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Abstract. The behavior of colony-based marine predators is the focus of much research
globally. Large telemetry and tracking data sets have been collected for this group of animals,
and are accompanied by many empirical studies that seek to segment tracks in some useful
way, as well as theoretical studies of optimal foraging strategies. However, relatively few studies
have detailed statistical methods for inferring behaviors in central place foraging trips. In this
paper we describe an approach based on hidden Markov models, which splits foraging trips
into segments labeled as “outbound”, “search”, “forage”, and “inbound”. By structuring the
hidden Markov model transition matrix appropriately, the model naturally handles the
sequence of behaviors within a foraging trip. Additionally, by structuring the model in this
way, we are able to develop realistic simulations from the fitted model. We demonstrate our
approach on data from southern elephant seals (Mirounga leonina) tagged on Kerguelen Island
in the Southern Ocean. We discuss the differences between our 4-state model and the widely
used 2-state model, and the advantages and disadvantages of employing a more complex

model.
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INTRODUCTION

Central place foraging (CPF) is a widely applied con-
cept in ecology (Olsson and Bolin 2014, Higginson and
Houston 2015). Many terrestrial species with home
ranges, or shelters, can be regarded as central place
foragers (Bell 1990). Colony-based marine animals, such
as seabirds and seals, that must moult, breed and raise
young on land or ice can also use CPF strategies. It has
been hypothesized that, due to density dependence,
waters near to the colony may become depleted of prey
(Ashmole 1963), or simply that the most profitable prey
are spatially separated from land-based colonies, necessi-
tating trips to more distant foraging areas (Oppel et al.
2015). In many seabirds, during phases when the young
are being fed and reared, adult birds are constrained to
forage within closer range of the colony (Boyd et al.
2014, Patrick et al. 2014). Pinnipeds must also haul out
to periodically moult, as well as for mating and rearing
young (Russell et al. 2013). These animals are the sub-
ject of considerable ongoing research, often utilizing
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tracking techniques to collect movement data at sea
(Hays et al. 2016). Moreover, many are the subject of
intense conservation efforts (Lonergan et al. 2007, Crox-
all et al. 2012, Hamer et al. 2013, Martin and Crawford
2015, Jabour et al. 2016).

Often, studies aim to assess how CPF animals appor-
tion their time between searching and active foraging,
and to identify particular characteristics, for example
relating to habitat usage, trip length, activity budgets,
and other variables (e.g., Staniland et al. 2007, Ray-
mond et al. 2015, Hindell et al. 2016, Patterson et al.
2016). How these quantities vary with ontogenetic stage
or age is often important; for example, naive young ani-
mals versus experienced adults, or sex-specific foraging
strategies (e.g. Breed et al. 2009, Hindell et al. 2016). To
evaluate hypotheses about movements in CPF, it is very
helpful to have models which objectively classify move-
ment into different modes (or “phases”), with different
statistical properties, indicating differences in underlying
behavior (Langrock et al. 2012).

Several recent CPF studies have looked at switching
models which include latent behavioral states, but usu-
ally these are general models that are not specifically
designed to capture the behavioural cycle of CPF (e.g.,
Breed et al. 2009, Jonsen et al. 2013, Jonsen 2016).
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Latent states are often given labels such as “transit” and
“resident”. In the latter, the notion of area-restricted
search (Kareiva and Odell 1987, Fauchald and Tveraa
2003, Morales et al. 2004) is often invoked. In an area
with high foraging returns, the animal is expected to
undertake less directed movements, and therefore higher
turning rates, and generally lower speeds of travel. These
concepts have proven useful for modeling movements of
CPF, but explicitly incorporating the trip structure in
the model would give a more nuanced understanding of
the likely behavioural sequences. At the most basic level,
an animal must leave a colony, transit out to (one or
more) foraging grounds, search and obtain food, and
then eventually return.

Our aim here is to construct a model which captures
the following sequence of movement modes: outbound
— search — forage — ... — search — inbound. We
outline the random walk models which can be used to
represent these movement modes, and then show how
these can be integrated into the hidden Markov model
(HMM) framework. HMMs have been used widely in
animal movement modeling (Langrock et al. 2014,
McKellar et al. 2015, Auger-Méthé et al. 2016, DeRuiter
et al. 2017, Leos-Barajas et al. 2017). They represent a
computationally efficient approach for fitting models
with discrete latent states to time series data. A thorough
description of HMMs for animal movement is given in
Langrock et al. (2012).

