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Abstract 11 

The disparate evolution of sibling planets Earth and Venus has left them markedly different. Venus’ 12 

hot (460 °C) surface is dry and has a hypsometry with a very low standard deviation, whereas 13 

Earth’s average temperature is 4 °C and the surface is wet and has a pronounced bimodal 14 

hypsometry. Counterintuitively, despite the hot Venusian climate, the rate of intraplate volcano 15 

formation is an order of magnitude lower than that of Earth. Here we compile and analyse rock 16 

deformation and atmospheric argon isotope data to offer an explanation for the relative contrast in 17 

volcanic flux between Earth and Venus. By collating high-temperature, high-pressure rock 18 

deformation data for basalt, we provide a failure mechanism map to assess the depth of the brittle–19 

ductile transition (BDT). These data suggest that the Venusian BDT likely exists between 2–12 km 20 

depth (for a range of thermal gradients), in stark contrast to the BDT for Earth, which we find to be 21 

at a depth of ~25-27 km using the same method. The implications for planetary evolution are 22 

twofold. First, downflexing and sagging will result in the sinking of high-elevation structures, due 23 

to the low flexural rigidity of the predominantly ductile Venusian crust, offering an explanation for 24 



the curious coronae features on the Venusian surface. Second, magma delivery to the surface—the 25 

most efficient mechanism for which is flow along fractures (dykes; i.e., brittle deformation)—will 26 

be inhibited on Venus. Instead, we infer that magmas must stall and pond in the ductile Venusian 27 

crust. If true, a greater proportion of magmatism on Venus should result in intrusion rather than 28 

extrusion, relative to Earth. This predicted lower volcanic flux on Venus, relative to Earth, is 29 

supported by atmospheric argon isotope data: we argue here that the anomalously unradiogenic 30 

present-day atmospheric 40Ar/36Ar ratio for Venus (compared with Earth) must reflect major 31 

differences in 40Ar degassing, primarily driven by volcanism. Indeed, these argon data suggest that 32 

the volcanic flux on Venus has been three times lower than that on Earth over its 4.56 billion year 33 

history. We conclude that Venus’ hot climate inhibits volcanism. 34 

  35 



1 Introduction 36 

The present-day differences in the expression and intensity of volcanism on the telluric planets 37 

serves as a testament to the dynamic nature of planetary evolution (Wilson, 2009). For example, 38 

Earth and Venus are colloquially referred to as sibling planets because of their similar mass and 39 

bulk composition (i.e., bulk petrology). However, their contrasting atmospheric mass and chemistry 40 

(e.g., Gaillard and Scaillet, 2014; Mikhail and Sverjensky, 2014), climate (e.g., Pollack et al., 41 

1980), and geomorphology (e.g., Head and Solomon, 1981; Donahue and Russell, 1997; Basilevsky 42 

and Head, 2003; Ghail, 2015) and volcanic character (e.g., Fegley and Prinn, 1989; Head et al., 43 

1992; Wilson, 2009) is striking: Earth is a crucible of life, whereas Venus is a barren wasteland. 44 

Suffice to say, then, Earth and Venus are not identical siblings. The major differences between 45 

Venus and Earth are discussed in detail below. 46 

First, the average surface temperatures are 460 and 4 °C on Venus and Earth, respectively. The 47 

Earth also has an excess in surface water of about 1.2 × 1021 kg compared to Venus, a difference 48 

between five and six orders of magnitude (Donahue, 1999; Lécuyer et al., 2000). The high 49 

temperature and low water content of the Venusian surface are a combined consequence of the 50 

absence of a magnetic field (Donahue and Russell, 1997), the presence of a dense atmosphere 51 

dominated by CO2 (at a pressure of 9 MPa), and its proximity to the Sun (with a solar irradiance of 52 

2611 W/m2, compared with 1366 W/m2 on Earth). 53 

Second, hypsometric data show that >80% of the surface elevation of Venus ranges from –1.0 to 54 

+2.5 km; only ~2% of the surface lies >2 km above the median radius (Fig. 1) (Head and Solomon, 55 

1981; Basilevsky and Head, 2003; Taylor and McLennan, 2009). The surface of Earth, by contrast, 56 

has a pronounced bimodal hypsometry (i.e., it has continental rises and ocean basins; Fig. 1). The 57 

fact that Venus has a hypsometry with a very low standard deviation is not easily attributable to the 58 

absence of plate tectonics on Venus, because Mars—a planet that, like Venus, operates a stagnant-59 

lid tectonic regime (Head and Solomon, 1981; Head et al., 1992; Donahue and Russell, 1997; 60 

Basilevsky and Head, 2003)—has a surface hypsometry with a very large standard deviation (Fig. 61 



1). 62 

Third, the way in which volcanism is manifest on Earth and Venus differs substantially (e.g., 63 

Wilson and Head, 1983; Wilson, 2009). For example, while the majority (ca. 90%) of Earth’s 64 

volcanism occurs along curvilinear belts and rift-margins, which collectively define tectonic plate 65 

boundaries (Cottrell, 2015), Venus operates a stagnant-lid tectonic regime and is dominated by 66 

features interpreted to be related to mantle plumes (e.g., Head et al., 1992). Although Venus is host 67 

to volcanic features commonly observed on Earth, such as lava plains, discrete lava flows, shield 68 

volcanoes, and shield fields, it is also home to enigmatic, flat landforms such as coronae (Head et 69 

al., 1992; Stofan et al., 1992; Squyres et al., 1992; McKenzie et al., 1992; Grosfils and Head, 1994; 70 

Addington, 2001; Krassilnikov and Head, 2003; Grindrod and Hoogenboom, 2006; Robin et al., 71 

2007; Wilson, 2009; Krassilnikov et al., 2012; Ivanov and Head, 2013). 72 

An important difference between volcanism on Earth and Venus is that, by comparing intraplate 73 

volcanic fluxes on both Earth and Venus, it is clear that Earth is the most volcanically active of the 74 

two planets, possibly by an order of magnitude (Ivanov and Head, 2013). Indeed, while volcanic 75 

activity on Earth is evidently abundant, evidence for ongoing, present-day volcanism on Venus is 76 

comparatively sparse, although it is thought that the vast majority of the Venusian surface is 77 

volcanic in origin (Head et al., 1992; Basilevsky and Head, 2003; Wilson, 2009). However, a 78 

number of recent findings suggest that volcanic activity on Venus persists to the present: [1] 79 

infrared radiation from three volcanic regions showed some flows to be warmer than their 80 

surrounding rocks, implying that these lavas are younger than 2.5 Ma (Smrekar et al., 2010); [2] 81 

sporadic atmospheric SO2 fluctuations have been observed at Venus (Esposito, 1984; Marcq et al., 82 

2011); and [3] thermal spikes have been reported at Ganiki Chasma, a rift valley proximal to Ozza 83 

and Maat Montes (Shalygin et al., 2015). In addition, the sulfuric clouds that envelop the entire 84 

planet would not persist beyond 1–50 Ma without the replenishment of SO2, the source of which is 85 

presumed to be magmatic (Fegley and Prinn, 1989; Bullock and Grinspoon, 2001). 86 

To emphasise the difference between volcanic activity on Earth and Venus: while Earth’s oceanic 87 



crust (that covers 60% of Earth’s surface) has created >100,000 individual volcanoes (including 88 

seamounts) in <100 Ma (e.g., Wessel et al., 2001 and references therein), Venus’ entire surface has 89 

produced roughly 70,000 individual volcanoes in <700 Ma (Head et al. 1992). The difference in the 90 

rate of volcano production is therefore about an order of magnitude greater on Earth than on Venus. 91 

We further note that, because >70% of all extrusive volcanism on Earth occurs beneath ocean 92 

depths >1000 m under pressures >9 MPa, the presence coronae, a landform unique to the surface of 93 

Venus, cannot simply be explained by the high Venusian atmospheric pressure (Smith, 1996). To 94 

wit, Earth’s ocean basins are not littered with coronae, but with well-formed stratovolcanoes (i.e., 95 

seamounts). 96 

The principal goal of this contribution is to explore the reasons as to why Earth hosts vastly more 97 

intraplate volcanoes than Venus. To do so, we formulate a conceptual model that combines data 98 

from rock deformation experiments on basalts, which inform on the mechanical behaviour of the 99 

crust and therefore the depth of the brittle-ductile transition (BDT) on both planets, with 100 

atmospheric noble gas isotope data from Earth and Venus, which inform on planetary volcanic flux. 101 

Additionally, our model also offers an explanation as to why volcanoes on Venus are 102 

morphologically distinct from those on Earth. 103 

 104 

2 The deformation mode of the Terran and Venusian crusts 105 

The depth of the BDT on Venus has been estimated numerous times. For example, first-order 106 

morphological differences between fold and thrust belts on Earth and Venus can be explained by a 107 

shallow BDT on Venus relative to Earth (Williams et al., 1994). Spacing between adjacent 108 

extensional structures may match the spacing between linear bands seen in the mountains of Ishtar 109 

Terra on Venus if the surficial brittle layer is no more than a few km in thickness (Solomon and 110 

Head, 1984). Preservation of substantial crater topographic relief on Venus is likely the result of a 111 

thin (<10 km) brittle crust (Grimm and Solomon, 1988). Further, surface features within tesserae 112 

(e.g., ribbons, long-wavelength folds, and grabens) offer a wealth of information as to the depth and 113 



evolution of the BDT on Venus (Phillips and Hanson, 1998). For example, ribbons within tesserae 114 

(Hansen and Willis, 1996) suggest a BDT as shallow as ~1 km during their formation (Hansen and 115 

