## A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR MOBBING CALLS

Nora V Carlson<sup>1</sup>, Susan D Healy<sup>1</sup>, Christopher N Templeton<sup>1, 2</sup>

<sup>1</sup> School of Biology, University of St Andrews, Scotland, UK

<sup>2</sup> Department of Biology, Pacific University, Forest Grove, OR, USA

Word count: 9120

\*Correspondence: Nora V Carlson

School of Biology

University of St Andrews

Harold Mitchell Building

St Andrews, Fife

KY16 9TH, Scotland, UK

+44(0)7541-967008

nc54@st-andrews.ac.uk

Co-correspondence: Christopher N Templeton,

Department of Biology,

Pacific University,

2043 College Way

Forest Grove, Oregon, 97116, USA

+1 503-352-3149

templeton@pacificu.edu

## A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR MOBBING CALLS

3

4 Many species use anti-predator vocalizations to signal information about potential 5 predators, including the level of threat posed by a particular predator. It is not clear, 6 however, why only some prey species do this. Because they use multiple mechanisms to 7 encode threat specific information about predators, North American Paridae species have 8 been a particularly useful model for studying anti-predatory signals. Paridae as a group 9 are also useful for examining phylogenetic conservation of vocal signals because all of 10 these species (at least those studied previously) employ similar ways of encoding 11 information about predatory threat. To test whether the ways in which predator threat 12 information is encoded (here measured by a bird's vocal output) are conserved across a 13 family with similar vocalizations, we used taxidermy mounts to simulate low and high 14 threat predators to induce mobbing in six species across five genera of British Paridae. 15 We found that, like North American species, British tits all increased their call rate in 16 response to predators compared with non-threatening control mounts, but they all varied 17 in the number and types of additional ways they encoded this information. Some species 18 (blue & willow tits) used all four ways to differentiate between different threat predators, 19 while others used only two (crested tits), one (great & coal tits) or none at all (willow 20 tits). The variation in the way each species encoded predator threat information in their 21 calls was not explained by phylogenetic relatedness or by variation in life history. To 22 better understand patterns of information encoding across related species, we suggest that 23 playback experiments to determine how encoded information is used by conspecifics and

- 24 heterospecifics might provide insights about why some species encode information about
- 25 predator threat in multiple ways.
- 26
- 27 KEY WORDS: acoustic communication, anti-predator behaviour, information encoding,
- 28 mobbing, Paridae, predator-prey dynamics

### 1 A COMPARATIVE STUDY OF HOW BRITISH TITS ENCODE PREDATOR THREAT IN THEIR

### 2 MOBBING CALLS

| 5  |                                                                                          |
|----|------------------------------------------------------------------------------------------|
| 4  | Many species, across a wide range of taxa, use vocalizations to warn about and           |
| 5  | defend against predators (Gill & Bierema, 2013; Klump & Shalter, 1984;                   |
| 6  | Slobodchikoff, 2010; Townsend & Manser, 2013). These anti-predator vocalizations         |
| 7  | can provide information about a predator's size, speed, distance, type/category, and     |
| 8  | even behaviour (Evans, Macedonia, & Marler, 1993; Gill & Bierema, 2013; Griesser,        |
| 9  | 2008; Marler, 1955; Murphy, Lea, & Zuberbühler, 2013; Placer & Slobodchikoff,            |
| 10 | 2000; 2004).                                                                             |
| 11 |                                                                                          |
| 12 | Species vary substantially in the ways they encode information to communicate about      |
| 13 | predators. Meerkats, Suricata suricatta, for example, increase call rate along with a    |
| 14 | number of fine-scale acoustic parameters to communicate an increase in the danger a      |
| 15 | predator poses (Manser, 2001), while yellow warblers Setophaga petechia use the          |
| 16 | likelihood of producing a particular call type (seet) to signal the presence of a nest   |
| 17 | predator (Gill & Sealy, 2004). Other species use strategies that range from employing    |
| 18 | a single way of encoding information to combining multiple ways of encoding              |
| 19 | information. Furthermore, some strategies may be driven entirely by the signaller's      |
| 20 | internal state while others reference external stimuli (Gill & Bierema, 2013; Magrath,   |
| 21 | Haff, Fallow, & Radford, 2014). American crows Corvus brachyrhynchos, for                |
| 22 | example, use longer calls and higher call rate to signal increased danger (Yorzinski &   |
| 23 | Vehrencamp, 2009), while vervet monkeys Chlorocebus pygerythrus indicate not             |
| 24 | only predator type (leopard, eagle, and snake) but degree of danger through the          |
| 25 | propensity to use different call types (predator types) and an increase in the number of |