An important subsequent focus of the model we seek
to construct is that it should be suitable for simulation
of foraging trips. Simulation is already used in habitat
modelling of central place foragers as null models for
distribution that account for some areas being inaccessi-
ble due to distance constraints (Wakefield et al. 2009,
Raymond et al. 2015). However, estimation of such sim-
ulation models is often ad-hoc (Matthiopoulos 2003).
Beyond the specific case of habitat modelling, even simu-
lation models which capture only a few aspects of forag-
ing behaviour would be useful in making predictions,
with associated uncertainty, from finite samples of indi-
viduals drawn from populations. The desire to simulate
from the fitted model places a requirement of greater
realism on the movement model structure. This further
motivates the development of the trip-based movement
model for CPF.

We acknowledge from the outset that the model we
present below is a simplification of the true processes
under investigation. Despite the broader applicability of
the CPF concept, we restrict our usage to the situation of
marine predators that are constrained to return to land
after a certain period of time. It should be noted however
that the methods we present may well have broader appli-
cation. CPF is likely to be influenced by patchiness oper-
ating at scales which are not observable from the
telemetry data, and dependent on local conditions (only
some of which may be observable via remote sensing). To
fully generalize our methods, inclusion of environmental
data will be necessary (Labrousse etal. 2015).
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Considerations of these ideas have tended to employ
computationally demanding techniques (e.g., McClin-
tock et al. 2012), which can limit their applicability with
large data sets. So far, models for large data sets (i.e.,
many observed locations) have been underrepresented.

Herein, we describe the modeling framework and
demonstrate estimation using data from southern ele-
phant seals (Mirounga leonina). We then show simula-
tion of foraging trips from the fitted model, and assess
which aspects of the real trips are replicated well and
which are not. Finally, we discuss how a model of this
type can be tailored to a given species’ case and extended
to include other covariates (e.g., environmental) that
may influence movement behaviour. Additionally, we
discuss the limitations of our model, and how these
relate to the general problem of simulation and subse-
quent prediction of behaviour from fitted multistate
movement models.

METHODS

Building blocks for the overall model

We first describe the types of random walks required
to describe the different segments of a foraging trip, and
then how these are combined within the full model, an
HMM. Fig. 1 illustrates the typical pattern of an ele-
phant seal’s foraging trip. The maps were produced with
the R package marmap (Pante and Simon-Bouhet 2013).

The trip consists of (at least) three clearly distinct
phases of movement: the fast and directed trip from the
colony to the sea ice region, a period of slower and less
directed movement near the ice, and the fast and direc-
ted trip from the ice to the colony. Marine prey resources
are patchily (non-uniformly) distributed at multiple spa-
tial scales (Fauchald and Tveraa 2006), so animals will
typically still need to search between dynamic favorable
forage patches within and around the sea ice and
Antarctic shelf regions (see for example inset panels of
figure 2 in Bestley et al. 2013). This search may manifest
as slower, less directed movement than the migration
transits, but faster and more directed movement than
area restricted search.

We choose the following four movement modes for our
analysis, for the distinct phases within a trip: (1) out-
bound trip, away from the central place (here, the colony
at Kerguelen Island) and towards the foraging regions,
characterized by very fast and highly directed movement;
(2) search-type movement in the foraging regions, charac-
terized by moderately fast movement and some direc-
tional persistence (though without a clear destination);
(3) foraging activities, characterized by non-directed, slow
movement; and (4) return trip, back to the central place,
with very fast and again highly directed movement. We
label the movement modes for convenience, but note that
each phase of the trip (in particular “search” and “for-
age”) can potentially encompass several behaviours, per-
haps even behaviours that are functionally equivalent,
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(A) An example track of a southern elephant seal tagged at Kerguelen Island (top left), which makes an outward forag-

ing trip to the Antarctic continental shelf before returning. (B) The distance from Kerguelen Island through time, clearly showing
rapid outward transit, foraging movements over an extended period of time, and the rapid return transit. [Color figure can be

viewed at wileyonlinelibrary.com]

like different types of foraging behaviour, as long as they
lead to similar movement patterns.

Both (2) and (3) can be adequately modelled using
commonly applied correlated random walks (CRWs).
CRWs involve correlation in directionality, and can be
represented by modelling the turning angles of an ani-
mal’s track using a circular distribution with mass cen-
tred either on zero (for positive correlation) or on 7 (for
negative correlation). For example, we could model
phase (2), which involves positive correlation in direc-
tionality, by assuming

bearing, ~ von Mises(mean = bearing, |,
concentration = k),

with k denoting a parameter to be estimated. (Larger k
values lead to lower variance of the von Mises distribu-
tion, and hence higher persistence in direction.) Alter-
natively, the mean can be specified to be bearing,_; — m,
corresponding to an expected reversal in direction,
which is often found in encamped, foraging, or resting
modes (e.g., “encamped” behaviour in Morales et al.
2004, and “area-restricted search” in Towner et al.
2016). Instead of specifying the mean a priori, it can
also be estimated from the data. That is, we can
consider

bearing, ~ von Mises(mean = bearing, | + A,
concentration = ),
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where A € [—m, ) is a parameter to estimate. We note
that CRWs can alternatively be constructed by mod-
elling turning angles rather than bearings, leading to
equivalent model formulations, with

angle, ~ von Mises(mean = A, concentration = k).