Willis, 1998; Ghent and Hansen, 1999; Ruiz, 2007). Of interest, long-wavelength folds and graben 116 

are thought to reflect a deepening of the BDT over time (Phillips and Hanson, 1998)—but the depth 117 

of the BDT during the formation of long-wavelength folds is estimated at only ~6 km depth (Brown 118 

and Grimm, 1997; Ghent and Hansen, 1999). The pervasive deformation of the plateau highland 119 

tesserae, the oldest preserved terrain, requires a weak, thin lithosphere (Brown and Grimm, 1999). 120 

However, the presence of highland regions and large shield volcanoes (e.g., Crumpler et al., 1986; 121 

Smrekar and Soloman, 1992; McGovern et al., 2014) implies localised crustal domains where the 122 

BDT is deep enough to provide support for these structures. Nonetheless, these studies suggest that, 123 

on average, the BDT on Venus is shallower than that on Earth. 124 

We use here an experimental rock deformation approach to provide an alternate assessment for the 125 

depth of the present-day BDT on Venus and Earth (see also Heap et al., 2017), which we interpret 126 

here as a purely mechanical boundary between brittle and ductile behaviour. To do so, we compiled 127 

experimental rock deformation data on basaltic (and diabase) samples deformed over a range of 128 

confining pressures (analogous to depth) and temperatures (Table 1). We used these data to 129 

construct a failure mode map that highlights the pressures and temperatures at which basaltic (and 130 

diabase) rocks behave either in a brittle or a ductile manner in response to applied stress. We then 131 

used this map to assess the position (depth) of the BDT on Earth and Venus. We first review some 132 

important considerations for our experimental approach. 133 

 134 

2.1 Considerations for our experimental approach 135 

2.1.1 Composition of the Venusian crust 136 

There is a dearth of in-situ quantitative geochemical data for Venusian surface rocks, and the 137 

planet’s thick CO2-dominated atmosphere makes optical geological observations from orbit or 138 



Earth-based telescopes impossible. The only available in-situ geochemical data from Venus are the 139 

major element composition of surface rocks, measured using gamma-ray and X-ray fluorescence 140 

spectroscopy. The three localities measured show basaltic compositions with SiO2, FeO, MnO, and 141 

MgO abundances similar to mid-ocean ridge basalts on Earth (summarised in Bougher et al., 1997). 142 

Furthermore, the data from Venera 13 and 14 (Fe/Mg, Mg/Mn, K/U, and U/Th ratios) suggest 143 

Venus and Earth are made of the same chondritic material and have a similar internal structure, and 144 

that Venusian basalts are the product of similar degrees of partial (peridotite) mantle melting as 145 

those on Earth (Treiman, 2007; Hess and Head, 1990). Combined with the geomorphological data 146 

of Venus from radar imagery (i.e., reflectance spectra), it appears that most of the Venusian surface 147 

is volcanic in origin. This means the vast majority of the Venusian and Terran crusts are basaltic in 148 

their bulk composition (Basilevsky and Head, 2003). Therefore, we consider the deformation mode 149 

(i.e., brittle or ductile) of basaltic rocks collected on Earth to be analogous to the deformation mode 150 

of those on Venus. 151 

 152 

2.1.2 Hydration of the Venusian crust 153 

The Venusian atmosphere is extremely arid, with 150 times less H2O compared with Earth’s 154 

exosphere (Donahue and Russell, 1997). However, the lack of water in Venus’ atmosphere and on 155 

its surface does not necessarily imply a desiccated crust. We suggest that the degree of hydration for 156 

Venusian crust and mantle (e.g., Kaula, 1990; Nimmo and McKenzie, 1996; Mackwell et al., 2008) 157 

requires re-examination. Note, the degassing of water is extremely inefficient for one-plate planets 158 

such as Venus or Mars. For example, it has been modelled that 90–95% of Mars’ primordial water 159 

reserves should be retained in the mantle following accretion (Hunten, 1993), and recent data show 160 

the Martian mantle to be as ‘wet’ as the Terran mantle (McCubbin et al., 2012). 161 

Combined, these studies conclude that substantial aqueous fluids can remain within planetary 162 

interiors, irrespective of the plate tectonic regime and without correlation to the degree of surface 163 

desiccation. For instance, if one were to distribute all of the water in the Earth’s oceans into the 164 



Venusian mantle, the water abundance (distributed in nominally anhydrous minerals) would not 165 

exceed the storage capacity of a peridotitic mantle (Bell and Rossman, 1992; Kohlstedt et al., 1996; 166 

Bolfan-Casanova et al., 2000; Lécuyer et al., 2000; Hirschmann, 2006; Smyth et al., 2006). 167 

Furthermore, the Martian surface and atmosphere are both very water poor, but we know that the 168 

crust on Mars is hydrated (Carr and Head, 2010; 2015). A volatile-rich interior on Venus (or at least 169 

a hydrated mantle) could result in explosive volcanism (Thornhill, 1993; Fagents and Wilson, 1995; 170 

Glaze et al., 2011; Airey et al., 2015), and some workers have proposed that some morphological 171 

units on the Venusian surface are pyroclastic deposits (Campbell and Rogers, 1994; McGill, 2000; 172 

Grosfils et al., 2011; Ghail and Wilson, 2013). Therefore, it is difficult to definitively conclude 173 

whether the crust and upper mantle on Venus is desiccated or hydrous, and only future missions to 174 

Venus can resolve this question. Because of this ambiguity, we contend that the consideration of all 175 

of the available experimental rock deformation data for basalt and diabase (including the ultra-dry 176 

diabase data from Mackwell et al., 1998) is an effective approach to investigate the failure mode of 177 

rock within the Venusian crust. We also note that the majority of the basalts deformed in these 178 

studies only contain a subordinate glass phase, if any. As a result, the impact of a glass phase, 179 

hydrated or otherwise, should only play a very minor role in dictating the rheological behaviour of a 180 

given sample (Smith et al., 2011; Violay et al., 2012; 2015).  181 

 182 

2.2 Determining the depth of the brittle–ductile transitions for Earth and Venus 183 

2.2.1 Essential nomenclature: brittle and ductile 184 

Before interpreting the collated experimental rock deformation data it is important to outline some 185 

essential nomenclature. The terms ‘brittle’ and ‘ductile’ are sometimes interpreted differently across 186 

disciplines, which can cause confusion. To avoid such confusion, we define how we use these 187 

terms. 188 

Here, we use ‘brittle’ and ‘ductile’ to describe the failure mode of a rock sample on the lengthscale 189 



of that sample (typically between 10 and 100 mm). Brittle behaviour is characterized by localised 190 

deformation, typically manifest as axial splits or shear fractures. During a deformation experiment, 191 

it is typical to observe an increase in porosity of a sample as the peak stress is approached. This 192 

increase in porosity is the result of the growth and formation of dilatant microcracks. Following a 193 

peak stress, a brittle experiment involves a stress drop (i.e., strain softening). This stress drop marks 194 

the point at which a macroscopic (i.e., across the lengthscale of the sample) fracture is forming or 195 

has formed—the hallmark of a brittle failure mode (see Hoek and Bieniawski, 1965; Brace et al., 196 

1966; Scholz, 1968). We note that, in the case of highly porous samples, brittle deformation can be 197 

associated with a net decrease in porosity. In these cases, inspection of the post-deformation sample 198 

is required to verify the presence of axial splits or shear fractures.  199 

We use the term ductility as per the definition of Rutter (1986), who described it as simply the 200 

capacity of a material to accommodate qualitatively substantial strain without the tendency to 201 

localise the flow into faults—localisation does not occur on the sample lengthscale. The concept of 202 

ductility is not dependent on the mechanism of deformation (Rutter, 1986). Although brittle 203 

behaviour is always the result of cracking on the microscale, ductile behaviour can be the product of 204 

a number of micromechanisms. For example, the micromechanism behind low-temperature, high-205 

pressure cataclastic flow (i.e., ductile behaviour) is microcracking (Menéndez et al., 1996; Wong et 206 

al., 1997). Ductile behaviour typically involves the loss of porosity. We note that ductile behaviour 207 

can be associated with strain localization in certain circumstances: ductile behaviour in porous 208 

rocks can involve the formation of compaction bands (e.g., Baud et al., 2004) or bands of collapsed 209 

pores (e.g., Heap et al., 2015). The formation of such features is also associated with small stress 210 

drops in the mechanical data. In ambiguous cases, inspection of the post-deformation sample is 211 

required to verify the absence of axial splits or shear fractures, features synonymous with a brittle 212 

failure mode. Mechanical behaviour for two experiments is shown in Fig. 2, a typical brittle test and 213 

a typical ductile test (Violay et al., 2012; Heap et al., 2017). 214 

 215 



2.2.2 Data selection 216 

In the context of our study, we are interested in the transition between brittle behaviour and ductile 217 

behaviour as a result of viscous flow (i.e., the change in micromechanism from microcracking to 218 

viscous flow). We interpret viscous flow as non-recoverable viscoelastic deformation; this type of 219 

deformation is referred to as ‘plastic’ by some authors, but this term is sometimes also used to 220 

describe non-recoverable deformation in the brittle field. Since we are interested in the change in 221 

deformation micromechanism, we are not concerned here with low-temperature ductility driven by 222 

microcracking or cataclastic pore collapse, although very few studies exist on this topic for basaltic 223 

rocks (e.g., Shimada, 1986; Shimada et al., 1989; Adelinet et al., 2013; Zhu et al., 2016). We 224 

included all available experimental rock deformation data for basalt and diabase into our analysis 225 

(Table 1), with the exception of room-temperature experiments under uniaxial conditions (e.g., Al-226 

Harthi et al., 1999; Heap et al., 2009; Schaefer et al., 2015), because they are of little use for 227 

determining the BDT, and those triaxial experiments that yielded non-viscous ductile behaviour 228 

such as cataclastic pore collapse (e.g., Shimada, 1986; Shimada et al., 1989; Adelinet et al., 2013; 229 

