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Abstract

The aim of this study was to investigate whether the presence of endogenous estradiol alters

the effects of a high fat (HF) diet on activity/expression of the cardiac Na+/K+-ATPase, via

PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar

rats (8 weeks old, 150-200g), were fed a standard diet or a HF diet (balanced diet for

laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet

exhibited a decrease in phosphorylation of the α1 subunit of Na+/K+-ATPase by 30%

(p<0.05), expression of total α1 subunit of Na+/K+-ATPase by 31% (p<0.05), and association

of IRS1 with p85 subunit of PI3K by 42% (p<0.05), while the levels of cardiac RhoA and

ROCK2 were significantly increased by 84% (p<0.01) and 62% (p<0.05), respectively. Our

results suggest that a HF diet alters cardiac Na+/K+-ATPase expression via molecular

mechanisms involving RhoA/ROCK and IRS-1/PI3K signaling in female rats.
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Introduction

Obesity is defined as an excessive presence of fat in the body and if uncorrected, contributes

to the onset and development altered glucose, lipid and energy metabolism, insulin resistance

(IR) and variety of cardiovascular diseases (CVD) [1,2]. Rodents fed a high fat diet (HF diet)

rapidly develop hyperinsulinemia, hyperglycaemia, whole body IR, and are a valuable

research model since they can provide insight into the mechanisms underlying IR in obese

individuals with impaired glucose tolerance or type 2 diabetes mellitus (T2DM) [3,4]. In

biomedical research, it has become increasingly apparent that female sex hormones, primarily

estradiol, have a favourable effect on insulin (INS) sensitivity and that men are more

susceptible to IR, T2DM, metabolic syndrome and CVD when compared to premenopausal

women [5-9]. However, estradiol production and action may be disrupted by a HF diet, which

may the reason why cardioprotective effects of estradiol are blunted in obesity and IR [10].

Sodium/potassium-adenosine-triphosphatase (Na+/K+-ATPase) is an integral membrane

protein that transports K+ ions into the cell and Na+ ions out of the cell two using the energy

derived from hydrolysis of ATP. It is composed of a 112 kDa catalytic α subunit, a heavily 

glycosylated 35 kDa β subunit [11,12], and a regulatory subunit called FXYD proteins, which 

are often referred to as γ-subunits [13]. The α-subunit catalyses ATP hydrolysis and exists in 

four separate isoforms, α1–α4. The α1 and α2 subunits are expressed in rat heart [14]. Na+/K+-

ATPase regulates smooth muscle reactivity and is proposed to be involved in development of

systemic hypertension, while the reduction in the transarcolemmal Na+ gradient, established

and maintained by Na+/K+-ATPase, leads to heart hypertrophy and failure [14,15].

Furthermore, obesity is associated with the reduction of Na+/K+-ATPase activity in heart,

skeletal muscle and liver, probably due to the development of IR since it has been shown that

INS induces translocation of Na+/K+-ATPase subunits from intracellular stores to plasma

membrane by a phosphatidylinositol 3-kinase (PI3K) dependent pathway [16-19]. In addition,

gender-specific regulation of Na+/K+-ATPase exist, and estradiol exerts its cardioprotective

effects partially by up-regulating Na+/K+-ATPase activity/expression [20-22]. It has been

shown that estradiol increases synthesis of new α subunits and Na+/K+-ATPase activity by a

mechanism involving PI3K signalling [23,24,22]. Despite the importance of obesity induced

reduction in Na+/K+-ATPase activity in the pathogenesis of several diseases including T2DM

and CVD, the association between obesity/Na+/K+-ATPase/CVD is still poorly understood. It

has been reported that a HF diet upregulates Ras homolog gene family, member A (RhoA)
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and its downstream effector Rho kinase (ROCK) in the heart of diabetic rats [25]. Moreover,

RhoA/ROCK pathway was demonstrated to down-regulate PI3K/protein kinase B (Akt)

signalling [26,27]. ROCK exists in two widely expressed isoforms, ROCK1 and ROCK2, and

the ability of ROCK to interfere with INS signalling appears to be isoform-dependent and

tissue-specific [28].

We have previously shown that obesity, when accompanied with IR and hypertension,

reduces the activity/expression of the cardiac Na+/K+-ATPase by a mechanism involving

activation of RhoA and reduction of PI3K/Akt activity. We have also demonstrated that

estradiol treatment restores the function of Na+/K+-ATPase in heart of obese male rats [29].

