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Abstract

We prove that if a framework of a graph is neighborhood affine rigid in d-dimensions (or
has the stronger property of having an equilibrium stress matrix of rank n − d − 1) then it
has an affine flex (an affine, but non Euclidean, transform of space that preserves all of the
edge lengths) if and only if the framework is ruled on a single quadric. This strengthens and
also simplifies a related result by Alfakih. It also allows us to prove that the property of super
stability is invariant with respect to projective transforms and also to the coning and slicing
operations. Finally this allows us to unify some previous results on the Strong Arnold Property
of matrices.

1 Introduction

Let G be a connected graph with n labeled vertices and m edges and p be a configuration of the
n vertices in Ed. Throughout, we will assume that p has a full d dimensional affine span. The
pair (G,p) is called a framework in Ed. Two frameworks (G,p) and (G,q) are called (Euclidean)
equivalent if they share the same m lengths measured along the edges in G. Two frameworks (G,p)
and (G,q) are called (Euclidean) congruent if they are related through a d-dimensional Euclidean
transform.

In rigidity theory, one may be interested in knowing if there is a second framework (G,q) in
Ed that is equivalent to, but not congruent to (G,p). If there is no such (G,q) in Ed, we say that
(G,p) is globally rigid in Ed. If there is no such (G,q) in any dimension, we say that (G,p) is
universally rigid.

Figure 1: Two Euclidean equivalent “frameworks” related by an affine flex. The frameworks
are not ruled, and they are not neigborhood affine rigid.

When trying to establish global or universal rigidity, we can often use a certificate, called an
“equilibrium stress matrix”, to rule out the existence of any equivalent framework to (G,p) except
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for those that arise through d-dimensional affine transforms [5, 7]. Then an extra argument is
needed to establish that any affine transform that preserves the m lengths of (G,p) must actually
be a Euclidean transform. This last step is equivalent to proving that the edge directions of (G,p)
do not lie on a “conic at infinity”.

Figure 1 shows a case where there exists an affine motion applied to a framework that does
preserve all of the “edge” lengths.

We will use the following conventions. Differences between pairs of points in Ed give vectors in
a d-dimensional linear space, which we will identify with Rd. Then after fixing an origin point in
Ed we will also identify each point with its affine coordinates in Rd.

Definition 1.1. Let (G,p) be a framework in Ed. For any edge {ij} in G, let its edge vector in
Rd be eij := pj − pi. We say that the edge directions of (G,p) lie on a conic at infinity of Ed if
there exists a non-zero symmetric d × d matrix Q such that for all of the edge vectors, we have
etijQeij = 0.

(This property does not depend on the choice affine coordinates for Ed.)

In E2, the conic condition means that all of the edges are in, at most, two directions.

Remark 1.2. The terminology “conic at infinity” comes from the following projective setup. Iden-
tify Ed with the affine patch of Pd that has coordinates (· · · : 1). For computations, we give a point
x ∈ Ed homogeneous coordinates x̂, which is the vector in Rd+1 obtained by appending a 1 to x.
With this choice, difference vectors, such as the edge vectors eij, have homogeneous coordinates
(not identically zero) of the form (· · · : 0), so they correspond to the point at infinity on the line
through pi and pj. In this view, the edge directions of (G,p) are on a conic at infinity if the eij
are contained in a quadric that lies in the hyperplane at infinity.

Definition 1.3. Let A be an affine map A on Ed, and define A(p) by A(p)i := A(pi). An affine
flex of a framework (G,p) in Ed is an an affine map A such that (G,A(p)) is equivalent to (G,p).
An affine flex is non-trivial if A is not a Euclidean motion.

The importance of conics at infinity comes from their close connection to affine flexes of frame-
works.

Proposition 1.4 ([6, 7]). The edge directions of (G,p) lie on a conic at infinity if and only if there
is a non-trivial affine flex of (G,p).

Remark 1.5. Connelly [8] has shown that if (G,p) has a non-trivial affine flex A, then there is
a continuous path At of non-trivial affine flexes. Thus, Proposition 1.4 implies that if the edges
of (G,p) lie on a conic at infinity, then (G,p) is not even “locally rigid” (see [14] for detailed
definitions).

