values of A G {l,..., n}, for which 0 < Gkki we use 3.6 to

determine y^l and y^2\ Now in all cases save one (See page 266 (7.10) of [Han-80a].)

only one of j/1) and y^2l will be non-empty. If only one of yW and yW. say y^l\ is

non-empty then we replace xk with y^1). If both yW and y^ are non-exmpty then

we leave unchanged because Hansen says nothing about what to do for this case.

These ideas are embodied in the procedure solve.quadratic.l which follows.

procedure solve.quadratic.l{_ G I(R), 7 K, n G N ;‘ x G 7(^n) :

J,GG I(M(Rn)),delete.* G B)

! This procedure implements step 4 of Hansen’s global optimization algorithm.

I On entry, /? -i ond n are as in §3.1 and §3.2.

I On return, J, and G are the Jacob ian and Hessian respectively computed over the

I current box x and delete.x ~ true if y^ = 0 and yW = 0; delete.x = false

! otherwise.

1. £•—X~

- 79 -

2. delete.xfalse

3. 2:=2U)

4. for * " 3- to n do

4.1.

4.2. for j ~ I to i — 1 do

4.2.1. ay:=2Jt7

4.3. for j = H 1 to n do

4.3.1. <2o-:=[0,0]

5. £•'— • S is the gradient of f (§3.2).

6- Z:==Z(mte))

7. “ Z “ lgi’ffil
8. fc:=l

9. repeat

9.1. if Gkki > 0 do
n n

9.1.1. ak i 53 23 • equation 3.7

j^k
3=1 i—j
jzfik iylk

i j n
9.1.2. bk:=gk + + 5 52 Sj-fc% ! equation 3.8

3=1 3=k+l

9.1.3. ck -Gj* ! equation 3.9

9.1.4. Solve a* -f- b^ffo + c^y2 < 0 (relation 3.6) to give yM and y^2\

using the method which has been described by Hansen[Han---- 80«]

9.1.5. case true of

- 80 —

l/1) 0 0 and yW 0 :

9X5.1. := y^

10- r= 0 and --f~ 0 :

9.1.5.2. :=

2?1) 0 0 oW 0 0 : ’ xk Ss unchanged.

9.1.5.3. { }

default : ! y^ = 0 and y(2) = 0

9.1.5.4. delete.x true

while ~ delete.x and k < n do

9.2. A := A + 1

10. return

3.5 Step 5, Sub-box Deletion Using Interval Newton Methods (1)

Let x_ € 7(B”) be a sub-box of x resulting from Step 4. In Step 5 we use the

interval Newton Methods which are described in [Han-80a] and [HanS-81a] to reduce

or to delete &. The ivterval matrix 7 = 7(#) has already been cunid uted in Step 4 in

order to compute G = G(r). So we can ^^l^^i^mnie B — {n(7)}_1 if tt exists . Hansen

says nothing about what to do ii m(d) is singular.

According to [Han--80a] and [HanS-81a] x can be reduced in one dimension, say

the k-th, at a time by computing xk from

- 81 -

k — 1 n
- (sa-J'1 {frfc + ajtj-fey - ay) + 52 aytey - */)}

y=i r=fc-H

“Zt n-^ k € f1, •■•,**}

3.10

3.11

where A — (aij)nxn = #Z b — Sf'[m(x))T, and xk ~ m(x/c) (& = 1,..., ra).

According to [Han-80a] and [HanS-Sla] if 0 0 akk then y_k consists of one interval

and hence xk consists of at most one interval provided that xk $, but if 0 G a^k

then consists of at most two intervals. In step 5 of Hansen’s algorithm, the case in

which 0 $ akk, ke {l,..., n} is considered. The case in which 0 G akki k G n}

is considered in step 7.

In Step 5, for those values of k G {l,..., n} such that 0 0 Oj.k we use 3.10 and

3.11 to determine a replacement for xk. If a reduction of x* will delete boundary

points of z_ from the box x then we retain x unchanged. However, if we know that

the global minimizer x* G int(x) then we replace x^ with x'k, because we know that

a* cannot be a boundary point of x.

In order to describe the procedure newton.method.l which implements Step 5

we need the following procedure.

procedure newton(B_ G R2}}, A G I(M(Rn)), B G M(Rn),x G I(Rn),

-82-

G 7(i?)j\ k, n G Nj J gnor (.boundary G B : z

delete.x G B)

’ This procedure determines xlk where zj is given by 3,11 and consists of either

! two intervals, one interval, or no interval.

! On entry, B is as in §3.1, A — B_ where B — {m(J_)} ~l, j is the number of faces

! which are common to z and x k is such that Xj. is to be reduced, n is the number

! of components in z, the Boolean ignore.boundary is as in §3.2 and x is the

! current box.

! On return, z^1^ and z'^ are the intervals which are obtained from the interval z^

I by using 3.10 and 3.11, and delete.x — true if both x'^ and are empty.

1. delete.x : = false

2. x : — m(x)

3. b:=Bf’(x)T

4
k—

j =1 3—k+l
sku - j}

! If 0 0 akk Bien yk is one interval.

! else y. might consist of two intervals and—r* —-r£ *—*tC

5.

0-

- 83

7. if ignore.boundary

then

7.1. ££ x'^ = 0 and x^ — $ do

7.1.1. delete.x := true

else

7.2. ease true of_

j — 0 : ! x and B_ are disjoint.

7.2.1. if_ = 0 and x,(2) = 0 do

7.2.1.1. delete.x true

/ = 1 : ! x and x share exactly one face.

7.2.2. if_ xkr e b^

then

\ Only the lower face is common to Xj. and

! If a reduction of Xf. will delete points in

! from x^ then we retain x^ unchanged.

7.2.2.1. case true of

0 and 0 :

7.2.2.1.1. if x'^ > bkis do 1 is unchanged

7.2.2.1.1.1, a'(1) :=

7.2.2.1.2. if x'i > bkis do ! x,t is unchanged

7.2.2.1.2.1, z'(2) := z*

- 84 -

0 and x!^ — 0 :

7.2.2.1.3. if x1^ > bkis do • £/: 35 unchanged.

7.2.2.1.3.1. x!^:^xk

sd^ = 0 and zd^ 0 :

7.2.2.1.4. if x'^ > bins do 3 xk is unchanged.

7.2.2.1.4.1. /(2) := X*

default : 3 s^1) and sd^ are empty.

7.2.2.1.5. z'(l) := z*

else

3 Only the upper face is common to Xj. and

3 If a reduction of xk will delete points in b^.^

3 from x^ then we retain unchanged.

7.2.2.2. case true of

x'^1^ 0 and x'^ 0 ’

7.2.2.2.1. if x1^ < bh2i do I x^ is unchanged.

7.2.2.2.1.1. z'(l) := xj,

7.2.2.2.2. if x'g < btej do 1 xk is unchanged.

7.2.2.2.2.1. a'(2) := 2*

0 0 and x!W — 0 :

7.2.2.2.3. if x'g < bi,2i do ! xk is unchanged.

7.2.2.2.3.1. ®'(1> := xk

8.5 -

-- 0 and A 0 :

7.2.2.2.4. if x1 < bk2i do ! x^ is unchanged.

7.2.2.2.4.I. 3/(2) :=

default : ! n'd1) anj are empty.

7.2*.9.F. x!(1) :=s&

default : ! / > 1.

7.2.3. s'(1) := xk

7.2.4. a/2) := 0

8. return

procedure newton.method.Y(B_ G I(M(Rn, R2)), J. G J(M(jRn)), n G N,

ignore.boundary G B ; x'G I(Rn) : AG I(M(Rn))1

B G M(Rn), singular, delete.x G B)

! This procedure implements step 5 of Hansen’s global optimization algorithm.

! On entry B is as in §3.1, J is obtained from the procedure solve.quadratic.l, n is

! the number of components in », and the Boolean ignore.boundary is as in §3.2.

! The input-output parameter x is the current box.

! On return, B = {m(J)}_1, A = B J singular = true if m(J) is singular and

! delete.x — true if x does not contain a global minimizer of f even on its

I boundary.

- 86

1 nx«

2.

3.

4.

5.

6.

B := (0) nxn

delete.x false

singular := false

j 0 ! j is the number of faces shared by x and x.

if m(J) is singular

then

6.1. singular := true

! The value of singular is determined in the

! procedure which is used to compute {m(J)}"1.

else

6.2. for i = i. to n do

! We calculate j, the number of faces shared by x and x.
iI

6.2.1. if xu €bu do 1

6.2.I.I. j:=j + l

6.2.2. if x-is & bj2 do

6.2.2.I. j

6.3. B := {m(J)}"1

6.4. A

6.5. 6:— Bf'(m(x))T

-87-

6.6. k := 1

6.7. repeat

6.7.1. if_ 0 akk do

6.7.1.1. newion[B_. j, k, n, ignore.boundary : , x'^,

delete.x)

! If delete.x == true then both x^and x'^ are empty.

6.7.1.2. £/ ~ delete.x do

6.7.1.2.1. case true oj~

7^ $ and x^ = $:

6.7.1.2.1.1.

s'(1) = 0 and s'(2) 0 0 :

6.7.1.2.1.2. x^ := ?(2)

default : ! xf^ 0 and x'^ 0

! This case should never happen because 0 akk

! Therefore we stop the computation.

6.7.1.2.1.3. write "Error in new ton.method.1."

6.7.1.2.1.4. stop

while ~ delete.x and k < n do

6.7.2. & — & 4-1

7. return _

S.6 Step 6. Sub-box Deletion Using Function Values (2)

7#

Let » G I(Rn) be a sub-box of x resulting from Step 5. In Step 6 we complete

the method for reducing or deleting x which is described in §3.4.

For those values of k (G ft} such that G^ki < 0 where G(x) has already

been computed in Step 4, we solve 3.6 to obtain at most two non-empty intervals y/iI

and y^ {See §7 of [Han-80a].). However if only one, say y}1), is non-empty then we

replace with If both gH) and y^2^ are non-empty then we leave xk unchanged

but we save y(i) and y^2^ for use in Step 8,

These ideas give rise to the procedure ss^li^v^.^nc^O^raiic/l which follows.

procedure solve.quodratic.2{G G I(M(<Rn)), f_ G I(.R), G R, n G N ; » G I(Rn) :

y^\g(2) g I(Rn), delete.x G B,y.double G Bn)

! This procedure implements step 6 of Hansen’s global optimization algorithm.

! On entry, G is as computed in the procedure solve.quadratic.l, and /, s add n

I are as in the preceding sub-sections.

! The input-output parameter x is the current box.

I On return, yll and yli) are such that yH and y^ (& = 1,..., n) are equal to

! and respectively if x. is reduced to and xj^; otherwise y/il = 0

I and yj^ = 0. If yj/1 0 0 and yj^ 0 0 then y.doublek ~ true. If x is deleted then

! delete.x ~ true.

- 89

1. % •£ — m(#)

2. delete.xfalse

3. y.double := (false }nXi

4. y(1) := (0)nXi

5. y(2) := (O)nxl

6. £:-£(m(»))

7* Z:=:Z(mU))
8- EL'-— L~ L~

9. &:=1

10. repeat

10.1. if Gkki <Q do
n n

10.1.1. ak := g 52 53 < ! equation 3.7
j-i
jY-k

j—i i~j
j~-£k i?-k

1 J n
10.1.2. bk - 52 2* A + 9 52 Qh&j • egwohon 3.8

y=i j-k+1

10.1.3. ck -Gkk ! equation 3.9
£4

10.1.4. Solve Ok + bki + c^J2 <0 (relation 3.6) to give and tf-2^

using the method which has been described by Hansen

[Han-----80a].

10.1.5. case true of

• 0 and == 0 :

90

10.1.5.1. xk := t^ + m(®^)

= 0 and. 0 :

10.1.5.2. xk := tW 4- mQc;.)

0 0 od 0 ’

10.1.5.3. y.doublek := true

10.1.5.4. :=£^ -b/n(»fc)

10.1.5.5. := tW m(xk)

default : ! = 0 and = 0.

10.1.5.6. delete.x := true

while ~ delete.x and k < n do

10.2. fc:=&-t-l

11. return

3.7 Step 7. Sub-box Deletion Using Interval Newton Methods (2)

Let x G d(Rn) be a sub-box of x. Now J aud B have been computed in Step 4

and Step 5 respectively. So, if m(J) is non-singular then we use 3.10 and 3.11 as in

the procedure newton (§3.5) for those values of k G {1,..., n} such that 0 G (BJfkk

to determine X& which consists of at most two intervals yW and jA2'. If only one, say

is non-empty then we repalce xk with yW. If both yW and yW are non-empty

then we save them for use in Step S.

If the reduction of x^ would delete boundary points of x from the box x then

we retain the box $ unchanged. Therefore we proceed as in Step 5 save that here we

- 01 -

obtain two subintervais of which are saved for use in Step 8.

These ideas give rise to the procedure newton.method.2 which follows.

procedure new ton.method.2(B. G R2}), A G I(M(Rn)), B G M(Rn).

singular, ignore.boundary £ B,n £ N ; x(= I{Rn) :

y'(l),y'(2) e /(;?*), f/eJe/e.z G 3, y'.double G Bn)

! This procedure implements step 7 of Hansen’s global optimization algorithm.

’ On entry, B_ is as in §3.1, A, B and singular are as computed in the procedure

! newton.method.L, ignore.boundary is as in §3.2, and n i3 the number of components

! of the current box

! On return, and are such that = y^ and y^ = y(2) for

! k £ {1,..., n} where Xj. is reduced to two intervals yW and y(2\ J.f 0

! and y'^ 0 then y'.doublek — true.

1. delete.x := false

2. 2/'(1) := (0)nxi

3. y'(2) := (Q)„xl

4. yf .double := [false)nXi

5. if ~ singular do

- 92

5.1. j:=0

5.2. for t — 1 ton do

! Calculate the number of faces shared by x and x.

5.2.1. if_ xu e bn do

5.2.1.1. j — j+l

5.2.2. if Xis £ bi2 do

5.2.2.1. j /-hl

5.3. k:=l

5.4. repeat

5.4.1. if_ 0 £ akk do

5.4.1.1. newton[If, A, B, /, k, n, ignore.boundary :

y^1^, y^, delete, x)

! If delete.x = true then both y^ and y^ are empty

5.4.1.2. if ~ delete.x do

5.4.1.2.1. case true of

yp-^ 0 and yW = 0 :

5.4.1.2.1.1. x* := y(l)

y^ = 0 and y^2^ :

5.4.1.2.1.2. z*:=|/(2)

default : ! y^1^ f- 0 and -f 0

5.4.1.2.1.3. yl.doublek true

- 93 -

5.4.I.2.I.4. := yw

5.4..1.2.1.5. y'*2) := g(2)

while. ~ delete, v and k < n do

5.4.2. k k + 1

6. return

3,8 Step 8. Determination of the Largest Gap

In Step 8 we combine the results which are obtained in steps 6 aud 7 correspond

ing to those x{ (i £ n}) which have been divided into two subintervals. We

find the intersection]/.' of y. (= y^ Uj/^) from Step 6 and y[(= y'^ U^) from

Step 7. If in Step 6 or Step 7 (i £ is not divided into two subintervals

then y. or y[does not exist. If m(J) is singular then y'. does not exist because y*.

cannot be computed in Step 7. Therefore if one of the subintervals y and y[does not

exist then we set y'/ = X* except when m(J) is singular, in which case we set y'/ = y.

if y. exists and we set y? — X{ otherwise. The intersection y. n y' (? £ »})

will produce at most three subintervals because y-1^ n y^ = 0 and y'^ n y1^ = 0

so that only one of y-^ and yj2^ can have a non-empty intersection with both y^1^

and y'?2\
~ t

If y" is composed of three intervals [Han-80a], then we set either y” = y. or

y'.' = y', whichever has the intersection with of least width. But we know that——4 ——Z

yt- C x^ and y' C st, so if w(y.) < w(y'.) then we set y" — y., and otherwise we set

y1! = y*. If y" is composed of two intervals then we set x.divided — true; this will be

used in Step 9.

94 -

Hansen says nothing about what to do if g. and yf. are disjoint. Therefore—4 —-t
in our implementation, if y. and g' are disjoint, then the algorithm is terminated,—-fc —t
Presumably if y* f1— 0 then either g\ or g' does not contain z*. This should not

be possible.

Suppose that y (f = 1,, s) which are obtained from the intersection of y

and g' (i = 1, are composed of two subintervals where 8 < n. Since we do

not want more than one interval x^ (» = 1,.n) to be divided into two subintervals,

we save the y" which deletes the largest subinterval of x^ Suppose that g" is saved.

Then for f = 1,..,, -s and i 0 j we replace g" with x^; that is, we ignore the fact that

part of Zj (/ = 1s, i j) could be deleted.

The preceding ideas give rise to the procedure dJ.gap (determine.largest.gap).

procedure d.l.gap(yp\y(2\ g'^\ g^2\ z G I(Rn), y.double, y1.double G Bn,

si^igi^lla e B : y/1^,yf’^ €. Il N,x.divided l B)

! This procedure implements step 8 of Hansen’s global optimization algorithm.

! On entry, g^, j/2) are the boxes which are computed in the procedure

! solve.quadratic.2, g'^\ g^2^ are the boxes which are computed in the

J procedure newton.method.2, y.double and y'.double are the Boolean vectors

! which are computed in the procedures solve.quadratic.2 and newton.mcihdd.2

! respectively, and singular is the Boolean which is computed in the procedure

- 95 -

! n e w t o n. m ethod.l.

! In this procedure we compute

! (yO) u y(2)) n u =

! (y(1) n y'u)) u (yd) n u (y(2) n ?/i}) u (y(i) n y/2)).

! If three sub-boxes are obtained we retain either y(i) U y(i) or y'l U y'^l

! whichever has the smallest width.

! On return, y//^^ and y'lil are the boxes which result from this procedure, j denotes

! which component of x is divided into two sub-boxes, and if x is divided into

! two sub-boxes then x.divided ~ true.

X. x.divided := false

2. wc := 0 • .

3. j := 0

4. ;= (0)„xi

5. y"(2) := (0)„xi

6. for i ~ l e n do

! Check each component of the box x.

6.1. if singular

then

! The Newton method cannot be used; therefore we can only check

! whether or not the procedure solve.quadratic.2 has produced two

- 96

! sub — boxes and If y.doublei — true then we set y"= yd

I and, </^2) == y(2\

6.1.1. if y.doublei do

6.1.1.1. x.dividedtrue

6.1.1.2. ; . ■~ t iU

6.1.1.3. y"?2' == v/2)
-- i —t

6.1.1.4. w := !«(*() — w(gW) — w(y^}

! I f w > wc then is reduced more than

! %k U < A < i - 1).

6.1.1.5. i£ w > wc (do

6.1.,1.5.1. j i

6.1.1.5.2. wc := w '

else

! Here, singular ~ false ; therefore check whether or not

I ? 0 oW fc) / 0 (A = 1,2). If so then proceed with

! the following steps; otherwise go to step 6.1 with i : = * + 1.

6.1.2. i_ y.doublei and yddoublei do

6.1.2-1. g,t := y^

6.1.2.2. «

6.1.2.3. £j := iff

6.1.2.4. b := j/'(2)

-97-

6.1.2.5. e:=(0)3xi

6.1.2.6. t := I

6.1.2.7. m := 0

! m denotes the number of intervals which are produced by the

! intersection of (oj LJ a2) and (6, UZ>2).

6.1.2.8. for k ~ 1 to 2 do

6.1.2.8.1. for I = Ito 2 do

6.1.2.8.1.1. if_ ak n 0 do

6.1.2.8.1.1.1. cl:~aknbl

6.1.2.8.1.1.2. t := I -t-1

6.1.2.8.1.1.3. m m + 1

6.1.2.9. case m of

3 :

! For this case we retain either

! (j/1) U3/2)) or u/2^).

6.1.2.9.1. x.divided true

6.1.2.9.2. w :=

6.1.2.9.3. w' wQ/^) 4-

! If w < w' then retain U yW;

! else retain Uj/?\
— 1 — t

6.1.2.9.4. if w < w1

- 98 -

then

6.I.2.9.4.I. »"? ■= 2?'

6.I.2.9.4.2. = y™
12. i

6.1.2.9.4.3. wm w

else

6.1.2.9.4.4. £"-l) :

6.I.2.9.4.5. 2'f > =-£'‘”

6.1.2.9.4.6. : W1

6.1.2.9.5. w w(»t) “ Wm

6.I.2.9.6. ifw>wc do

6.I.2.9.6.I. j i

6.I.2.9.6.2. wc XV

2 :

! For this case we have only <^0 0 and c2 Q.

6.1.2.9.7. x.divided := true

6.1.2.9.8. := £i

6.1.2.9.9. g"(2) := c2

6.1.2.9.10. w := - w(ct) — w(c2)

6.1.2.9.11. i/ w > w, do

6.1.2.9.11.1. j:=»

6.1.2.9.11.2. wc w

- 99-

1 :

■ For this case only cL 0.

6.1.2.9.12.

6.1.2.9.13. w := w(^) — wQjj)

6.1.2.9.14. if w > wc do

6.1.2.9.14.1. /:=i

6.1.2.9.14.2. wc:=w

default :

! In this case the procedures solve.quadratic.2 and

! newton.method.2 have produced two disjoint intervals.

! Therefore we should stop the computation because

! this should not happen unless does not contain $*.

6.1.2.9.15. write "Two disjoint intervals are produced

in d.l.gap."

6.1.2.9.16. stop

7. for i — 1 to n do

7.1. if_ i =/ ? do

! If j 0 then for 1 < i < n and i j we assign to

! and the interval x^.

7.1.1. y"t(1) := x,

7.1.2. ■.=

- 100

8. return _
—- □

3.9 Step 9. Construction of New Sub-boxes

If y" exists; that is, if at least one interval x^ (j ~ 1,..., n) was divided into

two subintervals, say and in Step 8 then we subdivide the box % into two

sub-boxes and x^2\ where

and
»(2) = Ui,...,»J_i,S/"y2),2.y+i,...,2»)r.

Otherwise, we might wish to subdivide the current box. Let x denote the box

chosen in Step 1 with width w — and let x" denote the current box resulting

from applying steps 2-8 to x with width w = || w(x,,)|]. If w > 0.75w then we bisect

xf/ along its widest dimension. The number 0.75 was suggested by Hansen.

This preceding ideas give rise to the procedure c.n.s.boxes (construct.new.sub.

boxes).

procedure c.n.s.boxes^y"^,}/'^ € I(Rn), w € 7?,/, n € N ; x.divided € B :

z(1),z(2) € /(£*))

! This procedure implements step 9 of Hansen’s global optimization algorithm.

101 -

1 On entry, z is the current box, and"y'^2^ are computed from the procedure

I d.l.gap, w is the width of the box which is extracted from the queue Li or k2 in

! the procedure'terminate (Step l), j is computed from the procedure d.l.gap and

! n is the number of components of the initial box x,

! The input-output Boolean x.divided is computed from the procedure d.l.gap

! and x.divided = true if the box x is divided into two sub-boxes and

1 • Z(1) •— (fi)nxl

2. Z(2^(Qjnxl

3. (f j == 0

them

! For this case y’^and yf^ are both empty so we need to check whether

! tu = ||w(%)|| > 0.75$. If w > OITSw then we divide x along the direction

! of maximum width.

3.1. y :=1

3.2. w := wfe)

3.3. for i ~ 2 to n do

3.3.1. w :== w(^)

3.3.2. if w > w do

3.3.2.I. w := w

3.3.2.2. ' y := *

-102-

3.4. if_ w > 0.75w cfo

3.4.1. for i 1 to n do

3.4.1.1. ^l):=2.j

5.4.1.2. ^2) := zf

3.4.2. xj1' := [.tyj, „?($,•)]

3.4.3. := xjS]

3.4.4. x.divided := true

else

! If x.divided ~ true set x^ y”^ and := y,z^2^; otherwise

! check the width of because 0 whereas y"^ — $.

3.5. if x.divided

then

3.5.1. := y"(1)

3.5.2. xW := y"(2)

else

! j 7^ 0 and only one interval is obtained from (aL U a2) A (5X U b2)

! in the procedure d.l.gap.

3.5.3. z_- := y"(1)

3.5.4. j:=l

3.5.5. w w(#i)

3.5.6. for i — 2 to n do

- 103

3.5.6.1. vj — w^}

3.5.6.2. if w > W do .

3.5.6.2.1. W :=w

5.5.6.2.2.

3,5.7. f W > 0.75w do

3.5.7.1. for % — 1 ton do

3.5.7.1.1, 2,-1’ ■=&

3.5.7-1.2. g(8) := m

3.5.7.2. 41’ := J

3.5.7.3. g'1-[m^Xis]

3.5.7.4. (.divided := true

4. return *

3.10 Step 10, Insertion of New Sub-boxes into the Appropriate Queue

In Step 10 we insert the box or boxes resulting from Step 9 into the appropriate

queue; that is into either L1 or JL2. We also update / if possible as described in §4

of [Han-80 a]. Let x G I{Rn) be a box resulting from Step 9. We evaluate / at the

centre of If fs < f/ then we set / — [fs,S?]) otherwise f is not changed. Here,

although f can be reduced, x cannot be oeleted because / is computed at m((J. If

||w(x)|| < s2 then we insert the box st into the queue JL; otherwise insert th e box %

into the queue L2 and restart the process at Step 1.

The preceding ideas give rise to the procedure insert.into.queue.

104-

procedure insert.into.qiieue(xSl\ x^2\ x £ I(Rn)iS2 £ R, n & N, x.divided & B ;

Li,Z<2 £ ^i32 € -/V, / G !(-&))

! This procedure implements step 10 of Hansen’s global optimization algorithm.

! On entry, Ll5 L2, h and f2 are as in §3.1, gW, and x.divided are as

! computed from the procedure c.n.s.boxes, x is the current box, and e2 > 0.

! On return / is such that fs > f* where /* is the global minimum of /.

1. if x.divided

then

! Compute f^ = /(a^) where x^ — m(x^} (i ~ 1,2), and update the value

toff.

1.1. /(m(»^))

1.2. /^ :==/(m(a52)))

1.3. if <f,do

1.3.1. ?:=[41),41)]

1.4. if < fj do

1.4.1. /:=[42),42)]

w U(1))| < s21.5. if

- 105 -

then

1.5.1. x^ ~~>Lt

1.5.2. h := t! -H 1

else

i.5.:5. X> ' —

1.5.4. t2 := t2 + 1

1.6. if w(x^) < $2

then

1.6.1. —>Li

1.6.2. ii *i + l

else

1.6.3. z(2) —>l2

1.6.4. t2 := t2 +1

else

! Update f_ at and then insert x into either L\ or L2.

1.7. Z:“Z(mU))

1.8. if_fs < fi do.

1.8.1. /:=[/s,/s]

1.9. if_ ||«>(&)|| < e2

then

1.9.1. x---- > Li

- 106 -

1.9.2. ti 4-1

else

1.9.3. x---- >Z2

1.9.4. t2 t2 4- 1

2. return

3.11 Hansen’s Global Optimisation Algorithm

In order to describe Hansen’s global optimization algorithm, the following pro

cedure is needed, in addition to those which have been described in §3.1 - §3.10.

procedure execute. H an sen. steps e I(M(Rn, R2)), n,h$ € N, e0,ei,e2 G JR,

ignore.boundary 6 B ; L2, £3 € Q,

f_E € N)

! This procedure combines all the procedures in Steps 1 - 10.

! B, eo) £.ij and h$ are as in Step 1, e2 is as in Step 3, ignore.boundary is

! as in Step 2 and n is the number of components in the initial box x.

! /’ ^2> ^2j tfh Bi, L2 and L$ are as explained in §3.1.

1. delete.xfalse

-107-

2. singular false

3. ,tz,n \ L1,L2,hi,fi2 :

z, w, f.too.-wide) ! §3.1.

4. i_f_ ~ f.too.wide do

! If f.too.wide == false then four possible cases occur in the

! procedure terminate : (?) L2----> z if Lg 9 0, (**) Lg = 0, Lx----> x if ei > 0

! (Hi) Lg = 0, Li---- > z if w(_(x)) > s0, and (it;) the algorithm H

! terminates. Therefore if f.too.wide — false then either the box x is

! processed or ike algorithm is terminated. If f.too.wide — true then

! go to step 5 [[Ha-----80a], because f.too.wide = true only when Lg = 0

! and the box x which has been extracted from L± in the procedure

! terminate probably contains a minimizer, so the procedures

! monotonicity.test and non.conwzxity.test are unlikely to delete z.

4.1. monotonicity.tesi(B, n, ignore.boundary ; L3,z,/, 1$ •

delete.x) ! §3.2.

4.2. 1 / ~ delete.x do

4.2.1. non.convexiiy.test(H,n, $2j ignoredboundary ; Ljl, Lg, z, (%, £g •

delete.x) ! §3.3.

5. i£ delete.x do

6.1. solve.quadratic.llfjSi.jn ; x:

J_G, delete.x) ! §3.4.

- 108 -

5.2. ?‘/ delete.x do

5.2.1. newton.method.l(B_, J_, n, ignore.boundary ; x:

A, B, singular, delete.x) ! §3.5.

! If singular — true then the procedures new ton. met hod. 1 and

! newton.method.2 cannot be used.

5.2.2. if ~ delete.x do

5.2.2.1. solve.<iuadratic.2(G, f_.e\.n ; x:

Up\y^2\ delete.x, y.double) ! §3.6.

5.2.2.2. i_f_ ~ delete.x do

5.2.2.2.1. new ton.method. 2(B_, A, B, singular,

ignore.boundary, n ; x:

t/^\y^^ ’ delete.x,

y' .double) ! §3.7.

5.2.2.2.2. if ~ delete.x do

5.2.2.2.2.I. d.l.gap^,

x, y.double, y'.double,

singular :

x.divided) ! §3.8.

! If x.divided — true then y”^ $

! and y”^ 0

109 -

5.2.2.2.2.2. c.n.s.boxesfx,

w,j,n ; x.divided

sSl\x^} ! §3.9.

5.2.2.2.2.S. insert.into.queue(x^, x^,

x,s2,n,

■x.divided ;

^ii^2i hj fa

J) ! §3.10.

return □

Hansen'8 Global Optimization Algorithm

Data :

Li eQ, Li = ® (» =1,2,3),

hh ti e N, (hi = 1, ti = 0) (« = 1,2,3),

n 6 N, (n > 2),

€ R (^o >0, Si > 0, £2 > 0),

xEl(Rn),

ignore.boundary E B.

! If ignore.boundary = true then x* € int(x)’, else a* E x.

1. for i ~ 1 to n do

110 -

! Determine the boundary points of Z.

1, 1. bji

l-2. hi2

2. ?:=/(m(j)

3: il IM-iOH < eg

then

3.1: z —> Z-i ! Insert x into L\.

3.2: ti := 1

else

3.3. '----- > Lg ! Insert x into Lg.

3.4. (g := 1

4. while true do

4.1. execute.Hansen.stppsBB, n, hg, e0, s.-u b 2, ignore.boundary ;

LijLg, Lg, 7) LiytiJig, tg, (g) 1 §3.11

6. stop
□

- Ill -

CHAPTER 4

Computable Error Bounds For Nonlinear Programming

la this chapter Problem P (Chapter 3) is shown to be related to the problem of

solving* a system of nonlinear algebraic equations and inequalities.

4.1 The Global Optimisation Problem Expressed as a System

of Nonlinear Equations and Inequalities

Consider the noniineai* programming problem NP.l

minimize /(«) (x&D C Rn)

subject to

Ci(tf) 0 (« =

hj(x) ~ 0 (j =

> NP.l

7

where f : D C Rn R\ a : Rn R1 (s = hj : Rn -> ft1 (j =
A

are given continuously differentiable functions and D C D is an open set containing

the points which satisfy the constraints. In order to establish the first order necessary

conditions for iVP.l we need the following definitions and theorems ([FiaM- bSa] [Gal-

51 a] [ManF-67a]).

— 112 —

Definition 4,1 : Let f : D C Rn —> Jp be a given function and let D C D bc a

given set. The point z* € D is a strong local minimizer of /’ in D if and only if

3s > 0 s ucii that

/(**) < /(z) (Vz G ((-B(z*g) - {z*}) n Z>))

where B(z*,e) is a neighbourhood of z* with radius e,
□

Definition 4.3 : A point z G D is a feasible point for NP.l if and only if x satisfies

the constraints c, (,z) > 0 (? = 1,.rn) and hy(z) = 0 (j = 1,..., r).
□

Definition 4.3 : For NP.l the feasible set D is defined by

D = {z G Rn | c(x) >0 (i ~ 1.m) A hy(z) = 0 (y = 1,.r)}.
□

Definition 4.4 : The constraints c^z) > 0 (? = 1,.... m) corresponding to NP.l are

called inequality constraints and the constraints hj{x) = 0 (y = 1,.r) are called

equality constraints.

Definition 4.5 : The inequality constraint c^(z) > 0 (l < ? < m) for NP.l is active

(binding) at X G Rn if and only if ct(z) = 0.

Definition 4.6 : Let / : D C Rn —> Pp, a : Rn Pl (i ~ 1,.. , m) and hj : Rn -»

Rl (j = 1,..., r) be given mappings. Suppose that dkf(X) (h ~ 1, ...,n), d/cc(z)

(? = 1, k = and dkhj(x) (j = k ~ l,...,n) exist, where

- 113 -

,t 6 D is given, Then the gradients V/(£) £ J?n of /, Vej(.r) G Rn ofc-i (i — 1,..., m)

and Vfty(&) G Rn of h:l- (j ~ 1,..., r) at x are defined by V/(&) ~ (^/(ijjnxb

Vt?i(X') - (d*ct{£)),tXi <tnd V/?.y(;f) = (d*M»))nXi respectively.

Delhi?, tion 4.7 : The Lograngian f unction L : Rn X Rm X Rr —»• Rl corresponding

to NP.l is defined by

m r
L(x, u, w) = f(x) - UiCi(x) -{- Wjhj(x).

t~i j=i *-—*

Suppose that »“ £ Rn is a feasible point for JVP.l and that f : Rn —> .Rl,

Ci : R“ -+ R1 (i = l,...,m) and fty : R.n —> R1 (j — 1, ...,»•) have first partial

derivatives at a;*. Let e* -- e,(a.'”) (s = 1,.,.,to), etc, and let

B* = {i £ JV+ | cf(a:*) = 0}, 4.1

Z* = {ze Rn I zTVc* > 0 (Vi £ S’) A zTVh* = 0 (j = 1,..., r)A

zTVF > 0}, 4.2

Z% = {zeRn \ zTVcf > 0 (Vi £ B*) A zrVK‘j = 0 (/ = 1,..., i')A

^V/*<0}, 4.3

z3* - {z e Rn \ (3« e B\ z'rvc* < o) V (ay e {i,..., *•},

zrVM 0)}, 4.4

- 114

where Vc? = Vcf(a*) (* = VA* = VAy(z'") (? = and Vf* =

V/(z*). The sets Zft ZJ and Z£ are disjoint and Zf U Z% U Z* = Rn.

Observe that all feasible directions from x* must be contained in Zf U Z£. Fur

thermore, f(x) initially decreases along z € Z% and initially increases or is constant

along z £ Zi. Thus if Zi 7 0 we would not expect z* to be a local minimizer. We

shall sec that this expectation is correct, but only if we make a suitable additional

assumption.

Definition 4.8 : Let a : [a, 5] C R1 —■> Rn be a given mapping. Then ■(«(#) G RP |

0 G [<a,bj) is a curve, in Rn.

Definition 4.9 : A curve {«(0) G Rn | 6 G [n,A]} is once dif f erentiable at 0 G [«,6]

if and only if Da{0) G Rn defined by

Da{0) =
d

-XI

exists.
□

Definition 4.10 : An arc is a differentiable curve {a{0) G Rn | 0 € [0, #]}.
□

Definition 4,11 : The tangent T to the arc {«(#) G Rn | 0 G [0, sj} at 5 G [(),<?] is

defined by

T = {e G Rn | ;; = AD«(0) A X > 0}.

Definition 4.12 : A curve {o<9) G Rn | i G [a, 6]} passes through x G Rn if and

only if 3g G [a, 6] such that X = o(0).

- 115

Definition 4.13 : An arc («(#) G RP | 0 G [0, ej} is feasible if and only if n<9) is

feasible (fO G (O, sj).

Theorem 4.1 ; If T is the tangent to a feasible arc for NP.l through z*, at z*, then

7' C Zf U Z2 for A > 0 sufficiently small. r 1 □

Theorem 4.2 (Existence of Generalized Lagrange Multipliers) : If (1) z* G

Rn is a feasible point for NP.l; (2) / G G7l(D), c G 0n(D) (i = I,.. ,,m) and

hj G C'-(D) (j ~ 1..., r) where D C. D is an open set containing the points which

satisfy the constraints; (3) ZJ = 0, then 3u* G Rm and w* G Rr such that

c(z*) > 0 (? = 1,... ,m), 4.5

M**) = 0 (j = I,...,?’), 4.6

u*Ci(x*) = 0 (t = 4.7

> 0 (i = 4.8

and

VxL(zA «*, «?j = 0. 4.9
□

Definition 4.14 : The point (z*r,«*2 ,w*T)T G Rs where s ~ n d- m -} r is a

Kuhn — Tucker (KT) point_ for NP.l if and only if 4.5 — 4.9 hold.

-• 116 -

In applying Theorem 4.2 one must be able to determine whether the set Z% is

empty. Clearly, assuming that the functions are differentiable, Z$ ~ 0 is a necessary

and sufficient condition for the existence of the generalized Lagrange multipliers u*

and w*.

Several conditions have been imposed to ensure that the set ZJ be empty at a

local minimizer. We give three of them in the following discussion. First we state a

condition that may be required to hold at a candidate for a local solution of NP.l

iaM-G8a].

Definition 4.15 (First-Order Constraint Qualification) : Let rr* G Rn be

feasible point for NPA and suppose that ct- G C1 (P) (i = 1,... ,m) and hj G (71(P)

(? “ 1, ...,?•) where D C D is an open set containing the points which satisfy the

constraints. The first order constraint qualification holds at x* if and only if

((# 0 0) A [zT\7c^ > 0 (Vi G P*)) A [z1 VA* = 0 (J = I,,.., r))) => (z is tangential to

a once differentiable arc emanating from rr* and contained in the feasible region).
□

There are situations in which NPA can be solved to give the unique solution x*

but the first-order constraint qualification does not hold at rr* [FiaM-68aJ.

Theorem 4.3 (Kuhn-Tucker Necessity Theorem) : If (1) re* G Rn is a solution

of JVP.l; (2) f G ^(P), c{ G PX(P) (i = Ay GPX(P) (j = where
A
P C P is an open set containing the points which satisfy the constraints; (3) the

first-order constraint qualification holds at a:*, then 3 a* G Rm. w* G Rr such that

(re*7', «*7 , w*r)1 is a KT point for NPA.

- 117 --

Tlie Kuhn-Tucker constraint qualification is one of the best-known conditions

implying that Z.J = 0 or equivalently, implying the existence of the generalized La

grange Multipliers «*, w*.

Neither the first-order cons’traint qualification nor Zg = 0 are usually capable of

direct computational verification. A second condition which implies that Zg — 0 is

contained in the following Theorem [FiaM-68aj.

Theorem 4.4 (Interuority-Independence NecessityTheorem) : If (!') a* G R'

is a solution of AlPl; (2) f G <7’(£>), ct- G <71(Z?) (* = l,..,,m), Ay G C1(P)

(y = 1,..., r) where D C. D is an open set containing the points which satisfy the

constraints; (3) 3-s G Rn such that srVc* > 0 (Vs G B*), fsrVh* =0 (j = 1,, r);

(4) {VA*..., VA*} are linearly independent, then 3u* G Rm, yj* G Rn such that

(a*l, u*r, w*T)T is a KT point for iV.P.1.

A final condition implying the existence of Lagrange multipliers «*, w* for NP.l

is the linear independence of the gradients af all active constraints at a solution a*.

The following theorem contains a stronger result which implies the validity of the

first-order constraint qualification.

Theorem 4.5 (SuHlcient Conditions for the First-Order Constraint Quali

fication) : If (1) a" G If” is a feasible point for NPl; (2) / G (71(.D), c G CS(D)

(? — 1, rn), hj G C1(D) [j = where D C D is an open set containing

the points which satisfy the constraints; (3) {Vc* | ? G B*} U {VAy | j = 1,r} is

linearly independent, then the fn-st order constraint qualification holds at a*. __

- 118 -

We cannot say that the first order constraint quo.fi f cat ion is both necessary and

sufficient for Z% — 0 as sho% n by the examples in [FiaM~63a].

The first order constraint qualification is usually not a useful criterion for testing

whether or not (a?*1, n*2 , w*7 }2 is a KT point for NF.l. The criteria in Theorems

4.4 and 4.5 are more useful because they can be tested. However, it is easy to show

that the first order constraint qualification holds for the special case of NP.l the •

solution of which is considered in this thesis.

The criterion ZJ = 0 is weaker than the first order constraint qualification be

cause the latter implies the former (Theorem 4.8) but not conversely. Furthermore,

the criterion ZJ = 0 gives an explicit characterization of the described condition

directly in terms of the problem functions at a solution a* of NP.l.

The condition ZJ — 0 is actually the fulfilment of the hypotheses of Farkas5

Lemma which are both necessary and sufficient conditions for the existence of La

grange multipliers. Because of the necessity of Zn ~ 0 it is clear that it cannot be

weakened.

Theorem 4.2 is a first order characterization of local minimizers in that it

involves first partial derivatives of the problem functions only. It does not take

into account the curvature of the problem functions, which is measured by their

second partial derivatives. There is a need for curvature analysis to provide a finer

characterization of local minimizers in solutions in which the first order necessary

conditions fail to give complete information.