Choosing between these two formulations is only a
matter of convenience.

For modelling phases (1) and (4), biased random
walks (BRWs) are better suited. Bias in random walks
usually (though not necessarily) refers to a tendency
towards (or away from) a particular location, sometimes
called a centre of attraction (or point of repulsion). For
example, a bias towards a location is obtained by assum-
ing that

bearing, ~ von Mises(mean = ¢,, concentration = «),

where ¢, = arctan[(y, — y;)/(x. — x;)] is the direction of
the vector pointing from the animal’s current position,
(X1, 1), to the central place, (x., y.).

In principle, it is also possible to construct random
walks that are both biased and correlated (BCRWs),
thereby trading off directional persistence and possible
turning towards the destination. However, in our experi-
ence, it is difficult to statistically distinguish CRWs and
BRWs. As a consequence, usage of BCRWSs tends to lead
to numerical instability within the model fitting proce-
dure, as it is challenging to estimate the respective
weights of the biased and correlated components of the
process. For more details on CRWs, BRWs and BCRWs s,
see Codling et al. (2008).

As can be seen in Fig. 1, the animal tends to remain
within each phase of movement for some time before
switching to a different phase. To accommodate both the
persistence and the stochastic switching between differ-
ent phases of the movement, we use an underlying
(unobserved) state process. The state process, Si...,S7,
takes values in {1,..., N}, such that, at each time 7, the
movement observed follows one of N types of random
walks (possibly correlated and/or biased), as determined
by the current state. We take the state process to be a
Markov chain, which together with the observation pro-
cess, 1.e., the BRWs and CRWs conditional on the cur-
rent state, defines a hidden Markov model for the
animal’s movement (HMM; see Chapter 18 in Zucchini
et al. 2016). The state process is characterized by the
transition probabilities

vy = Pr(S; = jIS1 = i), forije{l,...N}.

In the trip-based movement detailed previously, there
are N =4 states, corresponding to the four phases of
movement. Note that, in general, there is no guarantee
of a one-to-one equivalence between the (data-driven)
states of the Markov chain and the actual behaviours of
the animal (Patterson et al. 2016). As such, the states
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should be interpreted with care, but they are often useful
proxies for the behavioural modes. In subsequent
sections, we use the terms “behaviours” and “states”
interchangeably.

Framing the model as an HMM makes it possible to
use the very efficient HMM machinery to conduct statis-
tical inference. In particular, the model parameters can
relatively easily be estimated by numerically maximizing
the likelihood, which can be calculated using a recursive
scheme called the forward algorithm (Zucchini et al.
2016). The main challenge herein lies in identifying the
global rather than a local maximum of the likelihood —
the same or similar problems arise when using the expec-
tation-maximization algorithm or Markov chain Monte
Carlo sampling to estimate parameters. The efficiency of
the forward algorithm is one of the key reasons for the
popularity and widespread use of HMMs, and similar
algorithms can be applied for forecasting, state decod-
ing, and model checking. In particular, we use the
Viterbi algorithm to decode the most likely sequence of
underlying states in section Estimated state sequences.
More details on inference in HMMs are given in
Zucchini et al. (2016) and, for the particular case of
animal movement modelling, in Patterson et al. (2016).
For our case study, we used the R optimization function
nlm to numerically maximize the likelihood, which was
partly written in C++ for computational speed.

Case study data

The southern elephant seal (Mirounga leonina) is a
pinniped top predator with a circumpolar distribution
throughout high latitudes in the southern hemisphere
(Carrick et al. 1962). Haul out phases on land occur at
fairly predictable times during the annual cycle for
moulting and breeding (Hindell and Burton 1988). The
species is known for making large scale migrations from
isolated subantarctic land colonies, both southwards to
the sea ice zone around the Antarctic continental mar-
gin, and also into open ocean pelagic zones (Biuw et al.
2007, Labrousse et al. 2015, Hindell et al. 2016). A
recent study (Hindell et al. 2016) applied two-state
movement models (sensu Morales et al. 2004) to a large
data set of several hundred individual tracks. This study
was focused on detecting basin-scale patterns in foraging
effort, rather than explicitly modelling the sequence of
behaviours within individual foraging trips.