Figure 2 shows a framework in E2 with its edge directions on a conic at infinity. A Euclidean
equivalent framework on the right is obtained obtained from (G,p) through a single affine (but non
Euclidean) transformation.

For any specific framework (G,p), we can efficiently test whether the edge directions are on a
conic at infinity by solving a linear system. However, the usual application of Proposition 1.4 is to
classes of frameworks. This motivates the question of when (G,p) does not, a priori, have its edge
directions on a conic at infinity.

A fundamental result along these lines is due to Connelly [7]:
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Figure 2: (Left) A framework (G,p) with its edge directions at a conic at infinity. (Right) A
Euclidean equivalent framework obtained from (G,p) through a single affine (but non Euclidean)
transformation.

Theorem 1.6 ([7]). Let (G,p) be a framework in Ed. Suppose that each vertex of G has degree at
least d. Furthermore suppose that p is a generic configuration. Then the edge directions of (G,p)
do not lie on a conic at infinity of Ed.

In Theorem 1.6, genericity means that the coordinates of p do not satisfy any non-trivial
algebraic equations with coefficients in Q. This means that, while the theorem holds for almost
every p in configuration space, there can be exceptions. Moreover, if one restricts oneself to some
special class of frameworks, say, with some imposed non-trivial symmetry, then the theorem may
not hold anywhere in that class.

Before continuing, we need two definitions:

Definition 1.7. Let Sn be the set of symmetric n × n matrices. Let C(G), the graph supported
matrices, be the linear space of matrices (of any rank) in Sn, that vanish on the {ij} entries
corresponding to non-edges of G.

Definition 1.8. A stress matrix Ω is a matrix (of any rank) in C(G) with the added property
that the all-ones vector is in its kernel. We say that a d-dimensional framework (G,p) is in the
kernel of Ω if each of its d coordinate n-vectors is in the kernel. In this case, we say that Ω is an
equilibrium stress matrix for (G,p).

(The property of Ω being an equilibrium stress matrix for (G,p) does not depend on the choice
affine coordinates for Ed.)

In this paper, we are going to consider frameworks (G,p) that are “neighborhood affine rigid”
or have an equilibrium stress matrix of rank n − d − 1. This additional assumption (which is not
present in Theorem 1.6) will allow us to prove essentially tight results about which frameworks
have their edge directions on a conic at infinity.

An earlier result using a similar setup is by Alfakih [4].

Theorem 1.9 ([4]). Suppose that a framework (G,p) in Ed has an equilibrium stress matrix Ω
of rank n − d − 1. Moreover suppose that each (inclusive) neighborhood of each vertex has a full
d-dimensional affine span. Then its edge directions do not lie on a conic at infinity of Ed.

The exact statement from [4] also requires that the stress matrix is PSD. However, the proof,
which is reliant on a long series of linear-algebraic manipulations, only uses the rank of the stress.

Our main result is strictly stronger than Theorem 1.9. The technique is also more conceptual.
We relate a notion (described in Section 2) called neighborhood affine rigidity to that of edge

3



directions not lying on a conic at infinity. With this perspective, a direct and simple constructive
argument can be used to establish our theorem. The statement of our results needs a definition.

Definition 1.10. We say that a framework (G,p) in Ed is ruled on a single quadric if all the
vertices pi, and all of points on all of the edges of the framework, lie on some non-trivial, but
possibly degenerate, (possibly) inhomogeneous quadric Q in Ed. We can assume that, like p, Q has
a full dimensional affine span. For brevity, we will simply refer to this property as ruled. (This
property does not depend on the choice affine coordinates for Ed.)

We may describe Q by a defining polynomial Q(x) = xtQx + ltx + c where Q is a symmetric
d × d matrix, l is some vector in Rd and c is some constant. Alternatively we may describe Q(x)
in homogeneous coordinates as x̂tQ̂x̂ = 0 where Q̂ is a symmetric (d + 1)× (d + 1) matrix.

A ruled framework is quite special. Indeed, assuming that G is a connected graph, a ruled
framework in E2 must be entirely contained within two intersecting lines! (See Figure 5 below.)