— 119 -

Suppose that for the problem iVP.l we have / C- 6'2(D), Cj 6 O2(D) (g —

i, . ..,m) and hj E G2{D) {j ~ 1,... , r). Let z = {X, uT, wT)T where z E .jR’,

x G i?ft, u G fZ", w G Rr and s — ns -|- m + r. Then Definition 4,,14 z* =

(x**\ u*T, w*2)2 is a JC7" point if and only if

^(Z) = 0, 4.10

c(s*) > 0, 4.11

and

iP > 0 4.12

where F : Rs —— jZ®, c : R” —> Rm and h : Rn IV' are defined by

and

4.13

e(.r) = (c1(.t),...,c„4s))t. 4.14

- 120 -

In 4.13,

/'(*) “ (^1• ♦ • > ^nZ(^'))5 4.15

C (&’) — (^j'ci(^’))rrtXn) 4.16

and

/?(z) - (0/M»))rX»- 4.17

Consider the following special case of the problem NP.l.

minimize f(x) (x G D C D C Rn)

subject to > NP.2

Ci(aj) > 0 m)

in which

c<(») = Xi ~ xu (i = 4.18

and

c,(.u) - Xi^.ns - Xi-n (s ~ n + 1,... ,2n) 4.19

where x_ G 1(D) is given, so that m = 2n. The problem of bounding the solutions of

NP.2 is equivalent to Problem P.

The solution of NP.2, lies either in the interior of js or on the boundary of x_. For

example suppose that n — 2. Then

- 121 -

Ci (a* -- Xi - 2if, 4.20

C»(ar) = 22 -- %/, 4.21

Cj(rt) — 21S “■ ;>!, 4.22

and

04(2) — 2255 — 22>. 4.23

If 2* E LuQL), then (See 4.1.) B* — 0. Let Zc be the set of vectors which are

tangential to a once differentiable arc emaanating from a* and contained in the feasible

region. Since P* — 0 and there are no equality constraints then we have only

Zc {z<=R2 | z^O}.

Then / — (zx, 22)T is tangent to the arc «(#) — (a* -f 0,2% + O)T, which is

contained in the feasible region when G satisfies

-(4 - &if) < 6iri < 215 ~ a*,)
■ 4.24

-(4 ~ £21) < O < Zgg - a*, J

for #(0) has tangent Da[0) where Da(0) —)T. Therefore the first order

constraint qualification holds at a* for x* G mZ(a).

- 122

Suppose that .?* lies on the boundary of &. Then from 4.20-4.23 we obtain

and

Ve* = (l,0)P 4.25

Vc* = (0, if, 4.26

Vc‘ = (-l>0)r1 4.27

= (0,-if. 4.28

Clearly, for this ca.se B* is a member of the set

4}, {2,3}, {3, 4}}. 4.29

Therefore the set {Vc* | i G 5*} which is obtained by using' at most two of 4.25-4.28

according' to the elements of 4.29, is linearly independent. Therefore according to

Theorem 4.5, the first order constraint qualification holds at a* for a:* G <9(z). A

similar argument i3 valid for n > 2.

We conclude that the first order constraint qualification holds at .r* for the

problem NP.2. Therefore, by Theorem 4.2, 3k* G such that

- 123 -

4,30

e(a*) > 0,

and

4.3.1

u* > 0 4.32

where £* — (:r*r,)7 , and F : R5n R3n, c : Rn R2n are defined by

F(.)

/(/'(») -«Tc'(«))T^

V W‘2nC2n(*^) '

4.33

and

c(a) - (c1(.t)j...,c2u(.^) • 4.34

Moreover, if we differentiate F(z) with respect to z. where .

(fpj, rsn, ..., «2n)7 then we obtain

z = (^,...

J
-I„ 1

= pd) | £>(2> |

J
I ,D<3) | 0 1 .D(“) J

4.35

124-

wherc
V2/(*l> • • •» *n) = , *«))nXn 4.38

and € M(.Rft) (i -- 1,... ,4) are defined by

£(1) = diag(zn+l,..., z2n),

D® - diag(zL - x1Iz..., zn - xnJr),

- diag(-z2n^i,..., -Zsn),

and

P(4) = diag(xls - zt,..., xns~ zB).

The KT points for NP.2 satisfy

F(z) = 0,

e(z) > 0>

and

4.37

4.38

w > 0. 4.39

- 125

Also, the global minimizers of / m X are ITT points for NP.2. Furthermore, a

KT point for NP.2 might correspond to a global maximizer or to a global minimizer

of / in X. Therefore an algorithm which bounds the solutions of 4.37-4.30 which

correspond to minimizers of / solves Problem P. This idea is used to construct the

algorithm MW for solving Problem P which is described in Chapter 6.

4.2 Strict Complementary Slackness

.Definition 4.16 : Strict Complementary Slackness is said to hold at a KT point

2* = («*r, a*2 , w*T)T if and only if for i — 1,.m, w* > 0 if Ot(#*) = 0 and uf ~ 0

if c/(»*) > 0.

That strict complementary slackness does not always hold at a KT point

(a?*T,u*T)T of NP.2 is apparent from the following example. Let / : R1 i?1

be defined by

/(.») = X

and let X = [0,1]. Then by 4.18 and 4.19

Ci (n) — X)

and

- 128 -

C2(;g) -1- x,

and the solution of NP*2 is .%•* — 0, Therefore q(.t*) — 0 and c?,(x*) > 0. Now by

433 and 4.37,

-0,

whence u* ~ ^so 4-33 and 4.37,

Mj|c2(.r)=z0

so Mg — 0, whence m/J = 0. Therefore strict complementary slackness does not hold

at .%**. The preceding example illustrates part (b) of the following theorem.

Theorem 4.8 : (a) If x* <£ sn/(&) is a solution of NP.2 then strict complementary

slackness holds at a*; (b) if .?* e <9(£) is a solution of NP.2 then strict complementary

slackness holds at a:* if and only if dif(x*} > 0 Vi £ {1, ...,n} such that ~ xu

aud <9i/(ar*) < 0 Vs 6 {I,..., n} such that x* = Xis>

- 127 -

Proof: (a) If x* € int'(x) then et-(x*) > 0 (i = 1, ...,2n) whence by 4.33 and 4.37

?(* = 0 (t = 1,... ,2n). Therefore strict complementary slackness holds at x*.

(b) Suppose that x* = x^. Then <5t/(x*) > 0, for if <9.,/(x*) < 0 then ZJ # 0 since

€ ZJ where is column i of the nx n unit matrix. Therefore x* is not a solution

of NP.2, contrary to hypothesis. Also if x* — Xu then ct(x*) — 0 and ct-_j_n(x*) > 0,

whence by 4.33 and 4.37, u*_(.n = 0.

If strict complementary slackness holds at x* then u* > 0. Therefore

ut+7l

> 0.

Conversely, if d</(®*) > 0 then

«* = u-+n + dtjf(x*)

>0,

whence strict complementary slackness holds at x*. A similar argument is valid when

xf = xiS.

- 128 -

Definition 4,17 : Let a = [«/,os] 6 1(17) be given. Then

a
[a/,0] (as < 0)

a (as > 0).
□

Theorem 4.7 : Let a,b£ I(R). Then (a C b) -> (a° C 6°).

Proof : Now

(a L h) <=> (bj < ai < as < bs).

4.40

4.41

Suppose that bs < 0. Then by 4.41 as < 0, so by 4.40, «° — [«j,Qj and

6° = [6/,0] whence by 4.41, a° C h°. Suppose that bs > 0. Then by 4.40, 6° = b. If

as > 0 then by 4.40 a° ~ a C b ~ &°. If as < 0 then by 4.40, «° = [«/, 0] C b = 6°.

So (<z C b A bs < 0) => (o° C 6°), and (a C b A bs > 0) => (a° C h°). Therefore

(« C 6) => (ct° C &°). □

Theorem 4.8 : If a, 6, c, d e I(R), cC a, dCb and 0 0 cP n h° then 0 c° fi d°.

Proof : By Theorem 4.7 (c C nJ => (c° C n°) and (d C h) => (d° C 6°). Therefore

c° fl d° fl° nt°. Therefore (0 0 a° n b°) => (0 0 c° fi d°)- j-j

In order co obtain the KT point z* — (.r*2\ u*T)T for NP.2 we solve the system

of equations F(z) — 0 where F(z) is-given by 4.33.

Let F : RSn —> ,R3n be defined by 4.33 and let £ = (£7 ,uT)r be given, where

x€ I(Rn) is the box in which a global minimizer .r* of f : Rn —> Rl is sought, and

- 129

u G Z(ft2n) is a box containing tlie Lagrange multiplier values iF

to the global minimizer z*.

G Ryn corresponding

Let Ci : Rn —> Rl {i = l,...,2n) be defined by 4.18 and 4.19, and let

: I(Rn) — /(i?*) (& = l,...,2n.) be inclusion monotonie interval extensions of

Ci : Rn —> R1 (i ~ 1,2n) respectively. If

O0CiU)°ni? 2») 4.42

and £ — (xT,ur)T C 1 then by Theorem 4.8

0 0 ct-U)° A «• 2rc). 4.43

Therefore if we could generate a sequence (i(i') such that == G

I{Rfn) and z\k+1) C k) [\fk > 0) where ~ and 4.42 holds then

(VA > 0)

o £ c^*))0 n up)o (i = l,...,2n). 4.44

Therefore, if 4.42 holds and zW z* [h -• co) where F(z*) = 0 and z* ~~

- 130

(a*/',«*T)5 then strict complementary slackness holds at z* and z* satisfies the

Kuhn-Tucker conditions. This idea is used in the algorithm MW which is described

in Chapter 6.

4.8 Robinson’s Theorem

If for AF.2 / e (7y(D) and et- E C2(D) (’ = then F(z) = 0, where

F(z) is given by 4.33, can be solved by using the Newton operator N ; R3n —> R3n

[Nie-l1a], which is defined by

2V(z) = z - (F,(z))"1F(z), 4.45

where Ff(z) is given by 4.35.

Let F : 1(0) —- l(FSn) be a continuous inclusion monotonie interval extension

of F : 0 C R3n — R3n. The interval Newton operator N : 1(0) x 0 -+ I(R3n)

[Nic-l1a] is defined by

NZ z) = %- (F'(z, z)) 1F(z) [z G z) 4.46

where F/ : 7(0) x 0 l(Af(.F3n)) is a continuous inclusion monotonic interval

extension of F' : 0x0 — M(R3n),

- 131.

(A_'U, 4)i3 ~ Zj^i, ..., -Sa) (L J * 1, • • • 4,4/

and (E!(.z,z)} 1 G I(M(RSn)) is such that

{e!&, 4)-1 a {(^4) “M 2/ € «},

in which Ff : 0 x 0 —»■ .M(F®”) is defined by

(h (#, 2j'jij , . . . , 2/--1, /jf-h • • • j 2/Sfi) (hj,/ — 1, ..., 3/i)..

Note that N is not uniquely defined because it contains an interval inverse.

The following result is a special case of a theorem which has been proved by

Robinson [Rob-73a] for problem NP.l. -

Theorem 4.9 : If (1) f : D c Rn -~+ Rl, c i D < Rn . R2itr aee given mappings

with / G G2(D), c G G2(D) where D C D is an open convex set; (2) x G 1(D),

u G T(R22n) are given; (3) c : 1(D) DiZ?2**) is a continuous inclusion monotonie

interval extension of c : D iZ*”; (4) F : 1(0) -» T(F3a) is a continuous inclusion

T

- 132 -

monotonic interval extension of F : fi —> R*n where F is given by 4.33 and fi —

D x R.2n\ (5) F^ : I(fi) —> I(A/(I23’1)) is a continuous inclusion monotonic interval

extension of Fl : fi —> Af (P3n) where F1 is given by 4.35, fi = £> x R2n > F'(z_, z) is

nonsingular, and £ = (x7\ur)T\ (6) 0 CjQe)0 n uj 2»); (7) 3z € z such

that N[z.,z) C z, then N_(z.,z) contains a KT point z* •— (a;*T, u*7')7’ of NP.2 af

which strict complementary slackness holds with linear independence of the gradients

to the active constraints. Furthermore, z* is the only KT point of the problem NP.2

in z. Q

Robinson [Rob-73a] has used the more general form of Theorem 4,9 to bound

a KT point z* of NP.l given an initial (small) box containing z*.

In algorithm MW the operators which are described in [SheW~85c] and [SheW-

85b] are used instead of the operator N_ to obtain arbitrarily sharp bounds on n KT

point z* for 7VP.2, given a box S, which need not be small, such that € I.

133-

CHAPTER5

The Algorithms MAP and KMSW

In this chapter, the algorithms MAP [SheW-85b] and KMSW [SheW~85c] are

described. These algorithms are used in the algorithm MW as explained in Chapter

6.

5.1 The Algorithm MAP

Let A € M(Rl) and b G I(R{) be given. The result of applying the Gauss

algorithm [AleH-83a)[AleP-83a] to the pair (A, b) is represented by g(A,b) G I(Rl)>

If A-1 exists then G M^R1) depending only on A, such that

w(g(A,b)} - MAiu{b) 5.1

and

A~lbCg(A,b). 5.2

Let KN : I(Rt) x I(M(R1)) x M(R*) -> /(£*) be defined by

KatU -A) = mU) “ - (A - G)(j. - m(z))}), 5.3

- 134-

in which F : D C R* —> R* is a given mapping with F e where D C D is an

open convex set and t 6 N. Let F : 1(D) -> I(Rl) and F' : 1(D) — I(M(Rt)) be

continuous inclusion monotonic interval extensions of F : D —> Rl and of F* : D -+

M(Rl) respectively.

A
Let z_ € 1(D) be given. The algorithm MAP [SheW-85b] for bounding a zero of

F in z is as follows.

Algorithm MAP

Data : z e 1(D), a e [0,1), t, p^ € N (ft > 0).

X. :=

2. £'(0) :=£'U(0))

3. Bw := m(FfW)

4. ^0'0):=/°)

5. for m = 0 to p^ do

5.1. /°.’n+1) KN(z^’m'>,F!<-0\l3^'>)n^0’m)

6. /D

7. ft:=l

8. while true do

8.1. £,W ;= £'(/*>)

135

8.2. :== m(£'W)

8.3. «« -.=-.= KjvU(k),£'<fc)Mw)

8.4. XW :== n

8.5. w(«^) <

then

8.5.1. J3^:=A^

8.5.2. /M>

8.5.3. for m = 1 to p^ do

8.5.3.1. := KN(^k>m\F^(k\A^)

8.5.3.2. := n/fc’™)

8.5.4. :=

else

8.5.5. B^ := B^-V

8.5.6. KN(z^\F!(k\B^)

8.5.7. /'M> :== t/&> n s(A)

8.5.8. for m = 1 to pW do

8.5.8.1. := KN(z(k’m\F!(k\AW)

8.5.8.2. /fc-m+1) :- v_(^^) n/A-m)

8.5.9. /fc+1) := ^(fc»P(x)+1)

8.6. k fe 4-1

The determination of pW is described in §5.3.

186 -

5*2 Theoretical ReeuRss for MAP

This section contains proofs of the existence, uniqueness, and convergence results

for MAP which are given in [SheW~85b].

Lemma 5.1 : (i) If £, y E I(R*) and jS > 0 are such that w(y) < ftw(z), then

(VG E T(M(Re))) (VA E Mf(Rf))

w(E7v (h & A)) < <M/fv U, G, A)).

(«) If D, E E l(M(R()) are such that D C V, then (Vz E f (R*)) (VA E M(RE))

W&vU&A)) <

Proof: (i) By 5.1,

Kn(m G ^) = m(y) ~~g(A, {F(m(y)) - (A - £)(y - m(y))})

=> w(I^(j<G, A)) = w(g(A, {F(m(y)) - (A - G)((y- m(y))}))

= AGA'C^Wy)) ” (A - 0L((y - m(y)))

= ACt | A — G | w(y).

So if w(y) < ftw(z) then

- 13'/ -

MK< (g, G,A)) <Ma\A-G\ 0w{z)

= pw(KN(z,G,A)).

(ii)

w(K„ U,U_ A)) = Ma | A - U | w(z)

< Ma | A ~ V_ | w[)

= WjLiAzVA)),

since .

(21 £ K) => (A - £/ c A - V)

=>(|A-2.|<|A-K|).

Lemma 5.2 : (i) For each G € I(M(R1)) 3Va € M(R*) such that (V £ /(.R4))

«'(£w(&G,m(G))) < UGw{G)w(z).

(u) Let K e I (MR) be such that £ V) (3V'-1). Then 3U € M(R‘ such

that (VG g V) (V e !(Rf))

- 138

w (K-n U> fi?m (fi))) < ^ w (G) w (2).

Proof, (i) By 5,1, 3Mg G M(F<) such that

w[KN U, G, m(G))) = Mg | m(G) - G | w(s)

Mgw (G)w(z).

Set Ug — ^Mg>

(ii) Since (y € V) => (3V“i), g(V,b) exists (V V G K) (V6 G I(R}% So

2TiV(z)G,m(G)) exists (VG C V), (Vz G /(/<)) and by (i) 3% G M(F*) such

that

wyf^UkGmfi))) < ugwigm,

and Ug depends only on m(G). Now V is a compact set in M[R1) and (GCV) >

((11(G) G y_). Since Uq depends continuously on m(G) it follows that Uq attains a

maximum value U on V. Therefore (VG C V) (Vz G I[Ri))

^(A^U,fi,m(G))) < Uqw(G)iv(z)

< Uw(G)w(i).

- 139

Lemma 5,3 : Suppose that 3A > 0 such that (W C 2 G I(P))

Then 3^ > 0 such that (Vg, C £ G !(£>))

||!»(£atU,£'U),»*(£.'U))))|| <mI|wU)I|2-

Proof: By Lemma 5.2 (ii), 3(7 e A£(7S4) such that (Vz C z)

«'(£ArU.£'U).»"(£'U)))) < M£'U)>U)

since by inclusion monotonicity of Ff,

(z C 2) => (£'U) £ £'(»)

=> ('»(£'U)) e £'(z)).

So

||«'(£wU£'U),m(£'U))))ll < ||£M£'(z))u>(z)||

- .140 -

< IMI M£'U))il lkU)||

<A||E/||H<.

Set ju = A||tr||

Theorem 5.1 : Suppose that (l) F : D C R* —> Rl is a given mapping with F €

6?JL(D) where D C D is an open convex set; (2) F : 1(D) !(&*) an^ Fz : I(&)

I(M(Rf)) are continuous inclusion monotonic interval extensions of F : D —> R*

and of F' : F —> M(Rf) respectively; (3) zf^ 6 1(D) is such that w(^°^) > 0; (4)

r(F) — m(F,(^°^)) is nonsingular; (5) 3o G [0,1) such that

w(Kn(z^\f!(z^),B^)) < (/»)). 5.4

(a) If contains a zero z* of F, then the algorithm MAP is well defined and

the sequence (2^) converges to z*. (b) If 3A > 0 such that ||w(F,(^))|| < A ||w(z)||

(Vz_ G 1(F)) then 3//fc) > 0 such that

2+p(fc)
(A? > 0). 5.5

(c) If MAP terminates because of an empty intersection then there is no zero of F

in z^°\

Proof : (a) By Lemma 2.9, exists (VZ? > 1) so MAP is well defined

provided that no empty intersections occur. If contains a zero z* of F, then (See

- 141 -

2.6.) z* e K,U{k\ C = #(A;), so 0* e &W # 0. K

< o(g^') then z* G 0^’^ === and by finite induction on m, z* G 0^»m)

(m =- 1,... ,pk) + 1), whence z* G / 0. If > aw(£.(<)) then (z* G

£<*>) => (2* e £.(*<*>,{BW)}-i) c = #(*)) and g* 6 gW so

2* g 2(*’I) 0.

By finite induction on m, z* € £'k’m> (m = 1,... , pW + 1) so z* e 2(*+1) 5 0.

So by induction on k, if z* € z}°) then z* S z^0 (VA > 0).

We shall show that (VA > 0)

«'((£*) < aA’w(2°2). 5.6

By 5.4

wU(0,1)) < «;UOvUt0),Z'(0),B(<>)))

< «w(z<°°).

Furthermore, for m = 0,... ,p^, 0_(o,m+i) g ^(o, m), whence w(£.(°)) ~

w(£Cfp(0)+F) < ow(£(°)). Suppose that for some A > 1, 5.6 holds. If w(«(°^) <

«w(0<')) then

- 142

< aw(z^)

so because for m — 0,... c we have w^*"5"1)) = w(^/s,p(*)+1^)

< aw(zW).

If w(u^) > aw(zW) then

wf^’1)) < w(v^)

= w(KN(^k\F,(k\B^)).

Now 3k such that 0 < k < k - 1 and B® — = w(F'^) and by step 8.5 of

MAP,

w(KN(z^,F!(k\A^)) < aw(^). 5.7

Therefore whence because for m — 0, z.(k,m+i) c

20’w), we have w(^+1^) < aw (jM).

- 143

We shall show that for j — 0,.k - k,

5.8

We have shown that 5.8 holds for j = 0. Suppose that 5.8 holds for some j > 0.

Then by step 8.5.6 of MAP, since (j = 0,..., & — f;) we have

tt,(t#+>'+l>) = w(K_N

= «>(Kn U(*+y+1), £'<*+J+1’, B®))

< w(KN -z(k+-'+1'), £(W , ^(*5))

< a3+2w(z.^).

So by finite induction on j, 5.8 holds for j — 0,.A - fc Therefore by 5.8 with

j — k ~ k, we have

< Cik 5.9

144 —

By 5.6 with k = k, we have

So by 5.9

w(^fc+1^) < ofc+1w(^0^).

Therefore by induction on k,

ofcw(/0^) (V) > 1).

Therefore since a E [0,1), it follows that w(zW) -—0 (fc — oo). Therefore zf$ -~->

z* (A —+ oo) because z* 6 (V? > 0).

(b) If uWuW?) < cnefz))) tten

w(z^’^) — ttiQgO6))

145

whence by Lemma 5.8,

wU(fc,1)) w< M Uw)

By step 8.5.3 of MAP, for m = 1,... ,p(k\

= £'<*>, 4W))

< ^iCiifc) | £'(S) - A<*) I

whence

- 146

So

Let
/\ \p{A)

m(,!) = (|||MAW||J m.

Then

<t^m [|w(%t’)|| pm+2

ff

w(««) > aw(z^)

then

whence as before

By step 3.6.8 of MAP) for m = 1,... ,p(?)

- 147

whence as before

w(/fc>fn+1)) < — ||A/A(fc)|| w(z^) w(zp,m))
I JU

and so

K.’(z<fc+1>) U(fc))
p<*-+2

< w

Therefore (VA > 0), 5.5 holds.

(c) Fina.ljl^, if MAP terminates because of an empty intersection then for some k >

0, £*) = 0. But (3z* e e°> A f{z*) = 0) => (z* e /*) (Vf > O)). Therefore if MAP

terminates because of an empty intersection then JM* € such that f{z*) = 0.

Corollary 5.1 : If the hypotheses of the Theorem 5.1 are valid save that instead

of 5.4,

=SlArte(0),E'U(0)),-s(0)) C :n<U(0)), 5.10

- 148

then such that F(^*) = 0. s* is unique in /°\ and conclusions of Theorem

5.1 hold.

Proof’. Let a = KN(^Q\ £'U(0)), B^), and 6 =/°\ Then by 5.10,

a C mf(h)

=> tu(a) < xu (6)

=> w(a{) < wfe) (i = 1,... J).

Furthermore by 5.10, w(^) > 0 (a = 1,..., if). Let

a — max
1 <i<t

Then ct < 1 and for » =

«,(«<)
“’fe)

< max {—7y4}
l<i<f 1 w(bi) *

a.

So w(aj < ctu/(6t) (t = !,...,£). Therefore w(a) < awibj, whence

149

w(Kn (?, £'U<°)), Bl°>)) < aw(£(°))

where

1~l-e ^ui°)

Furthermore, as shown in [AleP-83a]

=KU(0),E'(0),B(0)) = m(/0)) ~ {B(0)}"1F(?nU(0)))+

CKnU(0),£/(0),B(0)),

so by 5.10, C Therefore [MooQ-82a] Bz* e z^ such

that F(z*) = 0 and z* is unique in z^°\ Therefore the hypotheses of Theorem 5.1

are valid.

Note 5.1 : If 6, > 0 (* = () and a,- > 0 (i = 1,.<) then

«£
bi

at
< max{-~} (i

bt

- 150 -

fit < max{~} hi
hi

< max{~~} max{bi} (i ~ 1,.t)

fii
=> max{fij} < max{-~} mao{6'}

hi

max{ai} f<^i,
=> ------ -{7'T < max{~-}max{bi} bi

IMI rflhw -maCA

Therefore (pj- < 1) yh (max{^} < 1). Therefore it is not sufficient to take

a —
||«’(3(0))||

in Corollary 5.1
'□

5„8 Methods for Determining the

Methods which automatically select p(k\ independently of the size and complex

ity of the system of equations [SheW--S5b], are described in this section.

Assume that, in MAP, for some A > 0 and some m > 1 z(k>m) has been com

puted, and that a reliable estimate of the relative efficiences of computing a new outer

151

iterate. and that of computing a new inner iterate, £(fc>m+1) can be obtained.

Then, whichever iterate is expected to be more efficient could be computed and the

decision process could be repeated.

Efficiency indices pi and po corresponding to the computation of and

respectively are given by

and

5.11

5.12

where 7/ and To are the CPU times required to compute ^(fc,m+1) and re

spectively from The CPU time for the next outer iteration could be estimated

by the CPU time required for the previous outer iteration. Similarly the CPU time

for the next inner iteration could be estimated by the CPU time for the previous

inner iteration [SheW~85b].

If £(^+1’0) ~ ^k,m^ then Theorem 5.1(a) suggests that

5.13

where

and

= w(z^ktl^) I |w(^fc’°^) 5.14

w(//c’m+1))|l « N^'rn> w(^k'in^ 5.15

152 -

where

5.16

Two strategies for deciding whether or not to compute another inner iteration

use some or all of the above approximations, and are as follows.

Strategy 1

1. Essimate tt^e effichincy index n for an inner iteration from

5.17

where T^’37^ is the time required to compute from ^fc,rn x),

2. Estimate the efifiiincy index po which, would have been obtained if instead

had been computed with ^(fc+1’°) = £k^-x} from

5.18

3. Ijl po > Pi then the Jacobian and compute Otherwise

re-use the Jacobian, and compute

Strategy 2

163 -

1. Estimate the eifichinecy index po for the inane iteration fom

5.19

2. Estimate ith efficieecy i nncx po fo compptmg’ nth outt!’ iterate with

^(fc+1,0) __ z(k,m) f?om

Po = ~ ln((MW)/ M) 5.20

3. If po > Pi then recompute the Jacobian and compute Otherwise

re-use the Jacobian, and compute

These ideas are embodied in the procedure re.use, Jacobian which follows.

procedure re.use. Jacoaian^wO E R), M, Tq, 7/ E i?, p, m, t E N\\

re.use.jacobian E B)

! This procedure determines whether or not an interval extension of the Jacobian F'

! of F and the inverse of its centre are re-used pW times as explained in [SheW-85b].

! On entry, w^o>) =), v/W ~ w(z(k,m)), M is computed from 5.14, To is

j rhe CPU time required to compute z)fc’x) from = ^k-l^k 1)? 7} is the cpu

- 154 -

! time required to compute zjk’™' from and p & {--2, ~-l,0,1,..., oo}

! where p — —2 corresponds to strategy 2, and p — —1 corresponds to strategy 1;

’ otherwise p is the given fixed number of times that F' and {«?■(£?) }~l are re-used,

• m > 0 is the inner iteration index, and t is the number of components in z_.

! On return, if re.use.jacobian = true then the Jacobian matrix Fz and the inverse

! of its centre are re-used; otherwise Fj and the inverse of its centre are re-computed.

! It is assumed that initially, re.use.jacobian ~ true on entry.

1. if_p > 0

then

! Fz and {m{Ff)}~1 are re — used p times.

1.1. if m> v do

1.1.1. re.use.jacobian false

else

1.2. case true of

p — —I : I Strategy 1

1.2.1. po — ln(Af

1.2.2. p/:=—ln(w

(O) }/To ! Equation 5.18

V) (o))/T/ ! Equation 5.17

w

w

1.2.3. i f on > do

1.2.3.1. re.use.jacobian false

p = ~2 : ! Strategy 2

- 155

1.2.4. po ln(M

1.2.5. pf := — ln(w

w

(/)

(/))|7O ! Equation 6.20

w (O))/Ti ! Equation 5.19

1.2.6. if po > Pi dp

1.2.6.1. re.use.Jacobian co faIse

default :

1.2.7. write nError in reuse. Jacobian,"

1.2.8. atop)

2. return. . □

5.4 The Algorithm KMSW

Let % 6 1(D) be given where D C D is an open convex set, and let

A o {mf^U))}-1

5.21

R o I - AFf(z)

= (tii)txt, 5.22

- 156 -

z = 5.23

b = AF{Z), 5.24

£1(1) = i-b + £(1-1), 5.25

•-1 t

fii(i) = k ~ k + E&)(lljik) - %) + E-MA) - &), 5.26
j=X J=J

£((!) = ni; ((= !,...() 5.27

i t

& U) = * - 6 + E co-CCU) - %) + E M^U) - &). 5-28
y=i /

S(i)=-£i(i)nS'(J^) (> = 5.29

where F : D c R* —* R\ F : I{D) /(J'), and £' : !(£») -+ /(M(i?')) are as in

§5.1. The mappings K_, ff_ and S_ are the Krawczyk [Kra-69a], Hansen [HanS-81a],

and Symmetric [SheW-85a] operators respectively.

- 157

The algorithm KMSW consists of generating the sequence (Z^)) with g

l(K*) given, as follows.

Algorithm KMSW

Data : 2 G I(£‘), t, p(k) 6 N (ft > 0).

1 2(o) — 1

2. £'(0) := F'(S0))

3. 1^0) := {m(£'(0))}-1 '

4. A(") := Bf0)

5. £5°) := I - A®E!W (= (ghm)

6. Sc> ;

7. f:=0

8. while true do

8.1. /M):=£(*)

8*2- for m — 0 to do

8.2.1.

8.2.2. lfk’n^ :=eW)

8.2.3. for i = 1 to t do

8.2.3.I. /g''"*1 := zg’"0 -
i-i.

(fj
y=i

j=t

158 -

8.2.S.2. h-
(k.m) (fc.w) n J^'”)

8.2.4. for i ~ t —.1 do

3.2.4.I. Sp'”’! := .-p'”1’ - _ fl)
yei

+ v 4*)(£'?'’n)
y=t+i

8.2.42. :=^’m) n2f'fc’”,)

8.2.5. ^(^m+i) gikcm)

8.3. £<*+1 JptJW+l)

8.4. :- £'U(fc+1))

8.5.£(Zc+1> = {m(£'(*+1))}~1

8.6. R(k+V> —

3.7. r(=+l) := r(^1)

8.8. if "f"1) < r^)

then

8.8.1. A^'h) := #(*+*)

else

8.8.2. A^+i>

8.3.3. T?(/c+i)

8.8.4. r(*+i) .

a(m

J _ y^(A:+l)jrp/(fc+i)

8.9. A:= A + 1 □
The determination of p(A) is described in §5.3.

- 159 -

5,5 Theoretical Results fox1 KMSW

This section contains some existence, uniqueness, and convergence results related

to the algorithm KMSW which are due to Shearer and Wolfe [SheW-85c][SheW-85a],

Lemma 5,4 : Let K* : 1(D) -> 7(Rf) and K : 1(D) -> I(Rf) he defined by

K*U) = w(^) “ AF{m(F)) 4- R(z — m(^)) 5.30

and

!£(*) — m(z) — AF(m(z)) + (/ — AFZ (£))(£ ~ mf^)) 5.31

A A

where A and R are given by 5.2.1 and 5.22 respectively. Then (a) H_(Q C /£(£); (b)

S(£) C H(£); (c) (z C £) => (K(z) C K*(z))- (d) (S(£) C z) => (£(£) C Hf(z)).

Proof : (a) By 5.27, for i — 1,... 3, H^z) C z^. So by 5.26, for £ = 1,..., Z

»—l t
£»U) C Si- g(+ V Ey(zy - Zy) + 52 ry(i,. - zy)

J=1 J—t

= £<(i)-

(b) By 5.28, 5.26, 5.27, since ffj(z) C it,

- 160-

t
SAQ = h - &(+ jZhASjii) - %)

y~i

t-i
= h-i>i + £%vUyU) - &) + iu(EU£) - h]

3 = 1

f-1
cz(-bt + - iA+Uiik - h)

3 - i

Suppose that for some I > 0, C (* 0,...J). Then £.(•(£) C

£yU) G^y U = - /), SO

t~l~l

== ^-i-i 4- YZ £f-i-i?Uy(£) ~
3=1

t
+ 13 t-i-v^U) - */)

y=«-{

t—-i
c Si-j-i + EL h-i-A-BA^) - &)

■ y=i

t

+ EL z-t-i-Ak - &)
3=:-l •

= £--4-iUK

161

So by finite induction on I S4_k(^) C Ff_ /;(^) (& = 0, 1), whence 5(2) C

£(»•

(c) By 5.30, 5.31, and the inclusion monotonicity of F\

K_(Fj — m(z) — AF(m(z)) + (J - AF'(*))(£ - m(F))

C m(l) “ AF(rn{^)) + (/ - AF!(i))(z - m(^))

= ^n(^) ~ AF(m(z)) + R[z, — m(z))

= /X*U).

(d) By (b) 5(2) C so if also, 5(2) C 2, then 5(^j C 2 n#(2) — H!(Z}.

Lemma 5.5 : If F : D C Rl —> Ff, F' : 1(F) —* I(M(R1)) and 2 & 1(F) are as in
A #

Lemma 5.4 and P : F —► R is defined by

5.32

A
where A is given by 5.21, then

(a) (z € S(z) A 5(z) C £'(£)) => (P(z) € £(£)); (b) (z e z C z) => (P(z) e K(z));

(c) (z* e i A P(z*) = 0) => (z* e £'(£)).

- 162 -

Proof-. (a) Let S_ = 5(z), S.' = S'(z), and

S so by 5.32 and 5.23, for i — 1,..., if

have

h'_ = ff'(i). K 5 C ff' then £' =■ Snff'

z e S then since (5 C ff) => (S C z), v/e

ff,(z) = z, - (^ff(z)).-

zf - (Xff(z))i + z, - zf - (A(ff(z) - ff(z))),-

£ 5< + (U - A£'(z))(S - z))(

A - &•' + E £il(£y - */) + E ~ A)
/=i y=*+i

C zt. - 6,- + Ety(£; - A) + E ~
3—i. jt=i+l

Si-

(b) If z 6 z C j; then by 5.32, 5.31 and the inclusion monotonicity of

P(^)

— m(^) — AF(m(z}) + z — m(z) — A(F(2r) — F(m(z)})

-163

6 m(2.) •“ + (/ — AFf{z}}(z_ — m[z))

= KU).

(c) If 3z* € i such that F(^*) = 0, then z* = Also by Lemma 2.10

(s C i) => (P(^) £ 2£(1))- Therefore 2* € /£(£). By 5.26, ZCi(i) = ZLi(l)- Therefore

6 FLi(l)- So 3T* € n ii = H_L. Suppose that for some i > 2, zf G H_j

(j — 1— l). Then

4 --= A(**)

t
e zi-bi + ^hj^j

j—1

1--1 t
Czi- bj + ^lytg'r - *j) + “ $/)

y—i y=<

= a(i)

whence zf & h\ ~ n ij. So by finite induction on g, z* € H_. Now

t
S, = zf-6t + £?y(£'-iy)

y=i

- 164 -

t
2 it -6(+ 52?{y(4 - iy)

J—1

t t
= - &e + E{«V - E - */)•

J-l k=l

Now 30fc € [0, ij such that

rfcU*) - Fs(i) = E W + M** - *))(4 - */)
y=i

and by convexity of £, djFk(z + Qk(2* — z)) & d}Fk(z). Therefore

f t
st=>2t-b(+ £;{5(3 - 53a^djF^z + Bk(z* - i))}(4 -iy)

J=1 k=l

t t
= zt - bt -b zf - M£ d3Fk{z 4- Qk(z* - z))(z*> - iy)}

k—1 j—1

t
= - 6f - E - F„W)

k~l

I t
= 4 “ 52 atkFk(z) 4-

k—L k~l

165-

So zf € 5t. Therefore zf

= Then

Suppose that for some i < t

S, = * - 6,- + £?«(<■ - + E ry{< --
1=1 3—i-H

~ Zi ~ bi + X^'jVy ~ *l) + 52 &y(*y “ M
y=i y=t+i

t t
=> *' ~~ bi + 52^1 “ 52 &ikdjFk(z + Qk(z* - *))}(** - Zj)

j=l k~l

t t
= Zi - bi + Zf - Zi ~ ^2 ®ik 52 d3Fk(z + Qk(t* - 2))U* ~ *])

k—l j—1

+&< = **.

A A f
So by finite induction on s, Z* €. S4 [i — t ~ 1,... ,0), whence € 5 >

Theorem 5.2 : Suppose that F : D C R* -> R\ Ff : 1(D) J(A/(^)), and

S : 1(D) —> are as in Lemma 5.5. If (1) A & M(R{) defined by 5.21 exists;

(2) 5(£) is given by 5.23 and 5.29 and S(£) 0; (3) S_(z) C £, then 3z* £ S[z) such

that F(z*) = 0.

— 166

Proof: By Lemma 5.4(d), 5(1) C B/(l), so by Lemima 5.5(a), if z E 5(1) then.

P(z) E 5(1). Therefore by Lemma 2.5, 3z* E 5(1) such that F(,2*) = 0.

By Lemma 5.4(b) 5(1) C B(l) whether or not B.(lJ C 1, so it is possible that

5(1) C 1 and B(l) 2 Z. Therefore Theorem 5.2 contains an existence test which is

weaker than the test B.(l) C 1 of Moore and Qi [MooQ~82aI>

Theorem 5.3 : If the hypotheses of Theorem 5.2 are valid and if also w(5(l)) <

w(jB,(l)) then 3^* E 5(1) such that F(z*) = 0 and z* is unique in 1.

Proof: Let the sequence (^K)) be generated from

/0) = 5(1) 5.33

/A+1) =, £(1) Q Kf:(/A) (A > 0). 5.34

By Theorem 5.2, 3z* E ^°) such that F(z*) = 0. Suppose that for some k > 0,

z* e 2.A). By Lemma 5.5(b) z* ~ P(z*) E B'(zA)), so by Lemma 5.4(c), z* E

B'*(Dfc)). Therefore z* E ^A+B, Therefore by induction on A, z' E z^A (VA > 0).

We shall show that w(jjA)) _> 0 (A —■ oo) whence z* is unique in ^°) ~ 5(1).

But by Lemma 5.5(c) the zeros of.F in 1 are all in 5(1). Therefore if z* is unique

in 5(1) then z" is also unique in 1.

By 5.34, and the symmeti*- of R

- 167 -

< w(I<* (a^))

i
= 'E^wetn)w(4J*,)/2 (>•=1,..., <).

y=]
5 . 35

A A

Also, if Hj = B(z) and 5 = S(1) then by Lemma 5.4(d) and the fact that | u — z |>

w{U)l2 (Va e R^ue I[R)), we have

f » t
w(riU)v(Sj)/2 = E,w(riy)wl(Sj)/2+ «’(Ciy)«’(i3)/2

J—1 j~l

i a t
< Z3w&/)wCB5)/2+ E, ®(Mw(£/)/2

J—1 - J=t-hl

ZZ "7Uij) I - % I + Z3 ®(2%) I iy - I
J — 1 • J=4':-]

w((5t-) (% = ().

- 168

So for i — 1,...,Z, we have

t t
53'y(t/Mfi'3)/2 + 53 «’(£y)«-'U>)/2 < wfSi),
j~l 3~i+l

5.36

and

Let

i
53 ®UijM£j)/2 < w(Si').
3-1

p = “%{«'(&)/«’(£'<•)}■

5.37

5.38

Then /? € [0,1). We shall show that (Vfc > 0)

»U(W)) < Pkw(S). 5.39

In order to establish 5.39 we shall prove that for I = 0,...,

< 0*w(S) (i = 1, Z) 5.40

and

«'U-fcf+i)) <^+1w(Sj) (i = i-Z + l,...,<)• 5.41

Now 5.39 holds for k = 0 since ^°) — S. Suppose that 5.39 holds for some k > 0.

- 169 -

Then 5.40 holds for I - 0, and there is no 5.41 for I -- 0. We shall show that 5.40

and 5.41 both hold for I — 1. By 5.35 and 5.39,

< 52w(rt7)w(^H))/2
y-i

f

y=i
5.42

Also by 5.36,
e

22 “’(hjXM)/2 «<(&)•
y=i

So by 5.42,

1-1

< ,dfc+1w(5i).

Also by 5.39 and 5.37, for i < t — 1,

3=1

So 5.40 and 5.41 both hold for I — 1.

170 -

Suppose that 5.40 and 5.41 bold for some I > 1. Then by 5.35,

-(#‘+‘+1)) < ^(£ij)<1+i,)/2
5—1

= ZLw(^j)“'(4fcf+l>)/2+ 52 “'tey)M'(4H+1))/2-
y=i j-w

So by 5.40, 5.41, 5.36, for / < £ - Z ~ 1,

M,(£(M+,+1)) <^!t,(f.3.)^w(Sj.)/2 + «’(ri3)^w(Sy)/2
3-1 3~i+l

+ 52 «’(ti3)^+l«'(i,)/2
3=t-l+l

i t

S 52wUo)^+1tt’(H3)/2+ £ w(£.7)/’''“'(i3)/2
3—1 J=»+l

< ^'c{52’"Uo)«'(s.')/2+ 52 u,(t J«’(s,)/2}
y-i y=t+i

Also for i > t ~ Z,

in -

w^(«+!+i)j < ^w(fy)^w(5y)/2+ £S K'(fiJ)^+1«’(iy)/2
j—i j—t-i+i

t
+ IS ®(M^*+M(h)/2

j=i+i

i t
< IS «'Uij)5':+1«’(,£.y)/2

3—l j—i+l

3=1 j=iWi

< ?”+1w(S4).