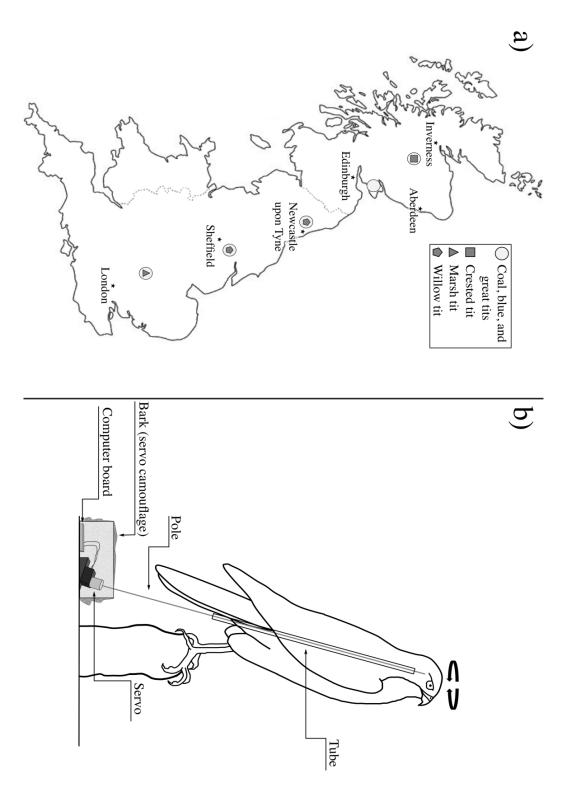
| 26 | elements (degree of danger; Seyfarth, Cheney, & Marler, 1980). It is not clear why     |
|----|----------------------------------------------------------------------------------------|
| 27 | this variability across different taxa and species in encoding mechanisms exists. But, |
| 28 | as many closely related species share similar vocalizations and may therefore share    |
| 29 | similar ways of encoding predator threat information, it might be that phylogenetic    |
| 30 | relationships provide part of the explanation (Hailman, 1989; Latimer, 1977; Randler,  |
| 31 | 2012)                                                                                  |

33 The North American Paridae have been widely used to study the ways in which 34 individuals encode predator threat particularly in their mobbing calls. Mobbing calls 35 generally serve to harass the predator and/or to recruit conspecifics and 36 heterospecifics for that harassment (Curio, 1978). In their mobbing calls, North 37 American Paridae encode not only the presence or absence of a predator but they also 38 differentiate between predators of different threat levels. These species indicate the 39 presence of a higher threat predator by increases in: 1) call rate (black-capped 40 chickadees *Poecile atricapillus*, Carolina chickadees *Poecile carolinensis*, mountain 41 chickadees *Poecile gambeli*, and tufted titmice *Baeolophus bicolor*; Baker & Becker, 42 2002; Bartmess-LeVasseur, Branch, Browning, Owens, & Freeberg, 2010; Billings, 43 Greene, & La Lucia Jensen, 2015; Hetrick & Sieving, 2011; Templeton, Greene, & 44 Davis, 2005); 2) the number of elements in their calls (black-capped chickadees, 45 Carolina chickadees, mountain chickadees, and tufted titmice; (Baker & Becker, 46 2002; Bartmess-LeVasseur et al., 2010; Billings et al., 2015; Courter & Ritchison, 47 2010; Hetrick & Sieving, 2011; Sieving, Hetrick, & Avery, 2010; Soard & Ritchison, 48 2009; Templeton et al., 2005); 3) the propensity to produce particular call types 49 (tufted titmice and black-capped chickadees; Clemmons & Lambrechts, 1992; Sieving 50 et al., 2010); and 4) the proportion of one call type used across mobbing events