In this study, we examine whether the decreased ability of endogenous estradiol to stimulate

Na+/K+-ATPase pump activity in obesity is due to an alteration in the PI3K/insulin receptor

substrate (IRS) and RhoA/ROCK signaling cascade.

Material and Methods

2.1. Materials

Ether was purchased from Lek (Ljubljana, Slovenia). Luminol and p-coumaric acid were

obtained from Sigma Aldrich Corporation (St. Louis, MO, USA). Protease (Complete, Ultra

Mini, EDTA-free) and phosphatase inhibitor cocktails (PhosStop), were purchased from

Roche (Mannheim, Germany). The rabbit polyclonal antibodies (anti-Rho A, anti-phospho-α1

Na+/K+-ATPase (Ser23) and anti-α1Na+/K+-ATPase) and monoclonal (anti-PI3K p85α) were 

obtained from Abcam (Cambridge, UK). The rabbit polyclonal (anti-ROCK2) and

monoclonal (anti-PI3K p110α) antibodies were purchased from Cell Signalling Technology 

(CST, USA). The goat polyclonal anti-α2 Na+/K+-ATPase antibody, rabbit polyclonal mouse

anti-actin monoclonal antibody, and the secondary anti-mouse and anti-rabbit antibodies

conjugated to alkaline phosphatase (ALP) or to horseradish peroxidase (HRP) and

BCIP/NBT (5-bromo-4-chloro-3-indoyl phosphate/nitro blue tetrazolium chloride), were

obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Animals

Adult female Wistar rats (8 weeks old, 150-200g), bred at the Institute of Nuclear Sciences

(Vinca, Belgrade) were used in this study. The animals were divided into 2 groups: control

females (Control) and high-fat diet fed females (Obese). The animals were kept under a 12:12

h light: dark cycle at 22±2°C with. Over the next 10 weeks control females had ad libitum
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access to standard laboratory chow composed of 20% proteins, 8% cellulose, 13% moisture,

1% calcium, 0.90% lysine, 0.75% methionine+cystine, 0.5% phosphorus, 0.15 – 0.25%

sodium, vitamin mixture (A 10000 IU/kg, D3 1600 IU/kg, E 25 mg/kg, B12 0.02 mg/kg),

mixture of minerals (in milligrams per kilogram: zinc 100, iron 100, manganese 30, copper

20, iodine 0.5, selenium 0.1), antioxidants 100 mg/kg, and digestible/metabolizable energy 11

MJ/kg (prepared by “D. D. Veterinarski zavod Subotica”, Subotica, Serbia), while obese

females were fed a standard laboratory chow enriched with 42% fat. At the end of the

experiment all animals were euthanized under deep ether anesthesia, hearts were excised and

quick frozen in liquid nitrogen at -80°C and stored until further experiments. The results

related to the body mass, levels of insulin, glucose, the HOMA-index of insulin resistance

(HOMA-IR) and HOMA-index of β-cell function (HOMA-β) in control and obese female 

rats are already published [30], and demonstrate that our obese female rats did not develop IR

(depicted by unchanged levels of HOMA-IR and HOMA β). Experimental protocols were 

approved by the Vinca Institute’s Ethical Committee for Experimental Animals.

2.3. Heart lysate preparation

To isolate heart lysate proteins we homogenized approximately 200 mg of rat heart tissue on

ice with an Ultra-Turrax homogenizer in lysis buffer (pH 7.4) containing: 10 mM Tris, 150

mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100, 2 mM sodium orthovanadate,

phosphatase and protease inhibitor cocktails. Homogenates were incubated for 1h at 4°C and

centrifuged at 4°C at 100,000 x g for 20 min. The supernatants (containing proteins) were

obtained and concentration of proteins was determined by Lowry method [31]. The final

lysate was stored at -80°C until further experiments.

2.4. Heart plasma membrane protein extraction

To isolate membrane proteins pieces of rat heart (200 mg) were incubated for 30 min in a

high-salt solution (20 mM HEPES, 2 M NaCl, and 5 mM sodium azide, pH 7.4) at 4°C. This

was followed by centrifugation for 5 min at 1000 ×g, and rehomogenation of the pellet on ice

with an Ultra-Turrax homogenizer in TES-buffer (pH 7.4) containing: 20 mM Tris, 250 mM

sucrose, and 1 mM EDTA, 2 mM sodium orthovanadate, phosphatase and protease inhibitor

cocktails. The homogenate was centrifuged for 5 min at 1000 ×g while the resulting pellet

was then rehomogenized in a TES-buffer and recombined the supernatant obtained in

previous centrifugation. Afterwards the homogenate was centrifuged for 10 min at 100 ×g,

and the obtained supernatant was additionally centrifuged for 10 min at 5000 ×g. The final
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pellet (referred to as the “plasma membrane fraction”) was resuspended in TES buffer and

stored at -80°C for further analysis. Protein concentrations were determined by the Lowry

method [31].