Therefore by finite induction on J, 6.40 and 5.41 hold for i = 0,..., t. In 5.41 set / = /,

whence 5.39 holds for A + 1. So by induction on A, 5.39 holds (VA > 0). Therefore

since 0 < /9 < 1, w’(c0 (k —> oc).

Theorem 5.4 : If the hypotheses of Theorem 5.2 are valid, then 3z* E 1 such that

F(^*) = 0 and the sequence (y^) generated from

y(k+i) = %(jk) _ (k > 0) 5.43

with y^ = z converges to z*.

Proof : Let 5 = ’5.(1) and let S* € I(Rl) be defined by

- 172

w(5*) = 5.44

and

w(£*) = w(5)+2|6|, 5.45

By 5.28 and the symmetry of j?,

— z~b 5.46

whence for / =

St/ = ^-5i-w(&)/2, 5.47

and

Sis = 2i~bi+w(S4)/2. 5.48

So by 5.44, 5.45, for i — 1,..., £,

S?/ = 2i - («,(£) + 2 | bi |)/2

173 -

— | A |

<

and

= Zi + (w(&) + 2 | &< |)/2

= A4- | bi | +w(34)/2

> As,

whence

SC S\ 5.49

Aiso, by 5.44, 5.45, for ? — 1,..., £,

| S* - & I = w(S*)/2

=1 f>i I +a'(li)/2,

and by 5.47, 5.48, for * = 1..., t,

- 174 -

| & - & | = mas{| Si[- Zi |, | Sis - i, |}

— ! St I +w&)/2,

whence

I 5"* “ I I —I S — I | . 5.50

A A
Now by hypotheses, 5 C 1 so | 5 -- I |<| i - I | = w(£)/2. Therefore by 5.50,

| 5* — I |< w(jl)/2 whence 5* C Z. Therefore by 5.49,

Sc £* c Z. 5.51

We shall use this result to show that K{S*) C S*. The result which it is required

to prove then follows from Theorem 2.1.

By 5.31, 5.44,

£(£*) < m(£*) - AF(rn((D)) + (7 - AF'(S*))(£* - m(£*))

= £(£*). 5.52

Let

R* = I ~ A£(S*).

-175

Then 7?* C R because 5* C >. Also by Lemma 5.4(b) and the fact that by
A A A / A / A A / A

hypothesis, SCi we have S_ C ff n 'i = H_ . Therefore S = SO ff = S.

So by symmetry of R, and 5.50,

w(K(S*)) = w{R*(S* - m(£*)))

= w(£*(S’ - £))

< «>(£(£* - «))

= ««(£) I £* - 2 |

= ro(jf) I S-z I,

whence for i = .1,..., f, by 5.36,

t

»(£,(£*)) < 53 wfcj) I A)-" I
y=i

= 13 «’(£«)
j=i

53 ®Uy)|iy-^
i—H-l

- 176 -

< £>&/) I -
j-l

t
I + E IX- -

j=t-M

= w(Si)

whence w(K(5*)) < w(5). But by 5.46

m(K(S:)) = ?n(£*) - AF(m(S*))

A

= z — b

= m{S_).

Therefore K{S*} C S, whence by 5.51, £.(£*) C S’. So by 5.52, K(S’) C S*.

So by Theorem 2.1 3z* € IT (S’) C S* C z such that f’(z’) = 0 and yW -» z*

(^oo).n

Theorem 5.5 : If the hypotheses of Theorem 5.8 are valid and (y^) is generated

from 5.43 with yW € $_(%) arbitrary then yW —> z* (k —► oo) where z* is the unique

zero of F in z.

- 177-

Proof : Let (z^) be generated from 5.33, 5.34. Then as shown in the proof of

Theorem 5.3, 3** 6 5(1) such that F(z*) ~ 0, z* E z^ (VA; > 0), and z^ -+

z* {k —> oc). By 5.33, y^ E Suppose that yW E zW for some k > 0.

Then by Lemma 6.5(a), y(*+l) = P(y(*)) E 5(1) since E 5(1), and (5(1) C

1) => (5(1) C H^l)) by Lemma 5.4(d). Also by Lemma 6.5(b) and Lemma

5.4(a), 2/(fc+1) = P(y(*)) E A(^fc)) C £*(/*)). Therefore by 5.34, E 5(1) fl

***(zfc)) ~ z(fc+i). Therefore by induction on /«, yW E z^ (VA; > 0). Therefore

y{kk _+ g _> co) (

Another existence and uniqueness result which is certainly weaker than the result

in Theorem 1 of [Wol-80a] is contained in the following theorem.

Theorem 5.6 :

5(1) C 1; (3) &

With the preceding hypotheses and notation, if (1) 5(1) 0 0; (2)

< 1, then 3** E 5(1) such that = 0 and 2* is unique in 1.

Proof : Let the sequence (*(*)) be generated from

z(o) = 5(z), 5.53

z(*+1> = p£*(z«) (A > 0). 5.54

By Theorem 5.2, 3z* E ija^ such that F(z*') = 0. Suppose that for some A > 0,

z* € ((() Then z* E £(2M) C &*(?(•)). Therefore z’ E /‘+1), whence by

- 178 -

induction on k, z* 6 zt(VA > 0).

Also, .

w(AH)) < |^(K*UW))

R (k > 0)

whence w(z^) —*

it follows that

0 (k -> co) "because R < 1. ^iii<^e z* G ' (VA > 0)

z* (k --s co. . Therefore z* is unique in ...

<

□

Theorem 5.7 : If the hypotheses of Theorem 5.6 are valid and (y(fc)) is generated

from 5.43 with yW G 5(1) arbitrary then yW —> c? (A —c oo) where z* is the unique

zero of F in 1.

Proof : Let (jl*)) be generated from 5.53, 5.54. Then yW G Suppose that for

some A > 0, y^ G Then = p’gy(i)) g S^l). Also g/fc+i) JT((O))) C

K*(&I/;^). so g whence by induction on A, y^ G zW (VA; > 0). But

by Theorem 5.6, zW — z* (A —— co). Ss y^ — z* (A —■ oo).

The following results use the notation corresponding to KMSW which is given

in §5.4..

Theorem 5.8 : Let F : D C R* —c Rl be a given mapping, with F G CI(D),

where DC D is an open convex set. Let F : 1(D) —c 7(M(hI)) be a continuous

inclusion monotonie interval extension of the derivative F' : D —» MR*) of F. Let

z® G 7(D) be given. If (1) exists; (2) 5^I°°^I C /°) and £I°’OI 7I 0; (3)

- i.79 -

w(S(0'0)) < w(ff,(0’0)), then 3z* 6

z^Q\ and if (zW) is generated from

Furthermore if (4) r(°) < 1, then z^

such that F*(z*) = 0, z* is unique in

KMSW then z* € £<*+*) C &W (VA > 0).

z* (k oo) and

j«^(£('<"^^))Jj < (r°))!’^l+1 | w()())) | (VA > 0) 5.55

Proof : The exisience and uniqueness results foOloov from Lesemnms 5.4, 5.5 and

Theorems 5.2 and 5,3. It remains to show that z* € z^-1”® C z^® (VA > 0), that

z.fe) —> g* () —> oo). and that 5.55 holds.

By Lemmas 5.4, 5.5 and Theorems 5.2 and 5.3, z* € S^0,0^ C J/50’®. Also

z* € z<°>®. Suppoee tha5 hrs some A > 0 and some ms > 0, z* €5 z^’m\ and

z* g (j = - 1) for some i > 2. Then z* € (j = 1..., i ~ I)

and so by step 8.2.3.1 of KMSW, z* € A similar argument shows that

z* € Therefore by finite induction on *, z* € S^k,m\ whence z* €

Suppose that for some i < t - 1, zj & S^k,m^ (j = f + Then z* €

(y = f + 1,... j), whence by step 8.2.4.1 of KMSW, z* € 5^’w). A similar

argument shows that zf € Therefore by finite induction on i, z* € S^k>m\

whence z* € S^k,mK Therefore by finite induction on m, (z* € z^® — z(fc»®) =>

()' € z^"1'®), whence by induction on A, z* € (VA > 0), and so, by inspection

of KMSW, z* € z^+® C £(® (VA > 0).

1S0-

Now by steps 8.2.3.1 and 8.2.3.2 of KMSW, for m — 0,... ,pW (V& > 0),

<| £(fc) | w(z(

and by step 8.2.4.1 of KMSW, for m — 0,... ,p^ (Xfk > 0)

<| R® | w(z^),

whence for m = 0,..., pW (Vk > 0)

«7(^fc,m)) <| rW) I"*

Therefore (V& > 0)

<| R^ |*’(M+1

whence (V& > 0)
p{k}+i< pW) w(z^) 5.53

#(*+!) ! < ^(k)Now by step 8.8 of JfAfSW, (V& > 0), so 5.55 holds. Therefore

if r(°) < 1 then z_^ —> z* (V& > 0).
□

The following Theorem show's that under very easily satisfied hypotheses, the

sequence [zW) generated from KMSW can converge very rapidly.

- 181

Theorem 5.9 ; If hypotheses (1) - (4) of Theorem 5.8 are valid and if also (5)

3A > 0 such that ||?u(F'(£))|| < A j|w(^)|| (Vi 6 7(D)); (6) 3p > 0 such that A^ =

{«/(£'(.i'I))}"! + E^t where ||D'a-|| < p ||W(^I*I)|| (VA > 0), then (VA > 0),

> 0 such that

Proof: By the definition of r® and hypotheses (6) and (6), (VA > 0)

< l|®(':)£'U(':))|| + II{"»(£'UW))}_1-|| ||«’(£'U(fl)))||/2

< {m £'U(0))| + Ai//2}||ro(/fc))| , 5.57

where

u — sup{||X-1]| I A G F_'i2l’)}.

Let
+ Ai//2}?<‘’+1 (fc> 0).

Then by 6.43, 5.44, (VA > 0)

w
p'*'+2

'□

- 182

CHAPTER 6

The Algorithm MW

In [Han-80a], Hansen has described an algorithm for computing the global min-

imizer of a function / : F” —> R1 in a box x € 1(Rn)\ this is described in Chapter

3. In [Rob-73a], Robinson has presented a method for obtaining computable bounds

for the error in an approximate Kuhn-Tucker point of NP.l.

In this chapter, we solve Hansen’s global optimization problem (Problem P) by

expressing it as a system of nonlinear algebraic equations and inequalities (problem

NP.2), in a manner similar to that which has been used by Robinson. The algorithm

which is described in this chapter is referred to as MW.

We solve the system of nonlinear algebraic equations and inequalities by using

the methods which are described in Chapter 5. We also use the deletion strategies

which are described in Chapter 3 and in [IchF-79aj.

6.1 The Constituent Parts of The Algorithm MW

In this section the constituent parts of the algorithm MW for bounding a solution

of NP.2 in a box X € J(i2)) are described bI'ie^ly..

183 -

A KT point z* = (x*T,u*T)t G (jLr, w.r)r for NP2 satisfies F{z) = 0 where

F : i?.s” —k Rin is defined by 4.33, Now x* € x but a box u. G I(R2n) which contains

u* G R2fl must be determined. A method for determining U is described in §6.2.

After the box z = (x'r.i^r)T G I(R*n) has been determined, sub-boxes z^

(0 < * < 2” - 1) of 1 which might contain z* are constructed. The determination of

the sub-boxes (0 < i < 2” — 1) is discussed in §6.3.

In order to delete sub-boxes z of z which do not contain a KT point z* =

{x*T, u*T)T corresponding to a global minimizer the procedures which are described

in §6.4 - §6.9 and §6.13 are used.

An interval / G I(R) containing an upper bound on f* = f[x*) is determined

and is updated continually as explained in §6.4, §6.6, §6.8 and §6.13. The interval

/ is used to delete sub-boxes x oi x. such that x* 0 x. If f(x) > fs (Va G &) then

f(x) > f* (Va G x) so a* 0 x. Therefore z* * z = (sI, uF}T and £ may be deleted

from z.

If £ I 1 and 0 0 F(z) then z* 0 z and therefore £ can be deleted from 1; a

procedure for deleting sub-boxes of 1 based on this idea is described in §6.5.

A deletion procedure based upon the ideas which are explained in §3.2 is de

scribed in §6.6.

Hansen [Han-8Oa] has described a procedure for deleting sub-boxes of I G J(fI”)

which, do not contain x* by using a quadratic interval extension of f : if” —> F1. A

modified form of Hansen’s procedure is used in MW and is described in §6,7.

- 184

Shearer and Wolfe [SheW-85a] have described some computable existence,

uniqueness, and convergence results for systems of nonlinear algebraic equations

which involve the so-called Symmetric operator. Associated with the tests which are

described by Shearer and Wolfe [SheW-85a] are certain non-existence tests whereby

it might be possible to determine that z* 0 £ C I, in which case z_ may be deleted

from I. One of the convergence tests also permits the bounding interval / of f* to

be updated. The use of the Symmetric operator is considered in §6.8.

A deletion procedure based upon the non-convexity of / in a which is explained

in §3.3 is used in MW as described in §6.9.

As explained in Chapter 4, if 3£* € £ such that F(z*] = 0 and £ satisfies the

test 4.43 then strict complementary slackness holds at z* and z* satisfies the KT first

order necessary conditions for a minimizer or a maximizer of /. The application of

the test 4.43 for strict complementary slackness is described in §6.10.

Let F. : I(Rin) —> I(R^n) be a continuous inclusion monotonic interval extension

of F : R3n — RSn, where F is defined by 4.33. In order to locate the KT point

z* = (a:* , w*)r, the system F(z) = 0 is solved by using one of the algorithms MAP

and KMSW (Chapter 5) as described in §6.11.

If strict complementary slackness does not hold over £ = («r,wT) C £ or if

y%J?(£)) is singular where Ff : I(RZn) —— J(M(^?3n)) is a continuous inclusion

monotonie interval extension of Ff : R&n — M{R^n) defined by 4.35, or in solving

F(z) = 0, £ is not reduced to a small box with ||w(£,)|| < £o where eo > 0 is given,

then £ is bisected as explained in [Jon-78a]; details are given in §6.12.

- 185-

If £ = (xr, ?IT)r C £ has been bisected into two sub-boxes £))) =

and s))) = then we compute — f[gW) and ~ By

comparing /, f^L\ and fj2\ either s)1) or £)) or neither can be deleted. Also £ may

be deleted by using £ if £ is not bisected. The deletion strategies based upon these

ideas are described in §6.13.

Most of the techniques which are mentioned in the preceding part of this section

involve the reduction of the component » of £ where £ = (x^ uT)r C £. If £ is

reduced then the bounds on the Lagrange multipliers corresponding to x should be

recomputed; the method which is used to do this is described in §6.14. The method

which is used to terminate algorithm MW, is described in §6.15. The pseudo-code

form for algorithm MW is given in §6.16.

6.2 Bounding the Lagrange Multipliers

Suppose that 1 = (x] u)7 is a box which is assumed to contain a KT point

z* — (x*T,u*T)t for NP.2 where x = (Xj,... ,xn)r and u — , w2n)r- We are

given £ but not u. However, by using the interval extension of the derivative of the

objective function f : Rn —> R1 we can determine intervals ux,..., «2» which contain

the corresponding Lagrange multipliers.

For NP.2 we have two cases, namely (i) x* € ini(x) and (ii) x* € d(£) where

d(A) is the boundary of x. In (i) = 0 (* = 1,..., 2n) because no constraint is active

at x*. Therefore we need solve only

;86

F(a) = 0 6.1

where

F(a;) = (dif(x))nxi 6.2

and

F'(«) = (dA7(a))nxtt- 6.3

In (ii), a* € d(x), so some of the Lagrange multipliers might be non-zero.

We shall derive an algorithm for obtaining the initial bounding intervals for the

Lagrange multipliers.

Consider the first n equations of 4.33, namely

. .. ? *n+i "b *2n+i — 0 (l — 1,. . ft) 6.4

which is equivalent to -

Uf - wl+tt ~ d*y(a) (t ™1,.fl). 6.5

If a € a then by 6.5

M - m+i G difjx) (i = !,..., n). 6.6

So if df = Oif(a) (b = 1,..., fl) then by 6.6

- 187-

<Ui~ ui+n < diS n). 6.7

Furthermore, we know that for i = 1,..., n

(«j > 0) => (tti+n = 0), 6.8

that

(^t+n > 0) —== 0), 6.9

and that

«< > 0 (t = 1,..., 2n). 6.10

Suppose that

dis < 0. 6.11

Then by 6.7,

Uj < * 6.12

Suppose that > 0. Then by 6.12 wt-+tt > 0, contradicting 6.8. Therefore if 6.11

holds then by 6.10 «,• — 0. Therefore by 6.7, if 6.11 holds then

dif — ~ diS 5s Hj

-188“

A A A

whence by 6.10, u^n 6 [--dts, ~^n] = —d,. Therefore

(dis £• 0) -> (u£ — 0 A Uf-j-n C dj)- 6.13

Suppose that

da < 0 < dis<

If Ui > 0 then by 6.8, = 0, so by 6.7,

di£ <0< m < diS

whence «»• 6 (0,d;s]. So by 6.10, wt- G {0} U (0,dtS] = [0,dts].

If u,+n > 0 then by 6.9, = 0 so by 6.7,

da < < 0 < d(s

whence «t+n € (0, —</»/]• So by 6.10, G {0} U (0, ~du} = [0, Therefore

- 189

(dt/ < 0 < dis) («t E [0,dj<j] A E [0, dj/J). 6.14

Finally, suppose that

0 < da.

Then by 6.7,
A A

0 < dn < Ui — M+» < dt-s. 6.15

If Ui > 0 then by 6.8, «j+n — 0 so by 6.15,

A A

0 < dj/ < Ui < diS y

A
whence if u* > 0 then Ui Ed-.

If w+n > 0 then by 6.9, w, — 0 so by 6.15, 0 < —Ui+n whence by 6.10 Ui+n — 0

contrary to the hypothesis that U-*n > 0. So Ui+n — 0. Therefore

(0 < dj/) —> (uj G dj A «t+n — 0). 6.16

If some of the multipliers are zero then we can solve NP.2 with less variables so

that some of the rows of F(z) in 4.33 and of F'(z) in 4.35 can be ignored. Since some

- 19

of the multipliers might be zero, we introduce the parameters I and qi (i = 1,..., 2n)

such that

1 («; # 0)
6.17

0 («■ = 0)

and I is the number of Lagrange multipliers which take the value zero, so that we

know whether or not we can reduce the number of variables in F and

Suppose that ar* € mf(ic). Then by 4.33 and 4.37 w* = 0 (i = 1,..., 2n) because

no constraint is active at a5*. Therefore if x* G int(x) then by 6.17 we can take = 0,

qi = 0 (i = 12n) and I = 2n,

Suppose that ar* G d($). Let c* = Xn (* € Then d*/($*) > 0 and

d»/(3*) € dj/(&) = if. If 0 < dn then by 6.16 we may take u* = dj and «,+ft = 0,
A A

so by 6.17 we obtain & =-- 1 and qi+n = 0. ff dn < 0 < dis then by w e may

take d^ — [0, and = [0 . —d,j] . so by 6.17 we obtain qi ~ 1 and qi+n = 1. If

dis < 0 then dif(x) < 0 (Va; E «) which occurs only in cases such as

f(x) — xl, X — ([0,1], [0,1])d with i ~ 2.

For this problem, • d2/(r) = 0 (Va E %), so

• ig — 0,

- 101

whence dis = 0. So W2 = 0 A == —d^ = 0. However, if x* G (x) —

{a € £ | xr = Xa} is a strong local minimizer of / then (Vf € {!,...,«})

d,-/(a*, • •• j x*_1? t, x*+1,a*) > 0 for at least one value of f € z^ for if not, then

d,7(xj,..., zjL1} t, z?+1,.. .,»*)< 0 (Vf E whence

/(»?,.. •••,4) = /(**) + [dif(x^...,x*_11tix^+1,...,x*}dt

< /(?) (Vz € z,-)

A
so z* is not a strong local minimizer of / in z. So the case dis < 0 does not occur

when z* is a strong local minimizer of /. Thus in practice if z* is a strong local

minimizer of / and x* = z,/ then we always obtain % = 1. In other words, if 7! 1

then xf 7^ j A similar argument is valid when z* = Zfs.

Suppose that z C mf(z). Then by 4,18 and 4.19 (Vz E z) c(z) > 0 (1 =

1,..., 2n) whence by 4.33 and 4.37 w = 0 (i = 1..., 2n) so by 6.17 we obtain qy ~ 0

(1 = 1,..., 2 n),

Therefore

(z* E mf(z)) => (<* = 0 (; = 1,2n));

(z* = zt[A 0 < dif_(x)) => (q* = 1 A qi+n = 0);

- 192-

(z* = Xis A d/(z.) < 0) => (qi -0 A &+n = 1);

(z C mf(z)) => (gt- = 0 (f r= 1,.2n)).

The preceding ideas give rise to the procedure lagrangemultipliers for deter

mining «i+ft (i = 1,...,»), the corresponding values of gi,... ,g2?n and I.

procedure lagrange.multipliers{d 6 I(Rn), n E N;u€ I(R2n),q G N2n/l E N)

! This procedure returns a set of intervals (f — 1,.. . , 2n) which contain the

! Lagrange multipliers «, (t — 1,2n) for AT. 2 corresponding to z E I(Rn), and

! the corresponding values qi (f — 1,..., 2n) and I.

! On entry d = f(x)T, f—- 0 (t — 1,... , 2n), gj — 1 (f — 1,.2n), and f — 0.

! On return, if I, — 0 for some i {i — 1,... ,2n) then qi — 0; otherwise qi — 1. Also

A

! I is the number of Lagrange multipliers which take the value zero.

1. for i — 1 to n do

1.1. case true of

dis < 0 ;

1.1.1. qi := 0 ! & = 0.

193 -

1.1.2. Z:= f +1

1.1.3. ~d_i

A A

dn < 0 and 0 < dis :

1.1.4. u :"= 1°’ dtsl

1.1.6. u4+n [0, —du]

default :

1.1.6. := dj

1.1.7. 4i+n := 0 ! Ui+n = 0.

1.1.8. I := I +1

2. return ____

6.3 The Determination of Sub-boxes Which Might Contain

Kuhn-Tucker Points for NP.2,

We shall derive a method for obtaining sub-boxes (0 < » < 2u — 1) of 1 which
T T rri

might contain the KT point z* ~ '/r' n*‘ p corresponding to a global minimizer

** of / in z. Let us consider the cases corresponding to n = 1,2,3.

(a^) n = 1

In Fig 6.1 A — Jy are the corners of the box I. = ^2)^1 where % and &2

are determined as in §6.2. Now

(O < Mo = T«) = **) (hi)

l(2(o‘W‘}r^‘7^]) = 1)

(o ~ v o < Tn) <= (7T? = **) («)

6(jr(O *0 tTT) = T) <=

{o = V o “ T«) <= ((8V)W 9 («)

- m -

-195-

«2

O

A F H
X--

&1I D

Xis ±f
*i

Fig 6.1

O

x2 A-
%2S

B C

%2f A D

o ~s»»
«i/ zis Xi

Fig 6.2

Therefore the KT point z* might lie on AB, AD, or BF. So there exists 21 sub-boxes

>(°), of i which might contain the KT point z*, and these are given by

i(o) = (Mil), &is],Q,w2)’r, 6.18

and

i(1) = ([*ii,m(&JL)],w1,0)r. 6.19

(b) n — 2

196 -

For the case n=2, which is illustrated in Fig 6.2,

(i) (x* G int(ABCD)) => (ui ~ 0 A u2 — 0 A Uq — 0 A u4 = 0)

=> U= Ui,i2,o,o,o,o)r),

(is) (&* G int(AB)} => (wx > o A ” 0 A it# = 0 A u4 ~ 0)

=> U~ ([«!/, Sl/b£2>Wl>&fi,Q)r)>

(iii) (.r* G int(AD}) (u4 — 0 A u2 > 0 A u& = 0 A u4 — 0)

=> (1 = (&i4*2/32/],Q,&2,o,o)r),

(iv) (.t* G m<?(<7.D)) => («i — 0 A i$2 = 0 A W3 > 0 A w4 = 0)

=> (i -(!«is3is],i2,o,o,u45,o)r),

(y) (2* G int(BC)) («i = 0 A «2 = 0 A u$ — 0 A «4 > 0)

=> U= Ui, [S2S, %2s], 0,0,0,

- 197-

(fi) {x* = A) => («i > 0 A «2 > 0 A «3 = 0 A «4 = 0)

= (1 = - ([]»/, «i/], 322b&i]&2,0,0) r),

(vti) (x* = B] => («i > 0 A «2 = 0 A «j = 0 A «4 > 0)

=> U = ([«if 3ur] ?«S2S ,*2s],«i ,Q,Q,&))T)>

(tin) (a* = D) => («i = 0 A U2 > 0 A «3 > 0 A «4 = 0)

=> (i = ([£is,«isM«2/32/],Q,i2,W3,o)r),

and

(ta) (a* — G) => (i^ = 0 A «2 = 0 A > 0 A «4 > 0)

=> (1= ([£lS,«1sJJz2S,«2sb0,0, W,M4)r).

The cases (t) — (lac) correspond to the 22 sub-boxes which are obtained by bisecting

the box X at the midpoints of AB and AD. These sub-boxes are

S<°) = ([m(a1),als],[m(a2))a2s],Q1Q,w3,u4)r, 6.20

6.21i(1) = ([m(ai),als],[a2/,m(a2)],0,M2,«d,0)r,

~ 198

i(2) = ([«i/,m(i1)],[m(«2),.T2s],«i:Q,0,w1)'r, 6*22

and

i(3) = ([«i/,tn(i1)],[x2/,w(i2)],«iiw2,QJ0)r. 6.23

(c) n = 3

In this case there exist 2® sub-boxes z_^ (i = 0,.,., 7) of i which might contain

the KT point z* and they are obtained by bisecting the faces of the box x. These

sub-boxes are as follows.

£°°) = (Rdi), *is], M&2), «2s], [mUJ,

6.24

i(1) = (Mii),® is], [»((%), «25], [aanrnfe)],

0,0,U^,,i4,«5,^)r, 6.25

£(2) = ([^(^i),^5?][«^2J,W(ii2)][m((^3),«^35],

0, i2,o, i4,Q,«45)r, 6.26

£(°) = (MJ ;ii5r],[22/m^^^^)L [3s/m«A3))]

6.27

- 199 -

= (fanm) 22<j], [rn(a3>), ass],

(i, 0, 0,]^,g]>,w^)g, 6.28

ys> = mfij], (m(z2), »2sb

Mi,Q,M300o&]^)r] 6.29

j(6) = ([*i,, m(ii)), [g/, m(i2)][[m(M £3s),

iii,«2,0? Q,Q,&)Ti 6.30

and

i<7) = (Kuom^AJb [£2i,m(£2)Mz3/m('G3));,

&1,«2,«3,0,S, 0)g. 6.31

We shall derive a method for determining the sub-boxes when n > 1.

Arrange the Lagrange multiplier intervals given by 6.18 - 6.19, 6.20 - 6.23, 6.24

- 6.31 in the form

Q
Mi Qj'

f 0 2^ V-

0 u2 % 0

«1 0 0 «4

Hl 15.2 0 0

6.32

6.33

200

and
f s 0 0 «4 Ms m\

0 0 % Mt Ms 0
0 M2 0 «4 Q «6
0 U.2 Mj «4 0 0

«1 0 0 0 Ms M
«1 0 Ms 0 Ms 0

i «1 «2 0 0 0 M
V Ui «2 Ms 0 0 0 y

6.34

with dimension 2" X 2n for n=l,2, and 3 respectively. For ? = 1,..n, if m then

««4-n = 0 and vice versa. Therefore if the first n columns of the matrices are known

then the last n columns can be determined and vice versa, where n is the number of

components of the vector x. Also for t = 1,n, if u 0 then the corresponding

interval is [z*/, m(u)j while if Mi = 0 then the corresponding interval is jra^),

From the preceding remarks, we need use either the first n columns of the matrix

or the last n columns of the matrix only in order to determine the 2” sub-boxes of Z

which might contain the KT point z*. For this purpose, if we replace all the u 0

(* = 1,in the first n columns of 6.32, 6.33, and 6.34 with unity then we obtain

the matrices

6.35

6.36

- 201

and
/0 0 0\

0 0 1
0 10
0 11
10 0
10 1
110

Vl 1 17

6.37

corresponding to n=!,2, and 3 respectively.

The rows of 6.35, 6.36, and 6.37 can be considered as binary numbers which are

the components of the vectors

(0 IL. 6.S8

(0 12 3)r, 6.39

and

(0 1 2 3 i 5 6 7)r 6.40

corresponding to 6.35, 6.36, and 6.37 respectively. Therefore the box for n = 4

has corresponding binary digits (0 1 0 0) which give the Lagrange multiplier pattern

(01001011), corresponding to the Lagrange multipliers (0, w, 0,0, ws, 0, [7, ws).

So

-202

L(4) =

0,u2lOiQ,uSlQ1u7iu8)T. 6.41

It is, of course, possible that one or more of w2, &5? 1<7? and &s are equal to 0. If, for ex

ample, q$ — 0, where q$ has been determined by the procedure lagrange.muiiipliers,

then «s = Q.

A procedure for converting t (» — 0,..., 2n — l) into a binary number is as follows.

procedure decimal.to.binary(n, i € N : b G Nn)

! This procedure converts a decimal integer i (t = 0,..., 2n — 1) into the

! corresponding n-digit binary number &, possibly with leading zeros.

1. b (0)wXi

2. j n

3. repeat

3.1. bj :== i rem 2 ! i rem 2 = remainder of i/2.

203 —

3.2. i := * div 2 ! i div 2 = quotient i/2.

while { 0 do,

3.3. y := y — 1

4. return

A procedure for obtaining the sub-boxes for one i 6 {0,.2* ~ 1} by using

the procedure decimal.to.binary, is as follows.

procedure construct.z.i{x € J(i2n),« 6 I(R2n),q 6 N2n, », i € N, x.star.in.x E B :

z& 6 I(R*n),q& 6 N2nJ{i) e N)

! This procedure determines the sub-box 2^ for * 6 {0,.2n — 1} and its

! corresponding values of qM and 1^.

! On entry x is the initial box which is assumed to contain the global minimizer x*

! of / : P.n Rl 2, u is the 2» X 1 interval vector which bounds the 2» x 1 vector

! of Lagrange multipliers u* corresponding to x*, u and q are computed from the

! procedure lagrange.multipliers, and x.star.in.x is such that if x* G int(Q then

! x.star.in.x = true and if x* € x then x.star.in.x = false.

1. := (0Uxi

2. ?W := (0)2„xx .

204

3. f := 2n

4. decimal.to.binary(n, i : 6)

5. for i — 1 t o n do

5.1. if bj = 0

then ! = Q.

5.1.1. £y(,) --= [m(£y), XjS]

5.1.2. if ~ x.star.in.x and qn+j 0 do

5.1.2.1. i«+y ••= «n+y

5.1.2.2. $«,:=!

5.1.2.3. := W - 1

eke ! 42+y = fi-

5.1.3. iy) := [^7,m(iy)]

5.1.4. if ~ x.star.in.x and dj ^0 do

5.1.4.1.

5.1.4.2. 4° == 1

5.1.4.3. := - 1

6. return
□

6.4 Bounding the Global Minimum /* of f

In this section we consider how to bound the value /* of f at a global minimizer

:e* 6 x. A degenerate interval / such that f* < fs is determined and is updated at

- 205 -

several points in algorithm MW, Initially

Z = Z(m(W)) 6.42

and m(Z) is pushed onto the stack S7 of point boxes which might contain x*.

The interval / is updated by comparing it with an interval / which is known to

contain f* and which has been computed at various points in MW as described in

subsequent sections. The updating procedure is as follows.

procedure update. f.bar(x € I(Rn),j_ € I(.R) ; S e P,f€ I(R), ns 6 N)

! This procedure updates f_ and ns where ns is the number of boxes on the stack

! S which might contain a global minimizer z*.

! On entry, / is such that {/(z) | z 6 z} C /. If fs < fj then z cannot contain a

! global minimizer of / so z is not pushed onto S and f is not updated. If fs < fi

! then / can be updated and we push the corresponding box z onto the stack

! S and make ns = 1 since all the previous boxes in 5 cannot contain a global

! minimizer. Therefore in order to delete the redundant boxes we set ns = 1.

! Otherwise we push z onto S and set ns := ns + 1.

1 • *7 fr < fs do

-206

! // fs < fi then x is deleted.

1-1- 1H fs < fi

then

1.1.1. ?:=[Zs,/s]

1.1.2. ns := 1

else

1.1.3. ns *= n<? -f 1

1.2. x---- > S ? X is a box.

2. return __

6.5 Deletion Test 1

Suppose that z is the current sub-box of (0 < i < 2" — 1) which is assumed

to contain a minimizer of / either in its interior or on its boundary. By 6.8 and 6.9

at least n of the 2» Lagrange multiplier bounds are zero intervals. Therefore (§6.2),

if we compute F = F(z) from the procedure F (Appendix D) then the number of

components in F is 3» — I where n < I < 2n.

If 0 0 F* for some * 6 (1,..., 3» — 1} then we know that there is no zero 2* of F

in £. Therefore the whole of z can be deleted. The preceding ideas give rise to the

following procedure.

procedure deletion.test.l(F 6 I(R*n l), n, l e N : delete.z 6 B)

- 207 -

! This procedure deletes z if for at least one t 6 3» — f} 0 < Fn or Fis < 0,

1 where n < I < 2n.

! On entry, F = F(a) (Appendix D), n is the number of components in the initial

! box Z and I is the number of Lagrange multipliers in £ which take the value zero.

1. delete.z := false

2. i ;= 1

3. repe^it

3.1. delete, z := 0 < Fu or Fis < 0

while ~ delete.z and i < Zn — I do

3.2. *:=» + 1

4. return

6.6 A Gradient Test

Let £ = (»r,M.r)'r be a sub-box of z* (0 < * < 2n — 1). We shall use the

monotonicity property of the objective function / which is described in §3.2 to delete

some or all of £.

If z* € m,i(z) or f = 2» then w = 0, so 4.33 and 4.35 become

208

and

F(a) = f'(x)T 6.43

F'(«) = (WWU 6.44

respectively. The test which is described in §6.5 is made just before we apply the

gradient test. Therefore, if z* E mf(z) or I = 2n then we do not need to apply

the gradient test to decide whether or not to delete £ because according to 6.43,

F (= F(/?)) in §6.5 is equal to fT(= /(z)2*) in the current test. Therefore, for this

case, if £ cannot be deleted by using the test in §6.5 then £ also cannot be deleted by

using the gradient test.

The parameters ^i,... ,z2» defined by 6.17 and I, the number of Lagrange mul

tipliers which take the value zero can be used in order to determine the position of

z*, the global minimizer(s) and whether or not the current box z of z contains the

boundary points of z. qi (* = 1,..., 2n) and I are determined at three points in AIW

as follows.

(a) At the first poin t, oin«-« ?iZ2n 21 J nre datermined for d he i nhed box z ax

follows.

(i) If (dyy(&i))? < 0 (y E {!,..., n}) then by 6.X3 (jq (= 0 and «yyn = so kb

6.17 qq — 0 and qq+n ~ 1. Theretpre x*q == xqs, and tlxe value of (depends on hoov

many of the Ay (y = 1,..., 2n) take the value zero.

209 —

(ii) If (<y/(Z))j > 0 E n}) then by 6.16 Ay = djf[X) and Ayy-n = 0, so by

6.17 qj = 1 aan 4<i-n = 0. Therefore z* = £%, ann I isas in (i(.

(iii) If (djf{x))i < 0 < (djf({n)s then by 6.14 Ay = [O, (ny/(Z))s] and Ay.+n =

[0, “(ny/(Z))/], so by 6.17 gy = 1 and qj+n ~ 1. Therefore x* E Zy, and I is as in (i).

(b) At the seeond point, 4i j«**»42»5 and are determined for the sub-box

Z^ (t = 0,..., 2” — 1) as follows. Suppose that » = 1. Then by the method described

in §6.3 we have

i(u) = (MZi),Zis],Q,A2)r

and

£(i) = ([Zi/,m(Z1)],Ai,0)n

given by 6.18 and 6.19 respectively. However the components A2 of and Ax of

depend on the cases (i), (ii), and (iii) of (a). Therefore for we obtain the

following three possibilities.

(i) ' By (i), Z(o) = ([m(ii1),z1Sr],C)^^2)n, ^0) = 0, ^0) ~ 1, = 1 and .zj = %is €

z(0) = Mzjz-is].

(ii) ' By (ii), £(0) = ([rn(Z1),Z1<?],0,0)n’, 4i0) = 0, 4°0) = 0, = 2, and z% = xir 0

Z(o) = [m^^Zis].

-210

(in)' By (iii), i(0) = 0, u<t)T,

[w(&i)j #is] uiigbo contain the minimizer a?*.

= 1, and —

Suppose that z* G x. Then x.star.in.x = false as explained in the procedure

construct, z.i.

(1) If is given by (i)' then deletion test 1 does not delete Therefore in

MW we apply the gradient test to z^ and since (di/(z))s < 0 (See (i)) we obtain

£ = ([£is,*isbQ,u2)r.

(2) If z^ is given by (ii)' then might be deleted by deletion test 1. If z^ is not

deleted by deletion test 1 then z^ is also not deleted by the gradient test.

(3) If is given by (iii)' and deletion test 1 cannot delete z^ then the gra

dient test is applied to If (gdmf&j), £is]))s < 0 then we retain the box

£ = ([#is, £is],0, u2)t because q^ ~ 1 and z is used for updating / from which z

is either deleted or inserted into stack S7. If (^([tn^), &is]))s < 0 then we retain

the box 2 = ([£is, Zis],0,u2)r and proceed as before. If 0 < &is]))r then

zf^ is deleted because — 0. If (gdm^J, sis]))/ < 0 < (gdmf&jJ^is]))# then

z^ is not chauged so we proceed in MW with = ([m(.ix), zis],0, u2)T, q^ = 0,

q^ = 1 and — 1.

(c) The third point in MW at which q and I are computed is as follows. Suppose

that at the end of the iteration z^ is bisected into z^ and z® where

211-

£(1) = (M&iMM&i) +»is)/2j,«(11),tt^1))r

/2) = ([(m(ij) + »is)/23is],Mi2\«22))r-

By determining whether or not [m^), (m(^.1)4-&is)/2] and x share common bound

aries we can determine uxx\ <7^, and for zfd). Similar considerations

apply to (The third point in MW at which <?i,..., <Z2« and f are computed.)

Therefore we obtain

^C1) = ([mQjJ, (rndi) + £is)/2], 0,0)r, = 0, q^ = 0, Z(1) = 2 and

2^ = ([(m(ix) + xxs)/2, sis], 0, «<2) = u2)r, q^ - 0, ^2) = 1, and J(2) = 1.

Therefore, from the preceding discussion for n — 1 we can guarantee that if

37 = 1 (/ G , n}) then either z* = Xji or the component x of 2 is such that

Xj/ = Xj/. A similar statement is valid for qj+n = 1.

These ideas give rise to the gradient test for deleting z_ which is contained in the

procedure gradient.test.

-212-

procedure gradient .te$t(_ G I(Rn), n, l € N,q € N2n, x.star.in.x 6 B ; 67 6 P,

s e I(R5n)i e IR), n7 eN: k e N, delete.z e B)

! In this procedure one of the following cases occurs :

! (i) £ is deleted ;

! (ii) £ is reduced to a point box ;

! (iii) £ is changed;

! (iv) £ is unchanged.

! If x, where £ = (zr, w^jn is reduced to a point box then we update 7 by using

! the procedure update.f.bar (§6.4). The number of components in x which

5 become degenerate intervals is k and k < n. .

! On mriy, x is the initial box, I is the number of Lagrange multipliers in £ which

! take the value zero, and n = (ni, ••• ,^2n)r where q ~ q(*) is computed in the

! procedure construct.z.i if £ = £* and q is determined by the procedures

! zero.multipliers and check.q described in §6.14 otherwise. The Boolean

5 x.star.in.x is such that if z* € m((z) then x.star.in.x = true and if x* E z then

! x.star.in.x ~ false. The computation in this procedure involves the first n

I variables of z only, that is, £y = Zy [j = 1,..., »).

! On return, »? is the number of point boxes on the stack S7 (§6.4) which might

! contain the global minimizer z* of / : Rn — R‘. The Boolean delete.z — true if

213

! either the box z is deleted or x is reduced to a point box which is used to

! update / and is either deleted or is pushed onto S>j.

1. k 0

2. delete.z := false

3. »/ (x.star.in.x or_l — 2n) do

! If x* G int(x) or I — 2n then we do not use the gradient test.

3.1. /:=!

3.2. g:~ g(x)

! g is an interval extension of the gradient of f. Also z_ — (xT,«r)r.

3.3. repeat

3.3.1. case true of

0<9]i : 1 0 < (g3U))/.

3.3.I.I. «/ ?3- = 0

then

! As explained in §6.2, x3i a*, so the whole of x

! and hence z_ may be deleted because if x* is the

! minimizer of f then g(x*) — 0.