The main theorem of this paper is:

Theorem 1.11. Suppose that a framework (G,p) in Ed is neighborhood affine rigid. Then its edge
directions lie on a conic at infinity of Ed iff (G,p) is ruled.

Corollary 1.12. Suppose that a framework (G,p) in Ed has an equilibrium stress matrix Ω of rank
n− d− 1. Then its edge directions lie on a conic at infinity of Ed iff (G,p) is ruled.

Proof. Proposition 5.9 of [14] explains that a equilibrium stress matrix of rank n−d−1 is a sufficient
(but not necessary) certificate of neighborhood affine rigidity.

Proposition 3.4, below, tells us that any framework with even a subset of d vertices in gen-
eral affine position, each with a neighborhood of full affine span, cannot be ruled. This makes
Corollary 1.12 stronger than Theorem 1.9.

Using our theorem, we will also show as a corollary, that the property of a framework being
“super stable” is preserved by invertible projective transforms of Ed as well as the “coning” and
“slicing” operations.

Finally, we will describe a relationship between the notion of a ruled framework to the notion
of a matrix having “the Strong Arnold Property” and a related connection that has recently been
made in another paper by Alfakih [3].

Figure 3: Two Euclidean equivalent “frameworks” related by an affine flex. The frameworks
are neigborhood affine rigid and are ruled.
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2 Neighborhood Affine Rigidity

First we review a few definitions about affine rigidity from [14].

Definition 2.1. Let (G,p) be a framework in Ed. We say that (G,p) is neigborhood affine pree-
quivalent to a second framework (G,q) if for each vertex i, the point pi and all of the points pj,
where vertex j is a neighbor of vertex i, can be mapped to their associated positions in q by a
(possibly singular) affine transform depending only on i.

We say that p is affine precongruent to q if all the vertices in p can be mapped to their positions
in q by a (possibly singular) affine transform.

(The inclusion of singular transforms is done for technical reasons [14]. This prevents affine
preequivalence (and also precongruence) from being a symmetric relation, and is the source for the
“pre” terminology.)

We say that (G,p) is neighborhood affine rigid if for any other framework (G,q), to which
(G,p) is neighborhood affine prequivalent, we always have that p is affine precongruent to q.

Definition 2.2. Let Q be a symmetric d × d matrix. We define an associated perturbation map
m acting on a point x in Ed to be

m(x) := x + [xtQx]v

where v is some chosen non-zero vector in Rd.
We denote by m(p) the configuration defined by mapping all of the points of p by m.

Proposition 2.3. Suppose (G,p) has its edge directions on a conic at infinity defined by a non-
zero matrix Q. Let m be an associated perturbation map. Then (G,p) is neighborhood affine
preequivalent to (G,m(p)).

Proof. Let q := m(p). We just need to show that for each vertex i, there is an affine transform
that maps each vertex pj of the (inclusive) neighborhood of pi, to its position in the configuration
q.

From our assumption that the edge directions are at a conic at infinity,

0 = (pj − pi)
tQ(pj − pi)

we get

pt
jQpj = −pt

iQpi + 2pt
iQpj

when vertex j is a neighbor of vertex i. The same is trivially true when j = i.
Thus on the (inclusive) neighborhood of pi, the action of m can be modeled with the affine

transform:

m(x) = x + [−pt
iQpi + 2pt

iQx]v

Lemma 2.4. Let Q be a non-zero symmetric d× d matrix and let m be an associated perturbation
map. Suppose that p is affine precongruent to m(p). Then all of the pi must lie on a (possibly)
inhomogeneous quadric with its quadratic term defined by Q.
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Proof. Assume, w.l.o.g., that ‖v‖ = 1. Expanding the definition of m and rearranging, affine
precongruence implies there is an affine map A(x) := Ax + t (where A is a d× d matrix, and t is
a vector in Rd) such that for all x = pi

m(x) = x + [xtQx]v = Ax + t

and
[xtQx]v = (A− I)x + t =: A′x + t

Multiplying by vt on the left, we obtain

xtQx =
[
vtA′

]
x + vtt

which gives a non-trivial quadric for the pi, since the left-hand side, at least, is non-zero.

