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Abstract 

 

Fumaroles are the surface manifestation of hydrothermal circulation and can be influenced by 

magmatic, hydrothermal, hydrological and tectonic processes. This study investigates the temporal 

changes in fumarole temperatures and spatial extent on Aluto, a restless volcano in the Main Ethiopian 

Rift (MER), in order to better understand the controls on fluid circulation and the interaction between 

the magmatic and hydrothermal systems. Thermal infrared (TIR) satellite images, acquired by the 

Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) over the period of 2004 

to 2016, are used to generate time series of the fumarole temperatures and areas. The thermal 

anomalies identified in the ASTER images coincide with known fumaroles with temperatures > 80C 

and are located on or close to fault structures, which provide a pathway for the rising fluids. Most of 

the fumaroles, including those along the major zone of hydrothermal upwelling, the Artu Jawe Fault 

Zone, have pixel-integrated temperature variations of only ~2 ± 1.5°C. The exception are the Bobesa 

fumaroles located on a hypothesised caldera ring fault which show pixel-integrated temperature 

changes of up to 9°C consistent with a delayed response of the hydrothermal system to precipitation. 

We conclude that fumaroles along major faults are strongly coupled to the magmatic-hydrothermal 

system and are relatively stable with time, whereas those along shallower structures close to the rift 

flank are more strongly influenced by seasonal variations in groundwater flow. The use of remote 

sensing data to monitor the thermal activity of Aluto provides an important contribution towards 

understanding the behaviour of this actively deforming volcano. This method could be used at other 

volcanoes around the world for monitoring and geothermal exploration. 

 

 

Keywords: temperature, fumaroles, Aluto, Main Ethiopian Rift, ASTER 
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1. Introduction 

Volcanoes show signs of unrest in a variety of ways, such as deformation, seismicity or 

hydrothermal activity. In many cases, unrest does not precede an eruption and it is essential to 

distinguish baseline levels of activity from the signals that might be precursory to an eruption (e.g. 

Fournier et al., 2010; Parks et al., 2015; Biggs et al., 2016; Coco et al., 2016). The interaction between 

magmatic and hydrothermal systems creates complex signals, particularly in terms of the deformation, 

which make it difficult to interpret the cause of the unrest (e.g. Gottsmann et al., 2006; Lowenstern & 

Hurwitz, 2008; Coco et al., 2016; Hemmings et al., 2016). Fumaroles offer an important window into 

the processes at work beneath the surface of a volcano and some studies have suggested that 

monitoring changes in the composition and temperature of the gases they emit might aid in the 

prediction of changes in volcanic activity (Madonia & Fiordilino, 2013; Laiolo et al., 2017). The fluids 

released at the fumaroles have undergone a long journey: escaping from the magma, travelling up 

through the rocks and the shallow hydrothermal and groundwater systems to reach the surface. As a 

result, the fumarolic fluids provide information that with careful interpretation can yield to insights 

into the interaction between the magmatic and hydrothermal systems (Fournier, 1999; Ingebritsen et 

al., 2010; Laiolo et al., 2017). 

Fluid flow in hydrothermal systems is controlled by many overlapping processes, which are 

unique to each system: the thermal gradient, the anisotropy of the permeability (Arnórsson, 1995), the 

precipitation of secondary minerals (Lowell et al. 1993), the availability of groundwater for recharge, 

the local topography (Hurwitz et al. 2003), and the phases present in the system (Ingebritsen & Sorey, 

1988). In some cases, both precipitation and groundwater flow are known to have an influence on the 

temperature of fumaroles (Richter et al. 2004), but not in others (Connor et al., 1993; Di Liberto, 

2011). These examples demonstrate the highly individual behaviour of the hydrothermal systems at 

volcanoes and emphasize the necessity for a careful understanding of the subsurface structures and the 

parameters that control groundwater flow in each individual scenario. 

Aluto, a typical caldera volcano of the Main Ethiopian Rift (MER), is currently showing signs of 

unrest, including seismicity (Wilks et al., 2017) and ground deformation (Biggs et al., 2011; Hutchison 

et al., 2016a). In this study, we use satellite remote sensing to analyse the changes in behaviour of the 

fumaroles on Aluto in an attempt to further understand the causes of the unrest. When considering 

how interactions between the magmatic and hydrothermal systems might be observed at the surface 

from changes in the behaviour of the fumaroles, two end-member scenarios may be proposed, 

depending on whether changes in the hydrothermal system are driven by hydrological factors (“top-

down”) or magmatic processes (“bottom-up”):  

1) “top-down” scenario: the fumaroles are only connected to the shallow hydrothermal system and 

the changes they display are linked solely to hydrological processes such as precipitation and 
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groundwater flow. The hydrothermal system is heated by the deeper magmatic system, but the changes 

in the magmatic system are not reflected in the behaviour of the fumaroles. From observations at other 

volcanoes, the temperatures are expected to decrease during the rainy season due to the addition of 

cold rain water to the groundwater flow (Richter et al. 2004; Di Liberto, 2011);  

2) “bottom-up” scenario: the magmatic and hydrothermal systems are linked and an increase in 

fumarole temperature is expected in periods of increased magmatic activity (unrest episodes), whereas 

a decrease will accompany a deflating trend caused by a cooling and crystallisation of the underlying 

magma body (Chiodini et al., 2011; D’Auria et al., 2011). 

Satellite remote sensing is ideal for looking at hazardous and remote areas of the planet such as 

volcanoes (Pyle et al., 2013). The Advanced Spaceborne Thermal Emission and Reflection radiometer 

(ASTER) onboard NASA’s Terra satellite has been used to investigate eruptive and thermal activity at 

volcanoes around the world (Pieri & Abrams, 2004), such as in South America (Jay et al. 2013) and in 

the Northern Pacific (Dehn et al., 2000, 2002; Pieri & Abrams, 2005; Carter & Ramsey, 2009). The 

detection of thermal anomalies at volcanoes is strongly dependent on the intensity and size of the 

anomaly, as well as its duration relative to the frequency of observation (Pieri & Abrams, 2005). 

Although the detection of low-temperature fumaroles (<100°C) can be done (e.g. Jay et al., 2013), the 

lower limit of detection of the ASTER instrument has yet to be determined (Pieri et al., 2005). 

In this study, ASTER thermal infrared (TIR) images are used: 1) to detect the low-temperature 

fumarole activity on an active volcano and quantify the spatio-temporal limits of our current sensors in 

relation to monitoring and geothermal exploration; 2) to observe changes in temperature and spatial 

extent of the fumaroles on Aluto, understand how these relate to the other signs of unrest and evaluate 

the interaction between the hydrothermal and magmatic systems; 3) to quantify the subpixel 

temperature and spatial variations necessary to cause the changes in pixel-integrated temperatures 

observed. 

 

2. Background 

2.1. Regional setting 

The Main Ethiopian Rift (MER)extends over 500 kilometres and forms the northernmost segment 

of the East African Rift system, from the Afar depression in the North to the Turkana basin in the 

South (Corti, 2009) (Figure 1). Two major sets of faults are present in the MER: (i) the boundary 

faults, which are long and characterised by large vertical offsets, and (ii) smaller internal faults that cut 

obliquely through the centre of the rift valley; these fault systems are well expressed in the northern 

MER (NMER), where they are characterised by a NE-SW and NNE-SSW directions, respectively. 