3.3.1.1.1. delete.z true

else

! As explained in §6.2, Xji ~ x*- where x^ = Xji.

- 214 -

! All points in the Zj — direction save the lower boundary

! point may be deleted.

3.3.1.1.2. Zj :=

3.3.1.1.3. k :=& + !

0 < Qjf : ! 0 < (£yU))/-

! The minimizer of f could lie in the face x — Xji of x.

3.3.1.2. Zj [•£//? 2’//]

3.3.1.3. &:=fc + l

g3s < 0 : S (£y(z))s < 0.

3.3.1.4. if_qn+j=Q

then

! As explained in §6.2, Xjs 80 the whole of x

! and hence z_ may be deleted because if x* is the

! minimizer of f then <7(2*) = 0.

3.3.1.4.1. delete.z := true

else

! As explained in §6.2, Xj$ — &*j where x* — x3s-

! All points in the Zj — direction save the upper boundary

! point may be deleted.

3.3.1.4.2. z_j z== [3?js5 xjs]

3.3.1.4.3. k :— & + 1

-215-

9jS < 0 : ! (£yU))s < 0.

! The minimizer of f could lie in the face x = Xjs of x.

3.3.1.5. £y I — [zj5) «ySj

3.3.1.6. k := k + l

default : ! Zy fs unchanged.

3.3.1.7. { }

while ~ delete.z and j < n do

3.3.2. j:=y + l

3.4. if ~ delete.z and k ~ n do

J If k — n then x is completely reduced (See Chapter 3.) to a point

! box which is either deleted or is pushed onto S7.

delete.z := true

/ := /(s) • X is a point box, such t^c^t z_ = (»T, «r)r.

upda,te.f.bar(i,f_‘ >7, /, n7) ! §6.4.

3.4.1.

3.4.2.

3.4.3.

4. return

After the procedure gradient.test is invoked, if detete.z = true then we pop ope

next sub-box from the stack Si of boxes which aae to be pFoceofed di A 0. If

5i = 0 then we process the next sub-box ^t+1) of 1 where z^+1^ is formed by using

the procedure construed.z.i (§6.3).

-216-

6.7 Deletion Test 2

In this section we describe how to use the ideas which are described in §7 of

[Han-80a], and in §3.4 and §3.6 to delete x and hence a sub-box z_ = (zr,wr)T

of z_^ (0 < J < 2* — 1). An interval extension J(x, x) of the Jacobian matrix of

fr(x)T is defined by J(z, z) = (J_i}-(z, z))nxn where *y-y(z, z) is given by 3.6. We

compute J(z., z) using the procedure F.prime as given in Appendix D. Suppose also

that an interval extension G(z, z) of the Hessian matrix of / is defined by G(z, z) =

where

J.H(«, z) (j =—i{i — 1..., n))

Gjx, z) = < 2Jty(x,z) (y < i((= A-.^n: j =— 1, 6.45

0 ((> t(y — 1..., n, i 1))

As explained in [Han-80a] and in Chapter 3, z can be reduced in one dimension,

say the kth, at a time by solving the quadratic relation 3.6. If z = m(z), and 3.6 is

satisfied for i G i G Z(j2), then the interval Tk is replaced with y = As explained

in [Han-80a] and in Chapter 3, this procedure might reduce x* (A = 1,..., n) to two

intervals, one interval, or to no interval.

Suppose that yT) and yW are the sub-intervals which are obtained by solving

3.6. If only yW is non-empty then we replace Xt in £ with y^\ If both y^1) nnd

yT) are non-empty then we construct two sub-boxes Z1) and z^ wihh -TT > = y^\

4t2T = 4T) and 4*^ = ^.y (y T A y = 1 • •.> n; i = 1,2), and save them for use in §6.13.

However, it could be that yT) A 0 and y^2^ A 0 for more than one h G

this could lead to the generation of a prohibitively large number of non-degenerate

-217

sub-boxes £_*) of £. In order to simplify the problem, we choose one k € {1,..., n}

for which the largest eub-idteeval of has been deleted, and we replace z) with yW

and y&\ leaving Zy (j = 1, n; j 0 k) unchanged. In this way we generate two

sub-boxes with the smallest width for use in §6.13.

Note 6.1 : We use a deferent procedure from that which is used by HansenjHan-

80aj for solving 3.6. Hansen uses 3.6 for the cases 0 < (Suc;t(zj z))/ (§3.4) and

(Gfc(n, «))/ < 0 (§3.6) separately whereas we do not separate these cases. ._

We use the procedure qeadrreic.coef fictents to compute the coefficients ak , 0

and Cf in 3.6.

procedure quad^i^i ‘̂^^.(^^eff iciene8(Gi € I[M(Rn)),g G Fn,z,w G 7(Fn),F.G JJR),

n,k e N : a,b,c G 1(E))

! This procedure determines the coefficients a.(= 6(= 6^), and c(= c.) given by

! 3.7 - 3.9.

! On entry, G ~ (&y(z, z))ftx» is given by 6.45, g = /'(m(z))r, w ~ [rn(z), m(z)],

! .and F = / “ /('m(z)) ~ The component in which z is reduced is k.

1, a := “F

2. 6 := 0

3. % := x — w_

* Steps 4 — 8 compute a from 3.7.

4. for i = 1 to k — 1 do

4.1. a:=a + ^j«y

5. for f ~ k + 1 to n do

5.1. a := a + g3 x_j

6. 5 0

7. for i — 1 to n do

7.1. for t — j to n do

7.1.1. if_ f -fi k and i k do

7.I.I.I. if_i = j

then

7.1.1.1.1. «:=

else

7.1.1.1.2.

8. a:—o + s/2

! Steps 9 — 11 compute b from 3.8.

9. f or j — 1 to k ~ 1 do

9.1. 5 := 6 + Xj

10. for $ — k + 1 to n do

10.1. 6 := b +

-219-

11. b := gk + 6/2

12. c := Gfcfc/2 • Compute c from 3.9.

13. return

After the procedure quadratic.coef f icients is invoked, a, 6, and c are a*, 6*.,

and c^ respectively given by 3.7 - 3.9 and are used in the procedure solve.quadratic

together with the following procedures.

function positive.del ta(d G I(R})

! This function determines an interval which consists of the non-negative part of the

1 discriminant d of the inequality in 3.6. Clearly d$ > 0 [!Ian-80a].

1. if di < Q

then

1.1. positive.delta [0, ds]

else

1.2. positive.delta := d

2. return

function R '.pi us (6, d, c, w G I (J£))

-220-

! This function computes an interval containing (—6-b \/2)/(^) + w where

! w — [mQr), 6, c are as in the procedure quadratic.coef ficients, and d is as

! in the function positive.delta.

1. R.plus := (—b + >/positive.delta{d})/(2c) + w

2. return

function R.minus{b, d, c, w_ € I(ft))

5 This function computes an interval containing (—b — y/d)/(2c) -f- w where 5, c, d

! and w are as in the function R.plus.

1. R.minus (—b— \/positive.delta{d)) / {2c) + w

2. return

function S.plus{a,b,d,w El(R))

! This function computes an interval containing 2a/{—b + y/d) + w where a is as in

! the procedure quadratic.coef ficients and 6, d and w are as in the function R.minus.

- 221

1. S.plus : = 2a/(-b-h \/poositive.delta(d)) 4-w

2. return

function S.minus {a, b, d, w G I(R))

! This function computes an interval containing 2af(—b~ \/2) + w where a, 5, d and

! w are as in the function S.plus.

1. S.minus : — 2a/(—5 — \/positive.delta(d)) + w

2. return

procedure intersection.k(vx_ & I(H) : y G I(R)yernpty G B)

! This procedure determines [—oo, tig] n t to give the interval y. If on return

! empty — true then g is empty.

L g:=0

2. empty := true

3. case true of

-222-

xs <us :

3.1. y:—x

3.2. emptyfalse

xi < «s us < %s

3.3. ^:=[»/,«s]

3.4. empty := false

default :

3.5. {}

4. return

procedure inter section.2(v, x_ € I(R) : y E I(R), empty E B)

! This procedure determines [17, +00] n x_ to give the interval y. If on return

! empty — true then 2/ is empty.

1. y:-Q

2. empty:= true

3. case true of

vi < xi :

3.1. y x

3.2. empty := false

- 223 -

Zf < Vf and Vj < xs :

3.3. g:=[v/,a;s]

3.4. empty ;= false

default :

3.5. { }

4. return □

procedure unioml(u,v, « € I(jR) : € I(R}, yl.empty, y2.empty € B)

! This procedure determines j/1) and yW when c/ < 0.

1. inierseetion.l(u,x: y^pyl.empty)

2. mtersecf*on.2(v, &: y^2\y2.empty)

3. return

function max{x, y € H)

! This function determines max{x, y}.

1. if x > y

-224-

then

1.1. max := x

else

1.2. max := y

2. return
□

f unction min(x,y G R)

! This function determines min{x, y}.

i. [f_x <y

then

1.1. min := x

else

1.2. min := y

2. return
□

procedure inter section.3(u,p, x G I(R) : 2/ € I(R), empty G 5)

This procedure determines Jmj, n x_ where u and v are computed from the

- 225 -

! procedures R.plus, R.minus, S.phus, or S.minus. If the intersection is empty then

! empty = true, and y ~ 0; otherwise £ # 0 and empty — false.

1. g:= 0

2. empty := false

3. if_vs < xi or Xs < ui

then

3.1. empty : = true

else

3.2. g := |max(aj, «/), min(vs, 2s)]

4. return

procedure union.2(s,t,u,v,zG I(R),» G N : g21\g(22 G 1(H),

yl.empiy, y2.empty G B)

! This procedure determines g(2) and g(2) when c/ > 0.

! If r = 1 then g(2) and yl.empty are determined. If i = 2 then g(2), g(2), yl.empty,

! and y2.empty are determined.

1. case i of

1 :

- 226-

1.1. intersection.3(u, y_,x : y^\ yl.empty)

1.2. y& := 0

1.3. y2.emptytrue

2 :

1.4. intersection.3(u, v, x : y^, yl.empty)

1.5. intersection.3(s_, t, x : y^‘\ y2.etnpty)

default

1.6. write "No such case in union.2"

1.7. 8^°P

2. return

procedure solve.quadratic(a,b, c, x G I(K) : j/1',^/2) Gl(jR),

yl.empty, y2.empty G B)

! This procedure determines y^2\ yl.empty, and y2.empty respectively from

! the current box x by solving the quadratic inequality a + + cZ2 <0 [Han-80aJ

! to obtain u and v or s and t and then forming x D (w U v) or x n (s U f) to give

! yW and

1. y(1) :=Q

2. yW := 0

-227

3. yl.empty := true

4. y2.empty := irue

5. 4[a/, «)][</,, c-]

6. i-s} := ([6s,&sj)2 -- 4[a/, a/][c/, cj|

7. £ := 0

8. (:~0

9. u := 0

10. £ := 0

11. w ;= m(^)J

12. case true of

Of < 0 :

12.1. case true of ■

0 <6/ :

12.1.1. case true of

0 < a/ :

12.1.1.1. u:~ S.mtnus([aj,a/-], [5S, «.)

12.1.1.2. £ := jR.mrnuaflfij, 6/], [cj, C/], w)

12.1.1.3. «n%n.l(i££,2 : yl.empty, y2.empty)

0 < 4*° :

12.1.1.4. w := S.mmus([a/, a/], [&,&/],£[>w)

12.1.1.5. u := C/], w)

-228-

12.1.1.6. union.l(u,y,x : ^2\ yl.empty, y2.empty]

default :

12.1.1.7. y{1) := x

12.1.1.8. yl.emptyfalse

bs <0:

12.1.2. case true of

0 < ctf :

12.1.2.1. w := R.plus([&s,ft#], cfis\ [c*j, c/], w)

12.1.2.2. y:— S.pJu $([«/, a j], [&/,&/], d^,w]

12.1.2.3. u.m’on.l(w, v, x : y^ , y^, yl.empty, y2.empty]

o < 4s):

12.1.2.4. u := [c/,c/],w)

12.1.2.5. y&pJus([a/,a/], [&si&s]>d(s\ w)

12.1.2.6. union.l(u,y,x : yl.empty, y2.empty]

default :

12.1.2.7. yW := x

12.1.2.8. yl.empty := false

default

12.1.3. £/0 < o/

then

12.1.3.1. u := S.minus(\ai,a[}, [55,6s], df-s\ w)

-229-

12.1.3.2. v:— S.plus([ai,ai],[bi,bi],d('\w)

12.1.3.3. union.l(u, v, x : y^, y^1, yl.empty, y2.empty)

else

12.1.3.4. p(1) := x

12.1.3.5. yl.emptyfalse

0 < c/ :

12.2. case true of

Q<br:

12.2.1. case true of

«/ < 0 :

12.2.1.1. « := [c/,Cf], w)

12.2.1.2. v := w)

12.2.1.3. union.2(s_,t,u,v,x,l : y^l\^2\ yl.empty, y2.empty)

o < 43):

12.2.1.4. u bs], d£8\ [cj, c/], w)

12.2.1.5. v:= Smiimus([ai,ai},[bs,bs\id(s\w)

12.2.1.6. union.2(s,t,u,v,x,l : yl.empty, p2.emp^p)

default :

12.2.1.7. { }

bs <0:

12.2.2. case true of

-230

ai < 0 :

12.2.2.1. u 5.P/U.S([«/,«/], w)

12.2.2.2. v := tf.pfas([&,,6z],d(t), [<7, <?/], w)

12.2.2.3. union.2(8j t, u, 1 : p^\^2\ yl.empty, y2.empty)

0 < :

12.2.2.4. u:~ S.pZ«s([<3/, a/], [6/,6/],4^\ w)

12.2.2.5. v := «/)

12.2.2.6. ttm<?n.2(s.,l, «,?/,«, 1 : p^2\ yl.empty^ y2.empty)

default :

12.2.2.7. { }

default :

12.2.3. case true of

«/ < 0 :

12.2.3.1. w := [c/, cj], w)

12.2.3.2. v := R.plus([b[, [c/j c/], w)

12.2.3.3. o?on.2(sj_, w.u,£, 1 : yl.empty, y2.empty)

0 < mtn(df£\d^) :

12.2.3.4. u R.minus([bs, &s], [<?/, cj], w)

12.2.3.5. v:— S.mmus([ai,ail [6s, 6s], w)

12.2.3.6. 5.:= S.pfus([aj, aj], [6/,6/],d^\ w)

12.2.3.7. t := J?.p^([6/,6/],d(l), [c/,q],«;)

-231-

12.2.3.8. «nion.2(s, 2 : y^2\ yl.empty, y2.empty)

bs <| &r | and 0 < max(dg\ d^>) '

12.2.3.9. u:~ S.plus([ai, a/], [&/, w)

12.2.3.10. v:= 72.pf«5([6/,6/], [c/,c/], w)

12.2.3.11. union.2(s, t, u, v, x, 1 : y^, , yl.empty, y2.empty)

| b{ |< bs and 0 < max(d^\d^) :

12.2.3.12. u:~ [cj,cr],tj>)

12.2.3.13. v:= S.mi»«fi([fl/,a/|,|6s, &s],rf(s) , w)

12.2.3.14. union.2($, f, u, v, x, 1 : , y^, yl.empty, y2.empty)

default :

12.2.3.15. { }

default : \ C[—Q

12.3. case true of

ai < 0 and bs < 0 :

12.3.1. intersection.2(—[ar,ai]/[bs,bs] 4- w,x : y^\yl.empiy)

0 < ai and 5/ < 0 and bs <0 :

12.3.2. intersection.2(~[a[, ar]/[b{,bi] 4- w,x : y^\ yl.empty)

a/ < 0 and b[< 0 and 0 <bs :

12.3.3. y(1) := x

12.3.4. yl.empty := false

0 < aj and bf < 0 and 0 < bs :

- 232-

12.3.5. wmon.l(~ [fl/, + w, — :

.yl.empty, y2.empty)

a/ < 0 and 0 < bj :

12.3.6. mfersecb\?rc.l(--i«i, «/]/[&/,&/] + : yp\ yl.empty)

0 < ai and 0 < 6/ and 0 < 65 :

12.3.7. inter section.1{ —[a/, a/]/[6s,5.s] + w, x : y^\ yl.empty)

default :

12.3.8. { }

13. return

After the procedure solve.quadratic is invoked y^1), yW are the intervals which

are obtained by reducing the interval k G {1,..., n} and are used together with

the procedure quadratic.coef f icients in the procedure deletion.test.2 which is as

follows.

procedure deletion, test.2(f, f € 1(H), €1 G R,n,l,k € N,q G TV27*,

x.star.in.x G B ; zeI(Rin) : J G I(M(R5n~1)),

G I(Rin), delete.z, z.is. split G B)

! This procedure implements.Deletion Test 2 to reduce or to delete z. If more than

233 —

! one (i — 1,..., n) in £ has been reduced to two sub-intervals then this

! procedure will determine which s (i = 1... , n) gives the largest reduction of x^

J On entry, I and g are used to compute the Jacobian J = (/iy)3n-fx3n-i where

! Jfy is given by 3.5 (s, j = and then J is used to calculate the Hessian

! G = given by 6.45. The integer k is the number of components of z

! which become degenerate intervals as a result of the test in §6.6. Also sx > 0,

! 2 is such that fs > f* and / = /(m(a)).

' On return, if delete.z = true then £ is deleted; otherwise £ is not deleted. If

! z.is.split = true then z is reduced to two sub-boxes Z1) and g® and these are

1 saved for use in §6.13.

1. f:=0

2. wc : = ||«^(^)|| ! £ = (xT,iir)T.

3. z.is.split := false

4. delete.z false

5» O. =— (Q.)nXn

6- y-~(0)nx 2

7. ^(1):= (O)S,1X1

8. /2) :— (Q)Snxi

9. Z== ! T/ie procedure F. prime (Appendix D} is used.

1Q. for { = 1 to n do

- 234 -

10.1. a,- •= 2if

10.2. for i — 1 to i — 1 do

10.2.1. G43 :=2Jij

11. g := f'(m(x))T ! z = (xc, uT)T.

12. if ~ (x.star.in.x or k — Q) do

! If x.star.in.x — true or k — 0 then the current box z_ has not been changed

! since Deletion Test 1 was last used. Therefore we do not need to compute

’ L Z(m (-£•)) because f has already been computed as described in §6.15

! and §6.16.

12.1. /:= /(m(»))

13.

14. i := 1

15. repeat

! We consider — z^ (i = 1,..., n) only.

15.1. quadratic.coef ficients(G_, g, x, [m(s), m(z)], S, n, i : a, 6, c)

15.2. solve.quadratic(a, b, c, : y^, y^2^, yl.empty, y2.empty)

15.3. case true of

~ yl.empty and y2.empty :

15.3.1. £,:=gW

yl.empty and ~ y2.empty :

15.3.2. 2,- := ;/2)

-235

yl.empty and ~ yl.empty :

15.3.3. z.is.split true

15.3.4. H41 := 2/(1)

15.3.5.

15.3.6. w := wfa,.,) + w(^.2

15.3.7. if w < Wr do

15.3.7.1. t := i

15.3.7.2. wc w

default :

15.3,8. delete.z := true

while ~ delete.z and i < n do

15.4. i i + 1

16. if ~ delete.z and z.is.split do

16.1. for i =- 1 to 3n do

16.1.1. Z™ ■= !U

16.1.2. ==

16.2. JO ._ — 2»

16.3. JO ._ --- &

return

236

6.8 The Symmetric Operator Test

In this section we consider how to bound the solution z* of F(z) ~ 0 and how

to update the value of ~f_ by using the Symmetric operator which is described in §5.4

and §5.5.

Suppose that £ is the current sub-box of (O < i < 2" — l). Suppose that

1 = (If)txi is a box which is obtained from the box £ by deleting the zero intervals

corresponding to the zero Lagrange multipliers from the last 2n components of z.

This is done by using the procedure new.z which is described in this section. Since

I is the number of Lagrange multipliers which take the value zero where n < I < 2n

(§6.5) then the number of Lagrange multipliers which are not deleted from £ is 2n~l.

Therefore the number of components in 1 is (= 3n — L

We compute F — F(m(z)) and F! = F'(£). If mfF') is non-singular then we can

compute A, R, g, ~ KiH) and Bj- = ff-(l) (* = 1.3n - (), and & = £(©

and S- = 5- (1) (i = 3n — I,... ,1) from 5.21 - 5.29 respectively. If #- = 0 for at least

one * G {1,,... 3n — (} then B = 0 and there is no zero of F in 1 and hence in £.

Therefore £ can be deleted.

We shall use the Symmetric operator B according to the following six cases

to form the Symmetric Operator Test which is implemented in the procedure

synmnet^ric.operator.test in this section.

(i) If S_ — 0 then there is no zero £* of F in £ and hence iii £, so x does not contain

a minimizer of /. Therefore z can be deleted.

237-

(ii) If S n 1 = 0 then there is no zero z* of F in £ and hence in z, so x does not

contain a minimizer of /. Therefore z_ can be deleted.

(iii) If 2 c 5 where 5 is computed at z then we retain the boxes 1 and z_ unchanged.

Furthermore, suppose that C is one of the operators which are described in Chapter

5 namely and 5. In order to solve F[z) = 0 we compute Q ~ C(z). If Q = B

then 1 C S. As proved by Alefeld and Flatzoder [AleP-83a] K(z) C KjN(z). So by

Lemma 5.4 if 1 C 5 then 1CBCffCFTC K_N. Therefore we retain the boxes

1 and £ unchanged. Therefore, in case (iii) we bisect z into z^ and zf& for use in

§6.13. .

(iv) If B C i and w(B) < w(H) then we replace 1 with 5 because [SheW-SSa] 5

contains the unique zero of F in 3. Also if B C £ and w(S) < w(H!) then the sequence

(g(fc)) generated from

= _ AF^{k) J (;; > o) 6.46

with s?0) — m(Bj (i = 1,..., 3n — I), is guaranteed to remain in B and to converge

to the unique zero z* of F in Z (Theorem 5.4).

If B C int(£) then «,• = 0 (* = 1..., 2n) where the are the Lagrange multiplier

intervals for sub-box 5. Therefore if S c m((z) and w(S) < w(H') then 6.46 can be

simplified to

6.47

238

where 8-°^ = m(5,) (i = 1,..., n), A = (afjnxn ~ (atyKxn and from 4.33 F(s^) -

/'(x^)2’, and we compute (k > 0) from 6.47 until for some k > 1,

| ■«(£) l) ri , .j •»1/ |< @3 max{\ f |,1},

where)=/($(£)), and 63 > 0. We could also stop iterating

6.47 if for some k > 2, > f^~~^ and fj^~^ > f^~2^ in which case 1 might

contain the maximizer rather than minimizer of /. We can then use fW to update

7. The procedure simplif ied.Newton whiih implements the preecding ideas is given

in this section.

The test > f^~1^ and f^-i) > f^~2^ has been implemented for Example

10 which has 6 minimizers, 2 maximizers, 7 saddle points and was found to be un

necessary.

In case (iv) we use the methods which are described in Chapter 5 to get the

sharpest bound possible for the solution F(z) = 0. But. this solution might or might

not be a minimizer of / : Rn —> R1. Therefore we use the test which is described in

§6.9 to examine the box 1 which has been replaced with 5, before using the methods

which are described in Chapter 5.

(v) II t? C £ and jd w(FH) then we ^odlese 2 w'ith 5 beeaase [SheW~85a] 5

contains all the solutions of F(z) = 0 in 1.

-239-

(vi) If I* = 5.0 j aa^d 0 then z' cotlt£^il^^ a zero (rf F if z does.

Therefore 1 is replaced with £ if S Qz_,1 2 S, and £ 2 0.

Since the Symmetric Operator Test is made just after the test in §6.7 we can use

the interval matrix J_ which is obtained from the procedure deletion.test.2. We have

£' = Z

If m(F!) is singular then we cannot use the Symmetric Operator Test. Neither

can we apply the Newton Operator N which is described in §4.3 and the other meth

ods for solving F[z) — 0 which are described in Chapter 5. Therefore, if m(F') is

singular then we bisect z into two sub-boxes and for use in §6.13.

The procedures new.z, old.z, symmetric.hansen, and simplif ied.newton which

are required by the procedure symmetric.operator.test, which embodies the ideas

which have been described in this section, are as follows.

procedure new.z(g € I(R*n),q G N2n, n, l G N, x.star.in.x € B : 1 G I(R3n *))

! This procedure determines a new box 1 from the box £ by deleting I zero

! components corresponding to the zero Lagrange multipliers from the last 2n

! components of z.

! On entry, £ = (gx,... ,£zn)T‘ ? and 2 are as in §6.2, and x.star.in.x is as in §6.6.

- 240

1 On return, 1 = (£n ..zn, In+i1 • • •) 1*)T where if s.star.m.c = true then t = n

! because I = 2n\ otherwise t — 3n — 1.

1. for i = 1 to n do

1.1.

2. ij_ b x.star.in.x and I 2n do

2.1. j n

2.2. for i = 1 to 2n dp

2.2.1. ifqi — 1 do

2.2.1.1. ; := j 4-1

2.2.1.2, £j i— zn+i

Z. return •

procedure old.z(£ G I{RZn~l},q G N^'in\n, I G N, x.star.in.x G B : zG I(R3n)}

! This procedure determines a box £ — (£1}..., £3w)r from a box

5 1 “ (In ‘ I-n4-1 ’ •• • >^n-i)T by inserting 1 zero interval components into

! the positions of i zero Lagrange multipliers in £.

! On entry, 1, q, n, 1, and x.star.in.x are as in the procedure new.z.

! On return, £ ~ (£l5.. . ,z^n)T where 1 of the last 2n components are zero intervals.

— 241 —

1* i. •= (O)s»Xl

2. for i — i Co n dp

2.1. £•:=!,•

3. // ~ x.star.in.x and l 1 2n do

3.1. j n

3.2. for 5 = 1 Co 2n do

3.2.1. if_ <y = 1 do

3.2.1.1. j := J + 1

3.2.!.2. z.n~\-i := ly

4. re(urn ___

procedure symmetric.hansen(R G I(M(R3n~l)),b> z G R3n~l, n, l G iY,I € I(R3n~~l)

: S,Sf'E! Gl^^E’.empty, S'.empty G B)

! This procedure determines the interval vectors 5, 5', and B' which are described

! in Chapter 5,

! On entry, R has been computed from 5.22, z ~ m^), h has been computed from

! 5.24, n is the number of components in the initial box &, I is the number of

! Lagrange multipliers which take the value zero for the current box &, and 1 has

! been obtained from the box z by using the procedure new.z.

! On return, S and Sf am as •ecmputnd from 5.25 and 5.29 respectively, H is

-242-

• computed from 5.27, K* .empty — true if for at least one i & {1,..., 3n — J},

• Si — 0, and S'.empty — true if, for at least one i 6 {3n — I,..., 1} Sj- = 0.

5 Furthermore if S' = 0 for at least one i G {l,..., 3n - 1} then 5 = 0 and if = 0

! for at least one i G {3n — then 5 n I = 0.

i- 5 (0)371—ixi

2. S':= (0)3n_Jxl

3. S' := (Ojan-ixi

4. S' .empty := false

5. S' .empty := false

C. J := 1

7. v:=(0)3n_fxl

8. while i < 3n — I and ~ H*.empty do

8.1.
r=i

3n—I
8.2. St- := — bi + vi 4- 3} • 5.26.

8.3. «/S£nii = 0

then

8.3.1. H'.empty := true

else

8.3.2. S' := St n ’ 5.27.

8.3.3. $:=» + !

- 213 -

9. iZ ~ H1.empty >do

9.1. i :z= 3n — 1

9.2. while % > 1 and ~ S*.empty do
Sn~l

9.2.1. & : = Zi — 6,- + £,. 4- r^iiBU - 70 + £ jj ~ %) i 5.28.
j=»+i

9.2.2. p= 0

then

9.2.2.1. S’ .empty : = true

else

9.22.2.2. Sg-.^Sn n ZfjS.ZQ.

9.2.2.S.

10. return _ ,

procedure simplifioiniewtonSS. e. I(R3n,-l),A € M(R3n~l),e2 G R,n,l & N :

xeRn,f_eI(R})

! This procedure implements case (iv) of the Symmetric Operator Test.

! On entry, 5 has been computed in the procedure symmetric.haneen, A has been

! computed from 5.21, eg > 0, n is the number of variables of / : Rn -+ R1 and 1

! is the number of Lagrange multipliers which take the value zero in sub-box z,

! On return. / = /[[B, B]) and x is computed from 6.47.

-244-

1. continue := true

2. for * ~ 4 n $—

2.1. Xi := w(5t)

2.2. for j ~ I to n do

2.2.1. (2jy != (lij ! A ~ (ciij}sn~lx&n—l

3. /:=/(»)

4. /:=/

5. y:=x

6. while continue do

6.1. W--y - Af'(y)T I A -(ais)nxn.

6-2- Z, := £(»)

6.3. if_ fyS < fr do

6.3.1. f:=f— —y

6.3.2. x := y

6-4- iL I Ly " 21^maX(\ Ly h 1)

then ! Stop iterating 6.47.

6.4.1. continue := false

else ! Iterate 6.47.

6.4.2. / := /
— —y

7. return _

24.5-

procedure symmetric.operator.test(x G I(Rn), J. G l)),e2 G R.n G N,

x.star.in.x G B ; Sj G P,z G I(R*n)z I G I(R),

g G N2\fn7 G N : £6 I(R*n~l),bisect.z,

solve.F.z^delete.y singular G B)

! This procedure implements the Symmetric Operator Test.

1 On entry, X is the initial box, J is the Jacobian matrix which has been

! computed in the procedure deletion.test.2 (§6.7), 22 > 0, and n, and x.star.in.x

! are as in the procedure new.z.

! The input-output parameters 5?, /, n? are as in the procedure gradient.test,

! j is the current box, and q and I are as in the procedure new.z.

! If cases (i) or (ii) occur then delete.z — true: if case (iii) occurs or m(J) is singular

! then bisect.z = true: if case (iv) occurs then solve.F.z ~ true, and singular = true

! if m(J) is singular.

L singular := false

2. hi sect. z false

3. solve.F.zfalse

4. delete.z false

5. 5 (0)s% —xi

6. new.^Jg, n, /, x.star.in.x- : Z)

246-

7. F := F(m(l))

8. Jm{J_)

Q. (Z J *8 s*n9ular

then

9.1. singular := true

9.2. bisect.z := true

else

9.3. A ■.= J~l

9.4. b := AF

9.5. P:=J~AJ

! I is the unit matrix of order t — 3n — I.

9.6. z := w(l)

9.7. symmetric.hansen{R, b, z, n,l,z : 5, S^H!, H' .empty, S' .empty]

9.8. case true of

H'.empty : ! 5 = 0, case (t).

9.8.1. delete.z := true

S'.empty : ’ Snl = 0, case {ii).

9.8.2. delete.z : = true

! I C S for case {iii) and z_~ S_ for case {iv) and {v).

9.8.3. bisect, z true

-247-

5 c mi(.l) : ! case (iv) or (u) but not 1 = 5.

! Since S_ C W(l), w* = 0, g* = 0 (j = 1,..., 2n), aW I = 2n.

9.8.4. if_ w(5) < w(H') do

9.8.4.1. simplified.n.e,wton(SjA,e2,njl : «,/)

9.5.4.2. update.fbar([xix\,f_; 5?nj) ! §6.4.

9.8.4.S. solve.F.z := fr«e

9.8.5. 1:=5_

9-8-6. if 5 (x.star.in.x orl — 2n) do

9.8.6.1. q := (0)21x1

9.8.6.2. f :=2n

9.8.7. old.z('z<qnJ x.star.in.x : zf

default : ! case (v1). •

! Since F = 5 n 1 some 0f the Lagrange multiplier bounds in z!

! might be zero intervals. Therefore we need to re — compute q and I

! by using the procedures zero.multipliers and check.q described in §6.14.

9.8.8. 1' := 5'

9.8.9. zero.multipliers^^ ,n : <5,?) • §6.14.

9.8.10. check.q(q.n ; q1 V) ! §6.14.

9.8.11. q := q1

9.8.12. f := ?

9.8.13. old.z(Z,q,n,l, x.star.in.x : z_)

~ 248 —

10. return

6,9 A Non-Convexity Test

Let z = , uT)T be the current sub-box of 1* (0 < i < 2n — 1). We shall use

the non-convexity test for the objective function / in x which is described in §3.3 to

delete all of x save the points of x which lie in d(£) where x is the initial box.

According to §3.3 we need to compute the diagonal of G(x,x) which is given

by 3.4, with the argument ,xn) separately, because all G^xx) for * = j

and I < n have argument different from save Since the non

convexity test is made just after the test in §6.8 in which Jj, a?) which is computed in

§6.7, has been used, <2/%(g., g.) is already known. So we need compute only G^XyP)

(i = 1,.,,, n — i).

Suppose that P is the smallest box containing the boundary points of x which

lie in x. Then

(i) P — x if x. and x share at least two common faces;

(ii) P is a degenerate box of dimension less than that of « if x and x share exactly

one common face;

(iii) P = 0 if xc Li?(x). .

In §6.2 it is shown hew to compute the number / of Lagrange multipliers which

take the value zero,. By using I we cam determine P as follows.

(i)x If / < 2n — 1 where n is the number of components in x then the number of nonzero

Lagrange multipliers is at least 2. Therefore, the number of active constraints is at

-249

least 2. Therefore, x and z share at least two common faces. So x7 = x.

(ii) 1 If l = 2n — I then the nnmber of nonzero Lagrangg 2mi2tipliers is exactly 1.

Therefore, x and g, share ex<aUy one common face. So s! is a degenerate box of

dimension less than that oo cz

(iii) 7 If I ~ 2n then all the Lagrange multipliers lake the value zerOt Therefofe by

6.17, Qi = 0 (? = I,... ,2n) where q corresponds to x. Therefore as explained in §6.2

no global minimizer which lies in d(x) lies in l(i). Therefore we may take x7 = 0.

Therefore, according to (i)' - (iii)7, if l <2n — 1 then we must retain the current

box z; if ? = 2« — I, and (Ctt(x, x))s < 0 for at least one i G {1,..., o} then we

replace i in z with x'; if I — 2n then we delete the whole of z when (7t7(x, -?l))s < 0

for at least one i G {l,..., »}.

Note 6.2 : In MW, if I < 2o — I then the non-convexity test is not used because

whether or not (G_ti(x, x))s < 0 we still retain the current box z since by (i)' Zf ~ x.

The preceding ideas give rise to the procedure n.cdest (non-convexity test).

procedure n.c.test(J_ € I(M(^m-i)), j g i{RS)q e M2n,n,l G N, x.star.in.x G B ;

i G 7(£Sn) : delete.* GB)

! This procedure determines whether / is non-convex over x, where x and x share at

! most one common face. If / is not convex over x then x and hence _ can be

! deleted save the points of x which belong to the boundary of the initial box x.

- 250 -

! On entry, J_ 1s the Jacobian computed in §6.7, g, n, I are as in §6.2, and x.star.in.x

1 is as in §6.6.

• On return, £ might contain the solution of F(s) = 0, and delete.z is the Boolean

! which allows us to decide whether or not to delete z.

1. delete.z := false

2. # := 1

3. if x.star.in.x or I = 2n

then

! If x.star.in.x — true then x* G int(&). If I ~ 2n is true then by 6.17

• ?t “ 0 (i = 1,.2n) where q corresponds to x. Therefore if I ~ 2n then

! as explained in §6.2 no global minimizer which lies in 0(&) lies in <((?).

! Therefore if I = 2n we can use the non — convexity test on the current box

! & — >l£) knowing that x cannot contain the boundary points of x.

3.1. repeat

3.1.1. if i -fin

then ! We need to compute &)•

3.1.1.1. delete.z «))5 < 0 ! £ = (»r, «r)T.

else ! We use J 5

3.1.1.2. delete.z := Jus < 0

while ~ delete.z and t < n do

-251-

3.1.2, t:=i + l

else ! The minimizer of f is in x and d

3.2. k := 0 ! k is such that either the face x — xj^i or x ~ Xks lies in x.

! We examine which face is common to x and x where z — (xT,uT)T-

3.3. for i — 1 to n do

3.3.1. i f qj = 1 do

3.3.1.1. k^j

3.3.2. if qn+j ~ 1 do

3.3.2.1. &:=n + /

3.4. repeat

3.4.1. if i n

then ! We need io compute <7tt- (#, x).

3.4.1.1. delete.z := (gtt(a;, < 0 ! £ =

else ! We use

3.4.1.2. delete.z ;= Jus < 0

while ~ delete.z and i < n do

3.4.2. i :-i + l

3.5. if delete.z do

! z cannot be deleted since (step 2L3) x and x share a common face.

3.5.1. delete.z := false

3.5.2. if k < n

- 252 -

then

3.5.2.1. zk'.~[xkI,xkI\

else

3.5.2.2. z_k z~ S'fc-asj

4. return
□

6.10 A Bisection Test Which is Based on Strict Complementary

Slackness

Suppose that z (a? ,ur)T is a sub-box of z^ (0 < » < 2n — X). If by the te3t

in §6.8 3z* & z_ such that = 0 aud 0 0 c? A 2n) where c® — ct-(z)°

then (Chapter 4) strict complementary slackness holds at z*, and z* is a I<T point

which might correspond to a maximizer or to a minimizer of f over x.

On the other hand, 0 0 c® A u® («’ — 1,..., 2zi) is not necessary for strict com

plementary slackness. Therefore if for at least one i G 2«}, 0 G c? A mJ

then strict complementary slackness might still hold at z*. If, however, it is known

that x* G int(x) where z* — (x*1 ,u*T)T, and z. C int(z) then c»(.'c) > 0 (V;c G as)

(? = 1, ...,2n) whence 0 0 cj Cl «J (t ~ 1, ...,2n). This suggests that it might

beneficial to bisect z if for some i G {l,... , 2ra} 0 G c? A mJ when it is known that

x* G rnJ(js). If x* G d(x) so that for at least one i G {1,..., 2n}, x* — xu or a* = Xis

then Cj(ad) — 0 or c:+n(z*) — 0 so if z* G d(i) then 0 6 c- or 0 G cj+n. *n ^is

case, bisection might not be beneficial because it could occur an indefinite number

of times and produce an excessively laige number of boxes. In practice however, it

is necessary to check whether 0 0 cj A mJ 2n) even when it is not known

- 253 -

that x* G Measures must be taken to ensure that an excessively large number

of bisections do not take place when »* G d(») and strict complementary slackness

does not hold at »*; the strategy which is used in this case is described in §6.12.

The vectors cj and u? are computed from the procedure ».0 which is as follows.

procedure ».0(» G I(Rn), » E N : E RR'1 2})

! This procedure determines an interval vector (sj,..., x^)T such that Z- = [»t-,0]

! if Xis < 0, and xf = x^ otherwise.

1. for $ ~ 1 to n do

1.1. l£ Xis < 0

then

1.1.1. x'i [rCf/,0]

else.

1.1.2. £? x,

2. return__
---------□

The procedure s.c.s.test (strict complementary slackness test) which implements

the test 0 0 c? a (g = 1,..., 2n) is as follows.

254

procedure s.c.s.lest(z~ G I(R$n), n & N : bisect.z G B)

! This procedure determines whether or not to bisect z.

! On entry, z_ is a sub-box of zf^ (0 < i <2n ~ I).

! On return, bi sect, z is a Boolean which allows us to decide whether or not to bisect

! the current sub-box z.

1. bisect.z := false

2. for i = 1 to n do

2.1. x{ :=

3. for i — 1 to 2n do

3.1. u4:=zn_^

4. c:= e(rr) ! The procedure constraint (Appendix D) is used.

5. .r.0(c, 2n : c°)

6. 3?.0(m,2« : it0)

7. g := 1

8. repeat

8.1. if e° n it? do

8.1.1. bisect, z := 0 G c° p

while bisect.z and i < 2n do

265

8.2. s i“~ i ~= 1

0. return
□

Note 6,S : In MW, if x.star.in.x — true, and strict complementary slackness docs

not hold at a KT' point z* then we do not apply the methods which are mentioned

in Chapter 5. Instead the current box z is bisected into z^ and a,s described

in §6.12. One of the boxes z^1^ and z^2^ is kept on the stack Si and the other is

processed in the next iteration of MW. If strict complementary slackness holds at a

KT point z* then we apply the methods which are mentioned in Chapter 5 to the

current box z. The procedure s.c.s.test is used in order to decide whether or not to

apply the methods which are described in Chapter 5. „_ ,
□

6.11 Methods for Solving F[z) = 0

In the preceding sections non-existence, existence, uniqueness and convergence

tests for a solution z* of F(z) ~ 0 in the current sub-box z of (0 < * < 2n — 1)

are described. The point z* is a KT point which might correspond to a minimizer of

/ in

In this section we describe how to apply the methods which are described in

Chapter 5 and which are used in the algorithm MW for solving F(z) ~ 0, where F

is defined by 4.33.

Since some of the Lagrange multipliers are zero as described in §6.2, §6.3, §6.5,

and §6.8 then some of the rows of F[z) in 4.33 and the corresponding rows in 4.35

- 256 -

as well as the columns can be ignored. Therefore the number of variables in ° i3

reduced. Suppose that 1 is obtained from z by using the procedure new.z (§6.8).

6.11.1 The Application of MAP

The algorithm MAP which is described in Chapter 5 is used in Algorithm MW

as follows.

(i) If B^ which is computed in step 3 of MAP is singular then we cannot proceed

with the algorithm MAP. Therefore in MW, if B^ is singular then 1 and hence z is

bisected into and for use in §6.13.

(ii) If the algorithm MAP terminates because an empty intersection occurs then

there is no zero of F m 1 and hence in z. Therefore z can be deleted. Therefore if

K-n C 1 = 0 where X/v is given by 6.3 then we delete I and hence £.