In this case study, we examine trips from 15 animals
(eight adult females and seven subadult males) tagged
at Kerguelen Island. These animals were fitted with
telemetry units of the Sea Mammal Research Unit (St
Andrews, UK) which transmit data via the Argos satel-
lite network (Photopoulou et al. 2015). Frequently, the
elephant seals remained at the colony for extended
periods at the start of the time series, and similarly after
returning from foraging trips. Because of the HMM
structure, the highly stationary data from these periods
holds little information and rather serves to leave
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potential for numerical instability. Data from these peri-
ods were removed prior to use in the HMM. Near sta-
tionary periods immediately prior to colony departure
and/or following return to the colony were identified for
removal by examining one-dimensional time series plots
of the Argos longitude and latitude observations. The
truncated trips lasted between five and eight months,
except for two incomplete trips, during which the data
collection was interrupted before the animals returned
to the colony (tags may fail before trip completion).

Due to the occasional large errors and the irregular
timing of the Argos location observations, these data
were filtered using a state-space model (SSM, Jonsen
et al. 2013) to obtain a regular time sequence of location
estimates with reduced uncertainty. The SSM used was a
variant of that described in Jonsen et al. (2005), imple-
mented with the R package TMB (Kristensen et al.
2016). Associated R and C++ code, for pre-processing
the Argos data, are available on Github, at github.com/
ianjonsen/ssmTMB. The state-space model was fit with
a 2.4-h time step, yielding ten location estimates per day.
Other time steps were evaluated but 2.4 h provided the
best fit according to AIC and auto-correlation functions
of the residuals. This time step resulted in calculated step
lengths (speeds) and turning angles (or, equivalently,
bearings) that had relatively low contrast between move-
ment phases apparent in the observed data. Accordingly,
we sub-sampled the estimated locations to every fourth
time step (i.e. 9.6 h frequency). The data provided to the
HMM were step lengths and turning angles, as described
in section Building blocks for the overall model.

Model details

For the elephant seal case study, we employ the struc-
ture of a four-state HMM as described in section Build-
ing blocks for the overall model. The first state
corresponds to the outbound trip from the colony to a
foraging region, and is modelled by a BRW with repul-
sion from the colony. The animal then alternates between
states 2 (“search”) and 3 (“forage”), each using a CRW.
Finally, the process switches to the inbound trip, mod-
elled by a BRW with attraction towards the colony. The
movement is measured in terms of step lengths and turn-
ing angles — modelling the latter is equivalent to mod-
elling bearings, but here easier to implement. We use a
gamma distribution to model the step lengths in each
state, and a von Mises distribution for the turning angles.
The mean turning angles are estimated for both state-
dependent CRWs (in states 2 and 3, respectively), instead
of being fixed a priori. This results in fourteen parame-
ters to estimate at the level of the observation process:
four shape and four scale parameters (for the gamma-
distributed steps), plus four concentration parameters
and two means (for the angles). For states 1 and 4, no
mean parameter needs to be estimated for the associated
BRW, as the expected direction is determined through
the bias.
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Using the notation introduced in section Building
blocks for the overall model, we write the transition
probability matrix as

= 0 v» VY3 Y
0 vy vz O
0 0 0 1

This structure ensures that the sequence of states fol-
lows the behavioural cycle described in the Introduction,
by preventing some transitions. Note that we could
choose v,3 and y3,4 to be non-zero, to allow the process to
switch from outbound to forage, and forage to inbound,
respectively. In this case study, we decided to prevent
these transitions, i.e., we assumed a transitional regime
of moderately fast and directed movement (search)
between a phase of fast and directed movement (out-
bound or inbound), and a phase of slow non-directed
movement (forage).

This formulation also leads to improved numerical
stability of the estimation, as it reduced the number of
parameters to estimate. Here, state 4 is an absorbing
state, as we only consider tracks comprising (at most)
one trip away from the colony. It would be straightfor-
ward to relax this constraint, e.g., by choosing v,; > 0.
For tracks comprising several years of data, a fifth state
could be added to model the movement of the seals at
the colony.

In analyses like this one, it is often of interest to
understand the drivers of behavioural switches, by
expressing the transition probabilities as functions of
time-varying covariates (see, e.g., McKellar et al. 2015,
Breed et al. 2016). Here, we introduce two covariates:
the great-circle distance to the colony from the location
at time ¢, d;, and the time since departure from the col-
ony, ¢ — ty. These are included for two key aspects which
are both relevant for CPF foraging behaviour and are
also necessary to construct a model which will replicate
trips in a simulation setting. Specifically, we need to
model the fact that animals often make fast directed
trips away from the colony and tend to switch into other
movement modes once they have reached foraging
grounds. In this case we use distance from the colony as
a covariate affecting the probability of transitioning
from outbound to search,

Y1) = togit™" (B + B{7d,).