2.5. Measurement of cardiac Na+/K+-ATPase activity

The Na+/K+-ATPase activity in heart plasma membrane protein fraction was determined with

the modified spectrophotometric procedure [32,33]. Briefly, the reaction medium (20 mM

Tris–HCl, 40 mM NaCl, 8 mM KCl, 2 mM MgCl2, pH 7.4) and 0.125 mg/ml protein were

pre-incubated for 10 min at 37°C. Addition of 2 mM ATP started the reaction and after 15

min, the reaction was terminated by the addition of ice-cold 3 M perchloric acid and the

samples were then cooled on ice. A corresponding set of samples was prepared the same way

but with additional 2 mM ouabain. The Na+/K+-ATPase activity represents the difference in

the amount of inorganic orthophosphate released from the hydrolysis of ATP, between the

samples with or without oubain. Inorganic orthophosphate concentration was measured by

addition of 0.2 M ammonium heptamolybdate in 30% (w:v) sulfuric and a drop of 132 mM

stannous chloride. After incubation on room temperature for 15 min, the absorbance was

measured at 690 nm. Na+/K+-ATPase activity was calculated using a phosphate standard

calibration curve and the results were expressed as mmol phosphate/min/mg protein.

2.6. SDS-PAGE and Western blotting

Equal amounts of either total protein lysates or plasma membrane protein extracts (80

µg/lane) were separated by 10% or 12% SDS-polyacrylamide gel electrophoresis [34] and

transferred to polyvinylidene difluoride (PVDF) membranes as previously described [35,36].

The membranes were blocked with 5% bovine serum albumin and probed with antibodies

directed against p85 and p110 subunits of PI3K, RhoA and ROCK2 for total protein lysates

and with antibodies directed against α1 phosphorylated at Ser23 and non-phosphorylated

forms of α1 and α2 Na+/K+-ATPase for membrane proteins. After washing, membranes were

incubated with the appropriate secondary antibodies and used for subsequent detection with

either BCIP/NBT or with the electrochemiluminescence (ECL) method. In order to insure

that protein loading was equal in all samples, all blots were probed with anti-actin antibody

and appropriate secondary antibody. Signals on membranes were quantified using ImageJ

1.45s software (National Institutes of Health, USA, http://rsb.info.nih.gov).
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2.7. Co-Immunoprecipitation of IRS and p85 proteins

For immunoprecipitation, 500 μg of cellular protein was incubated overnight with 2 μg of 

anti-insulin receptor substrate-1 (IRS-1) antibody at 4°C. Immunocomplexes were collected

with protein A/G-sepharose overnight at +4°C and then recovered by centrifugation (2500 xg;

5 min) and washed three times with TBS. Proteins were separated by SDS-PAGE, transferred

to a polyvinylidene difluoride (PVDF) membrane, and probed with an anti-p85 antibody (in a

dilution of 1:1000). After washing, membranes were incubated with the HRP conjugated

secondary antibodies and used for subsequent detection with ECL method.

2.8. Statistical Analysis

Values are expressed as mean ± SEM. Statistical analyses of data were evaluated with a

Student's t- test using Microsoft Excel program for Windows. A two-tailed P<0.05 was

considered significant.

3. Results

3.1. Effects of a HF diet on cardiac α1 and α2 subunits of Na+/K+-ATPase and Na+/K+-

ATPase activity in obese female hearts

Since the reduced activity and expression of Na+/K+-ATPase is a key event leading to the

development of various forms of CVD [37], we first examined the effects of a HF diet on the

level of α1 subunit phosphorylation at Ser23, and the level of total α1 and α2 subunit of

Na+/K+-ATPase in female rats. The results show that a HF diet led to a decrease in the level

of α1 subunit phosphorylation by 30% (p<0.05) (Fig. 1a) and total α1 subunit expression by

31% (p<0.05) in obese females compared with their control (Fig. 1b and c). The density ratio

between the phosphorylated and total forms of the Na+/K+-ATPase α1 subunit in cardiac

tissue was not observed to be different between obese and control female rats (Fig. 1d). In

addition, a HF diet did not alter the level of α2 subunit (Fig. 1e) or in the Na+/K+-ATPase

activity (Fig. 2).