(iii) If jTyv(^0,0\ F^°\ B°°5) g 2^°’°^ where KN is computed in step 5 of MAP then

we do not proceed with the algorithm MAP. Instead we compute

2' = J<™(l(0’0),£'(0),fi(0)) nl(0,0),

ana

a = {St0)}-1 F(m(I<0-°>))

-257

for use in §6.12 in which we bisect P as in [Jon-78a] where F is the box which is

obtained from P by using the procedure old.z (§6.8).

(iv) Accooldig to t.4, tfo > 1 then we dd not procced with the algorithm MAP. In

this case we compute P as in (iii). In MW a is computed from

a — max 6.48

in step 5 of MAP for m = 0.

(v) Suppose that (li>> is geneealed from the algociihm MAP and the stopping

criterion | w(£^)| < So is used, where bq > 0 is given. If, for some k > 0, 2(C)

satisfies the stopping criterion then z)k^ is pushed onto the stack S^, which contains

the boxes z which satisfy the stopping criterion where is obtained from z)k^ by

using the procedure old.z (§6.8.)

(vi) Suupooe ttiaa is as in (v^ If a codtaln nnmber of tteeaaions, ssy maxit,

have been performed where in MW, maxtt is the maximum number of iterations,
and iv j > gg then we say that 2^ doet not conyegge ot z* within a

prescribed number maxtt of iterations or z)k^ -/* z< (k < max)). Howeed z)m(lXit')

possibly contains g*. Therefore if -/-> z* (k < maxtt) then prnaXii) is pushed onto

5s, where S5 is a stack of boxes which might contain the minimizer, and pmaxtt) ig

obtained from by using the procedure old.z (§6.8).

- 258

(vu) If in MAP 1 is reduced to .give z! with ||?/(z./)|| < sq then A, where F is

obtained from F by using the procedure old.z (§6.8), is pushed onto whether or

not A contains the solution z" of F(,‘) — 0 because the width of the box z; is small

and satisfies the condition] i/u(j?/)J| < Cq.

The three procedures MAP.l, MAP.2, and MAPZ are invoked by the procedure

MAP in MW as follows.

pmwWre MAP.1(F/ G /(M(P3n"*)), B<°) G M(PSn“*), m G P3"-*,^, s0 € P,

g G N2n, b, f G AT x.star.in.x G B ; zG /(P3n))£ G /(P3""'*),

no.zero, too.big, not.less, converged G B : Q G /(P3”~*),

b,^GP3"~*,M,To,«GP)

! This procedure implements step 5 of MAP for m = 0 in order to obtain z^0’1^

! if which is given at step 3 of AdAP is non-singular. Also, this procedure

! determines which of the cases (ii), (iii), and (iv) is valid and whether or not

! |M&(°’n)|| < So.

! On entry, F) P;(z), B^ “ ui(F') is non-singular, ?P := tv(z), Ts is the starting

! time for MAP, Sq > 0, q, n, I are as in §6.2, and x.star.in.x is as in §6.6, z is the

! current box, 1 is obtained from z by using the procedure new.z (§6.8),

! no.zero ~ true if z* 0 z, too.big ~ true if Q — K_x{lL, P^ B0o)) g 1,

259

! nol.less — true if a > 1 and converged -- true if jjAy(J?)|j < e0.

’ On return, Q_ — .KjV(1, a is as in case (iii), w — w(Z), M is as in

! the procedure re.use.jacobian. (§5.3), To is the required CPU time for this

! procedure, and a is computed from 6.48.

1. a (0)3^.—xi

2. w : — (0)3rc~_Xl

3. M :—0

4. To — 0

6. o e— 0

6.]/:=I

7. Q := ZCvfeE',°°(0)) ! B°°) is non — singular.

8. 1 :== Q A g ! 5°ep 5.1 of MAP for m — 0.

9. // 1, = 0

then ! Case (ti).

9.1. no.zero true

else

9.2. w

9.3. M :— ||wl!/|l®||f

9.4. i/QZf

then ! Case (m).

260-

9.4.1. too.big true

9.4.2. a:= {B^}_1F(m(yj)

9.4.3. old.z(zj<p n, I, x.star.in.x : z) ! §6.8.

else

9.4.4. a:= i^x_|{«>(24)/a,(g()}

9.4.5. i/ a > 1

then ! Case (w).

9.4.5.1. not.less true

9.4.5.2. ai= {B^}~1F(m(y))

9.4.5.3. old.z(z_, q, n, I, x.star.in.x : z) ! §6.8.

else

9.4.5.4. converged ||w|| < sq

9.4.5.5. TV time ! Appendix P).

9.4.5.6. To := Tp ~Ts ! The required CPXJ time for this procedure.

9.4.5.7. old.z(Z}q, n,h x.star.in.x : zf ! §6.8.

10. return

procedure MAP.2{£! G I(M(RSn-1)}, A S M{R°n-‘),e0 e R,n,l e N ;

I & HRSn~l), converged e B : Q e/(J?3”-'), e 7Z8"-')

! This procedure implements- steps 8.3 - 8.4 or 8.5.6 - 8.5.7 of MAP (Chapter 5).

- 251 -

! Also, this procedure determines whether oc not obtained at step 8.4 of MAP

! and obtained at step 8,6.7 of MAP satisfy || w(£^)j| < €q and

! ||u?(£0’d)|| < go respectively.

! The input, input-output, and output parameters are as in the procedure A/AP.1

! save that A = m(F/).

1. U) A is singular dp

! According to step 9.4 of the procedure MAP.l if QC y and a < 1 then

! we have a unique zero z* in £. Therefore, A should not be singular.

1-1- write "A is singular in MAP.2."

1.2. stop

2. g :=1.

3. Q := Kn(! Step 8.3 (oo step 8.6.6) of MAP.

4. j : = <0 Ay! Step 8.4 (^o sZep 8.6.7) of MAP.

5. iff z = $ do

! At this stage we have guaranteed that i contains the zero /A.

! Therefore the empty intersection at step 4 should not occur.

5-1- write,11 Empty intersection in MAP.2-A

5.2. stop

6. w tt((|)

7. converged := ||w|| < so

- 262 -

S- return

procedure MAP.2(F! G I(M(R,n-l 2)),B G M{RSn~l), ti) 6 RSn~l,M,To,e0 £ R

q G JV2re, I,p, m G N, x.slar.in.x G B ; 2 G /(.ft3"),

ie I(RSr-~‘) : Qe I(R3n~l),w £ R3n~l,converged,

re.use.jacobian G *)

! This procedure implements steps 5, 8.5.3 and 8.5.8 of MAP for m > 1.

! Also, this procedure determines whether or not obtained at step 5.1

! of MAP and obtained at step S.5.3.2 (or 8.5.8.2) of MAP satisfy

1 i|w(j/0,m+1))|| < &q and ||w(z^’m+1^)|| < s0 respectively and computes the

! value of p^ (§5.3).

! Ail the parameters are as in the procedures MAP A and MAP.2 except the

! parameters Af, p, m and re.use./«co&s<m which are explained in the procedun

! re.use.jacobian in Chapter 5.

1. Ts time ! Appendix D.

2. if_P is singular do

! See procedure MAP.2 at step i.

2.1. write " B is singular in MAP.Z.”

2.2. stop

- 263 -

3.

4. Q-ICvferAB)

5. IQny

6. (/ 2 ~ 0 dp

! Bee procedure MAP.2 at step 5.

6.1. write "Empty intersection in MAP.Z."

6.2, stop

7. #:=w(l)

8. converged ||w|| < Sq

9. Tp := time ! Append/® D.

10. Ti Th — Ts I T7ie required GPU time for this procedure.

11. re.use. Jacobian(w, w, M, To, Ti,p, m, Zn — I : re.use.jacobian)

12. old.z(z_,q,n, I, x.star.in.x : z) ! §6.8.

13. return

The algorithm MAP is used in the algorithm MW as follows.

procedure MAP(q & N2n, n, l,p, maxit 6 TV, e0 £ R, x.star.in.x & B ;

£ € f(R9n) : Q £ a £ j£3n'"*, singular,

not.less, no.zero, converged, maxit.reached £ B)

264-

! This procedure implements the algorithm MAP for use in the algorithm MW.

! All the parameters a.re as in the procedures MAP.i (i ~ 1,2,3) except

’ maxit.reached where maxit.reached — true if k > maxit] maxit is described

! in case (vi).

1. new,z(z.,q,n, I, x.star.in.x : 2) ! §6.8.

2. singular := false

3. no.zero false

4. too.big false

5. not.less := false

6. maxit.reached false

7. re.use.Jacobian := (p 0 0) ! If p — 0 then pW — 0 (ft > 0) in MAP.

8. convergedfalse

Q. Q_:— (Qjsn-fxi

10. a (0)3n_iXi

11. w := w(z)

12. w (0)3n_<xl

13. Af 0

14. m 1

15. Ts := time 1 Appendixx D.

— 265-

16. (I)

IT. B := m(F')

13. «/ B is singular

then

18.1. singular:— true

else

18.2. MAP.l(F#, B, ©, Ts,sQ, q,n,l, x.star.in.x ; £, 1, no.zero,

too.big, nol.less, converged : Q,a,w, M,To,a)

18.3. w:=rv

18.4. m 0

18.5. if ~ no.zero and ~ too.big and ~ nol.less do

18.5.1. while re.use.jacobian and ~ converged do

13.5.1.1. m m d-1

18.5.1.2. M AP.3(Fj, B, w, M, To,e^yq,n,l,p,m, x.star.in.x

z~,z_ * Q_,w, converged, re.use.jacobian)

18.5.1.3. w w

18 »o«2» if n-i > rriaxit do

18.5.2.1. maxit.reachedtrue

18.5.3. while converged and maxii.reached do

18.5.3.1. nj nj -J-1

18.5.3.2. m 0

- 266 -

18.5.3.3. re.use. jacobian :~ (p 0 0)

18.5.3.4. if_ n/ > mawit do

18.5.3,4.1. maxit.reached true

18.5.3.5. Ts time ! (Apperuiix D).

18.5.3.5. £':=£'(£)

18.5.3.7. A.-m^y')

18.5.3.8. g — 1

18.5.3.9. AIAP.2(F!, A,So,n,l ; converged : Q, w)

18.5.3.10. AI := ||,u|| / ||w||2

18.5.3.11. i£ < cw(g)

then

18.5.3.11.1. B := A

18.5.3.11.2. TV •— time ! (Appendix D).

18.5.3.11.3. To := Tv - Ts

18.5.3.11.4. old.z(%q,n,i, x.star.in.x : £) ! §5.8.

18.5.3.11.5. a := w

18.5.3.11.6. while re.use.jacobian and

0 converged do

18.5.3.11.6.1. m := m 4-1

18.5.3.11.6.2. A/AB.3(F', A, w, M, To,

0, T n, l, p, m

267-

x.star.in.x ; £,2 :

Q, w, converged,

re.use.jacobian)

18.5.3.11.6.3. w:=w

else

18.5.3.11.7. MAP.2(F!,B,6Q,n,l ; ^converged :

Q, w)

18.5.3.11.8. Tp time ! (Appendix D)

18.5.3.11.9. To := Tp - Ts

18.5.3.11.10. old.z(z_,q,n, I, x.star.in.x : z_) ! §6.8

18.5.3.11.11. w := w

18.5.3.11.12. while re.use.jacobian and

~ converged do

18.5.3.11.12.1. m m H-1

18.5.3.11.12.2. MAP.Z(Fj, A, w, M, To,

eo,^nj,p,w,

x.star.in.x ; z_,

converged,

re.use.jacobian)

18.5.3.11.12.3. w := w

- 268 -

19. return
□

6.11.2 The Application of KMSW

The algorithm KMSW which is described in Chapter 5 for solving the system

of equations F\z) — 0 given by 4.33 is supported by Theorem 5.8.

The algorithm KMSW which is described in Chapter 5, with 2 and £ as in

§6.11.1, is used in the algorithm MW as follows.

(i)' If m(F^ J in step 3 of KMSW is singular then we cannot proceed with KMSW

so z_ is bisected into and z® by using the Moore-Jones rules which are described

in §6.12 for use in §6.13.

(ii) ' If KMSW terminates because an empty intersection occurs then there is no zero

of F in £. Therefore £ aud hence z. can be deleted.

(iii) ' If S(2) i where 5(2) is computed in step 8.2.4 for k = 0 and m — 0 then we

do not proceed with KMSW. Instead we compute

rz)

and

a =

- 260 -

where B® is computed in step 3 of KMSW for use in §6,12 in which we bisect g7

as in [Jon-78aj and F is obtained from F by using the procedure old.z,

(iv)7 If 5(1) C 1, w(5(l)) < w(#'(l)) and ||i?|| < 1 then we proceed with KAISW

to obtain the sequence (1/k7).

Suppose that for some k < maxit where maxit is the maximum number of

iterations which is permitted in KMSW we have w(z^)

we obtain a box, say z*, with ||w(i*)|| < sq which bounds the KT point g* and z* is

pushed onto Si.

< s0 for so > 0- Then

(v) 7 If 5(1) C 1 and w(5(l)) yt w(H_f(F) then we replace 1 with 51(g) but we do not

proceed with KAISW. Instead we compute z from 1 by using the procedure old.z

for use in §6.12 where 1 has already been replaced with 5(1).

(vi) ' Suppose that (z^) is as in (iv)7. Suppose also that (k < maxit).

Then Fmaxti^ is pushed onto 5g where Fmaxii^ is obtained from by using

the procedure old.z.

(vii)7 If 1 is reduced to l' with j|??(g/)|| < so then z\ where F is obtained from the

box F by using the procedure old.z, is pushed onto 54 whether or not g7 contains the

solution z of F(z) = 0,

The pseudo-code for KAISW which is used in MW contains the procedui'es

syrnmetricJiansen, new.z, old.z which are described in §6.8, and the procedure

- 270 -

re.use.jacobian which is described in Chapter 5. The procedures KMSW.l,

KMSW.2, and KMSW.3 which are described in this section, are also used.

The procedure KMSW.t is used if m(F'(£)) is non-singular, and the procedures

KMSW.2 and KMSW.Z are used if we have guaranteed that the current box z

contains the zero z* of F(z) — 0. These procedures are as follows.

procedure KMSWA.(F[£ I(MFR?'n"l)),B G M(i?Sn“?), Ts,e0 € R,q G N?n,n,

1 G N, x.star.in.x G B ; z G l(£Sft),l G J(.ft3n~*),

i, w G RSn~l, no.zero, too.big, not.less, converged G B :

R G /(A/(tf3n“f)),Q G Z(Jf3n "4), A G M^n~l),a,

M,To,r £ R)

! This procedure implements steps 8.1 - 8.2 of KMSW for (k = 0 A m ~ 0) if

! which is given at step 3 of KMSW is non-singular. Also, this

1 procedure determines which case of the cases (ii)', (iii)', (iv)', and (v)' is valid.

3 On entry, F' =■ F'(l) is computed from the procedure F.prime (Appendix D),

! B — {m(F')}'-1 where m(F') is non-singular, Ts is the starting time

! (Appendix D) for KMSW, gq > 0, g, n, I are as in §6.2, and x.star.in.x is as in

3 §6.6, z_ is the current box, % is obtained from 2 by using the procedure new.z

3 which is described in §6.8, z ~ m(£), w = w(£), no.zero — true if z* 0 z_,

-271-

! too.big ~ true if £(£) <£ 2, nol.less ~ true if w(S_(zj) / and

! converged —• true if ||w(5)J| < sq.

! On return, R = I — AF’ where A — B, Q — £(£)> « — AF(m(I)), M is as in

! the procedure re.it,*ie./aco&£an (§5.3), To is the required GPU time for this

! procedure, and r ~ ||E||.

1. To 0

2. Q~•“ (&)*»—Jxi

3. Af:=0

4. ?•0

5. 2/:=l

6. A — B

7. R := I - AF! ! Step 5 of KMSW.

8. F:=F(m(y))

9. b'.^AF

10. a b ! For use in §6.12.

! We implement steps 3.2.3 — 8.2.5 of KMSW for (k — 0 A m ~ 0)

I by using the procedure symmetric.hansen.

11. s/ymmetr2e\/?.ansen(i?,5,2, n, Z, 2 : S, 5/,H/,77/.empty,S'.empty) ! §6.8.

12. if Hf .empty or S' .empty

then ! Case (&7)/.

- 272 -

12.1. no'.zero :~

else

12.2. Q := £

12.3. %:

12.4. Z • — m(2)

12.5. if S.&V

then

! Case (Hi)'. Ify_<zS_ then z. — “ V- f f S.n yjfi $ then

! 1= S' = £□£.

12.5.1. too.bigtrue

12.5.2. old.zfa g, n, f, x.star.in.x : z) J §6.8.

else I SCy

12.5.3. r :=

12.5.4. if w(S) w(H') or 1 < r

then ! Case (v)\

12.5.4.1. not.less true

12.5.4.2. old.z(z_,q,n,f x.star.in.x : j?) * §6,8.

else ! Case (iv)1. z_ must contain a unique zero of F.

12.5.4.3. Tp lime ■ Appendix D.

12.5.4.4. To :== TF - Ts

S Tq is the required CPU time for this procedure.

- 273 -

12.5.4.5. old.z(%iq1n.l.x.8tar.in.x : z] 1 §6.8.

12.5.4.6. io := W

12.5.4.7. W : = w({l)

12.5.4.8. M := ||W|| /

12.5.4.9. converged := ||w|| < Eq ! Case (vii)*.

13. return
□

procedure KMSW.2{sq € R, q & 772n, », I G .V, x.star.in.x G B ; A 6 AffBSn *),

1 e HR*"), I € I(RSn~l 2 3), z, M e R^-^r S B,

converged eB : R e I(M(R.3n“f)), M,To S if)

J This procedure implements steps 8.1 - 8.2 of KMSW for (i > 1 Am ~ 0) by using

J the results from steps 8.3 - 8.8 of KMSW. In this procedure the value of Af is

! computed for use in the procedure re.use.jacobian (§5.3).

J AH the parameters are as iu the procedure KMSW.l..

1. Sv := lime ! Appendix D. ■

2. F' := F'g) ! Step 8.4 of KMSW.

3. B = m(F')

4- £/ $ is sing alar do

! This procedure is used after we have guaranteed that z_ contains the

-274-

! unique zero of F(z} = 0 in z_ as described in the procedure KMSW.l.

! Therefore B should not be singular,

4.1. write nB is singular in KMSW.2.n

4.2. stop

5. R := I - B~lF! ! Step 8.6 of KMSW.

6. s := ||2i|| ! Step 8.7 of KMSW.

7. ifj <r\ Step 8.8 of KMSW.

then

7.1. A := ! Step 8.8.1 of KMSW.

7.2. r:=s

else

7.3. R-.^I-AF! '< Step 8.8.3 of KMSW.

7.4. r :== ||je|| ! Step 8.8.4 of KMSW.

8. F — F(z)

9. b:=AF

! Now, we implement steps 8.2.3 - 8.2.5 of KMSW for (k > 1 A m = 0).

10. sym.metric.hansen{R,b,z,n,l,'z_ : 5, Hf, H1 .empty, S'.empty) ! §6.8.

11. if H1 .empty or S1 .empty do

! Since we have guaranteed that the box z contains the unique zero of

5 F(^) — 0 in z as described in the procedure KMSW. 1 then this possibility

! should not occur.

- 275

11.1. write " H* is empty or Sf is empty in X M SW.2.1'

11.2. stop

12. Tp time ! Appendix D,

13. To Tp ~ Ts ! The required GPU lime for this procedure.

14. £:=£'

15. z

1C. old.z(2>q,n,I, x.star.in.x : z) ! §6.8.

17. w := w

18. w w(z}

19. M := ||w|!/||®||3

20. converged := ||w|| < s0 • Gase (vii)!.

21. return

procedure KMSW.Z(R G I(M(R&n~l)},A e M(RSn~l), M.To^q G R>q & N2n,

n,l,p, m G TV, x.star.in.x G B ; r G I(RSn},^& I(7?.3n~£),

i,w G RiTl ~l, converged, re.use. jacobian G B)

! This procedure implements steps 8.1 - 8.2 of KMSW for (/? > 0 A m > 1).

! Abo in this procedure, the procedure re.use. Jacobian (§5.3) is used to

! determine (§5.3).

i All the parameters are as in the procedures KMSW.l and KMSW.2 except M, p}

- 276 -

! m, and re.use.jacobian which are explained in the procedure re.use.Ja.^dbian

! in Chapter 5.

1. Ts := time ! Appendix D.

2. F:=F(f)

3. b — AF

4. symmetric Jian8en(R,b,Znn'lz_ ; S,Sj, Hj, H* .empty, Sf.empty) ! §6.8.

5. if Hl .empty or Sl.empty do

I A* step 11 o/ KMSW.2.

5.1. write f"H' is empty or S' is empty in KMSW.Z.'1

5.2. stop

6. Tp time ! Appendix D.

7. Tj :™ Tp — Tg ’ The required CPU time for this procedure.

8. Z:=Sj

9. z : = m(2)

10. old.ziA, (i n,l, x.star.in.x : j.) ! §6.8.

11. id := w

12. w := w(zj -

13. converged := ||wj{ < eo ! Case (%’)%

14. re.use. Jacolrian(w, w, M, To.Tj.p, m, Zn — I : re.use.j acdbian) ! Chapter 5.

15. return __

277

The pseudo-code for the algorithm KMSW as used iu the algorithm A/W is as

follows.

procedure KMSW(q G N2n, njl, py maxit G TV, £q G R, x.star.in.x G B ;

£G.r(/2Sn) : Qe I(R3n~l 2 3 4 5 6)ya & R^n~Ly singular,

not.less, no.zero, converged, maxit.reached G B)

! This procedure implements the algorithm KM SW (Chapter 5) for use iu the

! algorithm MW.

! All the parameters are explained in the procedures KM SWA (i = 1,2,3) except

! maxit and maxit.reached where maxit is the maximum number of iteration as

! explained in the case (iv)' and maxit.reached d —rue if k > maxit where k is the

1 number of times that step 8 in KMSW is executed.

1. new.z(z_,q, n,l, x.starAn.x : 1) ! §6.8.

2. w := w(z)

3. w :- (0)3n__jxi • ,

4. Af 0

5. rerusejacohimn := (p O)

6. ni ■ -- 1

T. singular := false

-27S

8. no.zero := false

9. maxit.reachedr— false

10. converged false

11. ioo.big := false

12. not.less := false

13. Q := (Q)sn-ixi

14. a (0)3n_jxi

15. z := m(I)

16. Ts time ! Appendix D.

17. F! := Ff(z) ! Appendix D.

IS. B := m(F')

19. if B is singular

then ! Case (i)\

19.1. singular := true

else

19.2. KM SWA(Fj yB~l ,Ts,Qq,x.star.in.x ; z, z, z, w, no.zero,

too.big. not.less, converged : R, Q_, A, a, M, To, r)

19.3. m := 1

19.4. if ~ no.zero and ~ too.big and ~ not.less do

19.4.1. while re.use. jacobian and ~ converged do

19.4.1.1. KMSW.3(R, A, M, To? s0. q, n, l,p, m, x.star.in.x ;

- 279 -

20. return

£,1, z, w, converged, re.use.jacobian)

19.4.1.2. m: — m:-}-1

19.4.2. if n/ ~ maxit do ! Gase (vi)/

19.4.2.1. ma xi t.reached :=~ true

19.4.3. while ~ maxit.reached and ~ converged dp

19.4.3.1. m := n/ + 1

19.4.3.2. re.use.jacobian := [p 0)

19.4.3.3. if nj ~ maxit o

19.4.3.3.1. maxi t.reachedtrue

19.4.3.4. KMSW.2(e<oq,n,l, x.star.in.x ; A,Zz‘̂z,Zf1wft^,

converged : R,Af,To)

19.4.3.5. m := .1

19.4.3.6. while, re.use.jacobian and ~ converged dp

19.4.3.6.1. KMSWZfa A, M, To, so,q, n, l, p,m,

x.star.in.x ; z,Z,z,w, converged,

re.use.jacobian)

19.4.3.6.2. m m H 1

□

“ 280 -

6.12 Bisection and Selection Rules for Use With The Moore-

Jones Search

K wc cannot guarantee either the existence or non-existence of a solution of

F[z) — 0 in the current box z then for some j € n} we bisect z into the

sub-boxes zp' and z® along the jth co-ordinate direction (1 < j < n) so that

-?(l) = Ui, • • •, £y_n [*//, mfej)], Zy+i, • ■■,xn,

Ml) ■ ■• j My_y, My iMy-t-yi • » I Mn)

Mn|-i) •• •) Mn-+y—i i M-+j ’ • •' M/i)

and

£(2) = Un %•_!, [m.(ky), syyg £y+1, .

(2)Ml) . My-i,Mj- \ My-i-i)*•■) Mn>

M (2) x
n+i) ‘ • * j-Mi-i-j—-> Mi----';’ M.%)

6.49

6.50T

Now m(®y) G int(xy), so in 6.49 My^ = My, «i++.y “ Q, and in 6.50 «y2^ = 0 and

j = Mn+y- Therefore we do not need to bisect z along any of the directions

M.) * ♦*) M.2% *

- 231 -

The bisection procedure is determined by the rules which specify in which co

ordinate direction to bisect x and which half region to select for processing next. The

following rules have been suggested by Jones [Jon--78a].

Bisection Rule 1 (Cyclic Direction Rule) : If initially x ~ x^ (j € {0,..., 2n — 1})

then bisect x in co-ordinate direction 1. If x was the result of bisection in co-ordinate

direction j, for 1 < j < n — 1, then bisect x in co-ordinate direction j +1. If x was the

result of bisection in co-ordinate direction n, then bisect $ in co-ordinate direction

Bisection Rule 1 (BRI) is contained in the procedure cyclic.direction which

follows.

procedure cyclic.direction(i> n € N : j € N)

! This procedure determines the co-ordinate direction j in order to bisect the box x

! and hence 2 according to BRI.

! On entry, i is the last co-ordinate direction in which bisection took place, and n i3

! the number of variables in x.

! On return, j is the co-ordinate direction in which bisection is next to occur.

1. j i + 1

282-

2. if~j> n d&

2.1. y i

3. return

Bisection Rule 2 (Maximum Width Rule) : Bisect x iu the co-ordinate direction

J where J E is the least value of j such that

wUy) max
i<t<»

6.51{“'fe)}' j-,

The procedure maximumwvidtk.direction which implements Bisection Rule 2

(J3B2) is as follows.

procedure maxlmumwvidthdlireciiontj, G J(B3n), n G N : j G N)

! This procedure computes j, where j G {!,..., n} is the least value of j such that

W(»y) = {w(.?,-)},
3 l<t<n

! where ~ (» = 1,..., ?i).

! On entry, e is the current box to be bisected, and n is the number of variables in

! the initial box x.

- 283 -

1. j := 1

2. wmax := w(^)

3. f or i ~ 2 to n dp

3.1. w

3.2. if W > Wmax do

3.2.1. j i

0.2.2. Wffidx xu

4. return _

Bisection Ruls 3 (Newton-Step Direction Rule) : Bisect x in the co-ordinate

direction j where j G {!,is the least value of j such that

I o,j |= max {I Gi 1} 6.521 3 1 l<t<nU

in which the first n components of a ~ ^^(=F'(x))}“i.F(m(i)) only arc used and

.£/(.&) and F(m(F)) are computed from the procedures F.prirne and F in Appendix

D respectively.

Procedure newton.step.direction which implements Bisection Rule 3 (BR3) is

as follows.

procedure newton.siep.direction\a G R?n \n G N : j G N]

- 284

! This procedure computes J, where j & {.I,...,n} is the least value of j such that

! | ay |= max {| a,-|}.
i<»<«

! On entry, a is as in §6.11, and n is the number of components in the initial box

! On return, j is the co-ordinate direction in which Xj is to be bisected.

1. /:=1

2. bma-z *~i al J
3. for i — 2 to n do

3.1. b :—| fl,- |

3.2. if b Omax do

3.2.1. J:=s

3.2.2. b,

4. return
□

Selection Rule 1 (Static Region Selection) : Let zW and z® be the half-regions

resulting from the bisection of Always choose z^ as the next region for analysis

and keep z®.
" □

The procedure static.region, selection which implements Selection Rule 1

(SRI) is as follows.

- 285

procedure, siatic.region.select ion(: region.swap € B)

! This procedure determines that is always to be chosen as

! for analysis and that z® should be kept, where z^ and

! resulting from the bisection of z_.

the next region

are the half-regions

1. region.swap : = true

2. return

Selection Rule 2 (Random Region Selection) : Randomly select one of the resulting

half-regions as the next region to be analyzed.

The procedure randotn.region.selection which contains Selection Rule 2

(£722) is as follows.

procedure random.region.selection^' G N : region.swap eB)

! This procedure returns region.swap = true if r = 0 and region. tftt’Gp ~ false

! otherwise.

- 286 -

1 On entry, r has been determined from the random number generator which is

1 described in §6.16, and takes the equi-probable values 0 and 1.

1. region.swap := r — 0

2. return ___

Selection 'Rule 8 (Newton-Step Region Selection) : Choose the resulting half-region

toward which (~{m.(F/(f))}“ 1 F(m(z)))y points where j is as in BRZ.

The procedure newion.step.region.selection which implements Selection Rule

8 (SRZ) is as follows.

procedure newton,.step.region.seleciion(a G R3r“ , n, r,j G N : region.swap G B)

’ This procedure implements SRZ where a is as in BRZ, n is the number of

1 components in the initial box o, r is as in the procedure

’ random.region.selection, j is as in BRZ and region.swap is as in the

! previous procedures.

1, case true of

ay < 0 :

- 287 -

1.1. region.swap := false

0 < Gj :

1.2. region.swap true

default : ! aj = 0

1.3. random.region.selection(r : region.swap)

2. return f_

Note 6.4 : If Deletion Test 2 in §6.7 has produced two sub-boxes ^i)(=; y^) and

£(2)(= y(D) of z then we do not need to apply the Moore-Jones technique to bisect

Suppose that Q_ = Q(2) where Q is one of the operators which are used in MAP

an.d KAfSW and 2 is obtained from the box z by using the procedure new.z. We

bisect 1 as follows,

(a) If 1 c Q and m{Q) £ 2 then we use BR2 and SR2.

(b) If 1 C Q and m.[Q) 6 2 then we use BR2 and SR3.

(c) Let 2/ ==2 n Q. If m(2) 0 F then we do not bisect F.

(d) Let F be as defined in (c). If m(2) G F and m{Q) G F then we use BRZ and

5723.

(e) If m(2) G F and m{Q) 0 F where F is as defined in (c) then we use BR2 and

5723.

An explanation of (a) - (e) can be found in [Jon-78a].

- 288 —

need the following subsidiary procedure.

procedure auloinatic.rule(z_,Q G I(R3n l 2 3),z,Q G RSn l,n,1 G N : c,s G N)

i which region is to be selected for processing next.

! On entry, 5 has been obtained from z by using the procedure new.z, Q — Q(z),

! is the number of Lag-range multipliers which take the value zero for the box z.

! On return, c € {l, 2, 3} where 1,2, and 3 correspond to Bifl, BR2, and BBS

! respectively, and s G {1,2,3} where 1,2, and 3 correspond to 5721, 572.2, and

! 5723 respectively.

1. c : = 0

2. s := 0

3. case true af ■

IG Q and Q G 1 : I (6).

3.1. c := 3 ! B722

3.2. a := 3 ! 5723

z_ l. Q and Q $ z_ : ! («)

289-

3.3. c 2 ! BR2

3.4. s := 2 ! SB2

2 G I n Q and Q £ 5 P Q : ! (d)

3.5. c := 3 1 BRS

3.6. a := 3 ! SR3

z € zftQ «nd Q 0In Q_ : ! (e)

3.7. c:=--2\ BR2

3.8. s := 3 ! SRS

default :

3.9. write "No such case in automatic.rule."

3.10. stop ! Choices mutually exclusive.

4. return

Note 6.5 : The procedure automatic.rule is U3ed when case (c) does not occur.

Therefore case (c) does not appear in this procedure.

The procedure bisect which contains the implementation of the strategies (a) -•

(e) is as follows.

procedure bisect(z £ I(R3n),Q^£ I(Rin~l), a G R3n~l,SQ G R,q G N2n, Z, r, n, c,

s G Ar, singular, x.star.in.x, automatic, not.less G B ; i G N :

£ I(Rin), bisectl,bisectZ,bisects G B)

- 290 -

! This procedure determines the sub-boxes and z^ from the box z by using

• BRi and SRi (t = 1,2,3) according to the strategies (a) - (e). However, we bisect

S only the first n components (/=■=!,..., tt) in z.

! On entry, Q — Q_(z) where Q_ is one of the operators which are described in Chapter

! 5 and 'z is obtained from _z by using the procedure new.z, e'o > 0 (See §6.11.),

! <i = {w(£.l 2 3 * 5(i))}"’1^T(m(l))» q and I are as in §6.2, r £ {0,1} has been computed

! from the procedure gcnerate.random.number in §6.16, c, $ € {0,1,2,3} where

! f? ~ 1, 2, 3 correspond to BJfo’ (f — 1, 2, 3) respectively and s ™ 1, 2, 3 correspond

! to SRi (s — 1, 2, 3) respectively, if e — 0 and s — 0 then the procedure

! auloma.tic.rule, is used, singular is as in §6.8, x.star.in.x is as in §6.6, and

! not.less is as in §6.11.

1 The input-output parameter i is as in the procedure c^ehc.ch’recfo’orc.

! On return, if hssectH — true and bisect! ~ true then zW -/- 0 and # 0 and if

! z is too small to bisect and might contain a global minimizer then bisect.3 — true.

1. 2(l) := (2)s»xi

2. £<’> := (0)SBX1

3. bisect! := true

■i. bisect! true

5. 6?'secf3:= false

- •291 -

6. neAwz(p,(qonl, x.star.in.x : 1) ! §6.8.

7

8,

F *“ Qn 1

f : — m(l)

9. no.bisection := (z 0 F or not.less)

10. if automatic and no.bisection do

10.1. Q : ~ rn(Q)

10.2. if singular

then

! BR2 and SR2 are used to bisect 1 and to select the half — region

1 for processing next, respectively.

10.2.1. c := 2 I BR2.

10.2.2. 8 := 2 ! SR2.

else ! Apply one of the cases (a), (6), (d), and [e) whichever is valid,

10.2.3. autom,atic.rule(£, Q, z, Q,n,l : c, s)

11. £/ no.bisection

then ! Case (c).

11.1. :

11.2. 1(2) := 0

11.3. old-.zfel’Oxq.n, I, x.star.in.x : F-F) ! §6.8.

11.4. bisects := false

else

- 292 -

1.5. case c of

1 : ! BRI.

11.5.1. cyclic.direction(i, n : j)

2 : ! BR2.

11.5.2. old.z[fTy q, n, Z, x.star.in.x : z1) ! §6.8.

11.5.3. maximum.width.directionfz!, n : j)

3 : I BR3.

11.5.4. newton.step.direction(a, n : /)

default :

11.5.5. write 11 No such bisection choice in bisectT

11.5.6. stop

1.6. if Zj < ?fjj QL 'ZjS < Zj

then

! z. is too small to bisect.

11.6.1. bisect* := true

else

! Steps 11.6.2 and 11.6.3 implement the strategy which is required

! when x* e <9(£) and for at least one i 6 2n} 0 £ £■ fly-.

! See §6.10. This strategy prevents an excessively large number

! of bisections from taking place. This strategy also prevents an

! excessively large number of bisections from taking place due to

- 293 -

1 the singularity of J or to the condition Sf in the symmetric

! operator test,

11.6.2. maximum.widlh..direclion(zxn : k)

11.6.3. i_£k ~ j and w($j) < Sq ! a ” Qc7',!!7')7'.

then

! If the direction in which x is to be bisected is the direction

! k of maximum width and w(xj) < sq then no further

! bisections are needed because Hw(.t$)|| < £o«

11.6.3.1. biseett : = true

else

! If j is not the direction of maximum width and w{xj) < e0

! and ||iy(x)|| > &o then x should not be bisected in the

! direction j in order to avoid producing long narrow boxes.

! Yet x should he bisected since ||w(a;)|| > e0- So x is bisected

! in the direction k of maximum width instead of in the

! direction j.

11.6.3.2. if k j and w{xj) < Sq and ||w(g)|| > go do

11.6.3.2.1.

11.6.3.3. = j ! For use in the next iteration.

11.6.3.4. := (1 • ••, ly-iUJyz.md')],!'.,.!,..

11.6.3.5. e(2) := (1% •.••, ?j_i,[m(l)’ls]:M-+i:-- •

294-

11.6.3.6. ease s of_

1 : ! SRI.

11.6.3.6.1. static.region.selection(: region.swap)

2 : ! SR2.

11.6.3.6.2. random.region.selection(r : region.swap)

3 : ! SR3.

11.6.3.6.3. newton.step.region.selection(a,n,r,j :

default :

11.6.3.6.4. write nNo such region selection in bisect"

11.6.3.6.5. stop

11.6.3.7. if region.swap

then

11.6.3.7.1. 2(1) := y(2)

11.6.3.7.2. z(2) := y(1)

else

11.6.3.7.3. z(I) := g(1>

11.6.3.7.4. z(2) := g(2)

11.6.3.8. old.z(zfl) ,q,n,I,x.star.in.x : z^) ! §6.8.

11.6.3.9. old.z(zf-2\q,n,I,x.star.in.x : z^2’) ! §6.8.

12. return

- 295 -

6.18 Deletion Teat 8

In §6.7 it is shown that the box z can be split into two disjoint snb-box.es z^1^

and z^2\ In §6.12 it is shown that the box z can also be split into two sub-boxes z^1^

and z^ which are not disjoint. If two sub-boxes are obtained then one of them must

be pushed onto the stack 5\ of boxes to be processed and we process the other in the

next iteration.

In order to avoid too many sub-boxes in ,S\ we introduce two deletion tests which

axe called Deletion Test 8.1 and Deletion Test 8.2. Deletion Test 8.1 is used

if z is split into two sub-boxes, which are produced by the tests in §6.7 or in §6.12.

Deletion Test 8.2 is used if the technique which is explained in §6.12 does not bisect

z. *

6,13.1 Deletion Test 8.1

Suppose that z is split into two sub-boxes z^1) and z^'^ which might be disjoint.

If we compute ~ /(x^1^) and ~ where = 1 j W-1-^)* and

o(2) =)2 , and we make a comparison between /, f(l\ and then

1), ^(2) Qj. can be deleted as follows.

(i) fs < jf or fs < //2) : z;1]L1 or zll can be deleted, whichever is appropriate.

(ii) fs' < jf’ : zjll can be deleted.

(iii) 4i) < /p’ ; z^2^ can be deleted.

— 296 -

(iv) fj-^< A /!P < /<?} : If Z(m(p'1))) < Zp^ then P2) can be deleted.

(v) /p) < Zp^ A f^< fs^ : If Z(m(P2p) < /p^ then zyF can be deleted.

(vi) p1^ C p2^ V p2; C p1^ : P1) and P2) cannot be deleted.

In the algorithm MW case (1) is used together with cases (ii) - (vi). Therefore

it is possible that both P1^ and P2^ can be deleted.

6.1S.2 Deletion Test S.2

Suppose that z is the sub-box which is obtained at the end of any one iteration.

Before we start the next iteration we make a comparison between and / where

£ = (zr,MT)r. If fs < fi then z can be deleted.

The pseudo-code for Deletion Test 8.1 and Deletion Test 8,2 is given in

§6.16 in the procedures delete.or.keep.z.l and delete.or.keep.z.2 respectively.

6.14 The Construction of New Lagrange Multiplier Bounds

Suppose that F is a sub-box of z C P^ (0 < * < 2” - 1) which is obtained at

the end of one of the iterations of MW and which will be submitted for the next

iteration, and let z be the sub-box at the beginning of the current iteration. The

box F might be given by 6.49, 6.50 or case (c) of the bisection and selection strategy

which is described in §6.12. Let

-997 -

? in n '—m. t IMn-j-l 1 6.53

It is clear that one of f he following holds : For (j = 1,..., 2n),

(i) M = &

(ii) Mi = m;

(iii) «' is obtained as explained ie §6.11 from the application nf MAP nr of KMSW;

(iv) wj is obtained from a combination of (i), (ii), or (iii).

Therefore we need to reealcnlate the ul. The simplest way of computing the wj is

by dete^Te^enr' whihh of the uj are zero; this is done by checking the eetatlnnohip

between and as follows where X is the initial box for .Problem P.

(a) (x,-r = xJz A x'iS < %) => (« = m A uj,+i = O);

(b) (x,-z < x<, K x'is < &s) => (u< = 0 A «;+, =r 0);

(c) (Xj < xl A x'is = x,s) = ((« == 0 A a^+I- = u^-.,-);

(d) otherwise is unchanged. •

The preceding ideas are contained in the procedure zero.multipliers as follows.

procedure zero.multipliersfyxE I(Ow), n E N : g € iV2n, f G iV)

- 298

! This procedure determines q G JV2ft and I G N.

! If qi = 0 then m — 0; otherwise w 0.

! On entry, & is the initial box for Problem P and x is the current box where

! z —

1. f := 0

2- q : = (lbnxl

3. /or i — 1 to n do

3,1. ease true of

Xu ~ Xu and x,s < Xus : ! (a).

3.1.1. qn\.i 0

3.1.2. + l

Xu < xu aW xt-s < Xis : ! (b).

3.1.3. q,; :™ 0

3.1.4. qn+i ’= 0

3.1.5. H + 2

Xii < Xu and x;s = xiS : ! (c). •

3.1.6. q; := 0

3.1.7.

default : ! (d).