(Corti, 2009; Agostini et al., 2011a, Figure 1). The latter are collectively called the Wonji Fault Belt 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

4 
 

(WFB) and accommodate the majority of the current tectonic extension in the MER (Chorowicz, 

2005; Agostini et al., 2011b). The MER is tectonically active, extending in an E-W direction at a rate 

of 4-6 mm/yr (Stamps et al., 2008; Kogan et al. 2012; Saria et al., 2014). 

The MER is lined by silicic volcanoes (Figure 1) and although several of these are showing 

InSAR evidence for unrest (Biggs et al., 2011; Hutchison et al., 2016a), very little is known about their 

recent eruptive histories (Aspinall et al., 2011; Hutchison, 2016b; Vye-Brown et al., 2016; Wadge et 

al., 2016). Although unrest has been observed at several MER volcanoes, no confirmed historical 

eruptions have occurred since 1810-30, which took place at Fantale and Kone volcanoes (Gibson, 

1974; Gouin, 1979; Rampey et al., 2010; Biggs et al., 2011; Wadge et al., 2016). 

 

2.2. Aluto volcano 

Aluto is silicic peralkaline volcano located in the Central Main Ethiopian Rift (CMER) (Figure 

1).Aluto has been in a phase of post-caldera volcanism since 55 ±19 ka (Hutchison et al., 2016b) and 

its youngest volcanic deposits are a series of obsidian coulees and pumice domes, the most recent of 

which were likely erupted ~400 years ago (Hutchison et al., 2016b, 2016c). Aluto has been showing 

many signs of unrest in the form of surface hydrothermal activity, episodic ground deformation (Biggs 

et al., 2011; Hutchison et al., 2016a) and seismic activity (Wilks et al., 2017). 

 Interferometric Synthetic Aperture Radar (InSAR) studies have shown that over the last 12 years, 

Aluto has undergone two phases of rapid uplift in 2004 and 2008 interspersed with episodes of slow 

subsidence (Biggs et al., 2011) (Figure 2) and since 2009, Aluto has been slowly subsiding 

(Hutchison et al., 2016a). The deformation pattern has an elliptical shape centred on the volcano, 

extending beyond the inferred caldera ring faults. The source has been modelled as a point source 

located at 5.1 ± 0.3 km depth (Hutchison et al., 2016a), supported by a recent geochemical study 

(Gleeson et al., 2017). However, the deformation data alone do not enable the density and/or 

composition of the intruding fluids (i.e. magmatic, aqueous or gaseous) to be determined (Hutchison et 

al., 2016a).  

 

 

2.3. The hydrothermal system at Aluto 

Most of the information relating to Aluto’s hydrothermal system originates from geothermal 

exploration undertaken since the 1980s during which data on the deep stratigraphy and the 

hydrothermal system were collected (Kebede et al., 1985; ELC Electroconsult, 1986; Teklemariam et 

al., 2000). During the initial exploration phase, eight deep geothermal wells were logged to produce a 
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cross-section of the stratigraphy (Kebede et al., 1985; ELC Electroconsult, 1986; Gizaw, 1993; 

Gianelli and Telkemariam, 1993). The boreholes suggested that the geothermal reservoir is located 

>2km beneath the surface, within the Neogene ignimbrites (geological unit Nqui, Hutchison et al., 

2016b) and the fractured Bofa basalts (geological unit Nqub, Hutchison et al., 2016b) (Gizaw, 1993; 

Gianelli and Telkemariam, 1993; Saibi et al., 2012; Hutchison et al., 2016a). The hottest fluids were 

found at the bottom of well LA-3 (Figure 3a), with temperatures reaching 360˚C (Gebregzabher, 

1986; Gizaw, 1993), and this site was chosen for the Aluto geothermal project (Hochstein et al., 

2017). A pilot geothermal power plant was built in 1999 and is currently undergoing expansion to 

increase total power production to 70 MW (Kebede, 2014).  

Previous studies have shown that the ground temperatures of the fumaroles are between 65°C and 

95°C (Kebede et al., 1985; Hutchison et al., 2015, 2016c) (Table 1). Many of the fumaroles are 

located on faults suggesting that fluid flow in the shallow hydrothermal system is structurally 

controlled (Gizaw 1993; Gianelli and Telkemariam, 1993). CO2 gas flux measurements constrain the 

upflow zone to the area beneath the Artu Jawe Fault Zone (AJFZ), a NNE-SSW trending normal fault 

that cuts through the Aluto caldera and belongs to the regional WFB (Hutchinson et al., 2015, 2016a). 

The δ
18

O analysis of the geothermal fluids from the Aluto-Langano area reveals that >90% of the 

water originates from rainfall on the rift flanks and <10% comes from the lakes surrounding Aluto 

(Darling et al., 1996). These values highlight the importance of the precipitation on Aluto’s 

hydrothermal system. 

 

3. Data and methods 

The ASTER instrument measures the radiance of the Earth’s surface in three visible and near 

infrared channels (VNIR=0.5-0.8 microns), six short-wave infrared channels (SWIR=1.6-2.4 microns) 

and five thermal infrared channels (TIR=8-12 microns) (Pieri & Abrams, 2004). ASTER acquires 

images that span an area of 60×60 km and the spatial resolution of the images is 15 m per pixel in the 

VNIR, 30 m in the SWIR and 90 m in the TIR (Pieri & Abrams, 2004). 

ASTER is well suited for observing co- or post-eruptive thermal anomalies at volcanoes, such as 

eruption plumes or lava flows, due to its appropriate spatial and temporal resolutions (revisit time of 

five days at the Equator) (Pieri & Abrams, 2004; 2005). ASTER images can also be used to detect 

lower amplitude thermal anomalies, such as fumaroles (Pieri & Abrams, 2005; Jay et al., 2013; 

Vaughan et al., 2014). The fumaroles at Aluto fall into the category of low-amplitude thermal features, 

as the temperatures measured on the ground range between 65°C and 95°C (Kebede et al., 1985; 

Hutchison et al., 2015). 
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3.1. Primary dataset 

The ASTER data products used for this study are the level 1B (ASTL1B) images, which contain 

radiometrically calibrated and geometrically co-registered image data; the AST05 surface emissivity 

and the AST08 surface kinetic temperature products. The AST05 and AST08 products are extracted 

using the Temperature/Emissivity Separation algorithm (TES), which estimates the emissivity from 

the atmospherically corrected TIR data using the Normalized Emissivity Method (Gillespie et al., 

1999). The surface kinetic temperature can be calculated from the emissivity using Planck’s law and 

has an accuracy of ±1.5 K (Gillespie et al., 1999). Only the night-time TIR images are used in this 

study, as anomalously hot areas are easier to identify when the solar ground heating effect is removed. 

Due to ASTER’s low duty cycle (8% average data collection time per orbit) (Salomonson et al., 2010), 

the temporal distribution of the images is very variable. The ASTER Volcano Archive website lists 63 

night-time TIR images from 28/06/2000 to 07/02/2016. Out of the 63 night-time images taken over the 

16 year period, only 13 were selected for processing (21 % of useable images); the rest were unusable 

due to cloud cover or because they only partially imaged the volcano. 