3.2. Effects of HF diet on RhoA and ROCK2 protein expression in rat heart

To examine the mechanism by which cardiac expression of Na+/K+-ATPase may be regulated

in female rates fed a HF diet, we next assessed the effects of a HF diet on expression of RhoA
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and ROCK2. The results show that in obese females the expression of RhoA was increased

by 84% (p<0.01) while the level of ROCK2 was increased by 62% (p<0.05) compared with

controls (Fig. 3).

3.3. Effects of HF diet on expression of p85 and p110 subunits of PI3K and association

of IRS1 and p85 in rat heart

Obesity is associated with the reduction of Na+/K+-ATPase activity in heart, likely due to the

development of IR. We have previously shown that estradiol induces changes in cardiac

Na+/K+-ATPase activity/expression in male rats by a PI3K dependent pathway [29]. Here we

explored the effects of a HF diet on the expression of the p85 and p110 subunits of PI3K in

the heart of female rats fed a HF diet. The results revealed no significant change in the level

of p85 or p110 subunits of PI3K compared to controls (Fig. 4).

3.4. Effects of HF diet on association of IRS1 and p85 subunit of PI3K in rat heart

Since HF diet-feeding increases phosphorylation of IRS at Ser307, which in turn has been

shown to reduce the interaction of IRS with the p85 subunit of PI3K, thereby limiting PI3K

activation and impairing estradiol signalling [38], we next examined association between

IRS-1 and p85 in the hearts of female rats fed a HF diet. The results of co-

immunoprecipitation of IRS-1 and p85 proteins revealed reduced association of IRS-1 protein

with p85 subunit of PI3K by 42% (p<0.05) in obese compared with control female rats (Fig.

5).

4. Discussion

We have previously reported that a HF diet, despite causing the development of an obese

phenotype in both male and female rats, only induces hyperlipidaemia, hyperglycaemia, and

IR in male rats [39,30,40]. Furthermore, we have reported that in male rats, obesity

accompanied with IR decreases cardiac Na+/K+-ATPase activity/expression, while estradiol

administration as bolus injection achieved contrary effects. In this study we assessed whether

the presence of endogenous estradiol in female rats, prevents HF diet induced alterations in

the translocation of the cardiac Na+/K+-ATPase activity/expression, since it is still unknown

to what extent obesity compromises cardioprotective effects of estradiol. Our results indicate

that a HF diet causes up-regulation of RhoA/ROCK protein expression, decreases the IRS-1

protein association with p85 subunit of PI3K and reduces the expression of the α1 subunit of

Na+/K+-ATPase in female rats. However despite these changes, the activity and expression of
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α2 subunit of Na+/K+-ATPase in cardiac tissue were unaltered under the influence of a HF

diet in female rats.

In cardiac muscle, Na+/K+-ATPase plays a crucial role in the regulation of cardiac

electrophysiology and cardiomyocytes contractility, while various cardiac disorders including

cardiac hypertrophy and hypertension, which commonly occur as a consequence of obesity,

are associated with reduction of Na+/K+-ATPase activity and expression [18,19,41,37]. We

have previously reported that in the hypertrophic heart of male rats a HF diet reduces the

activity and expression of the ɑ1 and ɑ2 subunits of Na+/K+-ATPase, while estradiol treatment

reduced heart hypertrophy and increased Na+/K+-ATPase expression/activity [42,39]. Earlier,

Dzurba et al. reported that pretreatment of ovariectomized female dogs with estradiol

increased Na+/K+-ATPase activity in the myocardium [43]. Later, Palacios et al.

demonstrated that treatment of aortic rings isolated from ovariectomized female rats with

estradiol restored activity of Na+/K+-ATPase similar to the values observed in aortic rings

from intact rats [44]. In addition, the same authors show that estradiol treatment of male rat

aortic rings increased expression of α2 subunit mRNA, and also that α2 subunit expression is

greater, while the α1 subunit is lower in untreated arterial vessels of female rats compared

with males. Here we show that in female rats a HF diet reduces the expression of the ɑ1

subunit of Na+/K+-ATPase, but does not affect the expression of ɑ2 subunit or the Na+/K+-