| 51 | (black-capped chickadees; Baker & Becker, 2002). Of the North American species,         |
|----|-----------------------------------------------------------------------------------------|
| 52 | black-capped chickadees have been shown to use all four of these ways of encoding       |
| 53 | information in response to predators of different levels of threat. While the remaining |
| 54 | species have not been tested for all of the four ways, the available evidence suggests  |
| 55 | that they likely behave in the same fashion as black-capped chickadees and there is no  |
| 56 | indication that any of these species do not use any of the four ways of encoding        |
| 57 | information. The lack of evidence to the contrary combined with data from the out-      |
| 58 | group ,Japanese great tits, Parus minor, which share the four ways with black-capped    |
| 59 | chickadees, has led to the assumption that all Paridae species encode predator threat   |
| 60 | information in their mobbing calls using this particular suite of changes to their      |
| 61 | vocalizations (Hetrick & Sieving, 2011; Langham, Contreas & Sieving, 2006; Suzuki,      |
| 62 | 2014; Wilson & Mennill, 2011).                                                          |
|    |                                                                                         |

64 As only a small number of the Paridae have actually been tested and most of the 65 species tested are from the same genus (*Poecile*; Johansson et al., 2013), providing a 66 general explanation for the ways in which animals encode predator threat is not 67 straightforward. To test experimentally the degree to which phylogenetic 68 conservatism might explain the distribution of encoding mechanisms within families, 69 we induced mobbing events in flocks of tits found in the UK (six species across five 70 genera) by simulating predator encounters using robotic taxidermy mounts of 71 predators representing different threat levels. We then examined whether each of 72 these species 1) differentiated between predators and non-predators in their mobbing 73 calls, 2) differentiated between high and low threat predators, and 3) used the same 74 four ways of encoding predator threat as the previously-tested Parid species. Here we 75 use the term 'encode' simply to denote that the calls produced in response to different

77 provide reliable information to receivers. Without playback experiments we cannot


- 78 confirm that receivers decode and use this information.
- 79

76

| 80       | We used these data to test whether phylogeny explains the number and ways of                                                                                      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 81       | encoding information used by a given species, making the following predictions: 1) If                                                                             |
| 82       | the ways of encoding information are conserved within the Pariadae, UK tit species                                                                                |
| 83       | should use all four ways of encoding information to differentiate predators from non-                                                                             |
| 84       | threats, and differentiate between predators of different threat levels. 2) If, however,                                                                          |
| 85       | any of these species vary in the way they encode information about predators, the                                                                                 |
| 86       | pattern of relatedness should at least roughly match these differences such that those                                                                            |
| 87       | species that are more closely related (e.g. marsh and willow tits in the genus Poecile)                                                                           |
| 88       | to be more similar in the ways in which they encode information than those that are                                                                               |
| 89       | more distantly related (e.g. marsh tits in the genus Poecile and blue tits in the genus                                                                           |
| 90       | Cyanistes).                                                                                                                                                       |
| 91       |                                                                                                                                                                   |
| 92       | METHODS                                                                                                                                                           |
| 93       |                                                                                                                                                                   |
| 94       | Study sites                                                                                                                                                       |
| 95       |                                                                                                                                                                   |
| 96       |                                                                                                                                                                   |
| ~ -      | We conducted experiments from January to March 2014 and 2015 in four general                                                                                      |
| 97       | We conducted experiments from January to March 2014 and 2015 in four general geographical regions in the UK (Figure 1a), each of which had feeders at a number of |
| 97<br>98 |                                                                                                                                                                   |
|          | geographical regions in the UK (Figure 1a), each of which had feeders at a number of                                                                              |

100 only in northern Scotland; marsh, *Poecile palustris*, and willow, *Poecile montanus*,

| 101 | tits occur only in the southern regions of the UK. To test blue, great, and coal tits we |
|-----|------------------------------------------------------------------------------------------|
| 102 | used feeders in and around St Andrews, Fife (latitude, longitude; 56.331247, -           |
| 103 | 2.838451; $n = 23$ feeder locations) from January-March 2014. To test crested tits       |
| 104 | along with blue, great and coal tits we used feeders in the north-western Cairngorm      |
| 105 | mountains in Scotland (57.191208, -3.779156; n = 15 feeder locations) from January-      |
| 106 | March 2015. To test willow tits along with blue, great, and coal tits, we used feeders   |
| 107 | in Doncaster (53.519235, -1.131355) and Newcastle upon Tyne (55.053305, -                |
| 108 | 1.644546) from January-March 2015 ( $n = 7$ feeder locations). To test marsh tits along  |
| 109 | with blue, great, and coal tits we used feeders in Monk's Wood near Cambridge            |
| 110 | (52.401114, -0.238468; n = 9 feeder locations) from January-March 2015. Feeders          |
| 111 | were filled with black-oil sunflower seeds and peanuts and placed in either              |
| 112 | parks/forests or private gardens. To ensure that birds had enough time to locate and     |
| 113 | become accustomed to using the feeders, all of the bird feeders were put up a            |
| 114 | minimum of two weeks before we began the experiment.                                     |