Lemma 2.5. Let Q be a (possibly) inhomogeneous quadric with quadratic terms defined by a non-
zero symmetric matrix Q. Suppose that two points x1 and x2 are both on Q, and that for the edge
vector e := x2 − x1 we have etQe = 0. Then all the points on the line spanned by x1 and x2 are
on Q.

Proof. Thinking projectively (see Remark 1.2), we have the points x1, x2 and e (at infinity) on a
line ` in Pd. If Q is the polynomial defining Q, then Q(e) = etQe, since e is at infinity. Thus Q
has more than 2 intersection points with `, so Q vanishes identically on it.

Remark 2.6. We could prove Lemma 2.5 without leaving the affine setting. Suppose that Q is
defined by the polynomial Q(x) = xtQx + ltx + c. The hypothesis about the edge vector implies the
identity xt

1Qx1 + xt
2Qx2 = 2xt

1Qx2. We then compute that Q(12 [x1 + x2]) = 1
2 [Q(x1) +Q(x2)] = 0,

which lets us proceed as above.

We will see a different approach to Lemma 2.5 in the discussion about the Strong Arnold
Property in Section 5, below.

Proposition 2.7. Suppose (G,p) has its edge directions on a conic at infinity defined by Q and let
m be an associated perturbation map. Suppose that p is affine precongruent to m(p). Then (G,p)
must be a ruled framework.

Proof. From Lemma 2.4, we have each point pi on a (possibly) inhomogeneous quadric, with its
quadratic terms defined by a d× d matrix Q. By assumption, for each edge vector, eij := pj − pi,
we have etijQeij = 0. Thus from Lemma 2.5 we see that (G,p) must be ruled.

We are now ready to prove our main result.

Proof of Theorem 1.11. Let (G,p) be a framework that is neighborhood affine rigid. If (G,p) is
ruled on a quadric Q, the points of Q at infinity are a conic at infinity. As in the proof of Lemma
2.5, the edge direction vectors are on this conic.

For the “only if” direction, assume that it has its edge directions on a conic at infinity. Let
m be an associated perturbation map. Then from Proposition 2.3 (G,p) is neighborhood affine
preequivalent to (G,m(p)). Since (G,p) is neighborhood affine rigid, this implies that p is affine
precongruent to m(p). So from Proposition 2.7, (G,p) must be ruled.
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Figure 4: (Left) A framework (G,p) with its edge directions at a conic at infinity. (Right) A
framework (G,q) with the property that each vertex neighborhood in (G,q) can be obtained
from its corresponding neighborhood in (G,p) through an affine transform. There is no global
affine transformation that maps p to q.

Figure 4 shows a simple example of the construction used in the proof of Theorem 1.11. In
the original framework (G,p), shown on the left, all of the edge directions are either horizontal
or vertical. Thus, they lie on the conic at infinity defined by the equation xy = 0. However, this
framework is not ruled. We will see that it is not neighborhood affine rigid.

To define the perturbation map, we set the origin point to be the center vertex of the framework,
which, for simplicity, we will assume has Cartesian coordinates [0, 0]t and we set the vector v to be
[0, 1]t (in the vertical direction). The resulting map can be described, in coordinates, by

[x, y]t 7→ [x, y + xy]t

On the right we show (G,q), the image of (G,p) under this map. It is easy to see that each
vertex neighborhood of (G,q) can be obtained from its configuration in (G,p) under some affine
transform, but that the full configuration q cannot be obtained from p using a single, global affine
transform.

3 What do ruled frameworks look like?

We now unpack what it means to have a ruled framework.

Definition 3.1. Let S be a point set in Ed. We say that x is a cone point of S if for any other
point y on S, we have the entire line spanned by x and y is in S.