Zhu et al., 2016). 230 

 231 

2.2.3 Limitations to our approach 232 

One obvious limitation of our collation approach is that typical laboratory strain rates (~10-5 s-1) are 233 

much faster than tectonic strain rates (e.g., Grimm, 1994). However, we recognise that [1] 234 

experiments already classified as ductile at laboratory strain rates will remain ductile at lower (i.e., 235 

natural) strain rates, and [2] lowering the strain rate at low experimental pressures and temperatures 236 

will reduce rock strength—because of the increased time available for subcritical crack growth (see 237 

Brantut et al., 2013 for a review)—but may not promote ductile deformation per se. For example, 238 

the experiments of Heap et al. (2011) showed that basalt can still fail in a brittle manner at a low 239 

laboratory strain rate of 10-9 s-1. Although our approach utilises experiments conducted at high 240 



strain rates, and so should be considered with this caveat in mind, our method does not assume a 241 

representative basalt for the Venusian crust (see section 2.1 above).  242 

 243 

2.2.4 Calculating depth 244 

Each published experimental datum was assigned a failure mode: brittle or ductile, defined above. 245 

Where necessary, and when possible, our definitions supersede those outlined in the studies from 246 

which these data were collated. The effective pressure under which each experiment was performed 247 

were converted to a depth with the relation 𝑃 = 	𝜌 ∙ 𝑔 ∙ ℎ, where 𝑃 is lithospheric or hydrostatic 248 

pressure and g is surface gravitational acceleration, taken as 9.807 and 8.87 m/s2 for Earth and 249 

Venus, respectively. This approach allowed us to determine the lithostatic pressure gradients for 250 

Earth and Venus. The bulk rock density, 𝜌, was determined with the following relation (Wilson and 251 

Head, 1994): 252 

 253 

𝜌 ℎ =
𝜌)

1 + 𝑉- − 1 − 𝑉- exp −𝜆𝜌)𝑔𝑧
					(1) 254 

 255 

where 𝜌) (the density of porosity-free rock) was taken as 2900 kg/m3, 𝑉- is the void space fraction 256 

(i.e., total porosity) at the surface (assumed here to be 0.25; see Wilson and Head, 1994), and the 257 

constant 𝜆 was assumed to be 1.18 × 10-8 Pa-1 (Head and Wilson, 1992). Because of the very high 258 

atmospheric pressure of Venus, the lithostatic pressure at the surface was taken as 9 MPa. The 259 

hydrostatic pressure gradient for Earth was calculated using a constant water density of 1,000 kg/m3 260 

(yielding a pore pressure gradient of ~9.8 MPa/km). We note that the density of water does not vary 261 

considerably at the pressures and temperatures relevant for the Earth’s crust. 262 

However, the nature of the pore fluid, and therefore the pore pressure gradient, for Venus is 263 

enigmatic. The behavior of CO2 at the atmospheric pressure and temperature of Venus is that of a 264 



supercritical fluid and, if one assumes that supercritical CO2 is a plausible pore fluid for Venus, the 265 

density will vary with pressure and temperature. For example, the density of CO2 at the surface of 266 

Venus (at a pressure of 9 MPa and a temperature of 460 °C) is 65 kg/m3. CO2 density increases to 267 

457 kg/m3 at a pressure of 100 MPa and a temperature of 600 °C. Because of the relatively broad 268 

parameter space for pore fluid behaviour (and composition) on Venus, we considered three 269 

scenarios that likely capture the range of possible pore fluid densities within the Venusian crust. In 270 

one, the pore fluid had a constant density of 1,000 kg/m3 (i.e., the same as on Earth, yielding a pore 271 

pressure gradient of ~8.9 MPa/km); in the second scenario, pore fluid had a density of 500 kg/m3 272 

and so a pore pressure gradient of ~4.4 MPa/km. In the third scenario, pore fluid density was 100 273 

kg/m3, giving a pore pressure gradient of ~0.89 MPa/km. In all cases, the pore pressure at the 274 

surface was taken as 9 MPa. In our analysis, we interpreted the pressure within the crust as the 275 

lithostatic pressure minus the pore fluid pressure.  276 

 277 

2.2.5 Thermal gradients 278 

Because we are discussing planetary-scale processes, we have opted to constrain the BDT on Earth 279 

using an average Terran geothermal gradient of 25 °C/km and an average surface temperature of 4 280 

°C. Due to the lack of heat-flux measurements on Venus, all of the published thermal gradients are 281 

inferred. Importantly, as a result of the greenhouse effect imposed by an average atmospheric 282 

pressure of 9 MPa and a permanent cloud cover on Venus (Pollack et al., 1980), there is no 283 

meaningful difference in average surface temperature across the Venusian day–night cycle (where 284 

one Venusian day is equal to 116 Earth days) or with changes in latitude from the equator. In 285 

addition, since Venus has a hypsometry with a very low standard deviation (Fig. 1) there is an 286 

insignificant effect of altitude on the surface temperature when one considers a global average. 287 

Therefore, a representative surface temperature for Venus should have a small standard deviation 288 

from the assumed average value of 460 °C. To account for the uncertainty in the Venusian thermal 289 

gradient, we have used a selection of values from 5–40 °C/km (e.g., Sclater et al., 1980; Solomon 290 



and Head, 1982; 1984; Grimm and Solomon, 1988; Burt and Head, 1992; Turcotte, 1993; 1995; 291 

Solomatov and Moresi, 1996; Turcotte et al., 1999; Leitner and Firneis, 2006).  292 

 293 

2.2.6 BDT estimates for Venus and Earth using experimental data  294 

Once the effective pressure of each experiment was converted to a depth, these data were plotted 295 

against the experimental temperature to examine the predicted depth of the present-day brittle–296 

ductile transition on Earth (Fig. 3) and Venus (Fig. 4). The majority of experiments performed with 297 

basaltic rock samples were conducted under pressures equating to depths from 0 km (i.e., the 298 

surface) to 7 km (Shimada and Yukutake, 1982; Caristan, 1982; Bauer and Handin, 1983; Shimada, 299 

1986; Duclos and Paquet, 1991; Schultz, 1993; Rocchi et al., 2004; Apuani et al., 2005; Benson et 300 

al., 2007; Ougier-Simonin et al., 2010; Heap et al., 2011, Violay et al., 2012; Adelinet et al., 2013; 301 

Violay et al., 2015; Schaefer et al., 2015; Zhu et al., 2016); few studies were performed under 302 

pressures corresponding to depths of up to 40 km (Griggs et al., 1960; Caristan, 1982; Hacker and 303 

Christie, 1991; Mackwell et al., 1998; Violay et al., 2012; 2015). In all cases, ductile behaviour was 304 

not observed below temperatures of 500 °C, even under an effective pressure of 500 MPa (e.g., 305 

Griggs et al., 1960). As expected, ductile behaviour is more commonly observed under combined 306 

high pressure and high temperature. Surprisingly, ductile behaviour was observed under room 307 

pressure (i.e., 0.1 MPa) at 800 °C (Figs. 3 and 4), which was likely the result of the presence of a 308 

melt phase; therefore, although these samples were of a basaltic bulk composition, they may not 309 

typify basaltic rocks. However, we prefer to retain all data for rocks of a basaltic composition in our 310 

analysis, for two reasons: first, not all of the experimental studies offer a detailed microstructural 311 

and compositional breakdown of their basaltic samples; second, we do not want to remove data 312 

based on our interpretation of what constitutes a basaltic rock typical of Venus or Earth. 313 

Our analysis predicts that the BDT for the oceanic crust of Earth occurs at a depth of ~25-27 km 314 

(Fig. 3), consistent with the broad temperature-dependent (i.e., ~10–40 km depth) brittle–ductile 315 

transition predicted for a predominantly basaltic oceanic crust on Earth (Kohlstedt et al., 1995). 316 



Assuming a pore fluid pressure gradient on Venus of ~8.7 MPa/km (Fig. 4a), we find that most of 317 

the thermal gradients for Venus (i.e., 5–40°C/km) pass through a zone (from ~5 to ~18 km depth) 318 

characterised by both brittle and ductile deformation. The difference in failure mode over this depth 319 

interval arises from differences in rock properties such as composition, crystal size and content, and 320 

porosity, as well as in factors such as strain rate (although we note that typically laboratory strain 321 

rates rarely deviate from 10-5 s-1). We interpret this depth interval on Venus as a failure mode 322 

‘transitional’ zone. Below a depth of ~20 km, our collated experimental data predict exclusively 323 

ductile behaviour when the thermal gradient is 15 °C/km or above for a pore pressure gradient of 324 

~8.7 MPa/km (Fig. 4a). However, this failure mode transitional zone is much shallower in the 325 

(arguably more plausible) scenarios under which the Venusian pore pressure gradient is lower 326 

(Figs. 4b and 4c). The failure mode transition zone on Venus exists at a depth of ~4–14 km (Fig. 327 

4b) or ~2–12 km (Fig. 4c) for pore pressure gradients of ~4.4 or ~0.89 MPa/km, respectively. 328 

Based on these collated experimental data, we conclude that the BDT occurs at a substantially 329 

shallower depth on Venus than on Earth (when one considers global averages) (Figs. 3 and 4). 330 

Therefore, these data show that although much of the crust on Earth behaves in a brittle manner, the 331 

majority by volume of the Venusian crust should respond to stress in a ductile manner. 332 

 333 

3 Implications of a dominantly ductile crust on Venus 334 

3.1 Implications for volcano morphology 335 

The tallest volcanoes on Earth, Venus, and Mars are intraplate volcanoes fed by deep-seated mantle 336 

plumes (Head and Solomon, 1981; Donahue and Russell, 1997; Herrick et al., 2005; Wilson, 2009): 337 