 The georeferencing of the ASTER night-time TIR images is known to be offset on the order of 0 

to 1 pixel in latitude and 0 to 9 pixels in longitude (Vaughan et al., 2014). In order to correct for this, 

the images were imported into ESRI ArcGIS and orthorectified manually using ground control points 

(GCP) from a georeferenced Google Earth image of the area, the USGS Shuttle Radar Topographic 

Mission 30 m resolution digital elevation model (SRTM 30m DEM) and a 2 m resolution lidar image 

of Aluto (Hutchison et al., 2015, 2016b). Due to the relatively low spatial resolution of the TIR images 

(90 m pixel
-1

), it was not always possible to identify identical features in all the images so the images 

were orthorectified using several sets of GCP resulting in a slight offset between the images of the 

order of ±1 pixel. The average root mean square (RMS) residual error based on the GCP 

orthorectification is in the range 19.51– 69.13 m, which is below the 90 m pixel resolution of the 

images. 

 

3.2. Identification of the fumaroles 

The ASTER TIR images are sensitive to several parameters and therefore detect other hot features 

as well as fumaroles. Relatively recent obsidian lava flows lack vegetation cover (Hutchison et al., 

2015) and this means that they absorb and re-emit infra-red radiation strongly so appear hot in the 

images (Saemundsson, 2010) (Figure 3b). Topography and altitude also affect the temperature with 

elevated areas being colder and the plains being generally warmer. For these reasons, it is essential to 

subtract the local background temperature from each fumarole area in order to extract the temperature 

above background (or ΔT) of the fumarole. The background temperatures for each fumarole area were 
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obtained by calculating the mean of a 5×5 pixel area, chosen as close as possible to the fumaroles 

without resampling any of the pixels included in the fumarole areas themselves, following Vaughan et 

al. (2014). Google Earth images were used to identify areas within the same altitude range and with a 

similar vegetation cover in order to preserve the same background conditions as the fumaroles. 

 

Our criteria for the identification of the fumaroles were clusters of >3 pixels >2°C above 

background temperature, seen in more than 2 images. Each potential fumarole area detected was 

compared to the geological map of the area to rule out other origins for the hot pixels, such as the 

topography or the background geology (Saemundsson, 2010; Vaughan et al., 2014). The areas located 

in the images were also compared to the location of fumaroles and hot springs identified on the ground 

(Kebede et al., 1985) (Table 1). 

 

 

3.3. Quantification of the temperature and spatial changes at the fumaroles 

Once the relevant fumarole areas were identified, a bounding area was traced around the 

fumaroles, 4×4 or 5×5 pixels in size, and the temperature data within these boxes was extracted for 

each image. The areas were chosen to cover a much larger area than the fumaroles themselves, in 

order to reduce the subjectivity in the choice of location of the fumaroles and to account for the offset 

in the orthorectification of the images. 

To look at the change in temperature of the fumaroles over time, the value of the hottest pixel 

from each fumarole area was extracted for each image, thought to represent the temperature of the 

hottest and most active part of the fumarole. The background temperature specific to each fumarole 

area was subtracted from the hottest pixel value. These values were used to plot the time series of the 

temperature changes at each fumarole. No correlation was found between the background temperature 

and the fumarole temperatures (i.e. ambient temperature has little influence on the fumaroles). 

To determine the spatial variations of the fumaroles, the number of pixels with a pixel-integrated 

temperature of more than 2°C above the background temperature (or ΔT > 2°C) were counted for each 

fumarole area (range from 0 to 9 pixels). These values, multiplied by the total area of the pixel (8100 

m
2
), were used to give an estimate of the overall maximum spatial extent of the fumaroles (range from 

0 to ~73 000 m
2
). The threshhold value of ΔT = 2°C is used as it is greater than the error from the 

Temperature/Emissivity Separation algorithm (±1.5°C) (Gillespie et al., 1999). 

For this study, we find that a threshold value of ΔT = 2°C is sufficient to isolate the thermal 

anomalies caused by the fumaroles at Aluto. This is much lower than previous studies. Although Pieri 

& Abrams (2005) state that the Noise Equivalent ΔT of the ASTER instrument (i.e. its sensitivity) is 

0.3 - 0.5°C, they also state that practical values used for ΔT are more often 3-5 °C. Jay et al. (2013) 
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use the pixels with ΔT > 4°C; Vaughan et al. (2014) use values from 1 to 4 standard deviations above 

background temperature, which corresponds to a ΔT of 2-15°C. When observing eruptive processes, 

such as lava dome formation and lava flows, which have very high temperatures and thus high 

amplitude thermal anomalies, it is possible to use higher detection thresholds (Pieri & Abrams, 2005). 

In this study however, we are studying lower temperature volcanic processes, where the highest 

recorded temperature of the fumaroles is 95°C (Kebede et al., 1985). As a result, the temperature 

anomalies observed in the ASTER images have a much smaller amplitude and the lowest possible 

threshold is required in order to detect the anomalies. 

One of the potential causes for changes in the behaviour of the fumaroles is seasonal variation in 

precipitation. To investigate this hypothesis, data from the Climatic Research Unit (CRU TS v3.22, 

data from 2004-2014) was used to assess the influence of precipitation on the temperature of the 

fumaroles. The CRU dataset is a gridded climate dataset interpolated from monthly observations at 

meteorological stations around the world, covering the land surface with 0.5° latitude/longitude cells 

(Harris et al. 2014). Studies comparing the data from the CRU model to data from rain gauges in 

Ethiopia agree that the CRU dataset provides a reliable estimate of precipitation (e.g.: correlation = 

0.81-0.95 in central-northern Ethiopia) (Dinku et al., 2008; Tsidu, 2012; Degefu et al. 2016). 

 

3.4. Quantification of the subpixel temperature and spatial changes 

 

The area of the fumaroles is smaller than that of the pixels, meaning that each pixel is a mixture of 

fumaroles and unheated ground. As a consequence, the pixel-integrated temperature previously 

discussed, which is the average of the surface kinetic temperature over the total area of the pixel 

(Gillespie et al., 1999; Harris, 2013), does not directly reflect the actual temperature of the fumaroles. 

Similarly, the number of pixels above a certain threshold value may not fully reflect the area of ground 

covered by fumaroles. In order to estimate the actual fumarole temperature and spatial variations, it is 

necessary to consider the subpixel level. 

Assuming an average temperature for the background, Tb, and for the fumaroles, Tf, and assuming 

linear mixing of the temperatures, the pixel-integrated temperature, TP, can be calculated by using the 

following equation: 

                  Equation (1) 

where AP is the total area of the pixel (8100 m
2
), Af is the area covered by the fumaroles and Ab is the 

remaining of the area of the pixel. By defining ΔT as TP - Tb, equation (1) can be derived to obtain an 

estimate of ΔT as a function of Tf and Af: 
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                          Equation (2) 

Equation (2) has two unknowns: the area of the fumaroles (Af) and their temperature (Tf), so 

assumptions need to be made about one of the parameters so as to extract the other. We start with end-

member assumptions – first that Tf remains constant and any variations in ΔT are a result of changes in 

Af, and secondly that Af remains constant and any variations in ΔT are a result of changes in Tf. These 

scenarios are not taken to represent the real situation as in reality both conditions are likely to vary 

together. However they give an indication of how each parameter affects the temperature variations. 