Somewhat similarly, animals cannot remain at sea
indefinitely. Therefore, we use time since departure
from the colony as a covariate on the switch from
search to inbound (y,). As there are two non-zero
probabilities of switching out of state 2, we use a special
case of the multinomial logit link, the general expres-
sion of which is given e.g., in Patterson et al. (2016). In
our model,
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The [35('7) € R are parameters to be estimated. Note
that, because the rows of the transition probability
matrix must sum to 1, y;; and v,, are also time-varying
in this example. There are six parameters to estimate in
the state-switching process: the five B,((” ) coefficients and
¥3>. The remaining elements of the matrix, i.e., Y1, Y2
and 733, are obtained from the row constraints. This
results in a total of twenty parameters to estimate: four-
teen parameters for the state-dependent distributions of
steps and angles, and six parameters for the transition
probabilities.

Simulation from fitted model

Having estimated model parameters from the real
data, it is possible to simulate movement from the model
described in section Model details. A simulated track
starts near Kerguelen Island, in state 1 (outbound trip).
The bearing is initialized from a von Mises distribution
with a mean pointing towards the South, to mimic the
elephant seals” movement. The directionality of the
movement in state 1 ensures that the trajectory goes
southward, overall. At each time step, the state process
is simulated from the estimated (possibly time-varying)
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switching probabilities. Then, a step length and a bearing
are simulated from the estimated gamma and von Mises
distributions, respectively. The corresponding longitude
and latitude coordinates are derived using the R package
geosphere (Hijmans 2016). The new location is rejected
if it is on land, using the borders defined in the data set
wr1d_simpl of the maptools R package (Bivand
and Lewin-Koh 2016). The track ends once the trajec-
tory is back at the colony. In practice, we chose to stop
the simulation once a location is simulated within a
20-km radius around Kerguelen Island.

REsuLTs

The model described in section Model details was fit-
ted to 15 elephant seal tracks, each corresponding to one
individual trip away from the colony. The tracks
comprise about 7,300 locations, and it took around one
minute to fit the model on a dual-core i5 CPU.

We include the code used to fit the model in the Data
S1. Note that, for speed, we implemented the likelihood
function in C++, using Repp (Eddelbuettel et al. 2011).
In Data S1, we also provide the data set comprising the
15 tracks.

Estimated turn and step-length distributions

Fig. 2 shows histograms of the step lengths and
turning angles of the data, on which are plotted the
estimated state-dependent gamma and von Mises densi-
ties. The state-dependent densities for each state here
have been weighted according to the proportion of time
the corresponding state is active, as determined using
the Viterbi algorithm (Zucchini et al. 2016). Similarly,
for both the step lengths and the turning angles, Fig. 2
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Fic. 2. Estimated state-dependent distributions for the step lengths (left) and the turning angles (right). (For colors, refer to the
online version of the paper.) [Color figure can be viewed at wileyonlinelibrary.com]



1938

also displays the cumulative distribution, i.e., the sum of
these weighted densities. Based on visual inspection,
these cumulative distributions do not indicate any lack
of fit of the model.

Formal model checks can be conducted using forecast
pseudo-residuals, which use the probability integral
transform to effectively compare the observation at each
time 7 to the associated forecast distribution based on the
observations up to time #— 1. In case of the turning
angles, the definition of the pseudo-residuals is essentially
arbitrary due to the circular nature of this variable (cf.
Langrock et al. 2012). Thus, we restrict the model check
to the step length variable. The quantile-quantile plot of
the pseudo-residuals for the step lengths, against the
standard normal distribution, is shown in Appendix S1
(Section S4). A few of the tracks include steps of slow
movement near the colony. They are not captured by the
“outbound” and “inbound” states of fast movement, such
that they appear as outliers in the qq-plot; this could be
resolved during the preprocessing, by excluding the cor-
responding observations. The model also slightly under-
estimates the number of long steps (roughly between 40
and 50 km). In this regard, the fit could be improved by
using more flexible step length distributions, albeit at a
computational cost (Langrock et al. 2015). However,
note that the improvement in inference on the state-
switching dynamics would be minimal.

The states corresponding to the outbound and
inbound movements display very similar features, with
high step lengths and strong directional persistence; the
distinction is that the colony acts as a centre of repulsion
in the former, and a centre of attraction in the latter. The
foraging phases are characterized by shorter steps, i.e.,
slower movement, and less directional persistence, with a
roughly flat distribution of turning angles. In the search-
type movement mode, the model captures moderately
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— forage

—— inbound
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60°S 55°S 50°S
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long steps and directed movement, making it clearly dis-
tinct from foraging behaviour.