Mauna Loa on Earth (17.2 km of relief), Maat Mons on Venus (9 km of relief; Mouginis-Mark, 338 

2016), and Olympus Mons on Mars (21.9 km of relief; Plescia, 2004), respectively). However, 339 

shield volcanoes on Earth and Venus are dramatically different in terms of morphology: those on 340 

Venus are, on average, wider and of lower elevation than those on Earth (700 km wide and 1.5 km 341 



relief vs. 120 km wide and 8 km relief, respectively) (Head and Solomon, 1981; Head et al., 1992; 342 

Herrick et al., 2005; Wilson, 2009). Because the loci of intraplate volcanism on Earth vary as 343 

tectonic plates move across fixed mantle plumes, the maximum elevation of a volcano is therefore 344 

not only supply limited, but is also constrained by the velocity of the plate (Morgan, 1971). By 345 

contrast, Venus’ stagnant-lid tectonic regime enables a volcano to grow for as long as the magma 346 

source persists. Note, although it is debateable if plumes on Earth and Venus are geometrically 347 

similar (Schubert et al., 1990; Stofan et al., 1995; Smrekar and Stofan, 1997; Jellinek et al., 2002; 348 

Johnson and Richards, 2003; Ernst et al., 2007; Robin et al., 2007), the large shield volcanoes 349 

observed on the Venusian surface are taken as evidence for long-lived mantle plumes in the 350 

Venusian interior (Head and Solomon, 1981; Head et al., 1992; Herrick et al., 2005; Wilson, 2009). 351 

With all else being equal, the average relief of shield volcanoes on Venus should therefore be 352 

greater than their Terran counterparts (Wilson, 2009). But, other than some rare if notable 353 

exceptions (e.g., Maat and Skadi Montes), Venusian volcanoes are not higher in relief than their 354 

Terran counterparts. To explore this discrepancy we assess here three first-order variables that we 355 

consider important in controlling the elevation of a volcanic construct: [1] surface gravity, [2] the 356 

viscosity of extruded lavas, and [3] the flexural response of the lithosphere to geological loads. 357 

 358 

3.1.1 Surface gravity 359 

Mars is host to the largest volcanoes in the Solar System. This is, in part, because high-relief 360 

structures are easier to build and retain on Mars because of its relatively low surface gravity (i.e., 361 

3.71 m/s2, compared with 9.81 m/s2 and 8.81 m/s2 on Earth and Venus, respectively) (Heap et al., 362 

2017). However, the surface gravitational acceleration on Venus is very similar to that of Earth 363 

meaning that, if all else were equal, both planets should extrude lava flows of a similar thickness 364 

and build shield volcanoes of a similar size over a given timescale. Large basaltic flows on Earth 365 

are typically <30 m thick, and—again, because of the comparable surface gravitational 366 

accelerations of Earth and Venus—the same should be true for Venus. This inference is consistent 367 



with radar imaging of Venus that shows that flows rarely exceed the vertical resolution of the 368 

Magellan topographic data (which has a height resolution of 5-50 m; e.g., Pettengill et al., 1991; 369 

Roberts et al., 1992; Wilson, 2009). We conclude therefore that the minor difference in surface 370 

gravity between Earth and Venus cannot explain the considerable contrast in volcano relief.  371 

 372 

3.1.2 Viscosity of extruded lava flows 373 

On Earth, high-viscosity lavas are better able to construct a tall volcanic edifice than low-viscosity 374 

lavas, which tend to travel much greater distances from the vent (e.g., Harris and Rowland, 2009). 375 

Although the bulk composition of Earth and Venus are similar (Bougher et al., 1997), the 376 

substantial influence of water content on the viscosity of melts (e.g., Dingwell et al., 1996) means 377 

that if Venusian melts are anhydrous (dry) then the lavas erupted onto its surface should have a 378 

higher viscosity than their Terran counterparts. It is possible that the Venusian mantle is about an 379 

order of magnitude more viscous than that of Earth, based on the assumption that Venusian melts 380 

are anhydrous and derived from an anhydrous mantle (Kaula, 1990; Nimmo and McKenzie, 1996; 381 

Mackwell et al., 1998). However, and as outlined above, recent data that suggest a hydrated Martian 382 

mantle (McCubbin et al., 2012) demand a reappraisal of the assumption that the Venusian mantle is 383 

anhydrous. Indeed, the vast majority of basaltic lava flows on the Venusian surface are of a similar 384 

spatial magnitude and thickness to the flows observed in basaltic large igneous provinces (LIPs) on 385 

Earth (e.g., Columbia River and Deccan Traps; Wilson, 2009); this similarity, together with the 386 

similar surface gravity of Earth and Venus, implies a similar basaltic flow viscosity. We also note 387 

that an increase in temperature results in a decrease in melt viscosity (Hess and Dingwell, 1996; 388 

Giordano et al., 2008), even for anhydrous melts (Hess et al., 2001). Therefore, if Venusian lavas 389 

are indeed anhydrous, the high temperature of the Venusian surface may decrease their nominal 390 

eruptive viscosity to a value closer to lavas extruded on Earth. We conclude, therefore, that the 391 

difference in viscosity of erupted lavas cannot explain the difference in morphology between the 392 

volcanoes on Earth and Venus. 393 



 394 

3.1.3 Response of the lithosphere to geological loads 395 

An additional parameter that controls the height of a volcanic structure is the mechanical rigidity of 396 

the basement upon which the volcano is situated (Watts, 2001). The flexural rigidity of the 397 

lithosphere depends on its rheology such that a strong and brittle lithosphere is better adapted to 398 

support high-elevation structures than a weak and ductile lithosphere (Watts, 2001). Indeed, a thick 399 

and predominantly brittle crust has been used to explain the presence of the ultra-high-elevation  400 

volcanoes on Mars (Turcotte et al., 1981; Heap et al., 2017), with the mechanical response of the 401 

Martian crust even influencing the eruptive behaviour of these shield volcanoes (Byrne et al., 2013). 402 

We contend that the experimental rock deformation data collated in Figs. 3 and 4 provide a simple 403 

explanation as to why Venus hosts volcanoes that, although perhaps as voluminous, are wider and 404 

of lower elevation than those on Earth. On a global scale, high-elevation structures cannot be 405 

supported on Venus to the same extent as they are on Earth due to the dominantly ductile Venusian 406 

crust. Recent analogue modelling by Byrne et al. (2013) aligns with this conclusion. This prediction 407 

further suggests that the volcanic topographic highs on Venus (e.g., Maat Skadi Montes) may be 408 

relatively young, because our model predicts that high-elevation structures on Venus will force the 409 

underlying lithosphere to yield over geological timescales (according to the models presented by 410 

Byrne et al. (2013); see also Smrekar and Solomon (1992) and Herrick et al. (2005)). Large 411 

volcanoes may even evolve into corona-like structures over time, evidenced by the number of 412 

volcano-corona ‘hybrids’ on the Venusian surface (e.g., Atai Mons; Grindrod et al., 2006). We also 413 

note that the downflexing of the lithosphere beneath a volcano imposes a constrictional strain upon 414 

the edifice, manifest as imbricate shortening structures arrayed around its flanks (Byrne et al., 2009; 415 

2013). Unfortunately, the flanks of Venusian volcanoes are not sufficiently resolved with currently 416 

available data to test this hypothesis (full resolution Magellan topographic imagery has a resolution 417 

of about 100 m; Herrick et al., 2005). 418 

 419 



3.2 Implications for volcanic character 420 

The dominant mode of magma migration through Earth’s crust (in terms of volume) is via fractures 421 

(e.g., Gudmundsson, 2006). The experimental data collated here suggest that, on Venus, faulting 422 

could be restricted to shallow depths (i.e., 2–12 km) (Fig. 4). Similar to Earth (Burov and Gerya, 423 

2014), a rising mantle-derived melt on Venus will pond and spread laterally, underplating the crust 424 

at depths greater than that of the BDT (as shown in Fig. 5 a-c for Venus). However, based on our 425 

depth estimates for the BDT on Venus (Fig. 4), the mechanism by which magmas on Venus can 426 

continue to migrate towards the BDT is through buoyancy-driven diapirism. Importantly, however, 427 

the lengthscale for magma migration by diapirism is considerably shorter than migration through 428 

dykes (Rubin, 1995; Gudmundsson, 2002; Petford, 2003; Gudmundsson, 2006; 2011) and diapirs 429 

will inevitably pond and create sills due to a stress-related equilibrium when the forces driving 430 

ascent are equal (or less than) the forces acting against ascent (i.e., crystallisation increasing 431 

viscosity) – unless more magma is added to further drive ascent via buoyancy-driven diapirism. 432 

Therefore, if magma transport through the lower to middle Venusian crust is dominated by 433 

diapirism, then a lower fraction of crust-situated melt can reach the surface and erupt, relative to 434 

Earth. Occasionally however, a sill may form that is large enough to generate enough uplift to 435 

initiate faulting in the brittle crust, creating a set of concentric vertical faults (see Galgana et al., 436 

2013). If the magma reaches these faults (or vice versa) then melts can propagate upwards, forming 437 

ring-dikes or arachnoids (Head et al., 1992; Donahue and Russell, 1997; Basilevsky and Head, 438 

2003; Wilson, 2009). Should it reach the surface, this melt will erupt as lava, and we conceptually 439 

show how this can result in the formation of the curious coronae features on Venus in Fig. 5.  440 