For the first scenario, values for Tf can be assumed using the temperature measurements collected 

on the ground in order to estimate the change in Af  (minimum = 65°C, maximum = 95°C). The results 

show that theoretically, according to the detection threshold used in this study (ΔT = 2°C), a fumarole 

with a ground temperature of 65°C needs to cover at least 4% of a pixel (324 m
2
) in order to be 

detected in an ASTER image. A hotter fumarole with a ground temperature of 95°C needs to cover 

2.4% of a pixel (194 m
2
) (Figure 4a).  

For the second scenario, we assume that fumarole field areas range between 100 m
2
 and 350 m

2 

(Figure 4b). These values correspond to the typical values obtained from Equation 2 for known values 

of Tf. A fumarole field covering an area of 100 m
2
 needs to have a temperature greater than 150°C to 

be detected in the ASTER images (ΔT > 2°C). A fumarole field covering an area of 350 m
2
 only needs 

to have a temperature greater than 30°C to be detected. These estimates give an indication of the 

spatial limits of the detection threshold of the ASTER images. 

 

4.  Results 

4.1. Fumarole identification and classification 

We classify the fumarole areas identified on Aluto during the period of this study into three 

classes. Class 1 fumaroles correspond to the areas where clusters of 3-13 pixels with a ΔT > 2°C 

appear in more than 2 images; class 2 fumaroles correspond to the areas where 1-2 pixels above 

background temperature appear in 1-2 images; class 3 fumaroles are the areas which have been located 

on the ground but cannot be identified in the images. Six fumaroles are defined as class 1 fumaroles, 

four are identified as class 2 fumaroles and two are identified as class 3 (Figure 3b). A set of hot 

springs were identified on the north-west shoreline of Lake Langano to the south of Aluto. 

Temperature values from these hot springs were difficult to extract due to their close proximity to the 

water and to the changing water levels from one image to the next, so these data are not discussed 

further. 

The fumaroles identified in the ASTER images coincide with the hydrothermal areas located on 

the ground (Kebede et al., 1985; Hutchison et al., 2015, 2016c) (Figure 3). The majority of these areas 
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are located on or close to faults, in particular the regional AJFZ and the caldera ring fault (Table 1, 

Figures 3 and 5). The Oitu Artu and Gebiba areas do not appear to be located along any surface 

structural feature. 

The classification used in this study corresponds well to the differences in temperature recorded on 

the ground. The six class 1 fumaroles correspond to the fumaroles with the highest recorded ground 

temperature (93-95°C). These are Auto, Hulo, Oitu Artu, Gebiba, Bobesa and the Artu Jawe fumarole 

region (Figure 3b). The Artu Jawe (AJ) area has the largest density of fumaroles on Aluto. Three 

separate hot areas are identified in the ASTER images and these are named Artu Jawe North, Middle 

and South (AJN, AJM, AJS) (Figure 3b). The four class 2 fumaroles correspond to the medium 

temperature fumaroles (≈85°C). These are Adonshe, Worbota, Finkilo and Kore (Figure 3b). Finally, 

the fumaroles with the lowest recorded ground temperatures (65-77°C) do not appear anomalous in the 

ASTER images and correspond to the class 3 fumaroles. These are Humo and the hot springs located 

on the northern shore of Lake Langano (Figure 3b). The fumaroles which provide reliable data are the 

six class 1 fumarole areas as these have an average ΔT ≈ 3.5 ± 1.4 °C, which exceeds the threshold 

value of ΔT = 2°C. The class 2 fumaroles only have an average ΔT ≈ 1.6 ± 0.5°C. Only the class 1 

fumaroles are used for further analysis. 

 

4.2. Changes observed at the fumaroles 

The time series of  the temperature changes at each fumarole are shown in Figure 6. A 

summary of the mean ΔT values for each fumarole is provided in Table 1. The majority of the 

fumaroles on Aluto appear stable and do not show changes in ΔT over time significantly above error 

of the measurements (± 1.5°C). Gebiba and Auto show the least change in temperature. The majority 

of the fumarole areas (Oitu Artu, Hulo and the Artu Jawe areas) show temperature variations 

marginally outside error (Figure 6, Table 1). Any trend displayed by these fumaroles cannot be 

identified with confidence. Bobesa is the only fumarole where temperature varies significantly above 

the error range. It shows a range of ΔT values from 2.7 to 9.1°C and has the highest mean temperature 

above background (ΔT = 6°C). These values are comparable to the ranges measured in other volcanic 

areas (for example in the central and southern Andes: Jay et al., 2013 and at Yellowstone: Vaughan et 

al., 2014).  

The time series of the changes in spatial extent of each fumarole are shown in Figure 7. All 

the fumaroles show some changes in spatial extent, including the fumaroles that do not show 

significant temperature changes such as Gebiba and Auto. Bobesa and AJN show the largest areal 

changes, reaching up to ~73 000 m
2
 in pixel area (9 pixels with ΔT > 2°C). Even the fumaroles with 

the smallest areas (e.g. Gebiba and Hulo) seem to show considerable spatial variation, doubling in 

pixel area. It should be noted that the actual spatial changes of the fumaroles on the ground occurs on a 
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subpixel level and are likely to be much smaller than those measured in pixel area. The spatial 

variations at all the fumaroles are sporadic and on average most of the fumaroles have a relatively 

constant extent over time. Bobesa is the most extensive as well as the most spatially variable fumarole 

over time, followed by the AJN fumarole. These observations agree with the studies on the ground that 

state that the ground alteration around Bobesa is ~1 000 000 m
2
, making it the largest alteration area 

observed in the study area (Kebede et al., 1985). The Artu Jawe Fault zone that hosts the AJN 

fumaroles is known to be the area where the greatest density of fumaroles is found and is where the 

productive geothermal wells (LA-3 and LA-6) are located (Kebede et al., 1985; Hutchison et al., 2015) 

(Figure 3a). 

The observed temperature and spatial changes are broadly self-consistent. For example, Oitu 

Artu has the lowest mean ΔT of all the fumaroles as well as the lowest mean spatial extent and Bobesa 

has the highest. However, the correlation between the temperature and spatial changes is not equally 

strong for all the fumaroles; Bobesa and AJN show a strong correlation (R
2
 = 0.70 and 0.72, 

respectively) but others are very poor (Hulo, R
2
 = 0.10; Gebiba, R

2
 = 0.10) (Figure A.1). The strong 

correlation at Bobesa is significant as it supports that the trend observed both in temperature and 

spatial changes represent a real phenomenon rather than random fluctuations.  

 

4.3 Causes for the temperature and spatial variations observed at Bobesa 

Bobesa is the fumarole area that shows the greatest temporal variability. The changes at the 

Bobesa fumaroles are not linked to seasonal temperature variations as shown by the correlation plots 

in Figure 8a and 8d. Moreover, the data coverage was found to be insufficient to observe any 

correlation between temperature changes and the deformation pattern. Only two images were acquired 

during the uplift episodes in 2004 and 2008. There has been steady deflation at Aluto since 2009, yet 

no equally steady trend is observed in the behaviour of the fumaroles. Only the data from Bobesa 

suggests a slight increase in temperature since the deflation began (Figure 6). 