ATPase activity. Numerous studies show significant gender differences in the relative amount

of α1 and α2 catalytic isoforms and the activity of Na+-K+-ATPase [44,24,45,46]. In our study,

unaltered Na+/K+-ATPase activity despite the reduced content of its ɑ1 subunit may be

explained by the fact that rodent α1-subunit isoform has a very low affinity to ouabain, and

ouabain-sensitive methods largely reflect the α2-subunit content [47,48]. Michea et al.

reported that a diminished expression of α1 subunit does not affect Na+/K+-ATPase activity,

whereas the reduction of α2 protein accounted for the reduction of total Na+/K+-ATPase

activity of diabetic animals [49]. Recently, Correll et al show by overexpressing α1 and α2 tg

mice, that only overexpression of α2 subunits of the Na+/K+-ATPase reduced cardiac

hypertrophy and remodeling [50]. Furthermore, distribution of α1 and α2 isoforms varies in

heart in a region-specific manner [51], even in the same single cell [52]. All these findings

potentially suggest that the α2 subunit of Na+/K+-ATPase is capable of substituting the role of

α1 subunit in terms of regulating Na+/K+-ATPase activity. Our data support this hypothesis,

since in our study the protein expression of α1 subunit was reduced, while the activity of

Na+/K+-ATPase was unchanged. We also assume that the stimulatory effect of estradiol on
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Na+/K+-ATPase activity is sufficient to maintained normal function of Na+/K+-ATPase during

reproductive period in HF fed female rats, even it was shown that obesity permanently reduce

expression and activity of Na+/K+-ATPase in heart.

There is strong evidence that a HF diet increases the expression of RhoA and ROCK in

various tissues, and that alterations in activity of downstream targets can enhance vascular

smooth muscle cells contractility which can eventually lead to the development of several

pathological conditions, including hypertension, atherosclerosis and heart failure [53-55].

Soliman et al. reported that feeding mice a HF diet for 17 weeks significantly increases the

expression of cardiac RhoA and ROCK2 [56]. Similarly, in our study a HF diet augmented

both RhoA and ROCK2 expression in obese female rat hearts. This may be related to the

activation of the renin–angiotensin system, which is common in obesity and is characterized

by increased level of Ang II [57]. This in turn induces a hypertrophic response in

cardiomyocytes through various signal transduction pathways, including activation of RhoA

[58,59]. Furthermore, it has been shown that both inducible nitric oxide synthase (iNOS) and

the RhoA/ROCK pathway are activated in hearts of streptozotocin-induced diabetes as well

as that iNOS may be a contributing factor in the RhoA/ROCK-mediated contractile

dysfunction by increasing the total pool of RhoA available for activation [56,25]. In addition,

we have previously demonstrated that a HF diet in the same rats used in this study caused an

increase in cardiac iNOS mRNA and protein levels by a mechanism involving increased

activation of Akt [60]. The mechanism by which iNOS may regulate RhoA expression in the

heart appears to be a combination of transcriptional and translational upregulation of the

RhoA gene and decreased degradation of the RhoA protein [56,25,61,62]. A number of

studies demonstrated that upregulation of iNOS leads to RhoA phosphorylation at Ser188

thereby protecting it from ubiquitin/proteasome-mediated degradation, while iNOS inhibition

was associated with a decrease in RhoA mRNA and protein expression in the aorta and

pulmonary artery [63,62,61].

Obesity decreases Na+/K+-ATPase activity and expression through dysregulation of multiple

signalling cascades, and one of the mechanisms includes the IRS-1/PI3K signalling pathway

[29]. Depending on the cell type, estradiol signaling can involve the PI3K signaling pathway.

We have previously reported that PI3K is involved in estradiol regulation of the sodium

pump in heart tissue [22,29]. Estradiol has been shown to activate PI3K through binding of

phosphotyrosine-containing proteins such as IRS-1 and insulin receptor substrate-2 (IRS-2)
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and the association of p85 with IRS-1 in different types of cells [64,65]. However, obesity

induced IR is associated with serine phosphorylation of IRS-1 which attenuates tyrosine

phosphorylation of IRS-1 in response to estradiol stimulation [66,67]. It has been shown that

a HF diet increases phosphorylation of IRS at Ser307, which is located near the

phosphotyrosine-binding domain of IRS-1, and its phosphorylation has been shown to reduce

the interaction of IRS with the p85 subunit of PI3K, thereby limiting PI3K activation and

impairing estradiol and INS signalling [38,68]. Results from our study reveal that a HF diet

does not influence the expression of p85 and p110 subunits of PI3K, but significantly reduces

the association of p85 subunit of PI3K and IRS-1 in the heart of obese female rats. This may

be a consequence of enhanced RhoA/ROCK signalling, since it has been shown that both

partial deletion of ROCK2 and its inhibition by fasudil prevents Ser307 phosphorylation of

IRS-1 in mice fed a HF diet for 17 weeks [56]. In addition, we have previously reported that

in the same rats used in this study, a HF diet altered the expression of cardiac cluster of

differentiation 36 (CD36) and fatty acid metabolism [60], leading to the accumulation of

intramyocellular lipids, which in turn may activate serine kinases such as protein kinase C

and mammalian target of rapamycin to consequently induce serine phosphorylation of IRS-1

[69,70].