The following is standard (see e.g. [15, Example 3.3 and Lecture 22]). Every non-trivial quadric
Q can be put in canonical form under a projective transform by diagonalizing and normalizing Q̂,
the (d + 1) × (d + 1) symmetric matrix that describes Q in homogenized form. The resulting
canonical matrix will have some number of +1, −1 and 0 diagonal entries. Call the rank of this
matrix r. If the matrix is definite, or semi-definite, then Q cannot have full affine span. So let us
now assume that the matrix is indefinite. When r = d + 1, the quadric is smooth. Otherwise, (we
have 1 < r < d + 1), the quadric is the cone over a smooth quadric of dimension r − 2 in Er−1,
with a cone point set comprising an affine space of dimension d− r. In particular, all non-smooth
points must be cone points. (See Figure 6 below.)

This canonical picture immediately gives us the following two Lemmas.

Lemma 3.2. Let x be a point of a quadric Q in Ed that has d linearly independent ruling directions
(lines within the conic through that point). Then x must be a cone point of Q.
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Proof. The tangent hyperplane at a smooth point must include all ruling directions through that
point. So having d ruling directions precludes the existence of such a tangent.

Lemma 3.3. Suppose Q is a non-trivial (possibly) inhomogeneous quadric with a full affine span
in Ed. Then Q cannot have d cone points in general affine position.

Proof. The full affine span means that the rank of the quadric must be greater than 1 and indefinite.
Thus, from our canonical picture of quadrics, the dimension of the affine space of cone points must
be no larger than d− 2.

Proposition 3.4. Suppose (G,p), a framework in Ed, has a subset of d vertices in general affine
position, each with neighborhood in (G,p) with full affine span. Then (G,p) cannot be ruled.

Proof. By assumption, (G,p) has a full affine span. Suppose that (G,p) were ruled by a non-trivial
quadric Q. Then from Lemma 3.2, each of the d vertices would be a cone point. But this would
contradict Lemma 3.3.

Remark 3.5. We can now see that Corollary 1.12 is stronger than Theorem 1.9. In light of
Proposition 3.4 the assumed affine span condition of Theorem 1.9 is strictly stronger than being
non-ruled.

4 Super Stability

Recall that a framework in Ed is universally rigid if there is no second framework (G,q) in any
dimension that is equivalent but not congruent to (G,p). Universal rigidity (unlike infinitesimal
rigidity) is known not to be invariant under projective transformations or under the “slicing”
operation described below [9]. A slightly stronger property than universal rigidity is called super
stability [5, 13]. In this section, we show that super stability is well-behaved with respect to these
operations. We start with some definitions.

Definition 4.1. A framework (G,p) in Ed with a full dimensional affine span is called super stable
if it has a positive semidefinite (PSD) equilibrium stress matrix Ω of rank n − d − 1, and its edge
directions do not lie on a conic at infinity.

Theorem 4.2 ([5]). Super stability implies universal rigidity.

Definition 4.3. A cone graph is a graph with n + 1 vertices where vertex 0 is connected to all the
others. We will consider cone frameworks of this graph in Ed+1 denoted as p0 ∗ (G,p). Here G is
the subgraph on n vertices induced by removing vertex 0, p is a configuration of the n vertices of
G in Ed+1, and p0 is another point in Ed+1 that is not coincident with any of the points of p.

We define several operations on cone frameworks.

Definition 4.4. Given a cone framework p0∗(G,p) in Ed+1, the process of sliding denotes moving
points of p along their lines connecting them to p0, while avoiding p0 itself.

Definition 4.5. We call a cone framework p0 ∗ (G,p) in Ed+1, flat if each of the n vertices of p
lies in a d-dimensional Euclidean subspace that does not include p0.

Definition 4.6. Given a framework (G,p) in Ed, we can cone it by placing Ed in a hyperplane in
Ed+1, and then adding a cone vertex at some location p0 (outside of the affine span of p) to create
a flat cone framework in Ed+1.

Given a cone framework p0 ∗ (G,p) in Ed+1, we can slice it, by sliding all points of p to create
a flat cone framework. And then we can consider the resulting subframework of G as living in Ed.
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This section’s main result is:

Theorem 4.7. Super stability is invariant under coning and slicing.

Corollary 4.8. Super stability is invariant with respect to invertible projective transformations in
Ed that do not send any vertices to infinity.