A combination of lateral flow and dyke-facilitated volcanism will cause the sill (magma chamber) 441 

to contract vertically, and this can cut off the magma supply to the surface as the collapsing brittle 442 

crust closes the fracture network. This may result in subsidence beneath the forming or formed 443 

coronae with either negative or positive relief (both of which are commonly observed on Venus: 444 

Head et al., 1992; Donahue and Russell, 1997; Basilevsky and Head, 2003; Herrick et al., 2005; 445 



Wilson, 2009), which we argue is the result of variable ratios of the erupted lava to the amount of 446 

subsidence. If the magma supply from the plume to the crust is large enough and is active over 447 

sufficient timescales, then a shallow-flanked shield volcano could form (e.g., Maat Mons), the 448 

vertical growth of which is likely tempered by the inability of the predominantly ductile Venusian 449 

crust to support high-elevation structures (due to its low flexural rigidity). However, if the magma 450 

chamber (sill) cannot connect with the faults, because the sill has stalled below the BDT, then 451 

surface eruption will not ensue. In this eventuality, grabens (fossae and lineae), fractures, scarps 452 

(rupes), or troughs will form, tectonic landforms common to the Venusian surface (Head et al., 453 

1992; Donahue and Russell, 1997; Basilevsky and Head, 2003; Wilson, 2009).  454 

Most volcanic systems on Earth show complex magmatic plumbing with several reservoirs situated 455 

at different depths. However, most primary mantle melts that reach the Earth’s crust form sill-like 456 

magma chambers at the base of the crust (defined as primary magma chambers) and are typically 457 

found at depths considerably greater than 10 km (Kelley and Barton, 2008; Stroncik et al., 2009; 458 

Becerril et al., 2013). Therefore, on Earth, most shallow magma chambers are connected to a deeper 459 

primary magma chamber at depths of >10 km (Hill et al., 2009; Michon et al., 2015). This magma 460 

system architecture suggests that magma ponds at the crust–mantle boundary on Earth. Therefore, if 461 

Venusian melts form magma chambers at similar depth, or at a similar depth with respect to the 462 

stratigraphy of the crust (i.e., the crust–mantle boundary), as predicted for shallow magma 463 

chambers (Wilson and Head, 1994), then those chambers will be hosted below the BDT (predicted 464 

to occur between 2 and 12 km on Venus: see Fig. 4a-c), restricting magma mobility to the short 465 

lengthscales typical of diapirism (Rubin, 1995; Gudmundsson, 2002; Petford, 2003; Gudmundsson, 466 

2006; 2011). 467 

We can therefore predict, albeit qualitatively, that a greater proportion of magmatism on Venus 468 

does not result in volcanism, but instead results in plutonism, than on Earth. Indeed, lava flow unit 469 

thickness estimates from Magellan topographic data suggest that coronae are probably underlain by 470 

large magma bodies that are not emptied during eruption (Grindrod et al., 2010). Any crustal 471 



thickening in areas of high magmatic activity should thus be compensated by delamination back 472 

into the mantle with or without crustal uplift (Smrekar and Stofan, 1997; Ghail, 2015). To test the 473 

hypothesis that plutonism is favoured over volcanism on Venus (relative to Earth), we will now 474 

compare differences in volcanic flux on Earth and Venus with the available geochemical data. 475 

 476 

4 Measuring the volcanic eruptive flux of Venus and Earth  477 

Finding a suitable metric to compare the eruptive fluxes of Venus and Earth is challenging. For 478 

example, there is a large uncertainty for both the longevity and frequency of Venusian volcanism 479 

due to the lack of reliable chronostratigraphic or radiogenic isotopic data for the Venusian surface 480 

(Head et al., 1992; Basilevsky et al., 2003; Kreslavsky et al, 2015). However, there is evidence that 481 

Venus has experienced some voluminous volcanism in the past, coined ‘global resurfacing events’. 482 

The model for catastrophic volcanic resurfacing is based on the relatively few (ca. 1,000) impact 483 

craters, and is thought to have occurred between 300 Ma and 1 Ga (e.g., McKinnon et al., 1997). 484 

Assuming a frequency of resurfacing episodes that declined with the rate of heat generation (based 485 

on K–Th–U systematics of the mantle), Kaula (1991) proposed that there could have been eight 486 

resurfacing events over Venus’ 4.56 Ga history. Volcanism on Venus appears to be mostly 487 

quiescent between these resurfacing events, which are either random or occurring roughly once 488 

every 0.5 Ga (Kaula, 1991). If in fact magmatism during these largely passive periods does not 489 

result in extrusive volcanism, then by our inference it may instead be manifest as massive magmatic 490 

underplating of basaltic melts at the base of the crust and subsequent plutonism in the crust, 491 

possibly followed by delamination back into the mantle (Smrekar and Stofan, 1997).  492 

An important and poorly constrained parameter is the thermal structure of the Venusian interior. 493 

Nimmo and McKenzie (1997; 1998) cite the composition (specifically the FeO abundance) of the 494 

basaltic rocks analysed by the Venera and Vega landers to argue that the potential temperature of 495 

the Venusian mantle was similar to the Earth’s during the emplacement of these rocks. Note, the 496 

FeO data used by Nimmo and McKenzie (1997; 1998) are by no means absolute or accurate (they 497 



have large uncertainties), but this is the only data presently available and future missions are 498 

required to provide an improved insight. Nevertheless, they do provide a quantitative model with 499 

which to demonstrate the point. Since these basalts are between 300–800 Ma one must calculate the 500 

mantle temperature for the present day; this is because resurfacing events would have cooled the 501 

Venusian upper mantle, which would have been followed by an increase in temperature due to U–502 

Th–K decay and thermal insulation by the crust. Nimmo and McKenzie (1997, 1998) concluded 503 

that it is unlikely that the Venusian mantle increased in temperature by more than 200 °C over 800 504 

Ma. Hence, these workers proposed an upper limit of 1500 °C for the potential temperature of the 505 

present-day Venusian mantle (Nimmo and McKenzie, 1998). This temperature is below the solidus 506 

for water-undersaturated peridotite (Kohlstedt et al., 1996; Hirschmann, 2006), and so melt 507 

production would be restricted to adiabatic melting of thermochemical plumes rising through the 508 

mantle (e.g., such as the Hawaiian plume on Earth; Morgan, 1971). 509 

A key feature of the conceptual model presented here is that, all else being equal, the volcanic 510 

eruptive flux of Venus should be lower than that of Earth. Since we cannot rely on estimates of 511 

volcanic flux from chronostratigraphic methods, we must look elsewhere. For example, the 512 

chemistry of a planet’s atmosphere is a passive recorder of surface and subsurface processes – 513 

including volcanism (e.g., Mather, 2008; Gaillard and Scaillet, 2014; Mikhail and Sverjensky, 514 

2014). Therefore, if Venus has experienced a relatively retarded volcanic eruptive flux (relative to 515 

Earth) over its geological history then this will have left a geochemical fingerprint in the chemistry 516 

of the Venusian atmosphere. Herein therefore we focus on the stable isotopes of argon, principally 517 

36Ar, 38Ar, and 40Ar, as useful tools for investigating the origin of volatiles (with 38Ar/36Ar) and the 518 

degassing history (with 40Ar/36Ar) of Venus. This is because [1] there are data for the 40Ar/36Ar and 519 

38Ar/36Ar ratios for the atmospheres of Earth, Mars, Venus, and solar wind (Porcelli and Pepin, 520 

2002), and [2] 36Ar and 38Ar are primordial isotopes whereas 40Ar is produced from the decay of 521 

40K, with a half-life of 1.25 Ga, meaning that 40Ar in planetary atmospheres can be used to derive 522 

information regarding the degassing of planetary interiors (e.g., Halliday, 2013).  523 



 524 

5 Validating the model: argon isotope data 525 

Despite the dearth of missions into and below the Venusian atmosphere over the past 40 years, there 526 

are valuable data for the major and minor element geochemistry of the Venusian atmosphere, 527 

including argon isotope ratios. Indeed, argon isotopes have been previously used to inform on the 528 

evolution of Venus (e.g., Istomin et al., 1980; Hoffman et al., 1980a, b; Turcotte and Schubert, 529 

1988; Kaula, 1990; 1991; Namiki and Solomon, 1998; Porcelli and Pepin, 2002; Mikhail and 530 

Sverjensky, 2014; Halliday, 2013; O’Rourke and Korenaga, 2015). 531 

In December 1978, seven gas analysers (four mass spectrometers and two gas chromatographers) 532 

provided in-situ measurements of the Venus atmospheric chemical and isotopic composition 533 

(summarised by Hoffman et al., 1980a). The Soviet Union’s Venera 11 and 12 landers (Istomin et 534 

al., 1979) and the United States Pioneer Venus entry probe (Hoffman et al., 1980a) determined the 535 

argon isotope composition of the lower Venusian atmosphere (below the altitude limit of isotopic 536 

homogenisation). Importantly, these two independent measurements provided a 38Ar/36Ar ratio 537 

within error of one another (summarised by Hoffman et al., 1980b). The similarity for the 38Ar/36Ar 538 

ratios for Earth and Venus is indicative of a shared source of volatile elements (Fig. 6). We consider 539 

that the most surprising result of these measurements was that the ratio of radiogenic to primordial 540 

argon in the Venusian atmosphere was shown to be highly unradiogenic, with a 40Ar/36Ar ratio of 541 

only 1.03 ± 0.04. For comparison, most argon in the atmospheres of Earth and Mars is strongly 542 

radiogenic, with 40Ar/36Ar ratios of 298.56 and 1900 ± 300, respectively (Fig. 6). Below, we outline 543 

why atmospheric loss, Venus being a K-deficient planet, and diffusive degassing cannot explain the 544 

difference between the 40Ar/36Ar ratios of Earth and Venus. We then finish by proposing a solution 545 