“ 299 “

3.1.8. { }

4. return
□

If we use only the procedure zero.m.ultipliers to determine which. mJ ~ 0 (* =

1..., 2n) then we might obtain mJ 0 even though uz — 0 (? — 1,..., 2n). Therefore,

if Mt ™ 0 then we must set mJ = 0 (i = 1,.2n). So we check whether or not both

% = 0 and mJ- — 0 by using the procedure check.q which follows.

procedure check.q{q 6 N‘?'n, neN;q[' e N'2 € N)

! This procedure ensures that if g* =0 then g(= 0, and therefore that if

1 «i = 0 then w) ~ 0.

1 On entry, q and g* correspond to x and F respectively.

2. return

1. [or * = i to 2n do

1.1. if qi = 0 and g) = 1 do

1.1.1. q[:= 0

1.1.2. l1 lf -j- 1

□

-300 ~

Note 6.6 : The procedures zero.muitipUers and check.q must be used together in

order to obtain the values of q and I for the box F C (0 < ? < 2’ — l).

After the sub-box F which is given by 6.53 has been determined we compute

FL(j)) where F is obtained from F by using the procedure new.z (§6.8) before we

push F onto the stack Si. This is done as follows.

procedure push(X € I(Rn}> F G /(0)3n),g G 2V3n, /, n G N, x.star.in.x G B)

S\,£2,S3,S6 gO)

! This procedure performs the following operat^^ons :

! (i) z! - (FT,u’T)t----o S'jl)

! (ii) q----> S2 where q* is computed by using the procedures zero.multipliers

! and check.q;

1 (iii) V —£ s3 where V is the number of Lagrange multiplier bounds in z* which

! take the4 value zero;

• (iv) F_ = F(z!)--- £ Sq where F is obtained from F by using the procedure

• new.z (§6.8).

! On entry, x is the initial box for Problem P, P is the current box which is obtained

I from the box £, q corresponds to z, I is the number of Lagrange multipiows

! bounds in% which take the value zero and x.star.in.x is as in §6.6.

301 —

1. if x.star.in.x or l ~ 2n

then ! q — (O)2wXi and I ~ 2».

1.1. q---- > S%

1.2. I--- f £3

1.3. new.z(P, g, n, f, x.star.in.x : P) ! §6.8.

else

I We need to compute the Lagrange multiplier bounds for P =

1.4. zero,multiplier 8((,xP n : q%l'}

1.5. check.q(q, n ; qf ,*)

1.6. if. 0 < l do.

1.6.1. for i ~ 1 to 2n do

1.6.1.1. if q\ — 0 do

l.G.1.1.1. P^ := 0

1.7. g---- >S2

1.8. Z—>£3

1.9. new.z(P, g, n, I* x.star.in.x : 1) ! §8.8.

2. F :=£(!')

3. F—~t>£6

4. P—o£i

5. return _

- 302

8.15 The Stopping Criteria

In this section we describe how to terminate Algorithm MW. Suppose that we

seek a solution g* of F{z) = 0 in I as explained in Chapter 4. We have determined sub

boxes (0 < ; < 2n — 1) of I. which might ■ contain zeros of F and we process these

sub-boxes one by one begining with and finishing with “1\ The procedure

construct.zd, which is given in §6.3, is used to determine sub-box ? 6 {0,..., 2n —

1} and to push it onto the stack Si.

If Ss — 0 and i — 2n ~ 1, so that the last sub-box jjf2"™1) has been processed,

then we pop the box(es) containing the solution(s) of F(z) — 0 from the stacks Ss

and 5s. At least one of these boxes should contain the minimizer(s) of f over x.

If 5 — 0 and 5@ = 0 then we pop the point box(es) from the stack 5y. At

least one of these boxes might contain the minimizer(s) of / over x. Next we write

[A — xi, /s], which contains the least value of / over and stop.

If Ss — 0, 55 = 0, 57 = 0 and ex > 0 then we bound f* but not x* [Han-80a],

so we write \fs — «i, fs], which contains the least value of / over x, and stop.

If S4 =/ 0 ov S5 0 0 then we pop all the box (es) from the stack S4 or S5. If

the number of boxes is more than one, A*1,...,*®, say, then we use the procedure

update.f.bar to delete the unwanted boxes, write [/m,/s] where

rfM = min {(/(a*’))/ I 2** ~ (Z*", t£*,T)r (7 = 1,..., a)}, 6.54

- 303 -

and stop. The procedure compule.f.m which computes /m given by 6.54 is as follows.

procedure compute./.m(f_ G I(RS), s 6 N : /m}

! This procedure determines fM ~ ..., A/} where / = (/t,..., f_s)T'

l- Az •= Az

2. f°r i ~ 3 do

2.1. if fir < Zm do

2.1.1. /m •— fil

3. return

If = 0 and i < ’2n — 1 then we process the next sub-box jsA+1\ If Si / 0 then

we pop the sub-box z from the stack Si and its corresponding q, I, and F = F[z}

from the stacks S2, S3, and S& respectively for processing next.

The preceding ideas are contained in the following procedure.

procedure termination^ 1 E R, n, f n*, ns E N, f.bar.ai.mid.x E B,Si,Ss E P ;

, S2, 53, SQ, S7 E P, n7 ENJJeI{R) :

z_ e I(RSn),F e I(RSn-l),q G N2n,l e N, next G 3)

304-

! This procedure determines how to terminate the algorithm MW.

! On entry, > 0, n is the number of components in the initial box sc,

! ' G {0,,.., 2n — l}, is the number of boxes in £h, Ug is the number of boxes

5 in 65 and f.bar.at.mid.x ~ true if / is computed at m(sc) where z

! The input-output parameters Sx — Sq. Sq and 5? are stacks, »? is the number

5 of point minimizers in 5y, / is such that f* < fs where f* is the global minimum

! of f : R" •-» R1 and / =

! On return, z, q, f and F have been popped from the stacks 5%, 5%, S3, and Sq

I respectively, and the Boolean next indicates whether or not to process the next

! sub-box

1* £’.== (0)3nxl

2. F 5— (0)371—ixi

3. q (-Qsn.xi

4. I n= 0

5. next '.■■== false

6. ns n.x + uq -

7. f/ 5 — $ mW i % 2' — 1

then ! AH the sub — bars z?* (£==(),.,. ,2 n —1) have been proeessed.

"71. if is — 0

305 -

then ! 5*4 = 0 and 5g ~ 0.

7.1.1. J u £ 0

then ! 5% — 0.

7.1.1.1. i/>1?X0

then

7.1.1.1.1. write [/5 — gj, /,]

7.1.1.1.2, stop

else

7.1.1.1,S. write "Epsilon 1 is zero in termination"

7.1.1.1.4. stop

else ! 5y , 0.

7.1.1.2. for i ~ 1 to ts do

r.l.1.2.1. 57---- |>X*W ! Pop from S,.

7J..1.2.2. write O‘'!

7.1.1.3. write [/s — ®,/s]

7.1.1.4. stop

else ! 5,4 7I 0 or 5s , 0.

7.1.2. /:~(Q)n.xl

7.1.3. ?i[w := 0 ! The number of minimi 2ers.

7.1.4. for * = 1 (o do

7.I.4.I. 5'4----t>zw

- 306 -

7.1.5. for i = 1 to ris do

7.1.5.1. S5----

7.1.6. for i — 1 ip ns do

! Delete ike boxes which do not contain minimizer(s)

! by using the procedure update, f.bar.

7.1.6.1. /. := /U(()) ! 2W = (®(<)r,uwr)3'.

7.1.6.2. update. f.bar^'Pfj i ^4,7irm) ! §6.4.

7.1.7. compute. f.m(j\ ns : fiu) ? §6.15.

7.1.8. for i — 1 to riM dp

7.1.3.1. S4---- <> Z(t) ! Pop zf^ from S4.

7.1.8.2. write zf 1

7.1.9. write [fM)fs]

7.1.10. stop

else ! S4 7^ 0 or i -f 2n — 1.

7.2. ?7 Si = 0

then ! i 2n ~ 1.

7.2.1. next true

else ! Si 0 0.

7.2.2. Si---- i> z ! Pop p from Sx.

7.2.3. if ~ f.bar.at.mid.x dp

7.2.3.1. re m(#) ! z_ — [x? ,u?)T.

- 307 -

7.2.3.2. f_ := /(.?) ! x is a point box.

T.2.3.3. update, f.bar {x, f; Sy,/, n?) ! §6.4.

7.2.4. S'g —•> q ’ Pop q from p2«

7.2.5. S$---- > I ! Pop I from S3.

7.2.6. Sq---- > P ! Pop F_ f rom Sq.

3- return

6.16 'The Algorithm MW

in order to describe the algorithm MW, we need the following subsidiary proce

du res.

procedure delete.or.keep.z.l(x € T‘(Pn),G I(R3n), f^l\ f^ G J(K),

q G TV2"', n, I G N, x.star.in.x G B ; 5i, 52, S3, Sq G P,

f G I(P), G TV : / G J(P.), f.bar.at.mid.x G B)

* This procedure determines how to delete the boxes A1) and according to

! deletion test 3.1 in §6.13. If z^^ or z® cannot be deleted then Z1) or and

! the corresponding q, I and P are pushed onto the stacks Si, S2, S3 and Sq

! respectively where I and q are as in §6.2 and P is either or P(^°')

! whichever is appropriate and z^ and 'z^ are obtained from zf^ and z®

- 308 ■

respectively by the procedure new.z.

On entry, & is the initial box, and 2Z1 2) are the boxes which are obtained either

by using the test in §6.7 or by using the technique in §6.12, and

f^ = /(aZ2 * * *)) where = (aZ1)2 and ~ (x^T,n^T}7 respectively,

q corresponds to g, £ is the initial box for each iteration, I is the number of

! Lagrange multiplier bounds in £, and x.star.in.x is as in §6.6.

! The input-output parameters Ss, 5g, Sq, and Sq are stacks and / and nr are

! as in §6.6.

! On return, / is the function value at the mid-point of whichever of or xf2)

! is not deleted and which is selected to be processed next. If both Z1) and £^

! are deleted then / is ignored by making f.bar.at.mid.x — false.

1. Z:=0

2. f.bar.at.mid.x false

3. case true of

f<^ < fi^ : • (zz) in §6.13, zf is deleted.

3.1. i/ /f2) < fs A°

5 df fs < /)2a ((0) in §6.13) then zf2^ is deleted.

3.1.1. Z := Z(m(w222)) ! ~ (x^)2 .

3.1.2. f.bar.at.mid.x : = true

3.1.3. if fs < fi dp

- 309 -

3X3,1. f — [fs,fs}

3.1.3.2. nr 0 ! / can be updated at m(xpd) but m(x^) ■+—>

3.1.4. push(x, zp\ q, I, n, x.star.in.x ; Si,S%, S$, Sq) 1 §6.14.

/jP < ♦ • (’**) in §6.13, is deleted.

3.2. «/ /)1; < fs do

! If fs < fr^ ((*) in §6.13) then zf1^ is deleted.

3.2.1. / ffm(x^)) ! zf1^ = (xj-1^, u^T)T.

3.2.2. f.bar.at.mid.x true-

3.2.3. i_f fs < fr do

3.2.3.1. ~f'.~-[fsd's\

3.2.3.2. nr 0 ! / can be updated at but m(xf^) -/■-$> Sr.

3.2.4. push(x, z_^\ q, I, n, x.star.in.x ; Si, S2, S$, SQ) ! §6.14.

fr^ < Z/2) and f^ < f^ : ’ (iv) in §6.13.

3.3. if_ rfi} < fs do

• df fs < /J1'1 then z^ and z_^ can be deleted.

3.3.1. f(rn(x^)) ! -- (ap)7 ,updT)T.

3.3.2. f.bar.at.mid.x true

3.3.3. £/ /j3) < fs do

I 1/ fs < then z<2> can be deleted.

3.3.31. push(l, ,q,I, n, x.star.in.x ;

S'i,S2..Ss,Se) ! §6.14.

- 310 -

3.3.4. if_ /s < h do

3.3.4.X. / := \ fs, fs]

3.3.4.2. s? = 0 ! £ can be updated at but m(^^) Sy.

3.3.5. push{%, ihlCn x.star.in.x ; Si, S2, S§, Sg) 1§6.!4.

f^ < fjl <nd fs^ < fif1 . ! (v) in §6.13.

3.4. nl fjn < fs do

! If fs < Zpn then z^2^ and z^ can be deleted.

3.4.1. Z := /^Qk(2))) ! *(2) = U(2)^u(2)V-

3.4.2. f .bar.at.mid.x : — true

3.4.3. if fj'S < Zs A

! If fs < fp^ then 1 can be deleted.

3.4.3.1. push(! z^l\s, I, n, x.star.in.x ;

Sis?2, %, S6) I §6.14.

3.4.4. i£ fs < fi do

3.4.4.1. £:=[fs,fs]

3.4.4.2. f? — 0 ! f can be updated at m(x^) but rn(x^) 7S—> 5?.

3.4.5. push{x, z^2\s, I n, x.star.in.x ; Si, S2, S», Se) ! §8.14.

default : ! (vi) in §6.13. -

3.5. sf_ f/SS < fs A

\ If fs < f/S fAen can be deleted. Case (z) in §6.13.

3.5.1. if £<lS < A A

-311-

3.5.1.1. ?:=(41)-4')!

3.5.1.2. := 0 ! 7 can be updated in xf^ but —> Sy.

3.5.2. push(x, I, n, x.star.in.x ; Si. S%, S$, S<f) ! §6.14.

3.6. £/ /J2) < f3 do

I If fs < then z® can be deleted. Case (t) in §6.13.

3.6.1. £/ 42) < fi dp

3.8.1.1. Z:=[42)-42)l

3.6.1.2, ny := 0 ! ? can he updated in but x^ -f—1> Sy.

3.6.2. pushffp 42\ f n, x.star.in.x ; Si, S2, S3, S6) ! §6.14.

return
□

roeedure delete.or.keep, z .2\x_ G I[Rnfzf 6 € 7V2zi, n, I G N,

x.star.in.x G B ; Si, S2, S3, Ss G B, /> / £ 1(B),

ny G N : f.bar.at.mid.x G B)

This procedure determines how to delete the sub-box zf according1 to deletion

test 3.2 in §6.13. If B cannot be deleted then B, and its corresponding’ q, I, and B

are pushed onto the stacks Si, S2, S3, and Sq respectively where q and I are as in

§6.2 and F_~ B(B) in which z! is obtained from B by using the procedure new.z.

All the parameters are as in the procedure delete.or.keep.z.l except zf where z' is

- 312

! the sub-box which is obtained by processing the box z in one of the iterations

! of MW.

1. f.bar.at.mid.x :== false

2 • LLfi fs o

IIf fs < fi then F can be deleted.

2.1 • /_ := /(m(O ! F ~ AWf-

2.2. f.bar.at.mid.x := true

2.3. £/ fs < fr dp.

2.3.1. / - lfsMs}

2.3.2. »7 := 0 ! / can be updated at rn(F) but m($z) •/--> 5?.

2.4. push(x, F, q, I, n, x.star.in.x ; Sx, Sg, Sq, Sq) ! §6.14.

3. return
I_ i

procedure solve[x G g, g G N2n, m, n, I, p, maxit G N, So, sx G R,

x.star.in.x e B ; SX) S2, Ss, S4, S6 G P, z G/(72Sn), / G J(H),

n.5, U7 G N : Q G I(R^?^rt~l),a G R3n~l, not.less,

push, or .delete.z, singular, go.to;deletion.test.2 G B)

! This procedure implements algorithms MAP and KM SV/ which are described in

1 Chapter 5.

313 -

! On entry, all the parameters are as explained in the previous sections except

! m G {l, 2} where if m ~ 1 then algorithm AIAP is used and if m — 2 then

! algorithm KMSW is used.

! The inpnt-outpnt parameters are as explained in previous sections.

! On return! Q_ — Q (z) where Q is one of the operators which are described in §8.11

1 a is as in §6.11, push.or.delete.z — true if z —-> Si, z_---------1 S±, <---- > Sg

! or £ is deleted, singular, and not.less are as in §6.11.

! If by the procedures MAP or KMSW (See §6.11.) co'n-verged ~ true (or

I maxi. reached — true) then £ is pushed onto S± (or 5'5). However, if

! > 0 then f* is to be bounded but not 2*. Therefore if converged = true

! (or maxit.reached = true) and 6% > 0 then we do not push z onto (or 5g)

! because we wish to process £ until is deleted. Therefore _ is pushed onto Si

! for processing next. Since £ is small and might contain a global minimizer, we

! start to process £ using the procedure deleiion.test.2 so we set

! go.to.deletion.teSt.2 := true to denote this fact.

1. 2.:= (Q)3n~fxl

2. a := (0)g% _fx 1

3. noLless : = false

4. singular false

6. push.or.delcte. z := false

- 314 -

6. go. UndeletionJest.2 false

7. case tn)£

1 :

7.1. MAP(q, n, l,p,matxit,Q, x.star.in.x ; £ : Q,a, singular,

not.less, no.zero, converged, maxit.reached} 1 §6.11.1.

2 :

7.2. KM'^^^Bzq7n,>^5,^m^ax^;t?7Qox.’'^^’^a?’.in..x ; _ : Q, a, singular,

not.less, no.zero, converged, maxit.reached) ! §6.11.2.

default : ! No such algorithm.

7.3. write "Inappropriate value for m in solve."

7.4. stop

! Af ter one of the algorithms MAP and KMSW is used the following

! cases might occur.

8. case true of

converged : ! ||w(/)|| < eo, cases (u) for MAP and (iv)f for KMSW.

8. 1. / /(&) ! z = (xr pu1)T,

8.2. i/ Zf < Zs A

8.2.1. if fs < fi dp

8.2.1,!. /:= Zs'ZsJ

8.2..12. ny j~ 0 ! £ ~£—£ 5%.

8.2.2. *Z 0 < e.i

>315 ~

then

! f* S5 bounded but not z*. Therefore we

! push z onto Si for processing neat.

8.2.2.1. go.to.deletion.iest.2 true

8.2.2.2. push(z, £, g, L n, x.star.in.x ;

Bl,S2,53,56) ! §6.14.

else

5.2.2.3. z---- 1> Si ! £ is pushed onto S±.

8.2.2.4. Hi Hi - J-1

8.3. push.or.delete.z := true

no.zero : ! The coses («?) and^H)* for MAP and KMSW respectively

8.4. push.or.delete.z := true

maxit.reached : 1 <4 z* [k < maxit) (§6.11).

8.6• / := /(&) ! £ = ($< 11<)<-

3.6. «7 // < fs dp

8.8.1. 7 /s < fi A

8.6.1.1. /:“[f.s,fs]

8.6.1.2. ny *— 0 ! x ———> 5?.

8.6.2. if_ 0 <@i

then. I See step 8.2.2. of this procedure,

8.6.2.1. go.to.deletion.test.2 true

- 316

8.O.2.2. push(£, z, q, I, n, x.star.in.x ;

5i,5g, 53, 5g) ! §6.14.

else

5.6.2.3. £---- o 5s ! £ might or might not contain z*.

5.6.2.4. tiq hq +■ 1

5.7. push.or.delete.z true

default :

! Cases (Z) and (»)* for MAP and KMSW respectively are included here

8.8. 7f_ ||w(£)|| < ®o dp

8.8.1. / := fx) ! z = (x1\uT)r.

8.8.2. il h < fs do

8.8.2.1. iffs <ft do

8.8.2.1.1,

8.8.2.I.2. n> := 0 ! $-/-—> 5y.

5.8.2.2. if Ocsi

then ! See step 8 .2.2 of this procedure.

8.8.2.2.1. go.to.deletion, test.2true

8.8.2.2.2. push{x, £, g, I, n, x.star.in.x ;

Si,S3,S3,S6) ! §6.14.

else

8.8.2.2 .S 54 ! £ is pushed onto Sf

317

S.8.2.2.4. r.4 4-1

8.8.3. push.or.delete.z true

9. return
□

procedure timedo.real(s ES : t E R)

! The CPU (central processing unit) time since logging in is expressed by the system

! procedure time as a s string in the form nl, n2 : «3, n4 : n5, n6 : n7, wS where the

! decimal digits ni (Z — 1,,.., 8) represent the time in hours, minutes, seconds,

! tenths of a second and hundredths of a second from midnight.

1. ITT i -■ to 2 do

1.1. Ui := decode{s(i | l)) — decode^O”) ! Appendix D.

! ^(Z | l) is the sub — string of s consisting of the ith character

! of s, and nO” is zero expressed as a string,

I The procedure decode is such that decode[t) is the AOOH

! code corresponding to the character t.

2. for i — 3 W 4 do

2.1. m decode[s(i + 1] 1)) — decode(Hdfl) ! Appendix D.

3. fo^’ % = 5 to 6 do

3.1. ni := decode(s(i + 2 | 1)) — decode("(yf) ! Appendix D.

- 318

4" f or i = 7 io. 8 do

4.1. := decode(s(i H 3 | l)) — decode(,!0") S Appendix D,

5. i := S600(!0ni + Mg) -f 60(l0ft3 4- m<) + (IOm 4- Mg) + ti jQ -1 m/1OO

6. return <_

procedure generatenrindom.number (: r C N)

! This procedure generates an integer r C {0,1} from the procedure time

1 (Appendix DJ which returns the CPU time used since logging in.

1. r := lruncate(time.io.real(time : <)) rem 1023

! The procedure truncate [ColM — 82a] is such that truncate{x) returns the

1 integer i such that | i |<| f |<| * | -1.1 and i * x > 0.

2. r := (29r 4- 217) rem 1024

3. r truncale^r/ 1023 4- 0.5)

4. return

procedure hi sect .or.delete. z{t € d(Rn),z C .('(j^3<),Q? G /(P3n“l), <o, 01 E

z& G /(P3n),« GR*n~l,q G N2n,n, I, c,s G 77,

z.star.in.x, singular, z.is.splll,aatomatic, not.less C B

S±, S2, s3, S5, Bq E P, 7 G 7(P), n5, nf C N :

- 310

/ 6 I(R), f.bar.at.midcx G B)

! This procedure implements the ideas which are described in §6.12, §6.13, and §6.14.

! On entry, x is the initial box, £ is the current box, Q and a are as in §6.11, s0 and

! obtained from the procedure deletion.test.2 in §6.7, o and I are as in the procedure

! deiete.or.keep.z.l, x.star.in.x is as in §6.6, singular is either a result of the

! procedures symmetric.operator.test or solve, z.is.split is a result of the

! procedure detetion.test.2 (§6.7), c, s, automatic is as in the procedure bisect

! (§6.12) and not.less is as in §6.11.

1 The input-output parameters are as explained in previous sections.

! On return, all the parameters are as in the procedure detete.or.keep.z.l except

! go.to.deletion.test^ where go.to.deletion.test.2 is as in the procedure solve.

1. glneratl.random.o.u,n^ber(: r)

2. f.bar.at.mid.x := false

3. go.to.deletion,tesi.2 :== false

4. / - 0

5. if z.is.split

then

! £ is split into and z^' as described in §6.7.

320 -

6.1. ,^1^ ?)r

5.2. /_(2) ‘=fW{2)) ! = U(2)T, w(2)rf

5.3. delele.or.keep.z.l(x, ■> z.^, f^, , q, n, f, x.star.in.x ;

Bi, Sg, 5s, Bq,Jj M : /, f.bar.at/mid.x) i §6.16

else

5.4. 5?secf((., Q, a, so, #, f, r, m, c, s, singular, x.star.in.x, automatic, not.less ;

i : ^\biseciA,irieecl2,bieect3} ! §6.12.

5.5. if bisectZ = true

then

i £ is too small to bisect.

5.6.1. / := /((.) ! £ = (^jM2)r.

5.5.2. ££ A < /g A

• f f fs < fi then £ can he deleted.

5.5.2.1. £/ fs < fi do

5.5.2.1.1, l-,= |/s,/s|

5.5.2.1.2. My 1= 0 ! £ 7—!> B'.

5.5.2.2. ?/ 0 < Si ! See the comment in the procedure solve.

then ■

5.5.2.2.1. gododeletiondest.?, true

5.5.2.2.2. push(x, _ q, f, n, x.star.in.x ;

Si ,52, S:t,,%) ! K6.14.

-321

else

5.5.2.2.3. z---- > Sq ! z_ might contain a global minimizer.

5.5.2.2.4. Mg c= n$ 4-1

else

5.5.3. case true of

bisect! and bi sect-2 :

5.5.3.1. / := ~

de!ete.or.keep.z.2(x, z^,q, n, I, x.star.in.x ; Si, S2, S3, S,

fifiM? • f.bar.at.mid.x) ! §6.16.

bisect! and bisect2 :

5.5.3.3. /(1) := /UC1)) ! 2(1) = (£(1)\ u(1)I')r

5.5.3.4. /(2) := /U(2)) ! _z(2) = (s(2)r,u(2)r)T

5.5.3.5. delele.or.keep.z.l(i, £p\q, n, I, x.star.in.x ;

Si, S2, S3, Sq. J, m? :

/, f.bar.at.mid.x) ! §6.16.

default : ! No such case.

5.5.3.6. write >fNo such case in bi sect.or.delete. z.n

5.5.3.7. atop

6 j

6. return
I__ i

procedure process.z.i(x I(Rn),q & N2n m, n, p, maxit, i, c,s G N, Cq, ei?

- 322 >

02 G R, x.9tar.in.8,au.tamatiw G B ; Pi,p2»p3,

%, %, %, $7 G P, /, / £ !(&), M4, «5 i n7, j G iV,

f.bar.at.mid.x, go.to.deletion.test.2 G B :

ncaf G P)

i Tliis procedure combines ail the techniques which are described in §6.4 - §6.15 in

1 order to obtain the solution(s) of F(z) = 0 for NP.2 and hence the minimizer(s)

i of f : Rn R1 2 3 for Problem P.

! All the parameters are as explained in the previous procedures.

1. k : =0

2. termination^!, n, i, n±, Mg, f .bar.at.mid.x, %, % ;

Pi,p2, Pa, Pe,p7, «7/,/ :

z,F_,q,l, next) ! §6.15.

3. £/ ~ next dp

! If go.to,deletion.iest.2 — true then the box which is popped from % can be

! pushed onto % or % as described in §8.11, since if we wish only to bound

1 f* but not x* then we must push that box onto Si for processing next.

I // go.to.deletion.test.2 = true then we by— pass the procedures de!etion.test.l

! and gradient .test because these procedures cannot delete any part of z_.

3.1. if ~ go.to.deletion.test.2 do

- 323 -

3.1.1. deletion.test.i(Fd^:l : delete.?) \ §6.5.

3.1.2. if ~ delete.z do

3.1.2.1. gradient,test^ n, I, g, x.star.in.x ; £7, z, /, n>? :

k, delete.z) ! §6.6.

3.2. i/ delete.z do

3.2.1. delelion.tesi.ZQ f^Gh n, I, kyq, x.star.in.x \ z_ :

J_, zf'1), z£2\delete.z, z.is.split) ! §6.7.

3.2.2. not.less := false ! §6.11.

3.2.3. singularfalse

3.2.4. push.or.delete.z false

3.2.5. Q:=(Q)3ft_fxl

3.2.6. a := (0)3n._jxi

5 Q is either K_N (MAP) or S_ (KMSW) as explained in Chapter 5.

3.2.7. if ~ delete.z and z.is.split do

3.2.7.1. symmetric.operator.lest(x, J_, g2, n, x.star.in.x ; j

g, Z,n7 • Sf, bi sect, z, solve.F.z

delete.?^ singular) ! §6.8.

3.2.7.2. Q'.= S

3.2.7.3. if ~ delete.z and bisect.z and I > 2n ~ 1 do

3.2.7.3.1. n.c.test(J_, & qy rc, I, x.star.in.x ;

z_ : delete.z) ! §6.9.

-324

3.2.7.S.2. if ~ delete.z dp

3.2.7.3.2.I. - solve.F.z dp

I §6.10.

3.2.7.3.2.1.1. s.c.s.tesi(z,n :

bi sect. z)

3.2.T.3.2.2. if ~ bisect.z dp

3.2.7.3.2.2.1. so!ve(x, q, q, m, n, i,

p, maxit, $o, 2i,

x.star.in.x ;

Bsi Bo , .£} jf >

m4) Mg) My • Qx

a, not.less,

push.or.

delete.z,

singular,

go.to. deletion.

fcsf.2) ! §6.16.

3.2.8. if delete.z and ~ push.or.delete.z dp

3.2.8.I. bbseet.or.dedele.z{fz, z, Q_qq,zZ2Z, a, q, n, l,c, s,

x.star.in.x, singular, z.is.split, automatic,

325 -

not.less ; Si, S3, %, %, %,/, Mg My, / : /

ga.to.delelion.le$t.2, f.bar.zt.mid.x) ! §6.16.

4. return

Using the preceding subsidiary procedures, the algorithm M.(W may be described

as follows.

Algorithm MW7

Data : % = 0 (2 = 1,7) G P, n, m,p, c, s, maxit G iV, $0, 1'?. G P,

automatic, x.star.in.x C B,x. C L(Pn)

1 7 stacks are used in MW as follows :

! Si contains the boxes to be processed.

! S2 contains the integer vectors q — (<t)2»xi where qi is computed from 6.17.

! % contains the integers I where I is the number of Lagrange multipliers which take

I the value zero as described in §6.2..

! Si contains the boxes which contain the solutions of F{z) = 0 or the boxes z

! which satisfy ||w(£)|| < $0 where $0 > 0.

I % contains the boxes which satisfy th« condition -A M (k < maxit) as

1 described in §6.11, where z* is the solution of F(z) ~ 0 and maxit is the

— 326

! maximum number of iterations.

! Sq contains F 'where F — Ffz) for the box z which is pushed onto the stack St.

! Sy contains the point boxes x such that / — f_(z) where fs is an upper bound on

! the minimum value of / over X.

! n is the number of variables of / : —> Ri.

! m € {I, 2} where if m — 1 then MAP is used and if m — 2 then KMSW is used.

! p G {—2, —1,0,oo} where if p = —2 then strategy 2 (Chapter 5) is used, if

! p = —1 then strategy 1 (Chapter 5) is used and if p > 0 then p is the given fixed

! number of times that Ff and {m(Fli')}“1 are reused as described in §5.3.

! c, s G {0,1,2, 3} where c = 1, 2,3 correspond to the BRi (; — .1,2, 3) (§6.12)

! respectively and s = 1,2,3 correspond to the SRi (f ~ 12,3) (§6,12)

! respectively. If u = 0 and s — 0 then the procedure automatic.rule is used.

! 'maxit is the maximum number of iterations.

! $0 > 0 such that the box z with ||w(z)|| < $o is pushed onto %.

! > 0 is used in §6.7 for bounding the global minimum value f*.

1 $2 > 0 is used with 6.47 which is decribed in the case (iu) of §6.8.

! The Boolean automatic is such that if automatic — true then the bisection and

! selection rules which are described in [Jon-YSa] are used else BE2 and SR3

! (§6.12) are used.

! The Boolean x.star.in.x is such that if x.star.in.x = true then a* G ml(&) else

327

I x* G x where re* is the global minimizer of f : Rn J?1

! box which is assumed to contain re*.

and x is the initial

1. u := (0)2nXi ! Box containing the Lagrange Multipliers.

2. q := (l)2nxi 0 0 then fa = 1 else qi - Q (i ~ 1,..., 2n).

3. I := 0 ! I is the number of Lagrange multipliers which take the value zero.

4. if x.star.in.x

then

! x* G int(xj. Therefore only the first n components

! of F need to be considered.

4.1. tf:=(0)2«xi

4.2. I 2n

else

! x* Ex. Therefore we need to determine u, q and I

! for the initial box re as explained in §6.2.

4.3. d := g(re) ! £(re) = f(z)T-

4.4. lagrange.multipliers{d,n ; u,q,l) ! §6.2.

5. n.4 := 0 ! The number of boxes on S^.

6. n5 :== 0 ! The number of boxes on S->.

7. 7 • ? 25 such that f* < fs (6.42).

8. f.bar.at.mid.x true ! f is computed at mfx).

- 328 -

9. m(xf ~—> S? ’ m(x) is pushed onto Sy.

10. ny := 1 ! ny is the number of point boxes on Sy.

11. j := 0 ! The eo — ordinate direction for use in §6.12.

12. nextfalse

13. go.io.deletion.test.2 := false

! This Boolean is used for bounding f* but not %*. See the comment in the

! procedure solve.

14. for i — 0 to 2n — 1 do

! Process the box z^ where i £ {0,... ,2n •- 1}. The box z^ is determined

! in §6.3. If has been processed then z^i+1^ is processed, so

! next = true (see §6.15).

14.1. construct.z.i(x,u,q, n,i, x.star.in.x : ! §6,3.

14.2. J ~ n ™

! We assign the first n components of z_^ to y in order either to

! update f_ if possible or to delete y and hence if possible.

14.2.1. 3^.:= 4°

! We wish to process z^ (0 < / < 2n — 1) where z^ (^'T ,u^T)T •

! Initially we compute f f(m(x)). If i -- 0 then we update f at m Gt(0))

! because m(x) € ;ij°\ If 0 < i then the current f has been updated at

! several points during the processing of the sub — boxes

! (/ = 0,..., i ~ 1). Therefore the sub — box at which f is updated does not

329-

! belong to . Therefore if 0 < i then we can update f by comparing it

! with f_(x^).

14.3. t/»=0

then

14.3.1. / Z(w(|/)) • f.bar.at.mid.x — true.

14.3.2. If fs < fi do

14.3.2.1.

14.3.2.2. n7 := 0 ! m(y) ~f~^> S7

else

14.3.3. f.bar.at.mid.x :== false

14.3.4. /:= /(g) !

.14.3.5. Ofi<fs

then ! update f_if possible.

14.3.5.1. if fs < fi do

14.3.5.1.1. ~f_-[fs,fs\

14.3.5.1.2. n7 :=0 !j//->S7.

else ! is deleted. Therefore the box is processed.

14.3.5.2. next := true

14.4. if ~ next do

14.4.1. ---- i> Si ! is pushed onto Si.

14.4.2. q^ ---- > S2! q^ is pushed onto S2.

-330-

14.4.3. ---- > S3 ! #is pushed onto S3.

14.4.4. F := F(2^) ! Appendia D.

14.4.5. F---- > Sq ! F(2^) 8 pushed onto Sq.

14.5. while ~ nett o r i = 2n — 1 dp

! The box F2 _1^ is the last box to be processed by the algorithm

! MW, If f — "n — 1 then all the e^^setHs which are kept on the

! stacks Sj, S5f and S are popped in thf prceeduee

! termination {See §5.15).

14.5.1. process.z.i(x, q, m, n,p, maxit, i, c, s, s0> s.h $2,

x.star.in.x, automatic ; Si, S, S, S, S,

Sq, S7_/ M, n5, n7, j, /.bar.at.mid.x,

go.to.dhlhtio■n.thst.2 : next) ! §5.16.

15.

14.6.

stop

nexi f— falee

□

331 -

CHAPTER 7

Numerical Results

This chapter contains some numerical results which are obtained by using,”

Hansen’s algorithm (£f) which is described in Chapter 3 and the algo

rithm MW which is described in Chapter 6. The effectiveness of the both algorithms

is exhibited using the examples which are given in Appendix C. For each example it

is assumed that the global minimizers are to be found in the box r G J(i?n).

7.1 Computations and Tables

The algorithms H, and MW have been implemented in Triplex S-algol [BaCM-

82a] [MorC-83a] on a VAX-ll/785 computer.

In the algorithm H, if /* the global minimum and a* the global minimizer(s) arc

to be bounded within an error $o then we choose $o — 10”6, $i — 0, and $2 = 10”®

[Han-80a], and if f* is to be bounded but not x* within an error $1 then we choose

$0 = 10 $i = 10 and $2=0 [Han-80a].

In the algorithm MIW, if /* and x* are to be bounded within an error $0 then

we choose $0 = 10~®, $1 = 0, and $2 = 10“2, and if f* is to be bounded but not a*

within an error $1 then we choose $0 = 10 ~6, $1 = 10 “6, and $2 = 10 “2.

- 332 -

Iu the algorithm H, gg — 10”® i& such that if ||w(x)|| > $g where x is a sub-box

of & then _ is inserted into the queue Lg of boxes to be processed. In contrast, in the

algorithm MW, $2 = 10“2 is used in the procedure ied.newion (§6.8) only.

Since we do not know whether a;* G int(5^ or x* G <(&) we test both algorithms

in the two cases (a) x* G %?7((Z) and (b) x* G x separately.

The results which are obtained by using the algorithm MW depend on the choice

of methods for solving F{z) = 0 (§6.11), for determining the pW (§5.3), and on the

bisection and selection rules (§6.12). With both MAP and KMSW (§6.11), strategy

2 for determining pW (§5.3) and the bisection and selection rules corresponding to

cases (a) — (e) (§6.12) have produced the best results.

Table 7.6 of CPU times shows how Algorithm MAP compares with Algorithm

KMSW for 3 examples. These results indicate that MAP and KMSW are almost

equally effective.

The results which are obtained by applying E and MW to the example's listed

in Appendix C, and which consist of the number of evaluations of various functions,

the CPU times, the global minimizers and the global minima which correspond to

the four cases (i) x* G mf(x) and $1 = 0, (ii) x* € x and Si = 0, (iii) x* G mf(r) and

$1 = 10"®, and (iv) x* G x and ex = 10"® are given in tables 7.1.1 - 7.4.3. For the

algorithm H, nf is the number of objective function evaluations, ng is the number of

gradient evaluations, nf is the number of Hessian diagonal element evaluations, and

nj is the number of Jacobian evaluations. For the algorithm MW, nj, ng, and ngj

have the same meanings. In addition, nc is the number of constraint evaluations, np

is the number of F evaluations, and is the number of F' evaluations, where F and

- 333

F1 are given in Chapter 4. Since the Hessian of the objective function / is computed

from the Jacobian of f and from Ff for algorithms H and MW respectively the

number of Hessian evaluations is not included in the tables. In all of the tables ns is

the total number of function evaluations.

If x* G 5(1) then for the cases (i) and (iii) the algorithms H and MW might

not be able to bound the global minimizers because boundary points of x_, including

X*, might be deleted. Furthermore, if the global minimizers cannot be bounded then

the global minimum bound cannot be obtained. Therefore in tables 7.1.3, 7.1.4, and

7.3.3 for example 1-4, for which x* G <5(x), we write x* G <9(1) to denote that the

global minimizers cannot be bounded and the correct global minimum values cannot

be obtained.

Tables 7.1.1 - 7.1.4, 7.2.1 - 7.2.4, 7.3.1 - 7.3.3, and 7.4.1 - 7.4.3 contain the results

corresponding to the cases (i) x* G m£(&) and $i = 0, (ii) z* G x and s = 0, (iii)

x* G int(x) and = 10“®, and (iv) x* E x and $i = 10“® respectively.

For both algorithms, ny, ng, nj, a, n.c, np and npt are given in tables 7.1.1,

7.2.1, 7.3.1, and 7.4.1; the CPU tirm^ss are given in tables 7.1.2, 7.2.2, 7.3..2, and 7.4.2;

the global minimizer bounds are given in tables 7.1.3, and 7.2.3 only, because for the

cases (iii) and (iv) /* is to be bounded but not x*. The global minimum bounds are

given in tables 7.1.4, 7.2.4, 7.3.3, and 7.4.3. The abbreviation Ex. and Alg. which

are appear in the tables are abbreviations of Example and Algorithm respectively.

In tables 7.1.1, 7.2.1, 7.3.1, and 7.4.1, nj jnpt means that rij and n^' correspond to

H and MW respectively, and ns is the total number of function evaluations for H

and MW. The notations * and ** mean that the computations need more than 500

- 334 —

and 3600 seconds respectively of GPU time. If m = 1 then the code for algorithm H

cannot be used and this is indicated by the character ^in the tables.

We have applied the algorithm MW to the whole box £ without constructing

the sub-boxes £/* (* — 0,..., 2n —1) from £. Numerical results are shown in tables

7.7 and 7.8. In the second columns of tables 7.7 and 7.8, "MW with" means that

the algorithm MW has been tested with sub-boxes £* (i = 0,..., 2n — 1) and with

£, the whole box, separately. These results indicate that the method in which the

sub-boxes (* = 0,... ,2” — 1) are constructed from £ is more efficient than the

method in which the sub-boxes £^* (f = 02” — 1) are not constructed.

7.2 Discussion

The results which are obtained from the algorithms H and MW are given in

tables 7.1.1 - 7.4.3 for the cases (i) x* G m((x) and = 0, (ii) x* G x and $i = 0,

(iii) x* G int{x) and $i = 10“®, and (iv) x* G x and $i = 10“6.

(i) x* G m((A) and $ =0 :

From Table 7.1.1, the number of evaluations ns (ny, ng, nnd, m, np, nj, np/)

which are needed by MW is less than that needed by -H.

For examples 4-16 the CPU times (Table 7.1.2) which are needed by the algo

rithm MW are less than those needed by the algorithm H especially for examples 5,

9, 12, 13, 14, 15 and .<6. For examples 6, 7, and 11, however, H requires less CPU

time than does MW.

- 335

The global minimizers and the global 'minima for both algorithms which are

bounded within an error 10“® are given in tables 7.1.3 and 7.1.4 respectively correct

to 16 decimal digits.

(ii) z* G z and $1 = 0 :

From Table 7.2,1 the number of evaluations ns (n/, Ug, na&, »c, nj, npr)

which are needed by MW is less than that needed by H.

From Table 7.2.2, we observe that for examples 4 - 16, the CPU times which are

needed by the algorithm MW are less than those needed by the algorithm H, save

for example 10.

The global minimizers and the global minima for both algorithms which arc

bounded within an error 10”® and which are recorded to 16 decimal digits are given

in tables 7.2.3 and 7.2.4 respectively.