Proof. Any projective transformation on (G,p) can be modeled by coning, followed by a linear
transformation on Ed+1, followed by slicing.

4.1 Proof of Theorem 4.7

We start with two technical lemmas.

Lemma 4.9. Suppose that a cone framework p0 ∗ (G,p) has an equilibrium stress matrix Ω. Then
any framework p0 ∗ (G,q) obtained by sliding has an equilibrium stress matrix Ω′ of the same rank
and signature.

The proof is based on ideas of [17, Theorem 8]. See also [16, Lemma 4.11].

Proof. By translating, we can assume that p0 is at the origin, and that sliding is then represented
by scaling: qi := sipi.

Let Ω be an equilibrium stress matrix for p0 ∗ (G,p) with signature (a, b, c) (a negative eigen-
values, b zero eigenvalues and c positive eigenvalues). Let Ψ be the matrix obtained from Ω by
removing the row and column corresponding to the cone vertex. Let it have signature (f, e, g).
Because the kernel of Ω contains a vector that is non-zero on the coordinate corresponding to the
cone vertex (such as the all-ones vector), we know that the rank of Ψ is the same as the rank of Ω,
thus it has one less zero eigenvalue. Then from the eigenvalue interleaving theorem, we must have
f = a and g = c.

Since p0 is at the origin, we must still have the d + 1 coordinate vectors of p in the kernel of
Ψ, though the all-ones vector is no longer in the kernel.

When scaling p to obtain q, we can define the matrix Ψ′ := SΨS, where S is a full rank
diagonal matrix with entries 1/si. The matrix Ψ′ will have the same signature as Ψ and will have
the coordinates of q in its kernel.

Finally we will augment Ψ′ with a row and column corresponding to the cone vertex so that
the all-ones vector is in the kernel of the resulting stress Ω′. To do this, we can first add a column
which is the negative sum of the n columns of Ψ′. Since p0 is at the origin, the coordinates of
p0 ∗ (G,q) are in the kernel of this matrix. Then we can add a row which is the negative sum of
the n rows of this intermediate matrix. The coordinates of p0 ∗ (G,q) must also be annihilated by
this last row (as it is just a linear combination of the other rows). Thus we have an equilibrium
stress matrix for p0 ∗ (G,q). The rank of Ω′ is the same as Ψ′ thus it has one more zero eigenvalue.
Again, from the eigenvalue interleaving theorem, it must have signature (a, b, c).

Lemma 4.10. A cone framework p0 ∗ (G,p) has its edge directions on a conic at infinity if and
only if it is ruled.

Proof. Since p0 is connected to all other vertices, this automatically makes the framework neigh-
borhood affine rigid. Then we can apply Theorem 1.11.

We can now prove an intermediate result that is interesting in its own right.
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Proposition 4.11. Super stability of a cone framework p0 ∗ (G,p) is invariant with respect to
sliding.

Proof. If p0 ∗ (G,p) has its edge directions on a conic at infinity, then from Lemma 4.10, it is ruled
on a quadric Q. For each edge {i, j} ∈ E, the three edges of the triangle {p0,pi,pj} are contained
in Q, so its entire supporting plane must be too. So any p0 ∗ (G,q) obtained by sliding is also
ruled. Thus, for cone frameworks, having edge directions on a conic at infinity is invariant with
respect to sliding. Lemma 4.9 says that having a PSD equilibrium stress matrix of rank n− d− 1
is as well.

We can now complete the proof of Theorem 4.7. The main observation is that for both (G,p)
in Ed and p0 ∗ (G,p) in Ed+1, the necessary rank for super stability is n− d− 1. Starting with an
equilibrium stress for (G,p) in Ed, we can simply add a row and column of zeros and obtain an
equilibrium stress matrix for its coned framework in Ed+1 of the same rank and positive/negative
signature.

Conversely, for a flat cone framework p0 ∗ (G,p) in Ed+1, any equilibrium stress Ω, must have
Ω0i = 0 for all i. (The equilibrium condition can be thought of as a balance of forces along the
edges of the framework,

∑
j 6=i Ωij(pi − pj) = 0. Any non-zero force along the cone edge at pi

cannot be matched by the forces arising from edges within G as these forces all lie in a hyperplane
not containing p0). By simply discarding the row and column for p0, we obtain an equilibrium
stress matrix for (G,p) in Ed of the same rank and positive/negative signature.