(that leans on the notion of a shallow BDT for Venus), where we conclude that this discrepancy can 546 

be explained by a relatively low volcanic eruptive flux for Venus (compared to Earth). 547 

 548 



5.1 The case against atmospheric loss to explain the unradiogenic argon 549 

One of the principle mechanisms leading to stable isotope fractionation of atmosphere-forming 550 

elements is low-temperature atmospheric loss (i.e., hydrodynamic escape). This process induces 551 

mass dependant stable isotope fractionation, and therefore preferentially removes the lighter 552 

isotopes over the heavy isotopes (e.g., 36Ar over 38Ar, and 38Ar over 40Ar). This, in turn, means that 553 

the 38Ar/36Ar ratio would reflect substantial stable isotope fractionation if atmosphere loss to space 554 

were the sole reason for the unradiogenic 40Ar/36Ar ratio in the Venusian atmosphere. Note, this is 555 

not the case for the Venusian and Terran datasets (Fig. 6). Hydrodynamic escape of 36Ar cannot 556 

explain the low 40Ar/36Ar ratio of the Venusian atmosphere, because the 36Ar/38Ar data for the 557 

Venusian and Terran datasets are almost identical (i.e., 5.5 vs. 5.3; see Fig. 6), and Earth and Venus 558 

have very similar escape velocities for argon (ca. 12 and 13 km/s, respectively). Because Earth and 559 

Venus both show primordial 36Ar/38Ar ratios, both planets appear to share identical (isotopic) source 560 

materials (i.e., both are similar to their initial value recorded by solar wind: Porcelli and Pepin, 561 

2002; Halliday, 2013). This in turn implies that both Earth and Venus had the same initial 562 

atmospheric 40Ar/36Ar ratio. A conundrum thus ensues: where is the missing 40Ar in the Venusian 563 

atmosphere? 564 

 565 

5.2 The case against Venus being a K-deficient planet  566 

The unradiogenic 40Ar/36Ar ratio for the Venusian atmosphere also cannot be explained by 567 

proposing Venus to be a K-deficient planet, because the average observed K/U ratio in rocks on the 568 

Venusian surface is 7,220 (akin to mid-ocean ridge basalts on Earth). Therefore, assuming an initial 569 

K/U and 38Ar/36Ar ratio for Earth and Venus, the present-day 40Ar/36Ar ratio of the Venusian 570 

atmosphere is not a reflection of the overall K abundance, but would therefore reflect either the flux 571 

of 40Ar diffused or degassed out of the mantle and/or crust. 572 

 573 



5.3 The case against efficient, diffusive degassing   574 

The efficient transport of 40Ar from the interior of a planet into its atmosphere can be, conceptually, 575 

achieved by diffusion. The entire Venusian crust is at a temperature above the closure temperature 576 

for argon in most silicate systems (Kelley and Wartho, 2000). However, efficient (or total) diffusion 577 

of 40Ar through the crust cannot be proposed, because the Venusian atmosphere is strongly 578 

unradiogenic (for argon). This indicates that the Venusian crust has retained considerable 40Ar 579 

produced continually over the age of the planet (4.56 Ga). The BSV must therefore be saturated in 580 

40Ar. The lack of 40Ar-diffusion at high Venusian surface temperatures can be explained by the lack 581 

of a chemical gradient. A buildup of 40Ar in the crust above the closure temperature does not 582 

necessarily mobilize the 40Ar into the atmosphere. Buoyancy drives ascent, but pathways and 583 

mobilising agents are also required (note, gravity and physical inhibition are also acting as opposing 584 

forces). The lack of 40Ar transport can be explained by a system that rapidly reaches equilibrium 585 

with the intergranular medium, despite diffusion coefficients great enough to model efficient 586 

mobilisation, conceptually (Cassata et al., 2011), Furthermore, mass-transfer along the grain 587 

boundary of silicates and oxides is limited to a very thin layer (ca. 1 nm; Joesten, 1991), so the bulk 588 

diffusivity should be reduced by the ratio of the thickness of the grain boundary to the diameter of 589 

the grain (Faver and Yund, 1992). For a grain diameter of 0.1 to 1 mm, the diffusive lengthscales of 590 

argon is <1.2 km in 1 Ga. Since the lengthscale is less than the likely thickness of the Venusian 591 

crust (which is most certainly >1.2 km), the nominal diffusive flux of 40Ar to the atmosphere is 592 

effectively zero over 1 Ga (Namiki and Solomon, 1998). Therefore, the nominal diffusive flux of 593 

40Ar to the atmosphere will be negligible over 4.5 Ga.  594 

 595 

5.4 The case for a low volcanic eruptive flux on Venus relative to Earth  596 

We propose volcanism is the main liberating agent for transporting 40Ar to the Venusian 597 

atmosphere. During mantle melting on Earth and Venus, 40K and 40Ar are mobilised in melts, 598 

because they are both incompatible elements in primary mantle silicates, e.g., olivine (Chamorro et 599 



al., 2002; Brooker et al., 2003). This degassing implies that the strongly unradiogenic low 40Ar/36Ar 600 

ratio in the Venusian atmosphere is mirrored by a higher crustal excess of 40Ar than is observed for 601 

the crust on Earth (which is known to contain excess 40Ar: Allègre et al., 1996; Kelley, 2002). We 602 

argue that most of the 40Ar transported in melts from the Venusian mantle is locked in plutons and 603 

stored within the Venusian crust, implying that there is a large excess of 40Ar in the BSV. Our 604 

contention that a dominantly ductile Venusian crust (Fig. 4a-c) inhibits volcanism but results in 605 

abundant plutonism (relative to Earth; Fig. 7) forms a testable hypothesis: Venus should have 606 

degassed less 40Ar, relative to Earth. Mars, for example, has a highly fractionated 36Ar/38Ar ratio of 607 

4.1 (Porcelli and Pepin, 2003; Halliday, 2013), which reflects a substantial low-temperature loss of 608 

its atmosphere (Porcelli and Pepin, 2003; Halliday, 2013) (Fig. 6). Consequently, their present-day 609 

atmospheric 40Ar/36Ar ratios will reflect their relative efficiencies in 40Ar degassing. The present-610 

day Venusian atmosphere has a strongly unradiogenic 40Ar/36Ar ratio of 1.03 ± 0.04, compared with 611 

298.56 for Earth (Kaula, 1991; Porcelli and Pepin, 2003; Halliday, 2013). However, the Venusian 612 

atmosphere also contains roughly two orders of magnitude more 36Ar relative to Earth’s atmosphere 613 

(Porcelli and Pepin, 2003). If we correct the 40Ar/36Ar ratio for Venus then the 40Ar/36Ar ratio of the 614 

Venusian atmosphere would be approximately 103, meaning Earth has degassed three times more 615 

40Ar than Venus. We view this implication here as a consequence of a higher rate of volcanism on 616 

Earth than on Venus. This is because the majority of Earth’s volcanism is directly related to Earth’s 617 

mobile-lid plate tectonic regime (Cottrell, 2015), but we argue that the high surface temperature and 618 

dearth of deep crustal faults on Venus also plays an important role. Therefore plutonism, rather than 619 

volcanism, is the dominant mode of magmatic activity on Venus (Fig. 7) and this is reflected in the 620 

unusually unradiogenic 40Ar/36Ar ratio observed in the Venusian atmosphere (Fig. 6).  621 

 622 

6 Concluding remarks 623 

We present here an experimentally-constrained and isotopically-supported conceptual model that 624 

predicts Venus to have been less volcanically active relative to Earth by a factor of three, in terms 625 



of eruptive flux. Since the volume of magma erupted cannot be directly discussed, we focus here on 626 

the degassing flux constrained by argon isotopes, which show that Earth has degassed three times 627 

more 40Ar than Venus. We conclude that the reduced eruptive flux on Venus, compared to Earth, is 628 

the result of the hot Venusian climate, a factor that greatly impacts the dominant failure mode of, 629 

and therefore the method by which magma can travel up through, the Venusian crust. The higher 630 

rate of intraplate volcanic activity on Earth is exemplified by the observation that Earth’s relatively 631 

young oceanic crust has seen the development of <100,000 individual volcanoes (i.e., seamounts) in 632 

<100 Ma, whereas Venus has only produced ca. 70,000 individual volcanoes over a much longer 633 

time period (700-1000 Ma) – a difference of an order of magnitude. 634 

An interrogation of high pressure, high temperature experimental rock deformation data suggests 635 

that the unrelenting high temperature (460 °C) of the Venusian surface modifies the rheology of the 636 

Venusian crust such that the dominant failure mode within the Venusian crust is ductile. These data 637 

highlight that the BDT on Venus could be as shallow as 2–12 km (Fig. 4), while the same method 638 

yields a realistic estimate for the BDT on Earth of ~25-27 km (Fig. 3). The implications of a 639 

dominantly ductile Venusian crust are twofold. First, the flexural rigidity of the Venusian 640 

lithosphere will be low, inhibiting the formation of high-relief volcanoes (via lithospheric flexure). 641 

We further note that the low flexural rigidity of the Venusian lithosphere may not just impact 642 

volcano morphology, but also the global hypsometric profile of Venus (Fig. 1). We therefore 643 

speculate that the low standard deviation of the Venusian surface is also the consequence of its hot 644 

climate. Second, magma delivery to the surface through fractures (i.e., dykes)—the dominant 645 

transport mechanism of magma to shallow crustal levels on the telluric planets (e.g., Wilson and 646 

Head, 1994; Gudmundsson, 2006)—will be impeded on Venus. Our conceptual model therefore 647 

predicts that most magma on Venus will stall in the crust as sills, rather than be erupted at the 648 

surface: plutonism, rather than volcanism, is the dominant mode of magmatic activity on Venus 649 