The estimates of all the model parameters are pro-
vided in Appendix S1 (Section S2).

Estimated state sequences

The most probable state sequence was computed with
the Viterbi algorithm. Fig. 3 shows the 15 tracks, coloured
by decoded states. The individual decoded tracks are pro-
vided in Appendix S1 (Section S1). In all tracks, the first
state corresponds to the animal moving quickly towards
the south. Then, the behaviour alternates between search-
ing (state 2) and foraging (state 3) periods, typically near
the ice or in Antarctic continental shelf waters. In general,
more northerly search behaviour is apparent in the west-
ernmost tracks. Eventually, the animal switches to state 4
as it starts moving back towards the island colony.

Overall, the model appears to adequately identify the
outbound and inbound trips. However, we suspect that
the decoded state sequence might sometimes fail to cap-
ture the exact timing of the transitions out of the out-
bound state, and the transitions into the inbound state.
In some tracks, the animal goes through a transitional
phase, between the outbound trip and search behaviour,
in which the movement is slower but still very directed.
Although these periods are still arguably part of the out-
bound trip, they might be attributed to the searching
state, due to the decrease in speed. The same situation
arises during the transition from search to inbound trip.

Fig. 4 demonstrates state decoding more specifically,
on the track presented in Fig. 1. In particular, sub-
Fig. 4(C) shows how the localized movements of the ele-
phant seal near the Antarctic continent is split into two
very distinct behaviours, which seem to be apportioned
adequately between states 2 and 3.

T
0° 50°E

T 1
100°E 150°E

longitude

Fic. 3.

Fifteen elephant seal tracks, colored by Viterbi-decoded states. The white area at the bottom is the Antarctic continent.

(For colors, refer to the online version of the paper.) [Color figure can be viewed at wileyonlinelibrary.com]



HMM FOR FORAGING TRIPS

1939

July 2017
(€)
@
% © outbound
search
e forage go
® inbound %
(%)
B
]
B )
= &
8 ©
=)
©
g0
o 23
Jrey ©
9 °©
70°E  80°E  90°E 100°E 110°E 120°E »
;E: longitude 08
> 9 (B)
o
(—g) g: Q&WQ‘M(‘Q“M g)
2 g7 jf 8
o 2]
o i
C
& o T . . T .
g Mar May Jul Sep 105°E
FiG. 4.

120°E

115°E

longitude

(A) An example track of a southern elephant seal. (B) The distance from Kerguelen Island through time. (C) A “zoomed

in” part of the track shown in (A). The four colors correspond to the most probable states, decoded with the Viterbi algorithm. (A)
and (B) clearly illustrate the phases of fast and directed movement, which are attributed to the outbound and inbound trips. (C)
shows in more detail the different patterns in the animal’s movement, when near the sea ice region, which distinguish between
search and foraging behaviours. (For colors, refer to the online version of the paper.) [Color figure can be viewed at wileyonlineli-

brary.com]

Estimated effects of covariates

The transition probabilities were estimated as func-
tions of the distance to the colony, and the time
spent away from the colony, as described in section
Model details. Fig. 5 displays plots of the transition
probabilities from state 1 to state 2 (end of outbound
trip), and from state 2 to state 4 (start of inbound
trip).

The HMM predicted that elephant seals were unli-
kely to switch away from state 1 when close to the
colony, but the probability increased quickly at dis-
tances >3000 km, when the animals tend to start
searching for foraging patches. Moreover, during the
first few months away from the colony, elephants seals
do not switch to state 4 (return trip), but instead tend
to cycle through search and foraging phases. Later,
after about 6 months, the probability of switching to
state 4 starts to increase.

This is consistent with the annual cycle in this species
and the timing of return to the island colony after the
long post-moult migration (McCann 1980, Hindell and
Burton 1988, Slip and Burton 1999). Therefore, the
estimated relationships between covariates and beha-
viour is consistent with the known behaviour of
elephant seals and their annual moulting and breeding
cycles.

Simulation results

One of the main advantages of our approach over sim-
pler HMMs (e.g., HMMs with fewer states, no con-
straints on the switching probabilities, only based on
CRWs. . ) is the possibility to simulate realistic movement
tracks from the fitted model. The simulation procedure is
described in section Simulation from fitted model. Fig. 6
shows ten tracks, simulated from the fitted model.