 

The effect of precipitation on the hydrological flow in the subsurface is the most likely cause for 

the observed changes in fumarole behaviour. This effect is not apparent directly after the precipitation 

has occurred, as shown by the lack of trends in figures 8c or 8f, but the temperature changes according 

to the time of year (Figures 8b, 8e). We anticipate a time lag between when the rain falls on the 

ground and percolates through to the shallow hydrothermal system, affecting the behaviour of the 

fumaroles. This time-lag has been shown to be on the order of 1-4 months in other locations (McCoy 

and Blanchard, 2008; Saibi et al., 2010). 
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We tested the correlation of the temperature and spatial changes with precipitation data from 1 

to 4 months prior to the acquisition of the images. The strongest correlation was identified with the 

precipitation data 3 months prior to the acquisition of the images for both the temperature and the 

spatial changes (Figure 9), and a weaker correlation with the data from 2 months (Figure A.2). The 2-

3 month timescale also corresponds to the time lag between the precipitation and the peaks of induced 

seismicity, which are thought to reflect the recharge of the geothermal reservoir (Wilks et al., 2017). 

The correlations for the precipitation data 1 and 4 months prior to the acquisition of the images were 

not as strong (mean R
2
 value between the temperature and spatial trends < 0.30) (Figure A.2).  

The data is consistent with a bi-linear trend in temperature and area: 1) from 0 to 80 

mm/month, a decrease in temperature and spatial extent with increasing amounts of rainwater in the 

system (temperature decrease: R
2 

= 0.33; area decrease: R
2
 = 0.53) and 2) from 80-180 mm/month an 

increase in temperature and area with increasing amounts of precipitation (temperature increase: R
2 

= 

0.78; area increase: R
2
 = 0.59). Potential mechanisms for this trend are discussed in section 5.3. The 

precipitation data used in this study gives monthly precipitation averages so it was not possible to look 

at the effects of precipitation on a shorter timescale. 

4.4 Subpixel variations 

In this section, we consider subpixel variations in fumarole temperatures and areas and their 

influence on pixel-integrated values of temperature. The temperature and spatial changes are strongly 

connected, as demonstrated by the correlation plots (Figure A.1). In light of this, our subpixel 

calculations are used as end-member scenarios to give an indication of how much the temperature and 

area of the fumaroles would need to change individually in order to lead to the observed changes in 

pixel-integrated temperature. They are representative rather than actual estimates for the changes 

occurring at the fumaroles during the period of the study. 

First, we assume that fumarole temperature, Tf, is constant, using the ground temperature data 

available for each fumarole (Table 1), and calculate the subpixel spatial variations necessary to cause 

the changes in pixel-integrated temperature observed. The variations observed at Bobesa, the fumarole 

that shows the greatest range in overall temperature variation, correspond to a change in subpixel area 

of ~600 m
2 

(Table 2). Hulo, one of the fumaroles that shows the smallest overall change in pixel area, 

would require a more substantial subpixel areal variation (~255 m
2
) in order to accommodate the ΔT 

range observed. The fumaroles with the smallest ΔT range (1-2°C for Auto and Gebiba) show a 

change in spatial extent of less than 150 m
2
. 

Next, we assume that the area of the fumaroles, Af, is constant and calculate the subpixel 

temperature variations necessary to cause the changes in pixel-integrated temperature observed. The 

calculations show that given a fixed area, the fumarole temperatures must vary substantially to cause 

pixel-integrated temperature variations similar to those detected in this study. For Bobesa, a change in 
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temperature of 170°C is required; for the fumaroles with the smallest ΔT ranges, a change in 

temperature between 25°C and 100°C (Gebiba, Auto, Oitu Artu) is calculated (Table 2). These model 

temperature changes are unrealistically large, which confirms that spatial changes must also be 

occurring. 

We hypothesise that fumarole temperature variations such as those calculated at Bobesa would 

likely correspond to a change in the thermo-physical behaviour of the fumaroles where the increase in 

temperature would lead to higher energy in the system and perhaps increased convection. This would 

be reflected at the surface by increased boiling and venting of the fumaroles, and by an increase in the 

fumarole area with the emergence of new vents and the escape of steam through porous ground 

(D’Auria et al, 2011; Chiodini et al., 2011). The isolation of the subpixel temperature and areal 

variations is not realistic, and in reality the two scenarios need to be considered together. 

 

5. Discussion 

5.1. Low-amplitude thermal anomaly detection 

This study has shown that it is possible to detect fumaroles in ASTER TIR images, with a 

detection threshold for pixel-integrated temperatures of ΔT ~ 2°C. The comparison of the temperatures 

from the ASTER images with the ground temperatures of the fumaroles shows that only the fumaroles 

with a ground temperature >93°C can be detected with confidence (Figure 3b, Table 1). Fumaroles 

with a temperature of 85°C can be detected, but only when the location of the fumarole is known 

(Figure 3b, Table 1). This range of temperatures gives an estimate of the detection threshold and the 

limits of the ASTER images. The subpixel calculations show that fumaroles with a high temperature 

(95°C) appear on the images providing they have a large enough extent (~200 m
2
) (Figure 4). 

Evidence from the field suggests that this is a conservative estimate however, as the hottest fumaroles 

on the ground usually cover <50 m
2
 in area, suggesting that the ASTER images can actually detect 

much smaller features than estimated by this study. 

Previous studies have shown that relatively large temperature and areal changes at fumaroles are 

not uncommon, with diurnal temperature variations of up to 50°C (Connor et al., 1993). However, the 

majority of the fumaroles on Aluto show a stable behaviour, manifesting only small temperature 

variations (ΔT < 2°C). The majority of our images were taken during the cloud-free dry season, and 

greater short-term variability might be expected during the rainy season, or with more frequent data. 

On a subpixel level, we have shown that the small variations detected can actually represent 

significant changes in the thermo-physical behaviour of the fumaroles. Further field evidence is 

required to determine the contribution of temperature versus spatial changes to account for the 

temperature variations observed. 
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5.2. Structural controls on the behaviour of the fumaroles 

The two largest fumarole areas in this study, the Bobesa fumaroles and the Artu Jawe fumarole 

region, do not display the same variations in thermal behaviour. Structural features are known to exert 

a strong control on the emission of gas, steam and volcanic products at Aluto (Hutchison et al., 2015, 

2016c). Therefore, we attribute the difference between fumaroles to differences between the 

underlying faults and their fracture network. 

The AJFZ is the main upflow zone of the hydrothermal fluids on Aluto (Gianelli and 

Telkemariam, 1993; Hutchison et al., 2015). It was chosen as the location for the Aluto geothermal 

power plant due to the high fluid temperatures at depth (Hochstein et al., 2017). A strong presence of 

H2S is recorded, although it should be noted that this presence was only detected by smell, not by fully 

quantitative measurements (Table 1) (Kebede et al., 1985). The maximum CO2 flux measured along 

the AJFZ is 10 000-40 000 g m
-2 

d
-1 

(Hutchison et al., 2015) and the CO2-δ
13

C analysis of soil CO2 

samples from the areas of maximum degassing indicates that the CO2 has a clear magmatic origin 

(CO2-δ
13

C values from -4.2‰ to -4.5‰) (Hutchison et al., 2016a). Chemical analyses indicate that 

Finkilo, a fumarole located on the AJFZ ~250 m south of the Artu Jawe fumarole region, has higher 

concentrations of H2S, CO2 and CH4 than Bobesa which suggests a greater input of magmatic gases 

(Gizaw, 1985). These observations all indicate that the AJ fumarole region is strongly connected to the 

magmatic component of the hydrothermal fluids (Figure 10). 