Proceeding in the coning (easy) direction, if (G,p) has a PSD equilibrium stress matrix of
maximum rank, then from the above observation, so too must the result of coning. Meanwhile, if
the edge directions of (G,p) are not on a conic at infinity, then neither are the edges of the coned
result.

Proceeding in the slicing (harder) direction, in light of Proposition 4.11, we can start with a
flat coned framework p0 ∗ (G,p) that is super stable. From the observation above, if p0 ∗ (G,p)
has a PSD equilibrium stress matrix of maximum rank, then so too must the sliced result (G,p)
in Ed.

Meanwhile, if the edge directions of p0 ∗ (G,p) are not at a conic at infinity, then p0 ∗ (G,p)
is certainly not ruled. Importantly, this implies that (G,p) in Ed is not ruled either. From Corol-
lary 1.12 then, (G,p) does not have its edge directions on a conic at infinity. Thus it is super
stable.

4.2 Remarks

Lemma 4.9 is implicit in [11]. Also, we can prove Corollary 4.8 without Theorem 4.7 using Corol-
lary 1.12, the fact that being ruled is preserved under projective transforms, and a result from [11]
that the rank and signature of stress matrices is preserved by invertible projective maps.

Another connection is to the notion of dimensional rigidity, which was introduced by Alfakih
[1]. A framework (G,p) in Ed is dimensionally rigid if there are no equivalent frameworks with
a higher dimensional span. Alfakih [2] has shown that (G,p) is dimensionally rigid but not uni-
versally rigid if and only if its edge directions are on a conic at infinity. Connelly and Gortler
[9, 10] showed that dimensional rigidity is invariant with respect to projective transformations and
coning/sliding/slicing.

Universal rigidity is preserved under coning and sliding, but it is neither projectively invariant
nor is it preserved by slicing, since having edge directions on a conic at infinity isn’t preserved
by projective transforms or by coning [9]. The counter-examples are necessarily not neighborhood
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affine rigid, and not ruled. In contrast, being ruled is invariant with respect to invertible projective
transforms and to coning.

5 Strong Arnold Property

In the literature on the Colin de Verdière graph parameter, there is an central non-degeneracy
property of a matrix called the Strong Arnold Property [19].

Definition 5.1. Let r be some rank. Let Dr be the determinantal variety of matrices in Sn with
rank no greater than r.

A graph supported matrix, Ψ ∈ C(G), with rank r is said to satisfy the Strong Arnold Property
(SAP) if Dr and C(G) intersect transversely at Ψ.

Recently, Laurent and Varvisiotis [16] began an exploration on the relationship between univer-
sal rigidity, PSD matrix completion and the Strong Arnold Property. They quote an older result
of Godsil, which we translate into our language and specialize to stress matrices.

Theorem 5.2 ([12, Theorem 3.2]). Let Ω be a stress matrix with rank n − d − 1. Let (G,p) be a
framework in its kernel with a d-dimensional affine span. Then Ω does not have the SAP if and
only if (G,p) is ruled.

Remark 5.3. Godsil’s proof of Theorem 5.2 provides another approach to proving Lemma 2.5. He
shows that the conditions for a non-transverse intersection at Ω are equivalent to the existence of
a non-zero symmetric (d + 1) × (d + 1) matrix Q̂ such that for all vertices i, we have p̂t

iQ̂p̂i = 0
and that for all edges {ij}, we have p̂t

iQ̂p̂j = 0 (where p̂i are as in Remark 1.2). Then Q̂ is the
matrix defining the ruling quadric Q.

Other closely related results can be found in [16, 18].
Meanwhile, Alfakih proves the following:

Theorem 5.4 ([3, Corollary 2]). Let Ω be a stress matrix with rank n − d − 1. Let (G,p) be a
framework in its kernel with a d-dimensional affine span. Then Ω does not have the SAP if and
only if the edge directions of (G,p) are on a conic at infinity.