The simulated tracks display many of the features of
the real ones. To compare them, we simulated 100 tracks,
and summarized the proportion of time allocated to
each state, and the mean duration spent in each beha-
viour (before switching to another behaviour), in
Table 1. In the simulated data, we find the overall pro-
portional state allocation very well represented. How-
ever, we find on average slightly shorter behavioural
phases for states 2 and 3 (search and forage) than in the
real data. This may partly be due to the assumed Mar-
kov property of the state process which, for states not
affected by covariates (e.g., the foraging state), implies
that the times spent within the state are geometrically
distributed (Zucchini et al. 2016). We suggest ways to
relax this assumption in section Progress toward predic-
tion from estimated process models. Histograms of the
dwell times in each state, for the real and simulated
tracks, are provided in Appendix S1 (Section S3).
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FiG. 6. Ten simulated movement tracks, obtained with the MLE of the parameters of the fitted model. (For colors, refer to the
online version of the paper.) [Color figure can be viewed at wileyonlinelibrary.com]

The simulation successfully captures the southward
direction of the outbound trip. Then, the process
switches to search and forage behaviours at a realistic
distance to the colony, as the probability of this transi-
tion is a function of the distance to Kerguelen Island.
The extent of movements within each state, which is
informed by the estimated step and angle distributions,
is also realistic. However, the spatial distribution of for-
aging activity is not tied to correspond to what is
observed in real tracks. Thus, the exact locations of
searching and foraging activities in the simulated data
are of no environmental relevance. This could be
improved by including environmental covariates; this is
discussed in more detail in section Progress toward pre-
diction from estimated process models.

The durations of simulated trips are reasonable for the
study species: out of the 100 simulated trips, 90 lasted
between 5 and 9 months.

TasrLe 1. Comparison of the real tracks and 100 simulated
tracks, in terms of overall proportion of observations
attributed to each state, and of mean dwell time in each
behaviour (in days).

Overall proportion Mean state dwell time

Real Simulated Real Simulated
data data data data
State 1 12.9% 11.2% 254 23.2
State 2 24.2% 23.3% 4.5 3.6
State 3 51.1% 53.7% 10.4 9.0
State 4 11.7% 11.8% 24.6 244
Discussion

We have described a method for modelling the trip-
based movements of animals undertaking central place
foraging. This approach uses a hidden Markov model to
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directly estimate state movement and switching parame-
ters from empirical telemetry observations. The model
handles the natural sequence of behaviours within a trip,
i.e., “outbound”, “search”, “forage”, and “inbound”.

Comparisons to simpler models

The four-state HMM we have constructed is relatively
complex: it mixes biased and correlated random walks,
and the transition probabilities depend on time-varying
covariates (distance from colony, and time). It is there-
fore necessary to consider what we gain from using a
complex behavioural model over simpler models. For
example, two-state switching CRW models have com-
monly been used (e.g., Morales et al. 2004, Hindell et al.
2016), and can be easily fitted across a range of datasets,
e.g., using the R packages moveHMM (Michelot et al.
2016) or bsam (Jonsen 2016).

One key inference from the more complex model
described in this manuscript is the length of outbound
and inbound journeys (both in distance and in time). In
this trip-based HMM, we can estimate this directly with
the most likely state sequence, derived with the Viterbi
algorithm. Arguably, one could apply heuristic rules to
the state estimates from a two-state model, to obtain the
same thing. For example, the outbound trip could be
taken to start when the animal leaves the colony, and
end when the proportion of observations categorized as
“resident” behaviour reaches a threshold p (where p is
relatively small, say p = 0.1). This would have the effect
of ignoring short runs of resident behaviour within the
transit. Similar rules could be envisaged based on dis-
tance from the island, for example. These heuristic rules
of thumb may be useful, but suffer from a degree of arbi-
trariness.

Hidden Markov models with more than two states
have been used to model fishing vessel trips — which can
be considered, most basically, as another top predator.
For example, Vermard et al. (2010) and Walker and Bez
(2010) used 3-state HMMs to distinguish “fishing”,
“steaming”, and “still” behaviours of fishing vessels. Peel
and Good (2011) consider a 5-state HMM, with the
addition of states for “entry” and “exit” movement
between the latter two behaviours. In such models, simu-
lation from fitted models could be a useful extension.
However, to the best of our knowledge, they have not
been used for that purpose.

The disadvantage of our trip-based 4-state model is its
aforementioned complexity. Without reasonable starting
values in the maximum likelihood estimation, the param-
eter estimation routines can provide poor parameter esti-
mates, by finding local maxima of the likelihood, or fail
to converge altogether. These are well-known problems
with numerical maximum likelihood, which require care-
ful attention. One way to address this numerical problem
is to run the estimation with many different sets of start-
ing values (possibly chosen at random), and compare the
resulting estimates. In the case study, we tried 50 sets of
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randomly chosen starting values in order to ensure
that we identified the global maximum of the likelihood
function.