The maximum CO2 flux recorded at Bobesa  is 1850 g m
-2 

d
-1 

(Hutchison et al., 2015). This value 

is relatively high, indicating a magmatic contribution, but it is much lower than along the AJFZ. We 

infer from this observation that Bobesa is less well connected to the deep magmatic reservoir. Bobesa 

is situated on the eastern rim of the caldera, on the side closest to the Eastern Plateau. The eastern 

caldera ring fault is thus one of the first faults to be encountered by the groundwater flow from the rift 

flanks (Figure 10). The correlation of the temperature and spatial variations at Bobesa with the 

precipitation (Figure 9) suggests that the hydrothermal fluids are more strongly connected to the 

groundwater component. This could indicate that Bobesa is not simply a magmatic fumarole, but has 

more of the character of a ‘fresh’ spring associated with the upwelling along the caldera fault of water 

from the highlands (Ayenew, 2005). Moreover, the hydrothermal fluids at Bobesa are more heavily 

mixed with N2 and O2 (Gizaw, 1985), which is associated with mixing with air or air-saturated water 

(i.e. such as meteoric water derived from precipitation). These observations corroborate our hypothesis 

that the Bobesa fumaroles are more strongly connected to the meteoric than the magmatic fluids. 

Furthermore, the differences between the behaviour of the fumaroles at Bobesa and the AJ 

fumarole region might be associated with the depth of the different faults. A deeper fault would 

penetrate into the geothermal reservoir and have a more direct access to the source of magmatic fluids, 

whereas a shallower fault would be more influenced by the shallow groundwater flow. Another 
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interpretation from our observations is that the AJFZ cuts deeper than the caldera rim fault, which is 

likely given that the AJFZ belongs to a regional fault structure, the Wonji Fault Belt that pre-dates the 

caldera collapse (Corti, 2009; Hutchison et al., 2016b) (Figure 10). 

The other fumaroles identified on Aluto are also located on faults but they are situated further 

from the upflow zone and do not show such clear temperature and spatial variations. It is worth 

mentioning the Hulo fumarole, which is the third largest fumarole in the area and shows temperature 

variations just above the detection threshold of 2°C (mean value for Hulo temperatures: ΔT = 2.8). 

This fumarole is located on the Western flank of Aluto, on the West Aluto fault. It has a different 

composition, specifically higher NH4OH, to the other fumaroles on the volcano because the fluids 

feeding Hulo have travelled further through sedimentary layers (Hochstein, 1983). We hypothesise 

that the differences in terms of chemistry and thermal behaviour are related to the fact that Hulo is 

connected to a different fluid influx source, presumably the groundwater which flows down the 

western side of Aluto from Lake Ziway to Lake Langano (Darling et al., 1996). This variability is only 

observed at Hulo and not at Auto (300 m north of Hulo) because Hulo is larger and more active and as 

such displays slightly clearer temperature variation in the ASTER images. Our observations both at 

Bobesa and Hulo suggest that there are more pronounced thermal variations at the fumaroles on the 

flanks, where meteoric and/or lacustrine recharge is important. 

 

5.3. Causes for the variations and implications for the magmatic/hydrothermal systems 

interaction at Aluto 

We propose that the changes observed at the Bobesa fumaroles are more strongly influenced by 

hydrological factors (“top-down” scenario, Section 1). The seasonal precipitation has a delayed effect 

on the behaviour of Bobesa, which we link to the influx of fresh water into the subsurface with a time-

lag of 2-3 months after the precipitation (Figure 9). When the system is ‘dry’ (low precipitation 

values: 0-20 mm/month), the fumarole has a high temperature as it vents the hot, deep, magmatic 

component of the hydrothermal fluids. At precipitation values of 20-80 mm/month, the magmatic 

component is diluted by cold meteoric water resulting in the overall cooling of the system. Finally, at 

high precipitation rates (>80 mm/month), enhanced circulation occurs with deep penetration of cold 

water and convection bringing up hot fluids from depth. This results in an increase in the fumarole 

temperature and spatial extent at the surface.  

A positive correlation exists between pixel area and temperature, i.e. higher fumarole temperatures 

correspond to larger areas (Figures 9 and A.1). This suggests that the Bobesa fumaroles are initially 

cooled by the influx of meteoric water, resulting in a decrease in temperature and area. When an 

increasing amount of meteoric water enters the system and enhances circulation, the fumarole 

temperature and area increase again, returning to a background temperature and extent. These 
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subtleties in subpixel variations cannot be detected in our data however. The bi-linear trend is only 

observed at Bobesa and observations from other volcanoes or models would be useful to test this 

hypothesis. In addition, a detailed geochemical study of the He or C isotope systematics  

ofhydrothermal fluids and gases at the Bobesa fumaroles would be useful to estimate the proportion of 

magmatic components and hence their connectivity to the deeper reservoirs. This would provide a 

clearer understanding of the recharge of the geothermal reservoir and whether the time lag observed in 

this study is also observed in the chemistry of the fluids. 

From the images used in this study, it appears that most of the fumaroles on Aluto have a stable 

long-term behaviour. However, given the strong coupling seen elsewhere between changes in the 

hydrothermal systems and a) the deformation related to deep magmatic processes (Campi Flegrei: 

Chiodini et al., 2011; D’Auria et al., 2011 and Yellowstone: Lowenstern & Hurwitz, 2008) and b) the 

seasonal precipitation (Richter et al., 2004; Di Liberto, 2011), we might expect similar short-term 

behaviour at Aluto. The inability of our dataset to detect such changes likely reflects the difference in 

temporal resolution of the studies, highlighting the sparseness of our data. The limited coverage during 

the periods of uplift in 2004 and 2008 makes it difficult to isolate variations related to magmatic 

processes with respect to the background seasonal fluctuations, such as those observed at Bobesa. 

Further monitoring is necessary, either through ground-based monitoring or more frequent satellite 

observations, in order to achieve a better level of understanding of the magmatic influence on the 

hydrothermal system at Aluto. If the hydrothermal and magmatic systems are well connected, it is to 

be expected that episodes of uplift resulting from the injection of new magmatic fluids into the system 

would lead to an increase in temperature of the fumaroles, particularly along the AJFZ. Indeed, this 

study has shown that in order to monitor deep changes at Aluto related to changes in the magmatic 

system, it is best to target the AJFZ fumaroles because the Bobesa fumaroles represent both a 

magmatic and a precipitation signal. 

 

6. Wider relevance of the study and further work 

Firstly, this study has shown that it is possible to correctly identify fumaroles on active 

volcanoes using remote sensing, which is hugely relevant to the geothermal industry. Tracking the 

temporal and spatial variations of the fumaroles provides a cost-effective and risk-free way of 

assessing the geothermal potential of volcanoes and volcanic areas without having to go into the field. 

The following questions can all be addressed by a careful study of ASTER TIR images: How do the 

hydrothermal fluids move within the system? Where do they leak out and how sealed is the system? 

How do the meteoric fluids and seasonal variations affect the behaviour of the fumaroles? These 

questions provide valuable information when deciding where to locate boreholes. This method does 

however have some limitations. The fumaroles in this study are identified confidently because 
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significant background information about Aluto is available (location of fumaroles, general extent of 

the altered areas and their relation to structural units) (Kebede et al., 1985; Hutchison et al., 2015, 

2016c). It is likely that for a volcano where no such records exist, the identification of fumaroles 

would be more challenging. Moreover, in the case of this study only 20% of the images available from 

ASTER were useable. In areas of the world where cloud cover is frequent, this number might be even 

lower, limiting the global applicability of this technique.  