Remark 5.5. Similarly to the proof of Theorem 5.2, Alfakih’s proof of Theorem 5.4 also (implicitly)
involves the existence of a non-zero symmetric (d + 1) × (d + 1) matrix Q̂ such that for all i, we
have p̂t

iQ̂p̂i = 0 and that for all edges {ij} we have p̂t
iQ̂p̂j = 0. But in this case, a fair amount

of extra work is needed to get to this condition starting from the assumed Ω and assumed conic at
infinity.

We can now see that Corollary 1.12, Theorem 5.2 and Theorem 5.4 form a cycle of relationships.
Any two of them imply the third.

6 Examples

In E2 a ruled framework must lie in the intersection of two lines. See Figure 5.
What do neighborhood affine rigid, ruled frameworks in E3 look like? See Figure 6.
One possibility in E3 is a framework on a doubly ruled quadric such as a hyperbolic paraboloid

or a hyperboloid of one sheet (smooth, rank 4). In this case, each vertex can have at most a two
dimensional neighborhood affine span.
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Figure 5: (Left) A ruled framework on two lines that is neighborhood affine rigid. (Right) After
adding two long bracing edges, the ruled framework has a PSD equilibrium stress matrix of rank
n− d− 1.

Figure 6: (Left) A ruled framework on a hyperbolic paraboloid that is neighborhood affine
rigid. By adding six long bracing edges along the rulings, as in Figure 5, it will have a PSD
equilibrium stress matrix of rank n − d − 1. (Middle) A ruled framework on an elliptical cone
that is neighborhood affine rigid. It has one vertex at a cone point. Even with bracing edges
along the rulings, it will not have an equilibrium stress matrix of rank n − d − 1. The green
ellipse is added for visualization context only. (Right) A ruled framework on two planes that is
neighborhood affine rigid and has a PSD equilibrium stress matrix of rank n− d− 1. It has two
vertices at cone points, along the intersection line of the two planes. The green planes are added
for visualization context only.

Proposition 6.1. With an appropriate vertex and edge set, we can construct a framework on any
doubly ruled quadric Q in E3 that has a PSD equilibrium stress matrix of rank n − 4 (and thus is
also neighborhood affine rigid).

Proof. The construction is as follows. Start with a collection of lines {`1, . . . , `s,m1, . . . ,mt} on
Q so that: (1) the `i are in one ruling and then mj in the other; (2) the (necessarily bipartite)
intersection graph of the `i and mj is connected and has minimum degree 3; (3) `1 and `2 intersect
all the mj . Now we construct a framework by putting vertices at the intersection points of lines
and all the edges between vertices on the same line. Call this framework (G,p).

Any framework of a complete graph with 3 or more vertices, all on a line, supports a PSD
equilibrium stress matrix Ω with corank 2. Taking a positive linear combination of these shows
that (G,p) carries a PSD stress matrix Ω, that forces any framework (G,q) in its kernel to have
the vertices partitioned into the same collinear subsets.

To finish up, we observe that `1 and `2 span at most a 3-dimensional affine space. Since the mi

intersect `1 and `2, they are in the same space. Each of the `i, i ≥ 3 intersect at least 2 of the mi,
establishing that any such kernel framework, (G,q), has at most 3-dimensional span. Equivalently,
Ω has rank n− 4.
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Another possibility in E3 is a framework on a quadric with a single cone point, such as an elliptic
cone (rank 3). In this case, there can be at most one vertex with a full dimensional neighborhood
affine span. Any other vertex can only have a one dimensional neighborhood affine span. With an
appropriate edge set, we can construct such a framework that is neighborhood affine rigid. But we
can not construct such a framework to have a equilibrium stress matrix of rank n − d − 1 unless
the entire framework lies on three intersecting lines!

The last possibility is a framework contained entirely within two intersecting planes (rank 2). We
can construct such a framework that is neighborhood affine rigid or even to have a PSD equilibrium
stress matrix of rank n − d − 1. A framework contained within two planes can have at most two
points in general affine position, that have neighborhoods with full three dimensional affine spans.
(Such two points must be on the line of intersection between the two planes.)
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