(Fig. 7). Importantly, these implications are supported by the atmospheric argon isotope ratios for 650 

Earth and Venus, which indicate that volcanic degassing, and therefore volcanic flux, has been three 651 



times lower on Venus than on Earth over the past 4.5 Ga (Fig. 6). 652 

Our conceptual model falls short in describing, for example, the formation histories for the 653 

Venusian continents, Aphrodite Terra and Ishtar Terra (which, speculatively, could be the result of 654 

isostatic rebound before the global resurfacing event, or crustal delamination of the lower 655 

lithosphere back into the mantle, or a presently unknown mechanism; Smrekar and Stofan, 1997; 656 

Ghail, 2015). We also highlight that our conceptual model assumes various similarities between 657 

Earth and Venus, such as similar mantle convective regimes, which may not be strictly true (e.g., 658 

Johnson and Richards, 2003; Robin et al., 2007). Nevertheless, our model offers a viable 659 

explanation for the difference in volcano morphology between Earth and Venus (i.e., the presence 660 

of coronae) and the relative quiescence of volcanism on Venus compared to Earth (i.e., the order of 661 

magnitude difference in the rate of intraplate volcano formation between Earth and Venus). 662 

Furthermore, a Venusian BDT as shallow as predicted here also implies that faulting through the 663 

vertical lengthscale of the crust is hindered. Therefore, the hot climate of Venus may also inhibit the 664 

formation of the plate tectonic boundaries that sub-divide the crust (Foley et al., 2012; Bercovici 665 

and Ricard, 2014). Our study highlights another example of the complex interplay between climate 666 

and geodynamics. 667 
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  677 



Figure captions 678 

 679 

Fig. 1: Hypsography of Venus, Earth, and Mars (Head and Solomon, 1981; Basilevsky and Head, 680 

2003; Taylor and McLennan, 2009). Dashed lines mark the mean surface elevation for each planet. 681 



 682 

Fig. 2: The mechanical behaviour of rock in compression (from Heap et al., 2017). Examples of 683 

brittle and ductile stress-strain curves for basalt deformed at a confining pressure of 300 MPa and a 684 

temperature of 650 °C (brittle test) and 850 °C (ductile test) (data from Violay et al., 2012). Inset 685 

shows cartoons depicting post-failure samples typical of brittle (throughgoing shear fracture) and 686 

ductile (distributed deformation) deformation. 687 



 688 

Fig. 3: Failure mode map (brittle or ductile) for Earth assuming a pore pressure gradient of ~9.8 689 

MPa/km, a surface gravity of 9.807 m/s2, an average thermal gradient of 25 °C/km, and an average 690 

surface temperature of 4 °C. See text for details. 691 



 692 

Fig. 4: Failure mode maps (brittle or ductile) for Venus assuming a surface gravity of 8.87 m/s2 and 693 

an average surface temperature of 460 °C. Due to the uncertainty in the pore pressure gradient we 694 

provide three scenarios. (a) That the pore fluid has a constant density of 1000 kg/m3 (i.e. the same 695 

as Earth; yielding a pore pressure gradient of ~8.9 MPa/km). (b) That the pore fluid has a constant 696 

density of 500 kg/m3 (yielding a pore pressure gradient of ~4.4 MPa/km). (c) That the pore fluid has 697 

a constant density of 100 kg/m3 (yielding a pore pressure gradient of ~0.89 MPa/km). Due to the 698 



uncertainty in the thermal gradient we provide a range from 5 to 40 °C/km. See text for details. 699 

 700 

Fig. 5: The formation of coronae on Venus. This cartoon depicts sill emplacement and growth, 701 

followed by uplift and faulting of the crust above the brittle-ductile transition (BDT). The schematic 702 

also shows how this only leads to volcanism after the magma chamber makes physical contact with 703 

faults (see text for more details; not to scale). Arrows indicate directions of main differential 704 

stresses. 705 



 706 

Fig. 6: The atmospheric argon isotope composition of Earth, Mars, and Venus (data from Istomin et 707 

al., 1979; Hoffman et al., 1980b; Porcelli and Pepin, 2002; Mahaffy et al., 2013). 708 

 709 



Fig. 7: Schematic illustration showing the relative differences for magma transport within the 710 

lithosphere on Earth and Venus. The cartoon shows that primary magma chambers on Venus rely 711 

on diapirism to move towards the surface, leading to stagnation and crystallisation (on average). 712 

Conversely for Earth, primary magma chambers can force dyking in the overlying (brittle) 713 

lithosphere and initiate volcanism.  714 

 715 

Table caption 716 

Reference Pc 
(MPa) 

Pp 
(MPa) 

Peff 
(MPa) 

T (°C) σp 
(MPa) 

Failure 
mode 

Notes 

Griggs et al. 
1960 

500 0 500 25 1668 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 300 1390 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 500 1080 Brittle Basalt 

Griggs et al. 
1960 

500 0 500 700 - Ductile Basalt 

Griggs et al. 
1960 

500 0 500 800 - Ductile Basalt 

Caristan 1982 0 0 0 950 199 Brittle Maryland diabase; strain rate = 10-

3 s-1 
Caristan 1982 0 0 0 970 223 Brittle Maryland diabase; strain rate = 10-

5 s-1 
Caristan 1982 0 0 0 995 193 Brittle Maryland diabase; strain rate = 10-

3 s-1 
Caristan 1982 30 0 30 1000 370 Brittle Maryland diabase; strain rate = 10-

3 s-1 
Caristan 1982 50 0 50 1000 440 Brittle Maryland diabase; strain rate = 10-

3 s-1 
Caristan 1982 150 0 150 810 780 Brittle Maryland diabase; strain rate = 10-

6 s-1 
Caristan 1982 150 0 150 970 385 Brittle Maryland diabase; strain rate = 10-

6 s-1 
Caristan 1982 150 0 150 994 535 Brittle Maryland diabase; strain rate = 10-

3 s-1 
Caristan 1982 150 0 150 1000 566 Brittle Maryland diabase; strain rate = 10-

4 s-1 
Caristan 1982 150 0 150 1000 561 Brittle Maryland diabase; strain rate = 10-

5 s-1 
Caristan 1982 150 0 150 1000 573 Brittle Maryland diabase; strain rate = 10-

5 s-1 
Caristan 1982 350 0 350 1000 - Ductile Maryland diabase; strain rate = 10-

5 s-1 
Caristan 1982 400 0 400 1000 - Ductile Maryland diabase; strain rate = 10-

4 s-1 
Caristan 1982 425 0 425 1000 - Ductile Maryland diabase; strain rate = 10-

4 s-1 
Caristan 1982 425 0 425 1000 - Ductile Maryland diabase; strain rate = 10-

5 s-1 
Caristan 1982 425 0 425 1000 - Ductile Maryland diabase; strain rate = 10-

6 s-1 
Caristan 1982 450 0 450 1000 - Ductile Maryland diabase; strain rate = 10-

5 s-1 
Shimada and 

Yukutake 
1982 

57 0 57 25 400 Brittle Yakuno basalt; Porosity = 0.07; 
strain rate = 10-5 s-1 

Shimada and 
Yukutake 

1982 

107 0 107 25 415 Brittle Yakuno basalt; Porosity = 0.07; 
strain rate = 10-5 s-1 

Bauer et al. 
1981 

50 0 50 25 540 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 



Bauer et al. 
1981 

50 0 50 25 400 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 600 300 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 600 340 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 700 300 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 940 125 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 940 200 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

50 0 50 1000 100 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 700 465 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 900 240 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 950 110 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 0 100 1000 180 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Bauer et al. 
1981 

100 50 50 820 180 Brittle Cuerbio basalt; Porosity = 0.05-
0.08; strain rate = 10-4 s-1 

Shimada 1986 57 0 57 25 410 Brittle Yakuno basalt; Porosity = 0.07; 
strain rate = 10-5 s-1 

Duclos and 
Paquet 1991 

0 0 0 300 399 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 600 430 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 700 445 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 750 430 Brittle Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 800 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 900 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Duclos and 
Paquet 1991 

0 0 0 1000 - Ductile Alkaline basalt; partially glassy; 
strain rate = 10-6 s-1 

Hacker and 
Christie 1991 

1000 0 1000 675 - Ductile Tholeiitic basalt; partially glassy; 
0.5 wt.% water added; strain rate 

= 10-4 – 10-7 s-1 
Hacker and 

Christie 1991 
1000 0 1000 725 - Ductile Tholeiitic basalt; partially glassy; 

0.5 wt.% water added; strain rate 
= 10-4 – 10-7 s-1 

Hacker and 
Christie 1991 

1000 0 1000 775 - Ductile Tholeiitic basalt; partially glassy; 
0.5 wt.% water added; strain rate 

= 10-4 – 10-7 s-1 
Hacker and 

Christie 1991 
1000 0 1000 825 - Ductile Tholeiitic basalt; partially glassy; 

0.5 wt.% water added; strain rate 
= 10-4 – 10-7 s-1 

Hacker and 
Christie 1991 

1000 0 1000 875 - Ductile Tholeiitic basalt; partially glassy; 
0.5 wt.% water added; strain rate 

= 10-4 – 10-7 s-1 
Schultz 1993 0 0 0 450 210 Brittle Estimated strength value taken as 

80% of the average uniaxial 
compressive strength for basalt; 

see Schultz (1993) for details 
Mackwell et 

al. 1998 
400 0 400 1000 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Mackwell et 
al. 1998 

400 0 400 1050 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Mackwell et 

al. 1998 
400 0 400 1050 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Mackwell et 
al. 1998 

450 0 450 970 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Mackwell et 

al. 1998 
450 0 450 1000 - Ductile Dehydrated Maryland and 

Columbia diabase; creep test; 
strain rate = 10-5 – 10-7 s-1 

Mackwell et 
al. 1998 

450 0 450 1050 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 



Mackwell et 
al. 1998 

500 0 500 1000 - Ductile Dehydrated Maryland and 
Columbia diabase; creep test; 

strain rate = 10-5 – 10-7 s-1 
Rocchi et al. 