(iii) x* G ?«<&) and $i = 10~® :

From Table 7.3.1 the number of evaluations Mg (my, rig, npa, nc, np, nj, npt)

which are needed by MW is less than that needed by H.

From Table 7.3.2, the CPU times which are needed by MW for examples 4-16

are less than those needed by H save for 6, 7, and 11.

For this case the global minima only are be bounded. See Table 7.3.3.

- 338 -

(iv) x* G & and si = 10 ®:

The number of evaluations ns (n/, ng, nid, m, np, nj, np#) for both algorithms

are given in Table 7.4.1 where it can be seen that the algorithm MW needs fewer

evaluations than does H,

From Table 7.4.2, it is seen that the CPU times which are required by MW to

solve problems 4 - 15 are less than those required by H save for examples 6 and 10.

Table 7.4.3 contains the global minima for both algorithms.

For Example 17, x* G 5(z) and strict complementary slackness does not hold

at z*. The results for this example are contained in tables 7.9.1 - 7,9.5. The results

in tables 7.9.1 - 7.9.4 indicate that MW tends to be increasing less computationally

expensive than H as n increases. The results in Table 7.9.5 indicate that it is better

to process the sub-boxes (s = 0...., 2" — 1) than to process the whole box £.

The results in tables 7.9.1 - 7.9.5 also suggest that as n increases the proportion of

CPU time which ie required for function evaluation in the algorithm E increases

to a greater extent than it does in the algorithm MW. This might account for the

increasing superiority of MW over E as n increases, which is frequently observed,

and is illustrated by Example 17. This might also account for the often-observed

superiority of MW over E when / and its derivatives are expensive to evaluate.

- 337 -

7.3 Conclusion

From the numerical results which have been presented in Chapter 7 it is clear

that, with few exceptions, MW requires fewer evaluations of function, gradient, Hes

sian diagonal elements, constraints, F and F* where F and F' are given in Chapter

4, and less CPU time than does H, at least for the implementations which have been

used.

- 338 -

Ex. Alg, »/ njHd Up nj /npt

1 H #

i—

* -
MW 28 11 0 2 18 12 71

2 H # # #: - - # #
MW 12 4 0 1 7 5 29

3 H # # # - - # #
MW 102 38 0 1 46 36 223

4 H 128 198 84 - - 42 452
MW 80 31 5 5 71 36 228

5 E 1353 2121 900 - - 450 4824
MW 348 138 14 13 299 150 962

6 H 80 120 51 - - 25 276
MW 70 28 5 5 50 32 190

7 . H 36 56 22 - M 11 125
MV/ 30 12 9 8 31 19 109

8 H 216 331 146 - - 73 765
MW 139 58 12 11 123 67 410

9 H 190 290 114 - - 57 651
MW 134 48 8 6 104 54 354

10 E 171 257 98 - - 49 575
MW 110 41 8 8 93 50 310

11 E 41 61 39 - - 13 154
MW 44 15 20 -10 39 22 150

12 H 1553 2386 1383 - - 461 5783
MW 704 253 70 34 590 286 1937

13 E 478 738 616 - 154 1986
MW 115 40 48 16 85 41 345

14 E 539 789 " 684 - - 171 2183
MW 121 37 6 2 62 36 264

16 E 321 493 600 - - 100 1514
MW 106 16 70 14 36 18 260

16 E ** ** ** - ■ ** **
MW 369 46 217 31 103 48 814

z* G ini(x) and $i = 0 : The number of evaluations of various functions

Table 7.1.1

-339-

Example H MW
1 $ 18.2

'2 # 17.2
3 # 365.0
4 54.3 46.2
5 584.0 204.0
6 31.5 32.6
7 13.1 15.9
8 130.0 99.7
9 821.0 459.0

10 64.8 52.9
11 114.0 133.0
12 2170.0 1020.0
13 573.0 157.0
14 381.0 72.3
15 699.0 135.0
16 ** 640.0

x* e int(x) and Si = 0 : CPU times in seconds

Table 7.1.2

- 340 -

Ex, Alg. z*
1 H ■ #

MW [-0.1000000000000001,0.1000000000000001] X 10-15
2 H #

MW 1-4.4^9340945799'10^^2, -4.443.34{9^^5'>;^82>7^0^^1^]
3 H #

MW [-6.774576200365678, -6.774576093965520]

MW [-0.4913908362593289, ^fJ.99139^J^^(^:2;9^;^fJ03]

MW [5.791794464674531,5.791794478216515]

4 H / [0.9999996425698224,1.000000162277280] \
\ [0.9999998833269862,1.000000118492277] /

MW
f [0.9999999999848898,1.000000000015111] \
\ [0.9999999999661685,1.000000000033632] j

5 H
/ [0.9999999916587334,1.000000008604749] \
V [0.9999999937156958,1.000000006597782] J

MW
/ [0.9999999302856068,1.000000069714394] \
\ [0.9999998535085455,1.000000146491455) /

6 H Z[-0>.1 x io~5,o.l x io-® \
\[-0.1x ltr5,0.1 xiO®]/

MW / [-0.1 X 10"®, 0.1 X 10“®) \
U[—0.1 X 10"5,0.1 X 10-®] /

7 H
/ [0.6958843861143607,0.6958843861194298] \
1 [-1.347942193059716, -^/

MW
Z [0.6958843854741107,0.6958843866076324] \
\ [-1.347942193303817, ^1.3479421927^(^!^5^] /

x* G ini(£) and = 0 : The global minimizers

Table 7.1.3

- 341 -

Ex. Alg. s*

8 H
(1-0.2152506901732498, -0.2152501840443925] \
\ [0.2152504206610418,0.2152504538768566])

H
f [1.548583764242279,1.548583776466430] \
V [-1.548583770761.696, -1.548583769942562])

MW
f [—0.2152504749635659, \
\ [0.2152504076267709,0.2152504664162894])

MW
f [1.548583770354756,1.548583770354971] \
V [-1.548583770355123, -1.548583770354604] /

9 H
/ [-0.1554372358601676, -0.1554372358589545] \
\ [0.6945637753028883,0.6945637753029206] J

H
f [0.1554372142111183,0.1554372575241228] \
\ [-0.6945637770584706,)

MW
f [-0.1554373160732023, -0.1554371E556427049] \
V [0.6945635663239460,0.6945639842858986] J

MW f [0.1554372358595596,0.1554372358595625] \
\ [-0.6945637753029066, -^(.6945763.3"/^^3C2^9^C)5^<t] J

10 II
f [—0.08984201310035930, -0.08934201310028215] \
V [0.7126564030207366,0.7126564030207429])

S
f [0.08984201310029249,0.08984201310034506] \
\ [-0.7126564030207431, -0.7156i564a30a)7359])

MW
([—0.08984205017177143, -0.08984197868282227] \
V [0.7126561261392704,0.7126567010366590])

MW f [0.08084200752332696,0.08984201761298961] \
V [-0.7126564590207734, -0.7126563385572218])

a* G mf(z) and Si = 0 : The global minimizers

Table 7.1.3 contd.

- 342 -

Ex. Alg. X

11 E
< [0.9999999097850837,1.000000000141812] \

[-0.1 X 10--, 0.3377 X 10~8j
v [-0.4179 X 10“-,0.4276 x 10"®] /

MW 1
f [0.9999999999099990, 1.000000000000002] \

-0.1 x i0"3,0.1 X 0OM>]
-0.1 X l0“9,0.1 X 10“9] J

12 E 1
f [-0.1833 X 10”®, 0.1835 x 10~0] \

[—0.1895 X 10“®, 0.1874 X lO"5]
[0.9999999999984805,1.0000000000015.18] J

MW 1
f [—0.6709 X 10“9,0.6896 X 10“9] \

[—0.6996 X 10~9,0.6711 x !O~9]
[0.9999999998600570,1.000000000143692] J

13 E

/ [0.9999999992855064, 1.000000000716914] \
[0.9999999993278663,1.000000000673811]
[0.9999999998831391,1.000000000115989]

V [0.9999999998567569,1.000000000141366] /

MW

y [0.9999999057464136,1.000000094186385] 5
[0.9999997880316363,1.000000211833639]
[o.9999998558124518,1.00000014425845>9]

V [0.9999997073029567,1.000000292837894] /

14 E z* g a(z)

AfW g* e a(z)

X G int(x) and $1 = 0 : The global minimizers

Table 7.1.3 contd.

343 -

Ex. Alg. x*

15 FI

MW

f [0.9999999995742102,1.000000000425778] \
[0.9999999997333121,
[0.9999999999122131,1.000000000087809]
[0.9999999999800504,1.000000000019960]
[0.9999999999954827,1.000000000004526]

V [0.9999999999973683,1.000000000002639] V

([0.9999999999072405,1.000000000027338] \
[0.9999999998656809,1.000000000066065]
[0.9999999998561317,1.000000000087643]
[0.9999999998699426,1.000000000100879]
[0.9999999998987722, 1.000000000103273]

V [0.9999999998974739,1.000000000104571] 7

16 E

MW

**

/ [0.9999999963177311,1.000000003989016] \
[0.9999999901753535,1.000000010591764]
[0.9999999769773503,1.000000024636345]
[0.9999999461650608, 1.000000057115426]
[0.9999998795131941,1.000000127137331]
[0.9999997685832237,1.000000245045555]
[0.9999997130987849,1.000000319080082]

V [0.9999996899929608,1.000000334485296] 7

a* € int{Q and si —0 : The global .minimizers

Table 7.1.3 contd.

- 344-

Ex. Alg. r
1 B ■ #

MW [-400.0000000000001,-99.99999999999998]
2 B #

MW [~0.2172336282191532, -0)12!'2T^:^(^•^^^,2C^^1^^8^1]
3 B #

MW

4 B [0.0,0.2138 X 10“16]

MW [0.0, 0.4005 X 10-20]
5 B [0.0, 0.1157 X 10-11]

MW [0.0,0.8785 X IQ^'27]
6 H [-0.1 x 10_11,0.3 X 10-11]

MW [-0.1 X 10““,0.4 x 10 11[
7 E [-0.5824451744622018, -0.5824451744436.049]

MW [-(.5^:^^'4T^I7606G0049.-f5812455t''4^;^;^r8^8^7^1]
8 B [0.0,0.7939 £ 10“22]

MW [0.0, 0.9808 X 10-23]
9 B [0.7701990285909001,0.7701990564929243]

MW [0.7701986047798560,0.7701990564929242]
10 E [—1.031628450489955,-1.011628453489877]

MPK [-1.031630504890071,-1.011228027141163]

a* e and si = 0 : The global minima

Table 7.1.4

345 -

Ex, Alg. r
11 H [0.0,0.6803 X 10"i6]

mw [0.0,0.6726 X 10-”]
12 H [0.0,0.2753 X 10~23]

mw [0.0,0.1038 X 10-i7]
13 H [-0.1911 x W”"7,0.2525 X 10“21]

MW [-0.1229 X 10-", 0.490! x hr"0]
14 II a* e

MW x' e d(x)

15 E [0.0,0.2929 X 10-G]

MW [0.0,0.5884 X 10-i]
16 H iS::|e

MW [0.0,0.1927 X 10-i]

%* E intfjQ and ex ~ 0 : The global minima

Table 7.1.4 contd.

~ 346

Ex. Alg. Hz njd nc Up nj /npt

1 H # ' # # - - # #
MW 26 15 0 4 24 16 85

2 H # # # - - # #
MW 12 5 0 1 7 5 30

3 H # # # - - # #
MW 102 46 0 1 46 36 231

4 H 129 199 68 - - 42 438
MW 78 35 11 11 70 37 242

6 H 1353 2121 880 - - 450 4804
MW 416 179 23 23 384 193 1218

6 H * * * - - * *
MW 91 49 8 7 69 41 265

7 H 63 82 26 - - 16 177
MW 40 17 8 7 30 15 117

8 E 218 337 132 - - 74 761
MW 138 73 17 16 121 67 432

9 E 192 293 94 - - 58 637
MW 137 69 18 16 109 56 405

10 H 181 270 94 - 52 697
MW 125 67 20 20 110 60 402

11 E 175 267 120 - - 54 616
MW 60 31 24 ~12 53 30 210

12 E 1684 2565 1437 - - 502 6188
MW 793 331 134 66 649 311 2284

13 E ** *4 *4 - - ** **
MW 332 226 84 27 269 127 1063

14 S 150 211 0 - - 55 416
MW 32 12 0 0 11 5 60

15 H ** 44 - - ** **
MW 283 141 10 1 175 74 684

16 E ** ** *4 - ■ ** **
MW 676 262 21 2 335 133 1429

2* E X and — 0 : The number of evaluations of various functions

Table 7.2.1

047 -

Example H MW
1 # 22.6

•2 # 17.0
0 # 075.0
4 54.4 47.9
*- 584.0 261.0
6 * 47.9
7 19.6 15.2
8 100.0 106.0
9 811.0 524.0

10 67.2 72.4
11 519.0 196.0
12 2840.0 1180.0
10 ** 646.0
14 94.9 26.9
15 ** 909.0
16 ** 2880.0

z* £ A and Sj = 0 : CPU times in seconds

Table 7.2.2

- 348 -

Ex. Alg. a*
1 H ■ #

MW |-^0^^0C^0(^C^C^(^00(^00001 X 10-", 0.1000000000000001 X 10^i
2 H #

MW [-•4.49&109457991092, -44493409457827031]
3 H #

MW [-•6.774576200365678,-6.774776O939655&)]

MW [-0.4913903362593289, -0.4913903362593003]

MW [5.791704464674531,5.791794478246515]

4 H
/ [0.9999996425698224,1.000000362277280] \
\ [0.9999998833269862,1.000000118492277] /

MW
/ 0.9999999997998508,1.000000000200195] \

(0.9999990995762231,1.000000000423770] /

5 H
(0.9999999916587334,1.000000008604-749] \

0.9999999937156958,1.000000006597782] /

MW
/ [0.9999999834021490,1.000000016537236] \
\ [0.999999965260769^ 1.000000034617997] /

6 H •f*

MW
/[-0.1 X 10-5, 0.1 X 10^5] \
U-0.1 x 10 5, on x 10“5])

7 H
/ [0.6958843861176124,0.6958843861183095] \ .
\ [-1.347942193059155, -1.347942193058306] j

MW
/ [0.6958843860079745,0.6958843862612586] \
V [-1.347942193130630,-1.347942193003487] J

a* E A oM Sj. = 0 : The global minimizers

Table 7.2.3

349 -

Ex.

lpi a*

8 H
/ [-0.2152506901732498, -0)215T2.M^(1{8^>044^^c^2^^J \

[0.^152504206610418,0.2152504538768566])

E
/ (1.548583764242279,1.54,8583776466430] \
\]-1.548583770757695, -1.54858376£©42562]/

MW
/ (-0.2152504370215312, \
\ (0.2152504370215293,0.2152604370215^11] /

MW / [1.548533770354670,1.548583770355057] \
\ [—1.548533770355345, -1.548583770354383] /

9 E
/ [—0,1554372358601683, -0.1554372&58589538] \
\ [0.6945637753028883,0.6945637753029206])

H
/ [0.1554372142111180,0.1554372575241232] \
\ [-0.6945637770584702, -0.6945637735231855])

MW
/ [--0.1554373133591897, -0.1554371583571956] \
V [0.6945635724957992,0.6945639781134846] /

MW / [0.1554372358595429,0.1564372358595792] \
\ [-0.8945637753029317, -0.6945637753023773] j

10 H
/ [-0.08984201310033582, -0.08984201310030332] \
\ ' [0.7126564030207352,0.7126564030207445] /

E
/ [0.08984201310029255,0.08984201310034499] \
\]^O?^;^;^<^^<^4^(^^O2^C^7^431., -0.71265640308)7359] J

MW
/ [-0.08984205017087017, -0.08984197868364899] \
V [0.7126561261459840,0.7126567010293519] /

MW
/ [0.08984201306827619,0.089842013127181^3] \
V [-0.7126564032579741, -0.7126564CKS7423868] / .

X* E A and 6i —0 : The global minimizers

Table 7.2.3 contd.

350

Ex. Alg. &

11 H

MW

1

1

([0.9999999999933536, 1.000000000004419] A
[-0.1 X 10“9,0.1 X 10-9]

[[-0.1 X10“9? 0.1 x10~9] y

([0.9999999999999997, l.OOOOOOOOOOOOOOO] \
[-0.1 X 10“9,0.1 X 00~°]

< [-0.1 x 10“9,0.1 x 10~9j J

12 R

MW

([-0.1833 X 10-9,0.1835 X 1Q-9| \
[-0.1895 X 10-9,0.1874 X 10“®]

[0.9999999999984805,1.000000000001518] J

C [-0.6709 X 10-9,0.6896 X 10“®]
[-0.6996 X 10-9,0.6711 x 10-9]

[0.9999999998600566,1.000000000143693] >

13 II

MW

**

/ [0.9999999705336038,1.000000029466344] \
[0.9999999324878824,1.000000067512133]
[0.9999999512835931,1.000000048716400]

V [0,9999999009056188,1.000000099094367^] V

14 E

MW

/ [2,2] \
[2,2]
[2,2]

V 1-1, -1] 7

f [2,2.000000000000001] \
[2, 2.000000000000001]
[2,2.000000000000001]

V [-1.000000000000001, -i] y

.t G A and si = 0 : The global minimizers

Table 7.2.3 contd.

351-

Ex. Alg. a*
15 S

MW

/ [0.9999999988362505, 1.000000001175125] \
[0.9999999971237866, 1.000000002904477]
[0.9999999941970247, 1.000000005860447]
[0.9999999893595722, 1.000000010747300]
[0.9999999829497547, 1.000000017219284]

V [0.9999999811318012,1.000000018984584 7

16 II **

MW

/ [0.9999999999217082,1.000000000120453] 5
[9.9999999907926775,1.000000000217338]
[0.9999999996604018,1.000000000372349]
[0.9999999990560754,1.000000000868659]
[0.9999999975712629,1.000000002377980]
[0.9999999931778598,1.000000006804451]
[0.9999999811346974,1.000000018865302]

V [0.9999999789624369,1.000000021037511] V

a* € A and ei = 0 : The global mmimizers

Table 7.2.3 contd.

- 352 -

Ex. Alg. r
1 S #

MW [-100.0000000000001,-99.99999999999998]
2 H #

MW [—0.2172336282191532,
3 H #

MW]-d2.03125091859858,-ll2.07124<22i216674]
4 H [0.0,0.2138 X 10~16]

MW [0.0,0.7193 x 10"13]
5 H [0.0,0.1157 X 10-17]

MW [0.0,0.4601 X 10 12|
6 H *

MW [-0.1 X H~n,0.4 X 10-11]
7 H [-0.5824451744248712,-0.822245174<2^36349]

AfW [-0.5824451748735235,-0.8224-451740137467]
8 Id [0.0,0.7939 X 10“22]

MW [0.0,0.3310 X 10-22]
9 H [0.7731990285939308,0.7731990564929243]

MW [0.7737985274566105,0.7731990552929222]
10 H [-1.031628253289920,-1.075628453489877]

MW [-1.031G30504840352,

a* E A and sj = 0 : The global minima

Table 7.2.4

- 353 -

Ex. Alg. y*
11 H [0.0, 0.2543 X 10”“]

MW 0.0,0.6726 X 10“17]
12 S 0.0, 0.2753 X 10-9^9]

MW [0.0,0.1037 X 10-9^9]
13 ii

MW [-0.1325 X 10~12, 0.1302 X 10~9°]
14 E [-^2^-10^(^(^(^^00000002,^3.5.99999^^^^^^^^]

MW {—22-4X)OOOC^000000001, —24.0]
15 S **

MW 10.0, 0.5351 X 10-“*]
16 E **

MW [0.0,0.5111 X 10~“]

x" E X and $! ~ 0 : The global minima

Table 7.2.4 contd.

354-

Ex. Alg. nffd nc nF nj /apt »s
1 H # $ # - — # #

MW' 20 9 0 2 14 10 55
2 H # # # - - # #

MW 12 5 0 1 8 6 32
3 R # # # - - # #

MW 102 42 0 1 49 40 234
4 H 125 195 84 - - 42 446

MW 68 25 6 6 58 31 194
5 H 1350 2118 900 • - 450 4818

MW 411 171 18 18 376 188 1182
6 H 80 122 53 - - 26 281

MW 74 30 5 5 53 34 201
7 . H 33 53 22 - - 11 119

MW 30 13 9 8 32 20 112
8 II 209 325 146 - - 73 753

MW 120 54 11 11 115 65 376
9 H 181 279 112 - - 56 628

MPK 138 51 8 6 109 57 369
10 II 165 251 98 - - 49 663

MW 113 47 8 8 99 56 331
11 H 35 55 39 - - 13 142

MW 36 15 16 -8 84 20 129
12 H 1547 2378 1380 - - 460 5765

MW 730 266 78 39 625 304 2042
13 H 475 735 616 - - 154 1980

MW 115 41 48 16 86 42 348
14 II 539 789 684 - 171 2183

MW 121 37 6 2 62 36 264
15 M 318 490 600 - - 100 1508

MW 106 17 70 14 37 19 263
16 H ** ** ** - - • ** **

MK 369 47 217 31 104 49 817

a* G int(a) and s1 = 10 6 : The number of evaluations of various functions

Table 7,3.1

-355-

Example H MW
1 15.1

'2 19.0
3 # 385.0
4 52.0 36.5
5 585.0 250.0
6 31.3 34.6
7 12.0 16.4
8 126.0 92.9
9 793.0 474.0

10 61.5 57.1
11 107.0 110.0
12 2230.0 1070.0
13 581.0 157.0
14 381.0 73.3
15 692.0 136.0
16 ** 651.0

x* € int(x) and £i = 10 6 : CPU times in seconds

Table 7.3.2

- 356-

Ex. Alg. r
1 H #

MW [-100.0000010000000,-99.99999999999998]
2 H #

MW [-0.01^7^S4^e262122222,-00,2T72^^^l^2JLl^^^l2}

3 H #

MW ^^12.C^3125044216714,il2^.3312^^^^-^2^<^7^j^3^]
4 H [-0.9987 X 10-6,0.1273 X 10~8]

MW [-^0.1 X 10~5,0.2995 X 10—2®]
5 H [-0.9997 X 10“®, 0.2900 x 10“9]

MW [-^0.1 X 10-5,0.1727 X 10“20]
6 H [-0.1 X 10~5,0.3 x 10”11]

MW [-0.1 x 10”\0.4 x Urn]
7 H [-0.582446)1744390637,-0.52245.51744390636]

MW [-0.5824461744436350,-0.8224531744436349]
8 H [-0.1 X U^-6j),^E^S1 X 10^^°]

MW [-^0.1 X 10“5,0.5455 X 10^'®]
9 H [0.173395056535°345,°).1^1^^J_9^^(■5^C53503^^^^5]

MW [0.77319805629l9l21,0.7731990564929242]
10 H [-1.031629453459545,-1.03i628453489844]

MW [^ 10^;^ ^9453459575, -l.lJHC^S'iSSiSOSri'j

Table 7.3.3

a* G ini(x) and ei = 10 6 : The global minima

- 857

Ex. Alg.
' J . - -.. —

r
11 if [-0.9956 X 10“®, 0.4379 X 10“®]

Miy [-0.1 X 10-8, 0.3249 X 10-“]
12 E [-0.9822 X 10“®, 0.1784 x lO~7]

MW [-0.1 X 10-8,0.2179 x 10“18]
13 H [-0.1 X 10-6,0.3096 X iO"11]

MW [-0.1 X W-8 0.4403 X 10“2°]
14 E x* 6 d(x)

MW x" € d(x)

15 E [-0.999999974 x 10“®, 0.2601 X 10-“]

MPK [-0.9999999999999937 x 10“®, 0.6308 x XO”20]
16 E **

MPT [-0.9999999994464952 X 10“6, -0.5535 x 1Q-^3L2]

Table 7.3.3 contd.

z‘ € int(x) and Si = 10 ®; The global minima

358

Ex. Alg. n.f Ug * XHd »c Ur nj/nr Mg
1 H # ' # # - # #

MW 18 13 0 4 20 14 69
2 H # # # - - # #

MW 12 6 0 1 8 6 33
3 H # # # - - # #

MW 102 50 0 1 49 40 242
4 H 126 196 68 - - 42 432

MW 68 30 10 10 58 31 207
5 H 1350 2118 880 - - 450 4798

MW 274 112 19 19 239 122 786
6 H 107 161 46 - - 32 346

MW 86 46 6 6 62 37 243
7 . E 59 93 32 - - 19 203

MW 40 20 8 7 34 19 128
8 E 212 331 132 - - 74 749

MW 138 75 17 16 124 70 440
9 E 183 282 92 - - 57 614

MW 137 70 18 16 111 58 410
10 E 175 264 94 - - 52 585

MW 124 71 21 21 115 66 418
11 E 169 261 120 - - 54 604

MW 52 29 20 -10 48 28 187
12 E 1678 2557 1434 - - 501 6170

MW 877 367 158 79 748 357 2586
13 H ** ** ** - - ** **

MW 326 221 78 25 261 123 1034
14 E 150 211 0 - - 55 416

MM: 32 12 0 0 11 5 60
15 E ** ** ** - - **

MJM 263 132 15 2 160 71 643
16 E ** ** ** - - ■ ** **

MM: 612 244 21 2 307 125 1311

G x and gi = 10 ®: The number of evaluations of various functions

Table 7.4.1

- 359-

Example H MW
1 # 19.7

'2 19.9
3 # 398.0
4 52.5 39.8
5 582.0 164.0
6 42.1 42.4
7 21.7 19.3
8 130.0 107.0
9 770.0 534.0
10 66.1 77.5
11 531.0 175.0
12 2330.0 1330.0
13 621.0
14 94.1 27.0
15 ** 849.0
16 ** 2680.0

* and — 10 6 : CPU times in seconds

Table 7.4.2

360

Ex. Alg. r

1 . 11 ’ #

MW [-100.0000010000000,-99.99999999999998]
2 H JL

nPT (-0.2172346282112217,-0.2122336232112216]
3 H

MW [-T2.03125024216714,—12.02124944216713]
4 H [-0.9987 x 10-6,0.1273 x 10~8]

MW [-0.1 X 10-8,0.2995 X 10~26]
5 H [—0.9997 x 10-8,0.2900 x 10"8]

MW [-0.1 X 10~5, 0.2307 X 10~10]
6 E (-0.1 X 10-8,0.3 X 10-11]

MW (-0.1 X 10-8,0.4 X 10““]
7 E [-0.58242W31742230856,-0.82445517444308£2]

MW [-0.582^61744436350,-0.8224551744436349]
8 E (-0.1 X 10-5,0,5561 X 10-8°]

MW [-0.1 X 10“8,0.5412 X 10-29]
9 E [0.7731980565150145,0.7731990565150146]

MW [0.7131980564929242,0.7731990564929242]
10 E (-1.031629453489845,-1.321628453489844]

rnn (-1.031629253289818,-1.321628453489877]

a* G A and 6% = 10 ® : The global minima

Table 7.4.3

- 361 -

Ex. Alg. f

11 H [-0.1 X 10“s,0.1154 X 10“6

MPK [-0.1 X 10--,0.6727 X 10~17]
12 H [--0.9822 X 10“6,0.1784 x lO-7]

MW [-0.1 X 10“750.2126 X 10-17]
13 H **

MM [-0.1 X 10-7,0.1041 X 10~37]
14 H [-^:.4i01(H'K0)1000G0001,-^2 3;9999<9'9O<T.9'M^<;c^t)c^]

MW [-24.0000010000000.1, -24.0]
16 H

MM [-0.1 X 10-7,0.1623 X 10~i9]
16 H

MM [-0.9999999999999909 x 10~6,0.9166 X 10“7®]

Table 7.4.3 contd.

ff* 6 X and ei — 10 6 : The globed minima

362-

Ex : case Alg. initial box Hs CPU time
15 : (f) E ([0.99, 1.045]6xi 62 29.9

MM ([0.99, 1.045])6x1 275 178.0
H ([0.5,1.045|)<iX1 1514 699.0

M1M (IO.5,1.O45])6X1 260 135.0
15 : (:») E ([0.90,l,045]6xi ** **

M1M ([0.99,1.045)6x1 1154 1570.0
H ([0.5,1.045]6xi ** **

ANK ([0.5,1.04516x1 684 909.0

Comparison between different values of x

Table 7.5

Example Algorithm (i) (ii) (iii) (iv)
4 iCMSM: 46.2 47.9 36.5 39.8

MAP 46.1 42.2 37.4 50.6
6 KMSM 32.6 47.9 34.6 42.4

MAP 45.2 41.6 33.7 53.2
14 AMSM 72.3 26.9 73.3 27.0

MAP 72.0 26.5 71.6 26.1

CPU times in seconds

Table 7,6

Example MW with (i) . (ii).. (iii) (iv)
6 /') (; = o,..., 2" - i) 32.6 47.9 34.6 42.4
6 1 48.9 60.9 48.0 64.0

Table 7.7

CPU times in seconds

- 363 ~

Example A/W with D) (ii] (iii) [ITT '

14 zw (,• = o,..., 2" - 1] 72.3 26.9 73.3 27.0
14 1 317.0 * 307.0—

*

CPU times in seconds

Table 7.8

n Alg. nf ^Hd »c nfr nf /nF> Time

2 E 14 20 8 - - 4 5.98
MW 19 8 4 4- .11 7 7.72

3 H 26 39 24 - - 8 19.9
mut 33 10 10 5 15 9 22.5

4 E 42 66 52 - 13 47.1
MW 39 12 18 6 22 11 42.1

5 H 80 125 125 - - 25 125.0
MW 61 14 32 8 26 13 73.0

6 E 194 304 366 - 61 426.0
MW 103 20 50 10 38 19 153.0

7 E * * * * - * *
MPT 172 20 72 12 39 19 212.0

8 E * $ * - * *
MW 310 25 98 14 50 24 361.0

x* G int(($ and si = 0 :

The number of evaluations of various functions and CPU times in seconds

Table 7.9.1

364 -

n Alg. n.f t-Hd Uc Ur nj /np> 'T*me
2 E 187 217 36 - 48 66.6

MW 104 79 4 4 76 40 66.2
3 E 426 644 54 - - 115 298.0

MW 244 157 8 4 161 78 308.0
4 E 787 1162 32 - 205 748.0

MIV 414 261 0 0 308 130 893.0
5 E 2077 8053 360 - 603 2820.0

MW 682 389 0 0 443 194 2080.0
6 E ** ** - **

MW ** ** ** ** ** *4 **

a* G I and e 1 —0 :

The number of evaluations of various functions and CPU times m seconds

Table 7.9.2

- 365

n Alg. rf fl.9 ^Hd »c rip nj jn^' Time

2 H 11 17 8 4 4.59
MW 17 8 3 3 12 7 8.34

3 H 23 36 24 8 17.7
MPK 25 10 8 4 15 9 17.8

4 H 36 58 48 - - 12 41.3
MiT 39 12 16 5 18 11 34.6

5 H 77 122 125 n - 25 120.0
MW 59 14 28 7 24 13 65.1

6 H 191 301 366 — - 61 419.0
Mpy 99 19 45 9 34 18 131.0

7 E * * $ ■ - *
MW 170 20 66 11 37 19 198.0

8 E * * * « * *
MW 307 25 91 13 47 24 337.0

x* 6 in^(a^) and e. = 10 ®:

The number of evaluations of various functions and CPU times in seconds

Table 7.9.3

366

n Alg, Uf n5 nnd nc Up n j j np,f Time
o.<0 II 73 114 16 - 24 33.0

MW 44 39 0 0 30 19 26.6
3 E 202 307 24 - - 57 135.0

MW 118 77 8 4 77 38 142.0
4 H 439 656 40 - - 121 422.0

MW 214 133 0 0 149 66 415.0
6 H 1069 1581 175 - - 319 1440.0

MW 310 197 0 0 220 98 970.0
6 E ** ** - - **

MW 453 271 0 0 315 135 2080.0

X* G X and ®i = 10 ®;

The number of evaluations of various functions and CPU times in seconds

Table 7.9.4

- S57 -

n(ease) with nf 'U ^Ild T nj/n^ Time

2(i) j(i) 19 8 4 4 11 7 7.72
1 19 10 5 r-5 15 9 10.4

2(ii) *(>)/> 104 79 4 4 75 40 55.2
z 120 88 rr7 7 92 45 79.1

2(iii)-u-m Z(,;) 17 8 3 3 12 7 8.34
z 17 10 4 4 15 9 9.95

2(iv) £(«) 44 39 0 0 30 19 25.5z»*z-6L 49 45 1 1 39 23 34.7
3(i) uo 33 10 10 5 15 9 22.5

1 33 13 30 5 22 12 28.9

z—
““v

• «—
<

i
>

1
x £« 244 157 8 4 151 78 308.0

1 277 183 12 5 200 91 353.0
3 (iii) $(0 25 10 8 4 15 9 17.8

1 27 13 8 4 21 12 24.5
3(iv) ^(i) 118 77 8 4 77 38 142.0

z 129 89 5 3 91 44 189.0

The number of evaluations of various functions and GPU times in seconds

Tabic 7.9.5

- 368

APPENDIX A

Notation

In this thesis, the sets R of real numbers, Rn of real n X 1 vectors, //(If''", IN)

of real m x n matrices, Af(/fn) of real n X rr matrices, /"(If) of real intervals, /(if")

of real n X 1 interval vectors, I{M(Rm, Rn)) of real m X n interval matrices, and

/(7W(/fn)) of real n x n interval matrices are defined as follows.

R — {g | x is a real number}, A.l

BR = {a; = (^i)nxi I »* € R (« = ft)}, A.2

MRR, Rn) = {A — («</)mXc K-y G R (i = 1,..., m, j = 1,..., n)}, A.3

AI(Ifn) = {A = («iy)nx« I (Hj G R (i, j ~ 1,..., %)}, A.4

/(If) = (g = [g/, gs] | a?/, xs G If A 5* < gs}, A.5

A.6I(If«) = (*.)nxl | G /(If) (i - 1,..., n)},

- 369 -

and

RP)) - U - (atu)mxn t Ps d 1(A) (i - 1 . . . , m, j - i,

l(M(An)) = {A = («o-)»xn I «0- e *(*) = 1,..., «)}.

??.)}, A.7

A.8

Although we normally use lower-case italic letters to denote real numbers and

real vectors, upper-case italic letters to denote real matrices, the underlined lower-case

italic letters to denote intervals and interval vectors, and the underlined upper-case

italic letters to denote interval matrices we use also, for example n, iV, S, JT/V, If, If7,

Q, B and P which are defined in the text and which appear in deference to common

usage.

The mapping |*| : if” —> Rn is defined by | a |= (| a.t- |)»xi« The sets Rn

and iVI((R”) are partially ordered through (a < y) <-> (a* < (% — 1,..., n)) and

(A < J9) 4? (aij < bij (;, j = 1,..., n)) respectively.

The width w : I(R) if, the magnitude |-| : I (if) —> if, and the midpoint

m : I(R) —> if are defined by

w(g) xs - ar,

| x | = maa[\ xr |, | xs |},

A.9

A. 10

and

m(x) — (az + as)/2. A. 11

- 370 -

The width w : l(2?n) —> 12ft, the magnitude |-| : I(Rn) -+ Rn, and the midpoint

m : I(Rn) —> Rn are defined by

«>(») - (w(«J)nXi, A.12

and

I&I = (I 3U |)«xl. A. 13

m(x) --= (m(^))nxl. A. 14

The width w : I(M{Rn)} —> M(Rn), the magnitude]• j : I(M{Rn)) —> M(Rn),

and the midpoint m : I(M(Rn}) —> M(Rn) are defined by

w(A) = (w(«0))nxn, A. 15

| A | ~ (| ai3- |)nx»>

and

m(A) = (m(a0))nXn.

A. 16

A. 17

The norms ||-|| : Rn -> R, ||-|| : I(Rn) -> R, and ||-|| : I(M(Rn)} -> R are

defined by

- 371

Hbll — ,ma? (l xi l}> A. 182 I;!

Ikll — ,max {| Xf |}, A.19
<n

and
n

HAH = I 3,-,- |} -4.20
I »"C n ' Jy — 1

respectively.

The mappings < : RRxRP -» if, </ : /(R)x/(R) -> R and <7 : /(R”) x.f(R”) —

R which are defined by

= i|x - - 2||, A.21

= man'll x/ - 2/ |, | x,$ - Vs |}, A.22

and

= max {01 (»<,«.)}, A.23i<.?eS?2

are metrics for the sets R”, /(R), and /(if”) respectively. Furthermore (R”,<•) and

(/(R”),<rn) are complete metric spaces.

An interval x £ /(if) is degenerate if and only if x/ ~ xs. Thus degenerate

intervals are of the form [.r, x] (t G if).

— 372 -

The function / : i?” R> which is m times continuously differentiable in an

open convex set £> C .D is denoted by f G

If / : D C if” —> R1 is a given mapping with / G G2(D) then the gradient

g \ jD —> R” and the Jacobian J : D —> M(if”) of / are defined by

T i ® p r\T
9 == fe)nx.l = PlA-H- W---- /)

a%i dxn
A.2A

and
l2 „

J — (Jij}nXn — (^j'^/mxa ~ (iT % /JftXft' UXjRXi
A..25

Let / : D C R” -► R1, c : R” -> Rl (* rn), and hy : R” -> Rl

(f ~ r) be given mappings with /, c- (/ = 1,..., m), hj [j — 1, ,, r) G CA (Z>)
where D C D is an open convex set. Then the derivative of the Lagrangian function

L : R” X R”" X R" -+ R1 defined by

m r
L[a, u, w) = /(b) - uc(a) -f £ Wjhj(a)

i~i y=i

with respect to x is denoted by ViL(a, zi, w).

If / :£) C R” —v Ri is a given mapping’ and f(a) can be written in the form

/(f -= f(c) -h g(a ~ c) A.26

- 373

where

ej(x - c) = /(e) - /(c)

and c — rn(tf) (x6 /(D)) then the expression on the right-hand side of A.26 is called

the centred form of f(x) [RatR-84a].

An n-dimensional interval vector

x f i A.27

is called a box if and only if z is a parallelepiped with sides parallel to the co-ordinate

axes.

- 374 -

APPENDIX B

Pseudo-ode

This appendix contains a brief description of the pseudo-code which is used to

express algorithms in this thesis. The pseudo-code is intended to be self-explanatory.

B.l Control Structures

This section contains a description of the control structures for the pseudo-code.

Statements are denoted by @1,..., sn, and c is a boolean expression which might

contain the operators and, or. (= not).

The control structures are as follows.

Assignment : An assignment statement (:=) is written as follows.

< variable >:=< expression >

Meaning : The value of < expression > is assigned to < variable >.

i f-do : An i f-do statement is written as follows.

1. if o do

- 7 5

1.1 Si

l.n sn

2. s

Meaning* : If c is true, then execute Si,..., s» and then execute a; if c is false then

execute s only.

ij-then-else : An if-then-else statement is written as follows.

I. £/ c

then

1.1

l.n Sn

else

l.n T 1 Sn-fi

l.n “ rn sn+m

2. a

■ -

Meaning : If c Is true, then execute Si,.. ,s%; otherwise execute x,>+i,.,., .9n-gm

Then execute s.

case-me-of : A case-true-of statement is written as follows.

1. case true, of

Ci :

1.1 5!

l, n j s %.

l.nx A 1 Sji 1+1

sn2

l.im ° tl n

~ 377 -

default :

I.fZni H" 1

l.nw-pi •Sn,„ + 1

2. 8

Meaning : For % == 1,..., m if c* is true then execute the statements , s

only, where no — 0; otherwise execute sn^+i,..., ,5nni+1 , Then execute s.

case-< integer >-of : A ease~< integer >-of statement is written as follows,

1, case < integer > of

ii :

1.1 Si

l.tti Sfii

% :

l.ni + 1

1.?l2 Hj

378 -

default :

■h^ro-H

2. a

Meaning : For j = l,,..,m if ij — < integer > then execute the statements

snj only, where no = 0; otherwise execute Then exe

cute a.

f or-to-do : A for-to-do statement is written as follows.

1. for i = ii to «2 do~

1.1

l.n a«

370 -

2. s

where i is an integer variable and and i2 are the integer values.

Meaning : If f2 > ii then execute sL,...,sn with i — Hj'i + 1,..., £2 and then

execute 5; otherwise execute s only.

for-bthdo : A /or-hy-do statement is written as follows.

1. for i — ii to *2 5^/ *3 do

1.1 .31

Af- Sj

2. s

where i is an integer variable and *1, *2, and g are integer values.

Meaning : If ii < *2 and is > 0 then execute 8i,...,Sn with i — 21, ii +is,..., ii+mis

where the integer m is such that ii H- mis £ *2 < h 4- + !)is. If ii < *2 and

is < 0 then do not execute Sx,..., 8%. If ii > *2 and is < 0 then execute sx,..., sn

with i = ii, ii + ?3,..., *1 + mis where the integer m is such that ii + mis > *2 >

ii + (m + 1)?3. If ii > *2 and is > 0 then do not execute si,..,, sn. Then execute s.

- 330 -

while-do : A while-do statement is written as follows.

1. while c do

1.1 Si

l.n sn

2. s

Meaning : While c is true, execute sL,... ysn repeatedly; then execute 3

repeat~while~do : A repeat-while~do statement is written as follows.

1. repeat

1.1 Si

l.n sn

while c do

l.(n + l) sft+i

l.(n + m) sn+m

2. 4

Meaning- : Execute s, ..., sn; if c is true then execute s„+i,..., ^m and go to step

1.1; else go to step 2.

{ } : A { } statement is written as follows

1- {}

Meaning : Do nothing.

Comment : A comment statement is written as follows.

1 < statement >.

Meaning : The statement which is written after the symbol ! is treated as comment.