Even though healthy premenopausal women are naturally protected from CVD, partially via

ERα signalling in the vasculature [71], several lines of evidence show that beneficial effects 

of ERα signalling are blunted in obesity and IR conditions [72] as well as that HF diet 

reduces concentration of estradiol and alters the expression of estrogen receptors [73-75]. We

have previously demonstrated that a HF diet decreases serum estradiol level, as well as

cardiac estrogen receptor-α (ERα) signalling and believe that due to the lack of beneficial 

action of estradiol, some of HF diet effects on female heart are similar to those observed in

male rats and they include the up-regulation of cardiac iNOS expression [60] and

consequential stimulation of RhoA/ROCK signalling and decrease in IRS-1/PI3K association

and the expression of ɑ1 subunit of Na+/K+-ATPase. However, why reduced estradiol affected

the level of cardiac Na+/K+-ATPase ɑ1 subunit expression but not ɑ2 subunit expression

remains to be elucidated. Although there has been much research into the role of estradiol in

regulating Na+/K+-ATPase activity and its contribution to the pathogenesis of cardiovascular

disease in obesity and T2DM, the molecular mechanisms that control these processes are

poorly understood. The research outlined in our study provide new information on the

molecular basis of a Na+/K+-ATPase regulation by endogenous estradiol in the diabetic

female rat heart and its role in the control of the estradiol-regulated Na+/K+-ATPase activity.
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A greater understanding of how obesity impairs Na+/K+-ATPase activation will provide

important insights into preventing and reducing CVD in the female population.
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FIGURE LEGENDS

Fig. 1 Effects of a HF diet on expression of cardiac α1 and α2 subunits level of Na+/K+-

ATPase (a) Phosphorylation of the α1 subunit of Na+/K+-ATPase at Ser23. (b) Expression of

total α1 subunit of Na+/K+-ATPase. (c) Ratio of phospho-α1 Na+/K+-ATPase and total α1

Na+/K+-ATPase. (d) Expression of total α2 subunit of Na+/K+-ATPase. The results are

expressed relative to the value obtained for the control and represent mean ± SEM (n=4-5; *

p<0.05; N.S.-not significant). Representative western blots of phosphorylation of α1 subunit

of Na+/K+-ATPase at Ser23, expression of total α1 and α2 subunit of Na+/K+-ATPase and

corresponding β-actin proteins are shown. 

Fig. 2 Effects of a HF diet on cardiac Na+/K+-ATPase activity in female rats. Specific

activities of Na+/K+-ATPase are expressed in mmol Pi/h/mg of protein and represent mean ±

SEM (n=6–8).

Fig. 3 Effects of HF diet on RhoA and ROCK2 protein expression in female rat heart (a)

Expression of RhoA protein in lysate. (b) Expression of ROCK2 protein in lysate. The results

are expressed relative to the value obtained for control and represent mean ± SEM (n=5-6;

*p<0.05, **p<0.01). Representative western blots for RhoA, ROCK2 and corresponding β-

actin proteins in control and obese female rats are shown.

Fig. 4 Effects of HF diet on p85 and p110 subunits of PI3K expression in heart lysates

(a) Expression of p85 protein in lysate. (b) Expression of p110 protein in lysate. The results

are expressed relative to the value obtained for the control and represent mean ± SEM (n=4-

5; N.S.-not significant). Representative western blots for p85 and p110 subunits and

corresponding β-actin proteins in control and obese female rats are shown. 

Fig. 5 Effects of HF diet on association of IRS1 and p85 subunit of PI3K in rat heart

Association of IRS1 and p85 in lysate. Results are expressed relative to the value obtained for

control and represent mean ± SEM (n=4; *p<0.05). Representative western blots of IRS1

association with p85 subunit of PI3K in cardiac lysates are shown.
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Figure 2.
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Figure 3.
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Figure 4.
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Figure 5.
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