Progress toward prediction from estimated process models

A key feature of the models we have demonstrated is
that they are able to generate simulated tracks which
capture certain aspects of the behaviour of seals. While it
is clear that these are gross simplifications of the true
movements of CPF predators, the simulations are never-
theless useful for predicting aggregate properties from
the fitted model. For instance, we might predict the aver-
age spatial distribution of seals from the fitted model.
We can also compute a distribution of arrival and depar-
ture times from a given area, which can be useful for
assessing effectiveness of spatial management regimes or
reserve usage and connectivity between populations
(Abecassis et al. 2013, Guan et al. 2013, Kanagaraj
et al. 2013, Stehfest et al. 2015).

Currently, these models do not contain detailed envi-
ronmental or biological predictors, which are known to
be important in influencing southern elephant seal beha-
viour (Pinaud and Weimerskirch 2005, Bestley et al.
2013); for instance, the role of specific oceanographic
variables (Biuw et al. 2007, Labrousse et al. 2015). It is
in principle straightforward to include additional covari-
ates in the model described in section Model details;
though doing so might increase numerical instability.
Nonetheless, incorporating such variables will be impor-
tant if these models are to truly realise their potential for
understanding how CPF marine predators might
respond to changing environmental regimes. For the case
of southern elephant seals, we could for instance express
the transition from outbound to search in terms of dis-
tance to the sea ice edge, instead of distance from the
colony. We could also investigate the apparent state 2
behaviour observed further from the Antarctic conti-
nent, which may well be indicative of the animal moving
slowly toward the colony and away from the continent
as the ice advances northwards. Other variables, such as
response to different water masses, frontal zones, etc.,
are likely to be more subtle, and may serve to influence
transitions between search and forage states.

Including environmental covariates to inform the
probabilities of switching may also lead to more realistic
simulated tracks. In particular, it could help to simulate
more realistic state dwell-times. An alternative is to use
so-called hidden semi-Markov models (Langrock et al.
2012), where the geometric state dwell-time distribution
can be replaced by more flexible distributions. In simula-
tions, additional covariates would also help to inform
the spatial distribution of foraging activities.

The approach presented here demonstrates progress
toward melding telemetry and sensor data with spatially
explicit prediction of animal distributions and beha-
viour. Hidden Markov and state space models have
much to offer in this prospect (Patterson et al. 2008),
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but have thus far been rather limited in being used for
the purposes of prediction. A long-term goal for animal
movement research is the general prediction of realistic
movements modelled (i.e., statistically estimated from a
process model) from empirical data collected at the indi-
vidual level, but applied to novel situations and scaled
up to population-level responses. These might for exam-
ple include projections of future environmental condi-
tions (Perry et al. 2005, Trathan et al. 2007, Hazen et al.
2013), or application to changed colony conditions.

For the ultimate goal of building empirically and
mechanistically based simulation models to be realized,
we believe that it is necessary to directly estimate process
models which capture the key aspects of animal biology
sufficiently well. Recent studies have demonstrated that
highly complex simulation models incorporating physio-
logical details, habitat information, etc., can be built
(Schick et al. 2013, New et al. 2014). However, typically
such models are either data limited or unable to be
directly estimated from empirical observations. As such,
it is likely that there will be limitations to the degree of
complexity which can be realised in estimated models.
The consequence of this is that attempting to cleanly
move from an estimated model to a simulation and pre-
diction exercise will encounter difficulties as the estima-
tion model fails to capture certain fundamental aspects
of the real movements. A simple example of this is the
behaviour of marine animals in regard to coastlines.
Arbitrary, but probably reasonable measures, such as
using a rejection step to restrict animals to remain in the
ocean are necessary to mimic the straightforward reality
that marine animals do not typically wander over land
masses. Despite the apparent triviality of this point, it is
informative to consider, as it highlights elements needed
at the simulation and prediction phase, but which may
not fit within an estimation model.

Concluding remarks

Building on the general framework of Markov-switch-
ing random walks and hidden Markov models, our
method accommodates naturally trip-based movement
of central place foragers. It offers a fast way to categorize
movement tracks into behavioural modes, and to
describe the underlying mechanics of behavioural switch-
ing in terms of time-varying covariates. We believe that
models like those presented here begin to address the
interesting three way trade-off between (1) complexity
and realism, (2) the desirable aspects of direct estimation
using rigorous statistical inference, and (3) computa-
tional efficiency. The first aspect allows simulations to
capture many features of the real data and makes the
models potentially useful for prediction at the individual
level. The second brings the power and objectivity of
statistical methods as a way to understand the spatial
dynamics of animals. The final point allows for ease of
use, and means that more realistic models can be applied
to large data sets.
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