B.2 Procedure Declaration and Calling

In order to design a well-defined format for declaring and invoking procedures

we need the following ideas.

- 382 -

(!) Input Parameters : These parameters are separated by commas. Each one

supplies a value for computation and does not return a specific value at the end of

the computation.

(2) Input-Output Parameters : These parameters are separated by commas. Each

one supplies a value and returns a value at the end of the computation.

(3) Output Parameters : These parameters are separated by commas. They are

declared and initialized during the computation and they return values at the end of

the computation.

(4) return Statement : This statement is used to terminate the computation.

One type of procedure is used in this thesis only; its general form is as follows.

procedure < name > (< input parameters > ;

< input — output parameters > :

< output parameters >)

< ccrmmemt >

< block of statements >

return

- 883 -

where < name > is the name of the procedure, < comment > consists of sev

eral sentences which explain the procedure < name > and the parameters, <

block of statements > consists of the statements which constitute the procedure

< name > and the procedure is terminated by the return statement. An example

follows.

procedure gradient.test[z 6 I(Rn), nj G iV, g G N2n, x.star.in.x € B ;

5r € P,a e I(R3n), / 6 1(H), n„ e N :

k € N,delete.z e B)

The full procedure is given in §6.6.

Here, x, n, I, a, and x.star.in.x are input parameters, Sy, £, /, and np are input-

output parameters, &, and delete.z are output parameters and I(R“), iV, N2n, B, P,

I(RSn), and J(.R) are data types.

The data-types which are used in this thesis are given in the Table B.l.

Type Notation
Vector

Notation Matrix Notations
integer N 2Vn —

real R Rn M(Rm,Rn) M(Rn)
string S — — —

boolean B BM —-
interval ■f(R) I(Rn) J(M(Rm,R")) I(M(R*))
queue Q — —
stack p — — —

- 384 -

Table B.l

In Chapter 6 it is convenient to use functions as well as procedures. The general

form of a, function is

f unction < name > (< input parameters >)

< comment >

< block of statements >

return
□

in which < block of statements > contains at least one statement of the form

< name >:—< expression >

The function < name > is invoked by using a statement of the form

< variable >: = < name > {< input parameters >).

After the execution of this statement, < variable > contains the value of the single

entity which is computed by the function < name >.

An example follows.

fu n c t i o n m a x {x, y G R)

! This function determines max{v,y}.

1. if x > y

then

1.1. max := x

else

1.2. max y

2. return
□

After the statement

386 -

z : = mase{r, y)

is executed, z has the value max{x^ ?/},

B.S Algorithm Declaration

In this thesis, every method is expressed as a procedure (§B.2). All the proce

dures are combined with other blocks of statements (§B.2) to form an algorithm. The

stop statement is used to terminate the algorithm. The parameters which are used

in an algorithm consist of input, input-output, and output parameters described in

(§B.2). The algorithm has the following form.

< namel >

Data : < initial values >

< comment >

< block of statements >

■procedure < name > {< input parameters > ;

< input — output parameters > :

< output parameters >)

387 -

□

where < name! > is the name of the algorithm, < initial values > are the values

which are supplied by the user, < comment >, < block of statements >, and

< input parameters >, < input — output parameters >, and < output parameters >

are as in §B,2. The procedure < name > is a procedure which combines all the

procedures which are needed by the algorithm < name! >,

- 388 -

APPENDIX C

Examples

This appendix contains the examples which are used to illustrate the effectiveness

of the algorithms MW (Chapter 6) and E (Chapter 3).

Example 1 : [ViZSXSa]

/(xj = M — iOOeosjs)

p == [-10,10]

s* =-• 0

f* = -1CC.C

Example 2 : ’ViZS-TSa]

/’(f) = (i%)sm?(®)

— [-10. - i]

z* % -4.49341707

f* p -02^i^7^3S^3Q28215

Example 3 : [Han-79a]

/’Of) = “ nl-i ksin({k -h l)x H- k)

i — -~9,9]

^C1) rr' -6.7745761445

A’2) % — 0.49139218765

389 -

x*W % 6.7917890165

f & -1203125

Example 4 :

f(x) = (x2 - -a" 4- (1 - Zip

z — ([— 1, 2])2xx

»* ~ (1) 2 x 1

f* = 0.0

Example 5 : [Ros~60aj

f{x) = 100(z2 “ z?)3 4- (1 “ zi)2

A = ([”2,2])2xi

3* “ (1) 3 x 1

f* = 0.0

Example 6 : [Ban-SOa]

/(z) = 2zi — 1.05zJ + zf/6 — zlz3 T zg

A = ([—421)2x1

z* = (0)2x1

f* = 0.0

Example 7 :

/(r) = xf -h Z1Z2 4- (1 -h z2p

z = ([—100,100])2xi
z* (% (0.695884385 - 1.34794219)T

f* & -0.582445174445

- 390 ••

Example 8 : [Bra-72aj

f{x) = l6(;Zi + z3)2 4- {4(zi 4- z3) -r (zi - z2)(zj - 2) + zi -- 1}

£ “ ((—2, 4j)2xi

£*(*) % (-0.21525043 0.215255043)7
z*(i) a (1.6485837703548 - 1.5485837703549)^

/* = 0.0

Example 9 : [Mad-73b]

f{x) — (z2 + #2 + ZiZ2)2 ~t~ sm2;t’i + eos2X2

Z. = ([—•!■, ‘^Ihxi

z*(i) % (-0.15543723686 0.69456377530296)r

z*(2) % (0.15543723586 -• 0.69456377530295)r

f* % 0.773199035

Example 10 : [DiGH-TSa]

f{x) — Z/3 - 2.1z* + 4zf 4 ZjZ‘2 - 4z2 + 4zg

Z = ([~3,3] [-1.5,1.5])i

z*(i % (—0.(89841201310025 0.712656403020735)2’

z*(i) r (0.08984201310025 - 0.712656403020735)T

/* % -1.031628453489865

Example 11 : Helical Valley Function [FleP~63a]

/(z) — 100(z2 — 10?)i 4 (v/ZT+Zf — 1)i 4 X

£(zi, z2) — {Il2j)arctan(x2lx\) if Zi > 0

£(zj, Zg) — (i/27r)a/rctcm(%2/Zi) 4 0.5 if < 0

z = ([0.991,1.011] [-0.01,0.01] [-0.01,0.0l])T

z* = (1 0 Of

/* = 0.0

Example 12 : [Eng-66a]

/(z) = (xf -f z) 4 z| — 1)2 4 (zf 4 z) 4 (zg — 2" — 1)" 4 (zi 4 Zg 4 zs — 1)34

(zi 4 Zg — Zg 4 I)2 4 (zp 4 3z* 4 (Szs — zi 4 l)2 — 36)2

i=: ([-0.1,04] [-0.1, 0.2] [04,1.2])r

z* = (C, 0, 1)2

/* =CC .

Example 18 : Wood Function [Pea--69a[

/{xj = 1C0(z’i - z2)2 4 (1 - Zji)2 4 9C(.zg - zp)2 4 (1 - Zj)2 4-

iC.1((.l — z2)2 4 (1 — z4)*) 4 19.8(1 — 2s)(l — Z4)

i=4[0.979JJ003.j)4xi

a* = (1)4x1

/* = c.c

Example 14 : [Moh-78a]

/(x) = xf - Z2xf - Z2ZgZf 4 ZiZazgap

i = (H 5 2])4X1

x* = (2, 2, 2, -~1)2

/* = —24.0

Example 15 : [Mir~79a]

/(*) = (1 zx)2 4 (1 - X)f 4 ELi(^ - zi+-)2

z = ([CS,1,C45j)6Xi

392 -

Z — (l)exi

r - 0.0

Example 16 ; [Mir--79a]

f(x) — (1 - Xi)2 + (1 - z8)2 + El=i(«{ -- 2-m)2

z = ([0Ahl])8Xi

a* = (1)8X1

/* = 0.0

Example 17 : [Mir~79a|

/(z) = (1 - z,)2 4 (1 - zft)3 4 E5St1(3f? - a--+i)

Z = ([(05,l%xi

Z* = (l)nxl

» = 2,... ,8

f* = 0.0

398 -

APPENDIX D

This appendix contains the procedures time, decode, function, gradient

jacobian, hessiart.diagonal.element, constraint, F, and F.prime.

procedure time

! This procedure reeuras a string iii the form

! nl, n2 : ntt, n4 : ?i5, n§ : ril, n%

! where the decimal digits ni(i — 1,... ,8) represent the time in hours, minutes,

! seconds, tenths of a second and of a second from midnight
'□

procedure decoders € 5)

! This procedure takes a string s as its argument and returns the integer value of the

! ASCII code for the first character of s as its result. __ ,

procedure f unction(x G !{Rn), n & N : / G 1(H))

- 394 .

! This procedure computes an interval extension of the objective function

! / : Rn — for problem P.

! On enti^r^5 % is the box over which / is eaalaated, ndd n is the number of yariables

! in x.

! On reton, f = /(x|

i / /(%) ! Examples 1 — 12 in Appendix G.

2. return

procedure gradient(x_ G I(Rn),n e N : g G I(Rn))

! This procedure computes an interval extension of f :Rn — RE where

! /' : RE RE is the derivative of f : Rn — Rl.

! On entry, x is the box over which f1 is evaluated, and n Js the number of variables

! in jb.

! On return, g = /'(x)r ~ (dif, dnf)T.

1. for i — 1 to n do

1.1, g. := dtf(x)

395 -

2. return □

procedure jaeobian(x € I(R11), n € N ; J G I(M{Rn))

! This procedure computes an interval extension of /" : Rn -. > M(Rn) for algorithm

! H (Chapter 3) only where fn : Rn M(Rn) is the jacobian of f : Rn —> Rn.

! On entry, x is the box over which f* is evaluated, and ? is the number of components

! in x.

! On return, J= (djdif)nxn-

1. fon i ~ 1 to n do

1.1, for j — 1 to n do

1-1-1.] : = djdifn

2. return

procedure he^siandiagonal.elemenifn G J(H”), n, i € iV : G_u G I{Rj)

! This procedure computes an interval extension of the ith diagonal element of the

! Hessian G : Rn —> M(R.n) of / : if” Rl 2 with the argument (ql, ... ,

! On entry, x is the box over which Gf (i = 1,. .., n) is evaluated, n is the number

386 --

variables in x, and i is the ith diagonal element of the Hessian G,

On return, Gt- — dtdtf(x),

1- case, % of

.1, . . . 3 .

1.1. „ := dtdt/Q2

default :

1.2. write, "Error in hesstan.diagonal.elementf

1.3. stop

2. return
□

procedure constraint,x G J(H”), n € N : c G J(H2”))

! This procedure computes the interval extension of the constraints c* : H” —> R1

! for ; = 1,.., 5 2n,

! On entry, X is the initial box, x is the box over which c, (; — 1,..., 2n) is evaluated,

1 and n is the number of components in z.

1 On return, c — c(x.),

1. for i ~ 1 to n do

- 397 -

1.1. c := &£ — Xu

1-2. ai+n t'—xts -a?

2. return

PT2Cedure F(x, G I{FO'd z G f(R3n),q G JV2n ,n,I G N, x.star.in.x G B :

F&I(R3n~1})

J This procedure computes an interval extension of F : H®” —> R3n (Chapter 4t)

! On entry, a is the initial box in which / : if” —> I?1 is defined, z — (ar, wr)r is

! the current box in which F : ifi” —) ifi” is to be computed, qi G {0,1}

! (a — 12n), 0 < I < 2n, x.star.in.x is such that x.star.in.x = true if a’* G *’%(%)

! and x.star.in.x — /aW if a* G a where a* is the global minimizer of / : if” —> ifi.

! On return, if I Lagrange multiplier bounds in z are zero intervals then F — F(i)

! contains 3n - 1 components that is F — (Fn... , F1,£i+1:...,FSn_l)T.

1. if x.star.in.x or I ~ 2n

then

1.1. m := n

1.2. for * — 1 io 2n do

1.2.1. zn+t [O, Oj

else

- 398

1.3. m 3?i — I

1.4. for i ~ 1 io 2n do

1.4.1. if g_i ~ 0 do

1.4.1.1. £n+(:=[0,0]

2. k n

3. £1(Q)mXl

4. f°L * ~ n d°

4.1. Ft := 9i/(a) ! z = (a.r,ur)T.

5. if_ ~ x.star.in.x grid I / 2rc do

5.1. /or * ~ 1 to n do

5.1.1. F(:= Ff - zR+1 + x2n+j

5.2. for i — i to n do

5.2.1. «/ qi ~ 1 do

5.2.1.1. h-.^k + l

5.2.1.2. Fic := A„+iUi - »<z)

5.3. for i — n + 1 to 2n do

5.3.1. ij_ cn ~ 1 do

5.3.1.1. k:=k + l

5.3.1.2. F^ zn+i(xi-nS - £_„)

□
8. return

- S§9 -

procedure F,prime(i_ G z G I(B.3n), q G tV2n.», J G JV, x.star.in.x G B :

£ G J(M(.R8n~*))

1 This procedure computes an interval extension of F' : FSn —— M(Rtn),

I On entry, all the parameters are as in the procedure F.

! On return, if I Lagrange multiplier bounds in £ are zero intervals then F = F/(z)

1 is a (3n — /)-dimensional matrix.

1. iZ x.star.in.x or f = 2»

then

1.1. m := n

1.2. for f — 1 t_o 2n do

Lax £n+i :=[0,0]

else

1.3. m Zn — I

1.4. for i ~ 1 to 2n (op

1.4.1. y q- 0 do-

1.4..^.1. ^+i:=[O,O]

2. k : — n

3. £' :=(O)mxm

4. if ~ x.star.in.x and I 2n do

400 -

for J — 1 to n dp

4.1.1. iL dj ~1 do.

4.1.1.1. k -~- k + 1

4.1.1.2. F^. £-n+j

4.I.I.3. FfJk

4.I.I.4. i := n + 1

4.1.1.5. p j

4.1.1.6. while p > 1 do

4.1.1.6.1. p p — 1

4.1.1.6.2. if_ qp ~ 1 do

4.1.1.6.2.1. + l

4.I.J.7. :=

4.2. for j — n 4-1 to 2n do

L£ “ 1 do

4.2.1.1. k k -(-1

4.2.I.2. pi . _~
=~4ej ~n ‘ ~n -+• 3

4.2.1.3. £-j—nk * M

4.2.1.4. i := n -h 1

4.2.I.5. p j

4.2.1.6. while r) > 1 do

4.2.1.6.1. p p ~ 1

- 40.1 ~

4.2.1.6.2. if qp ~ 1 do

4.2.1.6.2.1. i i-t

4.2.1.7. - xjS ~ z}-n

for i 1 to n do

5.1. for j — I to n do

5.1.1. Fjy d3 dif(x) ! z (%T,u?)T.

return

- 402 -

RLeeeences

[.Ale - - 8 4 a] Alefeld, G., On the Convergence of Some Intezwal-Arithmedic Modk

hcations of Newton's Method, SIAM Journal on Numerical Analysis,

21 (1984), pp. 803 - 372.

[AleH“83a] Alefeld, G., and Herzberger, J., Introduction to Interval Computa

tions, Academic Press, New York, 1983.

[AleP-83a] Alefeld, G., and Piatzoder, L., A Quadraticadly Convergent Krawczyk

. - Like Algorithm, SIAM Journal on Numerical Analysis, 20 (1983),

pp. 210 - 219.

[And—-72a, Anderssen, R. S., Global Optimization, in Optimization, Anderssen,

R. S., Jennings, L, S., and Ryan, D. M. (Editors), University of

Queensland Press, 1972.

403-

lAr<:E-78a)

[AsSMl“82a]

[EaCM“82a]

[BecL~70a]

[BiaF-78a]

(Bra-..71 a]

ArchetH, I'., and Betro, B., A Analyses of Detrmanksiic Strate

gies for Global Optimisation Problems, in Towards Global Optimisa- :

tion 2, Dixon, L. G. W., and Szego, G. P. (Editors), North Holland

Publishing Company, 1978.

Asai^ha^bii, N . S,, Shen., Z,, and Moore, R. E,, On Computing bke

Range of Values, Computing, 38 (1982), pp. 225 - 237.

Halley, P. J., , Cole , A . J,, and Morrison, R, , TtPplex Usei • Manual

CS/82/5, University of St. Andrews, Department of Computational

Science, North Baugh, St. Andrews, Fife, KY16 9SX, Scotland.

Beckrr, R. W,, and I^^agoi, G. V., A. Global. OpHnuzatinn A.lgorjbhm,

Proceedings of the Eighth Allerton Conference on Circuits and Sys

tem Theory, 1970.

Biase , L . D. , and Eronimi, F., A Stobhasiic Mebhod for G!ohal Op

timisation : Its Structure and Numerical Performance, in Towards

Global Optimisation 2, Dixon, L. G. W., and Szego, G. P. (Editors),

North Holland Publishing Company, 1978.

Brnnin Jr., F . H. , Solutinn of Tonnnneor I^C Nt^Wvork PoMeuss vaa

Differential Equations, Memoirs Mexico 1971 IEEE Conference on

Systems, Networks, and Computers, Oaxtepec, Mexico.

- 404

[Bra-“ 7 2 aj

[BraH-72aj

[B r o - - 5 8 a]

[B r o u -1 2 a]

[B r o y - 7 -5 a,J

[ChL--6 Tai]

[ChuM~72a]

Bran.i.n Jr., F. H., A Widely Convergent Method for Finding Mul

tiple Solutions of Simultaneous Nonlinear Equations, Tech. Report

21.466, IBM Systems Development Division Laboratory, Kingston,

New York, 1972.

Braun Jr., F. H., and Hoo, S. K, A Method for Finding Multiple

Extrema of a Function of u Variables, in Numerical Methods of Non

linear Optimisation, Loots ma, F. (Editor), Academic Press, London,

1972.

Brooks, S, HL, A Discussion of Random Methods for SeekingMaxima,

Operations Research, 6 (1958), pp. 244 - 251.

Brouwer , L, F, J,, Uber die Abblldung von Mannigfaltigketten, Math.

Ann., 71 (1912), pp. 97 - 116.

Broyden, C. G,, Basic Matrices, The MacmlUan Press Ltd, 1975.

dnchinadze , V, K,, Eng. Cyb. , No, 1 (1967) , pp , H5 - 123.

Chuba, W,, and Miller, W, , Q^i^c^iliatik Convergence n Interval Arith

metic, Part I, BIT, 12 (1972), pp. 284 - 290.

- 405

[Col.M-82;>l Cole, A. J., and Morrison, II., An Introduction to Programming with

S-Algol, Cambridge University Press, Cambridge, 1982.

[ColM-82bJ Cole, A. J., and Morrison, E., Triplex : A System for Inter^val Arith

metic “ Practice and Experience, 12(1982), pp. 341 - 360.

[Cor-7 5 a] Corles, C. E,, The Use of Regions of Attraction -co Identify Global

Minima, in Towards Global Oppti^msalion, Dixon, L. C. W., and

Szego, G. P. (Editors), North Holland Press, 1976.

[Corl, "84a] Cornelius, H,, and Lohner, E,, Gompiztmg th eRange oWUues ofReal

Functions with Accuracy Higher than Second Order, Computing 83

(1984), pp. 331 - 347.

[D c n S - 8 3 a] Dennis Jr, J. E., and Schnabel, R. B., Numerical Methods for Uncon

strained Optimization and Nonlinear Equations, Prentlcc-Hall, New

Jersey, 1983.

[DlGH-75a] Dixon, L. C. W., Gomulka, J., and Hersom, S. E., Reflections on

the Global Optimisation Problem, Numerical Optimisation Centre,

Technical Report No. 64, 1975.

- 400

[DiGS-'i'ia] Dixon , L. , C, W. , Gomulka , J,, and Szego, G- , P,, Towrrds Global

Optimisation Teilu^n^q^nes, Numerical Optimisation Centre, Technical

Report No. 61, 1974.

[Dix--74a| Dixon, L . C.. W,, Nonlinear Optimization , A Survey of the State of

Art; in Software for Numerical Mathematics, Evans, D. J, (Editor).

Academic Press, 1974.

[DixS-78a] !9ixo.n, L. G. W. , and Seeg'O, C.. P., The Global O^T^iia^ssa^tom ProHem

: An Introduction, in Towards Global Optimisation 2, Dixon, L. G.

W., and Szego, G. P. (Editors), North Holland Publishing Company,

1978.

[Dus--7 2;.i] Dussel, R,, J^m.riccl’^Usssmne des Minimaip unless eierr Sterne’ Hnn-

vexen Function anf einem n-dimcnsionalen Quader, Internal Report

no. 74, University Karlsruhe, Institute for Practical Mafchematik,

Karlsruhe, 1972.

[Eng-~6 0 a] EngwaU, J. L,, Numerical Algorithms lor Solvinee Ovcrdeieni^nhed

Systems of Nonlinear Equations, NASA document N70-35600, 1966.

lE v t - - 71 a] J^lt^ti^shnkoo, Y. G ,, Zli. Vycluxl. Mat mat FiD,, 11, 6 (177).), pp.

1390 - 1403.

- 407 -

[FaPZ~78a] Fagiuoli, S., Bianca, P., and Zecchm, M., A Mixed Stoohastio-

Dvtvomioistio Teobnique for Global Optimisation, in Towards Global

Optimisation 2, Dixon, L. G. W., and Szego, G. P. (Editors), North

Holland Publishing Company, 1978.

jPlaM~6Sa] Faacco, A. V..i and MCCoimiick, G . P. , Nonliveol, Pclorahhming^ : Se

quential Uoooostrhinod Minimization Teobniques, John Wiley and

Sons, Inc. 1968.

(F1e - - 8 0 a) Fle^cho^, R., Paacioca,! Meihdds of Optimiaatinn : innconsOranned Op

timization, Volume 1, John Wiley & Sons, New York, 1980.

[11 e - - 8 l a] Fleichor, R.,]0racioc^l AV^thods o! Opimmz&tcon : (^(^nsOaa^nedi Opti

mization, Volume 2, John Wiley & Sons, New York, 1981.

[FleP~63a] FleicSo^, I?,. , and Powell , M. J . I). , A. Rapidly Converge# t Dhso^^nt

Method for Minimization, Computer Journal, 7 (1963), pp. 163 - 188.

1 ~ 5 l. ai] Gate, D., Cnivex Polyherlral Gosss mid IAver.rOnequaliti^es, m T.C.

Ko op mans (Editor), Activity Analysis of Production and Allocation,

Wiley, New York, 1951.

[Gav--75a] Gwanno, MCn the Gone,ol'vonve oRPndhmnVe^ibh.lglc'ritiih:ms hn

Minimisation Problems, in Towards Global Optimisation, Dixon, L.

C. W., and Szego, G. P. (Editors), North Holland Press, 1975.

- 408

[G olP - 71 a] Goldstein, A. A., and Price, J. F., On Descent from Local ARnma,

Mathematics of Computation, 35 (1971), pp. 569 - 574.

[Gom~-75a] Gomulka, J., Remarks on BranwJs Method, A Counte-w Example, in

Towards Global Optimization, Dixon, L. C. W., and Szego, G. P.

(Edltors), North Holland Press, 1975.

[Gom--77a] Gomulka, J., Deterministic vs Probabilistic Approaches to Global

Opthm.sa.,tion, Numerical Optimisation Centre, Technical Report No

ss, 1977.

[Gom—77b] Gomulka, J., Two Implementations of Branin’s Method : Numerical

Experience, Numerical Optimisation Centre, Technical Report No.

89, 1977.

[Gom—78a] Gomulka, J., A Users Experience with Ton’s Giusto ring Algorithm,

in Towards Global Optimization 2, Dixon, L. C. W., and Szego, G.

P. (Editors), North Holland Publishing Company, 1978.

[GooL-7Oa] Good, D. I., and London, R. L., Computer Interval Arithmetic : Def

inition and Proof of Correct Implementation, Journal of the Associ

ation for Computing Machinery, 17 (1970), pp. 603 - 612.

- 409

[H a n - -G 5 a] Hanaen, E. R., Interval Arhhunetic iu Matrix Computations, Part I,

SIAM! Journal on Numerical Analysis, 3 (1905), pp. 308 - 320.

[H a e - - 6 8 aj Hansen , E . R,, On Solving $ys£ems of Equations UsingInteraal Arith

metic, Mathematics of Computation, 22 (1968), pp. 374 - 384.

[H a n -—6 9 a] Hansen , E . R . (Editor), Topics Is Interval A^j^ia^lgsis, Oxford University

Press, 1969.

[Han — 6 9b] Hansen, E. R., On the Solution of Linear Algebraic Equations with

Interval Coefficients, Linear Algebra and Application, 2 (1969) pp.

153 - 165.

[Han-- 7 8 a] Hansen , E. R., A Gtobally Convergent naeerasJ Method for Comput

ing And Bounding Real Roots, BIT, 18 (1978), pp. 415 - 424.

[H a n - - 7 8 h] Hansen, E . R., intevzaS Forms of Newtons Method, Compiling,, 20

(1978), pp. 163 - 163.

[Han-G9aj Hansen, E . R,, GLobal Opthnizaionn Usnig L^i-rrvaS Analysis - The

One-Dimensional Case, J.O.T.A., 29 (1979), pp. 331 - 344.

[H a n “ “ S O a] Hansen , E . R. , (Kol^sai Optiniizatinn Using hltrrzal Aaal-yils - T^Ae

Multi - Dimensional Cane, Nurner. Math., 84 (1980), pp. 247 - 270.

- 410

[RanG-SSa] Hausen, E. R., and Greenberg, 11. L, Ao Interval Newton Method,

Applied Mathematics and Computation, (1982), pp. 89 - 98.

[HanS-80a] Hansen, El. R., and Sengupta, S., Global Constrained Optimization

Using Inthcvhll Ami,lysis, in Interval Mathematics 1980, Nickel, K. L.

E. (Editor), Academic Press, New York, 1980, pp. 25 - 47.

[Ha o S - 81 aj Hansen, E, R, , and SeIlgtp:>■fca), S,, Bounding Solutions of Systenrs of

Equations Using Interval Analysis, BIT, 21 (1981), pp. 203 - 211.

[HanS-67a] Hausen, E , R,, and Smith, R, R,, Interval Arithmetic ui Matrbe Gom-

putadtions, Part II, SIAM Journal on Numerical Analysis, 4 (1967),

pp. 1 - 9.

[Har-7f>a] Hardy, 3, , aLh hmplehhenhed Eatersion Brndn’e Methaod, m To

wards Global Optimisation, Dixon, L. G. W., and Szego, G. P. (Edi

tors), North Holland Press, 1975.

[H a r t -'7 2 a] Hartman , J . K,, Some ExpGriments hi Globa! Optimiaation, Naval

Postgraduate School, Monterey, California, NFS ffHH72051A, 1972.

[Her — 7 fa] Hoi-som, S. E. , Trim Practcee of OptiInia&Son, Pare I, in Towri,ds

Global Optimisation, Dixon, L. C. ¥/., and Szego, G. P. (Editors),

North Holland Press, 1975.

411 -

[IcUF-T9a] Iciiida, K., and Fujii, Y.. An Interval Arithmetic Method for Global

Optimization, Computing I3 (1979) pp. 85 - 97.

[I c li F - 8 5 a] Ichida, K., and Fujii, Y., Maximization of Multivariable Functions

Using' Interval Analysis, in Interval Mathematics 1985, Nickel, K. L.

E. (Editor). Freiburg, 1985, pp. 17 - 26.

[I o n - - 7 8 a] Jones, S. T.. Searching for Solutions of Finite Nonlinear Systems - An

Interval Approach, Ph. D. Thesis, University of Wisconsin, Madison

U. S. A., 1978.

[J o n - -• 8 0 a] Jones, S. . T.. Locating Sai'e Starting Regions for leeraiive Methods :

A Heuristic Algorithm, in Interval Mathematics 1980, Nickel, K. L.

E. (Editor), Academic Press, New 'York, 1980, pp. 377 - 386.

[K a, h -“66 aj Kahan, WG M,, A Computable Error-Bound for Systems of Ordinary

Differential Equations, Abstract, SIAM Review, 8 (1966), pp. 568 -

569. .

[K r a “ 6 9 a] Krawczyk, R, Newton-Algorithmen Zur Bestimmung Von Nulseeieen

Mit Fehlerscbranken, Computing* 4 (1969), pp. 187 - 201.

[K r a “ ~SO a[Krawczyk, R,, C^c^wp^aj^’i^c^n of Diverse leeration Methods for Sets,

ill Interval Mathematics 1980, Nickel, K. L. E. (Editor), Academic

Press, New York, 1980, pp. 387 ■ 396.

[Kra—80b] Krawczyk, R., Interval Extensoons and Interval Iterations, Comput

ing, 24 (1980), pp. 119 - 129.

- 412

[K ra- - 8 4 a] Krawczyk, R., Interval Iterations for Including a 5et of Solutions,

Computing, 82 (1984), pp. 13 - 31.

[K r a S - 8 0 a] Krawczyk, R., and Selsmark, P., Order-Gonvergcnee and Iterative

Interval Nlethods, J.Math.Anal, and Appl., 78 (1980), pp. 1 - 23.

[L i d - 7 6 a] Liddell, H. M., Use of Optimization Techniques in Optical Filter De

sign, in Optimization in Action, Dixon, L. C, W. (Editor), Academic

Press, London, 1976.

[do--72 a] Lootsma, F. A., -4 Survey of Mehhods oos Solvmg Constzainog Mu--

unization Problems via Unconstrained Minimization, in Numerical

Methods of Nonlinear Optimisation, Lootsma, P. A. (Editor), Aca

demic Press, London, 1972.

[Mad--73a] Madsen, K., On The Solution of Nonlinear Equations in Interval

Arithmetic, BIT, 18 (1973), pp. 428 - 433.

[Mad--73b] Madsen, K., An Algorithm for Mfinimax: Solution of Overdetermined

Systems of Nonlinear Equations, AERE Report TP659, 1973.

[Manl'~67a] Mangasarian, O. L., and Fromswitz, S., The Fritz John Necessary

Optimality Conditions in the Presence of Equality and Inequality

Constraints, J. Math. Anal, and Appl., 17 (1967), pp. 37 - 47.

- 413 -

[ManM-76a.]

[Me —72a]

Mancini, L. J., aud McCormick, G. P., Bounding Global Minima,

Mathematics of Operations Research, 1 (1978), pp. 50 - 53.

McCormick, G. F., Attempts to Calculate Global Solutions of Prob

lems that may have Local Minima., in Numerical Methods of Non

linear Optimization, Lootsma E. (Editor), Academic Press, London,

1972.

[Me —S3aj

[MckN»76a]

[Mil--72a]

[Mir--79a]

[Meh-78a]

McCormick, G. P., Nonlinear Programming: Theory, Algorithms and

Applications, John Willey & Sons, New York, 1983.

Mckeown, J. J., and Nag-, A,, An Application of Optimization Tech

niques to the Design of an Optical Filter, in Optimization in Action,

Dixon, L. C. W. (Editor), Academic Press, London, 1978.

Miller, W., Quadratic Convergence in Interval Arithmetic, Part II,

BIT, 12 (.1972), pp. 291 - 298.

Mirnia-Harikandi, K., Modifications of Some Algorithms for Uncon

strained Optimization, PH. D. Thesis, University of St. Andrews,

Scotland, 1979.

Mohd, I. B., Chebyshev Series Approximation in Optimization, M.

Sc. Dissertation, Loughborough University of Technology, U. K,,

1978.

— 414 -

[Moh—84a] Mohd, L B., He Implementation of [Han~79a], Unpublished Report,

Department of Applied Mathematics, University of St. Andrews,

Scotland, United Kingdom, 1984.

[Moo — 62a] Moore, R, E., Interval Anthm.eedc and Aliiomatic £'i^i’or Analysis in

Digital Computing, Applied Mathematics and Statistics Lab., Report

25, Stanford University, 1962.

[Moo—66a] Moore, R, E., Interval Prentice-Hall, Englewood CliHs,

1966.

[Moo--76a) Moore, R, E,, On Computing- the Range of a Rational Function of n

Variables over a Bounded Region, Computing, 16 (1976), pp. 1 -16.

[Moo — 7 7 a) Moore, R , E, , A Test for of Solutions to Nottineear Sy'seens,,

SIAM Journal on Numerical Analysis, 14 (1977), pp. 611 - 615.

[Moo--78a] Moore, R , E,, Rounding Sets In Function Spaces with Appt.isatiolts

to Nonlinear Operator Equations, SIAM Review, 20 (1978), pp. 492

- 512.

[Moo-»78b] Moore, R, E,, A Computational. Test for Convergence of Itrsative

Methods for Nonlinear Systems, SIAM Journal on Numerical Anal

ysis, 15 (1978), pp. 1194 - 1196.

41.5 -

[Moo-79aj Mooee, E . 13., Mehoods and AppiCzai;(ons ofintr^val Anfllysis, SAMI,

P h ilad e 1ph la, 1079.

[M o O"“ 8 0 a] Moore, R. E., Interval Methods for Nonlinear Systems, Computing

Supplementum, 2 (1980), pp. 113 ~ 120.

[Moo-"801)] Mooes, E. . E. , New ResuMs Os Nodihezar Systems, m lnSorval Math

ematics 1980, Nickel, K. L. E. (Editor), Academic Press, New York,

1980, pp.165 - 180.

[MooJ~77a] Moore, R. E., and Jones, S. T., Safe Starting Regions for Iterative

Methods, SIAM Journal on Numerical Analysis, 14 (1977), pp. 1051

- 1065.

[MooK-80a] Moore, R. E., and Kioustelidis, A Snnple Test for Accuracy of Ap

proximate Solutions to Nonlinear (or Linear) Systems, SIAM Journal

on Numerical Analysis, 17 (1980), pp. 521 - 529.

[MooQ--82a] Mooee, R. E., and Qi, L., A S^cccess^ec nntr^z2g Tsss oor NonUne&r

Systems, SIAM! Journal on Numerical Analysis, 19 (1982), pp. 845 -

850.

416 -

[M O F G - 8 3 aj

[MoTZ-?3a]

[Nic...6 9 a]

[N i c- 71 a]

[NicR~72a]

[P e a - - 6 9 aj

Morrison, R., Cole, A. J., Bailey, P. J., Wolfe, M. A., and Shearer, M.,

Experience in Using a High Level Language which Supports Interval

Arithmetic. Tn Proceedings of ARITH6, the Joint TCCA/1EEE sixth

Symposium on Computer Arithmetic, Aarhus, Denmark, 1983.

Moekus, J., Tiesis, V., and ZUinskas, A., The Application ofB&yesi&n

'Methods for Seeking the Extremum, in Towards Global Optimisation,

Dixon, L. C. W., and Szego, G. P. (Editors), North Holland Publish

ing' Company, 1978.

Nickel, K., Triplcx-Algol and Its App^Iicat^ions, in Topics In Interval

Analysis, Hansen, E. R. (Editor), Oxford Press, 1969.

Nickel, K., On the Newton Method in Interval Analysis, MRC Tech

nical Summary Report 1136 (1971), Madison, Wisconsin, U. S. A..

Nickel, K., and Ritter, K., Termination Criterion and Numerical Con

vergence, SIAAI Journal on Numerical Analysis. 9 (1972), pp. 277 -

283.

Pearson, ,1 , D. , Variable Mehnc Methods for AUnim.iratikni , Computer

Journal, 12 (1969), pp. 171 - 178.

-- 417

[Pri--7 8a] Price, W. L., A Controlled Random Search Procedure for Global

OptirawMion, in Towards Global Optimisation 2, Dixon, L. G. W,,

Szego, CT P. (Editors), North Holland Publishing Company, 1978.

[Qi —8 0 a] Qi, L., A Generalization of The Krawczyfc-Moore Algorithm, in In

terval Mathematics 1980, Nickel, K. L. E. (Editor), Academic Press,

New York, 1980, pp. 481 - 488.

[Q i — 8 1 a] Qi, L,, In terval Boxes of Soln tions of Nonlinear Systems, Computing,

27 (1981), pp. 137 - 144.

[Q i — - 8 2 a] Qi, L., A Note On The Moore Test for Nonlinear Systems, SIAM

Journal on Numerical Analysis, 19 (1982), pp. 851 - 857.

[Ral-- 7 4 a] Rail, L, B., A Note on the Convergence of Newton's M^et^hod, SIAM

Journal on Numerical Analysis, 11 (1974), pp. 34 - 36.

[R a 1 - - 8 0 a] Rail, L. B, A Comparison of the Exist e.nce Theorems of Kantorovih

And Moore, SIAM Journal on Numerical Analysis, 17 (1980), pp.

148 - 161.

[R a t - - 8 0 a] Rafschek, H,, Centered Forms, SIAM Journal on Numerical Analysis,

17 (1980), pp. 656 - 662.

— 418 ---

[RatR-SOa]

[RatR~80b]

[RatR-84a]

[Rob-- 73 a]

[RoS--60a]

(Rub W-77a]

[ShaA-73a]

Ratschek, H., and Rokne, J., About the Centered Form, SIAM Jour

nal on Numerical Analysis, 17 (.1980), pp. 333 - 337,

Ratschek, HL, and Rokne, J,, Optimality of the Centered Form, in

Interval Mathematics, Nickel, K. L. E. (Editor), Academic Press, New

York, 1930, pp. 490 - 508.

Ratschek, PL, and Rokne, J., Computer ‘Methods for the Range of

Functions, Ellis Horwood Ltd., Chichester, 1984.

Robinson, S. M., Computable Error Bounds for Nonlinear Program

ming, Mathematical Programming, 5 (1973), pp. 235 - 242.

Rosenbrock , Hi . HI,, aU, Al^t(omaSic Method oor Finding hhe Gie^^aesst

or Least Value of a ‘Function, Computer Journal, 3 (1960), pp'). 175 -

184.

Rubinstein, Yf, , and Weissman, I, , The Monee Carbs Mehhod for

Global Optimization, Operation Research, Statistics and Economics

- Mimeograph Series 187, 1977.

Shampine, L. P., and Alien Jr, R. G., Numerical Computing : An

Introduction, W.B. Saunders Company, Philadelphia, 1973.

- 419

[S'hc Sharper, . ML , am 1 Wolfe, M. A,,

Unkoncnesi}, and Convergence Tests

Some Computable Cxiste'cae,

for NoUncar Systems, SIAM

Journal on Numerical Analysis, 22 (1085), pp. 1200 1207.

8 5 a |

[S he W "85 h] Shearer? J. Mi, ? and Wolfe, M.. A,, A Note Oe hee Algorithm of Aifbld

and Fhitz^oder. To appear in SLAM Journal on Scientific and Statis

tical Computing;, 1986.

[SheW-8Sc] Shaaecr, J . Ml., and Voolfo, MA. A., mppo^^cd Form of the

KraovczykAloore Algorithm, Applied '.Mathematics and Computa

tion, 17 (1985), pp. 229 - 239.

[S h u - - 7 2 ail

[S k e - 7 4 a]

Shubert, B. O,, a, Scqumtill Mehhod fekli^igg hhe Global Maximmim

of a Function, SIAM Journal on Numerical Analysis, 9 (1972), pp.

379 - 388.

Skelboe, S,, Computation of Rational Ix^irrvil Function's, BIT, 44

(1974), pp. 87 - 96.

[Ste--7 3 a] Stewart, N., Interval Arithmetic for Guaranteed Bounds in Linear

Programming, J.O.T.A., 12 (1973), pp. 1 - 5.

[Tor— 7 8 a] Torn, A. A., A Search-Clustering Approach to Global Optimization,

in Towards Global Optimisation 2, Dixon, L. C. W., and Szego, G.

P. (Editors), North Holland Publishing Company, 1978.

- 420 -

for Globa! Minimization, in Towards

C. W., and Szego, G. P. (Editors),

[T re—7 6 a]

[TrTS-72a]

Treccani, G., A New Strategy

Global Optimisation, Dixon, L

North Holland Press, 1975.

Treccani, G., Trabattoni, L., and Szego, G. P., A Numerical Method

for the Isolation of Minima, in Minimization Algorithms, Szego, G.

P. (Editor), Academic Press, New York, 1972.

[U e i - 7 2 a,] Ueing, U., A Combinatorial Method to Compute a Global Solution of

Certain Non-Convex Optimization Problems, in Numerical Methods

of Nonlinear Optimization, Lootsxna, F. A. (Editor), Academic Press,

London, 1972.

[Van — 78a] Vandergraft, J. S., Introduction to Numerical Computations, Aca

demic Press, New York, 1978.

[ViZS-75a] Vilkov, A. V., Zhidkov, N. P., and Shchedrin, B. M., A Method of

Finding the Global Minimum of a Function of one Variable, U.S.S.R.

Computational Mathematics and Mathematical Physics, 15 (1975),

Number 4, pp. 221 - 224.

[W ol--78a] Wolfe, M. A., Nunicricai Methods for Unconstrained Optimization :

An Introduction, Van Nostrand Reinhold Company, London, 1978.

-421 -•

[Wol-~80o] Wolfe, M. A., A Modification ofKrawczyjfc’s Algonithm, SIAM! Jour

nal on Numerical Analysis, 17 (1980), pp. 376 - 379.

[W ol--80b] Wolfe, M. A., Technical Note : An E:dstence Convergence Theorem

for A Class of Iterative Alethods, J.O.T.A., 81 (1980), pp. 125 - 129.

[W ol--09a] 'Wolfe, P., Convergence Conditions for Ascent Methods, SIAM Re

view, 11 (1969), pp. 226 - 235.

[Y o h ~- 73 a] Yohc, J. M., Interval Bounds for Square Roots and Cube Roots, Com

puting, 11 (1973), pp. 51 - 57,

(Y oh -79 a] Yolie, J. M., Implementing Nonstandard Arithmetics, SIAM Review,

21 (1979), pp. 34 - 56.