2004 
0 0 0 300 89 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 300 104 Brittle Etna “core” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 300 35 Brittle Etna “crust” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 600 96 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 600 105 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 600 103 Brittle Etna “core” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 600 181 Brittle Etna “core” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 600 40.5 Brittle Etna “crust” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 700 33 Brittle Etna “crust” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 800 42 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 800 43 Brittle Etna “core” basalt; strain rate = 

10-4 s-1 
Rocchi et al. 

2004 
0 0 0 800 25 Brittle Etna “core” basalt; strain rate = 

10-5 s-1 
Rocchi et al. 

2004 
0 0 0 800 17 Brittle Etna “core” basalt; strain rate = 

10-6 s-1 
Rocchi et al. 

2004 
0 0 0 800 20 Brittle Etna “crust” basalt; strain rate = 

10-4 s-1 
Rocchi et al. 

2004 
0 0 0 900 50 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-4 s-1 
Rocchi et al. 

2004 
0 0 0 900 38 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 900 29 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
0 0 0 900 31 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-6 s-1 
Rocchi et al. 

2004 
5 0 5 25 108 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
10 0 10 25 104 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
10 0 10 300 101 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
10 0 10 300 88 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
10 0 10 600 116 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
10 0 10 916 62 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
12 0 12 25 93 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
15 0 15 25 101 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
17 0 17 25 100 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
20 0 20 25 109 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
20 0 20 300 95 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
20 0 20 300 91 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
20 0 20 600 118 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 25 112 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 25 103 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 300 105 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 300 87 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 600 104 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 
Rocchi et al. 

2004 
30 0 30 604 79 Brittle Vesuvius basalt; Porosity = 0.08-

0.10; strain rate = 10-5 s-1 



Rocchi et al. 
2004 

0 0 0 900 - Ductile Etna “crust” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 912 - Ductile Etna “core” basalt; strain rate = 
10-5 s-1 

Rocchi et al. 
2004 

0 0 0 1001 - Ductile Vesuvius basalt; Porosity = 0.08-
0.10; strain rate = 10-5 s-1 

Apuani et al. 
2005 

4 0 4 25 98 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

4 0 4 25 72 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

4 0 4 25 67 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

8 0 8 25 88 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

8 0 8 25 99 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

12 0 12 25 104 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

12 0 12 25 109 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 54 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 62 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 87 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

16 0 16 25 94 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 56 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 109 Brittle Vigna Vecchia basalt (Stromboli) 

Apuani et al. 
2005 

20 0 20 25 178 Brittle Vigna Vecchia basalt (Stromboli) 

Benson et al. 
2007 

60 20 40 25 475 Brittle Etna basalt; porosity = 0.04; strain 
rate = 10-6 s-1 

Ougier-
Simonin et al. 

2010 

15 0 15 25 370 Brittle Seljadur basalt; porosity = 0.05; 
strain rate = 10-6 s-1 

Heap et al. 
2011 

30 20 10 25 291 Brittle Etna basalt; porosity = 0.4; strain 
rate = 10-5 s-1 

Heap et al. 
2011 

50 20 30 25 287 Brittle Etna basalt; porosity = 0.4; strain 
rate = 10-5 s-1 

Heap et al. 
2011 

70 20 50 25 504 Brittle Etna basalt; porosity = 0.4; strain 
rate = 10-5 s-1 

Heap et al. 
2011 

50 20 30 25 375 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-6 s-1 

Heap et al. 
2011 

50 20 30 25 357 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-7 s-1 

Heap et al. 
2011 

50 20 30 25 329 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-8 s-1 

Heap et al. 
2011 

50 20 30 25 304 Brittle Etna basalt; porosity = 0.4; creep 
test; strain rate = 10-9 s-1 

Violay et al. 
2012 

100 0 100 400 1002 Brittle Aphanitic basalt; porosity = 0.02; 
strain rate = 10-5 s-1 

Violay et al. 
2012 

100 0 100 400 902 Brittle Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 600 854 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 700 508 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 800 462 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 800 446 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
100 0 100 900 355 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 600 749 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 700 755 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
300 0 300 800 518 Brittle Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Violay et al. 

2012 
50 0 50 600 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 



Violay et al. 
2012 

70 0 70 600 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 500 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

100 0 100 600 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 600 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

100 0 100 700 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 800 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

100 0 100 800 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 800 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

100 0 100 900 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
100 0 100 900 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

100 0 100 900 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
250 0 250 650 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

300 0 300 600 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
300 0 300 700 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

300 0 300 750 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
300 0 300 800 - Ductile Porphyritic basalt; partially glassy; 

porosity = 0.02; strain rate = 10-5 
s-1 

Violay et al. 
2012 

300 0 300 800 - Ductile Aphanitic basalt; porosity = 0.02; 
strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 850 - Ductile Aphanitic basalt; porosity = 0.02; 
strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 900 - Ductile Aphanitic basalt; porosity = 0.02; 
strain rate = 10-5 s-1 

Violay et al. 
2012 

300 0 300 900 - Ductile Porphyritic basalt; partially glassy; 
porosity = 0.02; strain rate = 10-5 

s-1 
Violay et al. 

2012 
300 0 300 950 - Ductile Aphanitic basalt; porosity = 0.02; 

strain rate = 10-5 s-1 
Adelinet et al. 

2013 
10 5 5 25 120 Brittle Reykjanes basalt; porosity = 0.08; 

strain rate = 10-6 s-1 
Adelinet et al. 

2013 
80 76 4 25 118 Brittle Reykjanes basalt; porosity = 0.08; 

strain rate = 10-6 s-1 
Violay et al. 

2015 
130 30 100 600 877 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 650 834 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 700 792 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 750 699 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 800 717 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 900 382 Brittle Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 
Violay et al. 

2015 
130 30 100 1050 - Ductile Aphanitic basalt; porosity = 0.03; 

strain rate = 10-5 s-1 



Schaefer et al. 
2015 

0 0 0 935 167 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.02; strain rate = 10-1 

s-1 
Schaefer et al. 

2015 
0 0 0 935 162 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.05; strain rate = 10-1 
s-1 

Schaefer et al. 
2015 

0 0 0 935 126 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.06; strain rate = 10-5 

s-1 
Schaefer et al. 

2015 
0 0 0 935 59 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.19; strain rate = 10-1 
s-1 

Schaefer et al. 
2015 

0 0 0 935 49 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.16; strain rate = 10-5 

s-1 
Schaeffer et 

al. 2015 
0 0 0 935 93 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.19; strain rate = 10-1 
s-1 

Schaefer et al. 
2015 

0 0 0 935 44 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.19; strain rate = 10-5 

s-1 
Schaefer et al. 

2015 
0 0 0 935 75 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.23; strain rate = 10-1 
s-1 

Schaefer et al. 
2015 

0 0 0 935 64 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.21; strain rate = 10-5 

s-1 
Schaefer et al. 

2015 
0 0 0 935 28 Brittle Pacaya (Guatemala) basalt; 

porosity = 0.32; strain rate = 10-1 
s-1 

Schaefer et al. 
2015 

0 0 0 935 16 Brittle Pacaya (Guatemala) basalt; 
porosity = 0.31; strain rate = 10-5 

s-1 
Zhu et al. 

2016 
20 10 10 25 281 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
20 10 10 25 240 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
20 10 10 25 221 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
20 10 10 25 327 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
30 10 20 25 329 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
30 10 20 25 361 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
40 10 30 25 399 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
50 10 40 25 403 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
60 10 50 25 500 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
60 10 50 25 493 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
60 10 50 25 561 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
80 10 70 25 563 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
90 10 80 25 560 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
90 10 80 25 574 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
90 10 80 25 655 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
110 10 100 25 658 Brittle Etna basalt (EB_I); porosity = 

0.04; strain rate = 10-5 s-1 
Zhu et al. 

2016 
160 10 150 25 753 Brittle Etna basalt (EB_I); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
60 10 50 25 365 Brittle Etna basalt (EB_II); porosity = 

0.08; strain rate = 10-5 s-1 
Zhu et al. 

2016 
90 10 80 25 349 Brittle Etna basalt (EB_II); porosity = 

0.08; strain rate = 10-5 s-1 
Zhu et al. 

2016 
20 10 10 25 224 Brittle Etna basalt (EB_III); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
60 10 50 25 434 Brittle Etna basalt (EB_III); porosity = 

0.05; strain rate = 10-5 s-1 
Zhu et al. 

2016 
90 10 80 25 543 Brittle Etna basalt (EB_III); porosity = 

0.05; strain rate = 10-5 s-1 



Zhu et al. 
2016 

110 10 100 25 640 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

Zhu et al. 
2016 

160 10 150 25 798 Brittle Etna basalt (EB_III); porosity = 
0.05; strain rate = 10-5 s-1 

 717 

Table 1: Summary of the experimental conditions for the rock deformation experiments used in this 718 

study (for the construction of Figs. 3, 4, and 5) (see also Heap et al., 2017). Pc = confining pressure; 719 

Pp = pore fluid pressure; Peff = effective pressure; T = experimental temperature; 𝜎7  = peak 720 

differential stress (see Figure 1). In some cases, failure mode classification differs from that stated 721 

in the original publication. Data not included in this compilation are uniaxial experiments 722 

conducted at room temperature and instances of non-viscous ductile deformation (see text for 723 

details). 724 

  725 
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