Secondly, the use of remote sensing to gain a better understanding of the background thermal 

activity at volcanoes will allow volcanologists to detect anomalous changes in fumarole activity, 

which can then be combined with other datasets to evaluate volcanic unrest. In the case of Aluto, it 

seems that the shallow hydrothermal system is relatively stable although higher temporal resolution 

than that available from the archive of ASTER acquisitions is necessary to track the immediate 

response of the hydrothermal system to magmatic movements. 

Finally, this study highlights the necessity for understanding the controlling factors behind the 

interaction between the hydrothermal and magmatic systems at restless volcanoes. This can be 

achieved by further modelling work (Jasim et al. 2015; Coco et al., 2016) and fieldwork using 

thermocouples to ground truth and calibrate the TIR estimates. It also emphasises the potential of 

thermal measurements to understand patterns of hydrothermal circulation and associated fluxes of 

magmatic components such as CO2. 

 

7. Conclusions 

This study has shown that it is possible to identify low-temperature thermal anomalies at 

volcanoes using remote sensing techniques. A pixel-integrated temperature of >2°C above the local 

background temperature is necessary for these anomalies to be detected. On Aluto, the anomalies 

identified correspond to the hottest fumaroles located on the ground (93-95°C). Most of these do not 

show any significant temperature changes over time suggesting that the hydrothermal system is 

relatively stable and unaffected by the long-term processes causing the deformation. This supports the 

hypothesis that the deformation at Aluto is caused by deep magmatic processes rather than by the 

shallow hydrothermal system (Hutchison et al., 2016a). In contrast to the other fumaroles, Bobesa 

shows important temperature and spatial variations, which likely reflect a time-lag effect between 

precipitation and recharge of the geothermal reservoir. No correlation is observed between the changes 

at Bobesa and the deformation pattern, which suggests that the deep magmatic system and the shallow 

hydrothermal system at Aluto are not strongly connected, although this needs to be confirmed by 

shorter-timescale, higher resolution studies. 
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Figure 1 – Map of the tectonic and volcanic features in the Main Ethiopian Rift (MER), divided into 
the northern MER (NMER), Central MER (CMER) and the southern MER (SMER). The surface faults 
are shown in blue (mapped by Agostini et al., 2011b, and available at 
ethiopianrift.igg.cnr.it/utilities_MER.html). The extension rate is 4-6 mm yr-1 relative to a fixed 
Nubian plate (Saria et al., 2014). The red triangles are the Holocene volcanoes listed in Ethiopia 
(Global Volcanism Program). Aluto is located in the red box in the centre. 
 

 

 

 

 

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

24 
 

 

 

 

 

Figure 2 – Displacement time series at Aluto volcano measured by InSAR. Data is from 

Envisat Image Mode, measured in the satellite line of sight (Biggs et al., 2011; Hutchison et 

al., 2016a). The two phases of uplift are highlighted by the pink bands. 
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Figure 3 (next page) – (a) ASTER RGB321 image of Aluto volcano. Fumaroles and hot springs are 
located by yellow dots and alteration areas are shown by yellow shading (from field studies, details 
in Kebede et al. (1985); Hutchison et al. (2015)). Geothermal wells are labelled in blue. The faults are 
mapped in black (Agostini et al., 2011b; Hutchison et al., 2015); (b) ASTER image of the surface 
kinetic temperature on Aluto (AST08). The approximate locations of the fumarole areas used in this 
study are mapped with black triangles, referring to the coordinates in Table 1. The main fault cutting 
through the edifice, the Artu Jawe Fault Zone, is labelled AFJZ. Recent obsidian coulees (after 
Hutchison et al., 2016) are outlined in red dashed lines, several of which have high thermal 
emissivity and thus appear hot; (c) Zoom of the Bobesa and the AJ fumarole regions. AJN is Artu 
Jawe North, AJM is AJ Middle and AJS is AJ South. The red boxes surrounding each fumarole area are 
the bounding boxes used to extract the fumarole temperatures over each area. The yellow stars 
indicate where the photos shown in Figure 5 were taken from. 
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Table 1 – Summary of the relevant information collected about the fumaroles on Aluto, synthesised 
from Kebede et al., 1985 (*), from Hutchison et al., 2015 ($) and this study. The fumarole areas are 
shown on the map in Figure 3. The fumarole classification refers to our ability to detect them in the 
ASTER images. Class 1 fumaroles are the areas where clusters of 3-13 ‘hot’ pixels with a mean 
temperature above background (ΔT) ≥2°C appear in two or more images; class 2 fumaroles are the 
areas where 1-2 pixels with a mean ΔT ≤2°C appear only in 1-2 images; class 3 fumaroles are the 
areas which have been located on the ground but cannot by identified in the images (see Section 
4.1). 

Fumarole 
area 

Easting 
- 
Northing 

Ground 
Tempera
tures 
(°C)  
 

ΔT in 
ASTER 
images 
(°C) 

ΔT mean 
in ASTER 
images 
(°C) 

Spatial 
variation 
mean in 
ASTER 
images (m

2
) 

Structural 
associatio
n 

Description of 
the area  
 

Class 1 
fumaroles 

       

Auto 
 

470000 
- 
861300 

94* 1.43 2.9 ± 
0.43 

21355 ± 
13685 
 

West Aluto 
fault 

Fumaroles in 
EW trending 
gorge 
Altered ground 
= 12000 m

2
 (*) 

Significant 
alteration of 
pumice to 
red/orange 
clays (

$
) 

Hulo 
 

470000 
- 
860070 

95* 2.78 4.14 ± 
1.00 

30927 ± 
8738 

West Aluto 
fault 

Altered ground 
= 35000 m

2
,  

4 centres of 
fuming vents 
(*

$
) 

Oitu Artu 
 

475100 
- 
856200 

94* 2.23 2.35 ± 
0.68 

13500 ± 
16684 

Continuati
on of 
AJFZ? 

Fumaroles set 
in a deep cut NS 
gorge Altered 
ground = 30000 
m

2 
(*) 

Located in 
rhyolite lava, 
yellow/red clay, 
strong H2S 
smell (

$
) 

Gebiba 
 

478500 
- 
855900 

95
$
 1.2 3.5 ± 

0.32 
24300 ± 
8460 

Hidden 
NNE-SSW 
trending 
fault or 
lateral 
outflow 
from AJFZ? 

Altered ground 
= 540000 m

2
, 

fumaroles = 
1000 m

2
, in 

NNE trending 
deep cut gorge 
(*) 
H2S smell (*

$
), 

alteration to 
red/grey clays 
(

$
) 

Bobesa 
 

480100 
- 
861000 

93
$
 6.45 6.02 ± 

1.73 
43200 ± 
34075 

Ring fault Altered ground 
~ 1 km

2
, hot 

ground only in 
central part (*) 
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Fumarole vents 
run in several 
NW-SE trending 
ridges, pumices 
are altered to 
red/grey clays 
(

$
) 

 

Artu Jawe 
North: 
AJN 
 

477900 
- 
861460 

95
$
 2.82 2.89 ± 

0.87 
30375 ± 
25410 

AJFZ Altered ground 
= 4000 m

2
, 13 

outlets of 
steam at 
junction of two 
valleys 
Within 3 km

2
 

area, 8 groups 
of fumaroles, to 
S, N and NE  
To SW, altered 
ground = 4000 
m

2 
area of 

fuming ground, 
along NS 
trending gorge 
(*) 
H2S smell (*

$
), 

alteration of 
surface 
lithologies to 
silica and/or 
carbonates (*

$
) 

Artu Jawe 
Middle: 
AJM 

477500 
- 
860500 

 2.45 2.68 ± 
0.59 

17550 ± 
11881 

Artu Jawe 
South: 
AJS 

477100 
- 
860040 

 1.93 3.45 ± 
0.57 

29700 ± 
11627 

Class 2 
fumaroles 

       

Adonshe 
 

472700 
- 
861900 

85* 0.93 1.52 ± 
0.23 

-- Continuati
on of NE-
SW fault? 

Altered 
pumiceous 
ground with 
fumaroles (

$
) 

Worbota 
 

474300 
- 
863200 

85
$
 1.86 1.91 ± 

0.63 
-- NE-SW 

fault or 
ring fault? 

Steaming 
ground in small 
crater and 
patches of 
altered ground 
(

$
)) 

Finkilo 
 

477100 
- 
859200 

85* = 2.03 1.81 ± 
0.51 

-- AJFZ Groups of 
fumarole 
emanating from 
rhyolitic lava in 
NS gorge, H2S 
smell, 
alteration of 
surface rocks (

$
) 

Kore 
 

477800 
- 
857700 

95* 1.37 1.27 ± 
0.43 

-- Hidden 
NNE-SSW 
trending 
fault or 
lateral 

Fumaroles 
aligned in NS 
gorge, in 
rhyolite lava (

$
) 
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outflow 
from AJFZ? 

Class 3 
fumaroles 

       

Humo 474000 
- 
860900 

77* -- -- -- Unknown Low 
temperature 
fumarole 
outlets along 
gorge (

$
) 

North Bay 475000 
- 
852300 

65* -- -- -- Outflow 
along 
water 
table 

Several springs 
located on 
northern shore 
of Lake Langano 
(

$
) 

 

 

 

 

 

Figure 4 – Sensitivity analysis of ASTER to temperature anomalies based on Equation 2: a) 

temperature anomaly detected (Delta T) as a function of the change in pixel area covered by the 

fumarole given a fixed fumarole temperature; b) temperature anomaly detected as a function of 

the change in temperature of the fumarole given a fixed fumarole area. The detection threshold 

used in this study (ΔT = 2°C) is indicated by the dashed line. 
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Figure 5 – Comparison of ground and satellite views of selected fumarole areas: (a) steam vents 

along the Artu Jawe Fault Zone (AJFZ). Photo looking south along the fault scarp; (b) Bobesa 

fumaroles. Photo looking east towards the remnants of the caldera rim. Individual fumaroles are 

vents mapped by Kebede et al. (1985) and are shown by the yellow dots. See Figure 3c for the 

location of the photos. 
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Figure 6 – Temperature change of the hottest pixel from each fumarole over the period of the 
study. The dashed line represents the 2°C detection threshold used in this study. The error on the 
temperature values is ± 1.5°C. Fumaroles at which the temperature range is less than the formal 
error (1.5°C) are considered to have constant temperature, and are marked with a dark blue 
circle. Fumaroles at which the temperature range is between 1 and 2 times the formal error (1.5-
3°C) are marked with a pale blue circle, and those greater than 2 times the formal error (>3°C) are 
indicated with a red circle. The two phases of uplift are highlighted by the pink bands and the two 
phases of subsidence by blue bands (Hutchison et al., 2016a; see Figure 2). 
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Figure 7 – Spatial change in the extent of the fumaroles over the period of the study, in terms of 
pixel area (each pixel is 8100 m2). A pixel area of zero indicates the fumarole did not display any 
pixels that exceeded the detection threshold of 2°C. The maximum extent detected is 9 pixels with  
ΔT > 2°C (≈73,000 m2). The two phases of uplift are highlighted by the pink bands and the two 
phases of subsidence by blue bands (Hutchison et al., 2016a; see Figure 2). 
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Figure 8 – Assessing the possible causes for the changes observed at Bobesa. Temperature 
changes: (a) as a function of background temperature; (b) as a function of seasonality; (c) monthly 
precipitation. Spatial changes: (d) as a function of background temperature; (e) as a function of 
seasonality; (f) monthly precipitation. 
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Figure 9 – a) correlation of the temperature variations at Bobesa with the precipitation 3 months 

prior to the acquisition of the image; b) correlation of the spatial variations (in terms of number of 

pixels) at Bobesa with the precipitation 3 months prior to the acquisition of the image. The blue 

lines represent the trends calculated for precipitation <80 mm/month and >80mm/month. The 

dashed arrows indicate the processes causing the bi-linear trend in temperature and area: 1) cooling 

from diluting, cold meteoric water and 2) heating from increased convection and upwelling of hot 

fluids. 

 

Table 2 – Summary of the subpixel spatial and temperature variations necessary to cause the change 
in pixel-integrated temperature observed in the ASTER images (ΔT range) over the period of the 
study at each fumarole. 

 ΔT range in 
ASTER images 

Spatial variations 
(assuming constant Tf) 

Temperature variations 
(assuming constant Af) 

Fumarole areas in 
Figure 3b 

°C % pixel Pixel area 
(m2) 

°C 

Auto 1.9 – 3.4 2.4 – 4 190 – 320  60 – 110  

Hulo 2.7 – 5.4 3.5 – 6.6 280 – 535  65 – 150  

Oitu Artu 1 – 3.3 1.5 – 4.2 120 – 340  30 – 130  

Gebiba 3 – 4.2 3.8 – 4.4 310 – 360  75 – 100  

Bobesa 2.7 – 9 3.4 – 11 275 – 890  60 – 230  

AJN 1.4 – 4.25 1.8 – 5.2 150 – 420  55 – 210  

AJM 1.6 – 4 2.5 – 5 200 – 405  45 – 95  

AJS 2.1 – 4.1 2 – 5 160 – 405  70 – 180  
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Figure 10 – Schematic cross section of Aluto, showing the hypothesised structural controls on the 
fumaroles at Aluto. The orange captions highlight the faults and fumaroles influenced by the shallow 
hydrological processes and the red captions the faults and fumaroles influenced by the deeper 
magmatic processes. 
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Figure A.1 – Correlation between the temperature changes (ΔT) and the pixel area variations. The 
coefficient of determination, R2, is shown for each fumarole. 
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Figure A.2 – Correlation between the precipitation and temperature and spatial variations. a) 
precipitation data 1 month prior to acquisition of image; b) 2 months; c) 3 months; d) 4 month. 
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Highlights 

 Identification of fumaroles on Aluto volcano, MER, using ASTER satellite images. 

 Quantification of temperature and spatial variations of the fumaroles and their relation to the 

hydrothermal and magmatic systems. 

 Variations at the Bobesa fumaroles on western caldera rim connected to influx of water from 

precipitation into the shallow hydrothermal system. 

 Artu Jawe Fault Zone fumaroles strongly connected to the magmatic system. 
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