119 118117 120 symbol inside the circle. b) Schematic of the robo-raptors used for these experiments. A hidden servo and computer board were used to control circles. The additional presence of crested (square), marsh (triangle), or willow tits (pentagons) is indicated by the corresponding dark grey the head of each taxidermy mount to produce realistic head movements for a perched raptor. Figure 1. a) Feeder locations in the four regions across the UK. Blue, great, and coal tits were found in all regions as shown by the light grey

122 Stimuli

| 124 | To test whether and how the tit species encode information about predator threat in             |
|-----|-------------------------------------------------------------------------------------------------|
| 125 | their mobbing calls we simulated encounters with three common British species,                  |
| 126 | which vary dramatically in the level of threat they pose to adult tits: 1) sparrowhawks,        |
| 127 | Accipiter nisus, are high-threat predators for tits and prey almost exclusively on small        |
| 128 | to medium sized birds including tit species (Curio, Klump, & Regelmann, 1983;                   |
| 129 | Millon, Nielsen, Bretagnolle, & Møller, 2009; Petty, Patterson, Anderson, Little, &             |
| 130 | Davison, 1995); 2) common buzzards, Buteo buteo, are low-threat predators for tits              |
| 131 | as, although the majority of their diet ( $\sim$ 73%) made up of mammals and larger birds       |
| 132 | such as pigeons, buzzards do occasionally eat small passerines (~ 16% of their diet;            |
| 133 | Graham, Redpath, & Thirgood, 1995), including tit species (Swann & Etheridge,                   |
| 134 | 2009); 3) grey partridges, <i>Pedrix pedrix</i> , were used as a control to ensure that the tit |
| 135 | species responded to the specific features of the predators and not simply to the               |
| 136 | presence of a moving taxidermy bird. This species is found across the UK, is similar            |
| 137 | in size to a sparrowhawk, but as it does not eat birds it poses no threat to tit species        |
| 138 | (Šálek, Marhoul, Pintíř, Kopecký, & Slabý, 2004).                                               |
| 139 |                                                                                                 |
| 140 | We used custom-made robotic taxidermy mounts of each species (Carlson et al.                    |
| 141 | submitted; Figure 1b) to elicit mobbing responses by the tits. We used two different            |
| 142 | mounts of each species to reduce pseudoreplication. Our mounts included: one male               |
| 143 | juvenile and one female adult sparrowhawk, two adult female buzzards, and two adult             |
| 144 | male grey partridges. All mounts were perched on a tree branch or log, and their                |

- 145 heads rotated to mimic natural perched head movements. An Arduino computer board
- 146 (Arduino Duemilanove from Arduino LLC, https://www.arduino.cc) controlled a

151 head ranged  $\sim 100^{\circ}$  and as the chest of the mounts faced the feeder, the head faced in

the direction of the bird feeder and the nearby surrounding cover all of the time

153 (Figure 1b; Book & Freeberg, 2015).

154

147

148

149

150

155 *Predator presentations* 

156

157 At each study site we presented birds with all three treatments (sparrowhawk,

158 buzzard, partridge) in a randomized order; the mount exemplar for each presentation 159 was selected randomly. We conducted experiments from one hour after dawn to one 160 hour before dusk to allow the birds time to recover from the presentations and allow 161 sufficient time to forage in preparation for overnight, as these presentations were all 162 carried out during the winter (Jan-March). We separated all buzzard and sparrowhawk 163 presentations and most control and predator presentations by a minimum of 8 hours at 164 each feeder location. Due to time constraints at some study sites, on occasion if we 165 presented the control (partridge) first and the birds continued to feed normally, we 166 waited for 15 minutes and then presented a predator trial (sparrowhawk n = 6, 167 buzzard n = 5 trials). We excluded from the analyses those trials in which birds 168 obviously responded to something other than the stimulus (e.g. when we observed a

sparrowhawk flying overhead or initial behaviour suggesting birds had encountered a

170 predator just before we arrived; n = 7). At some locations the focal species were not

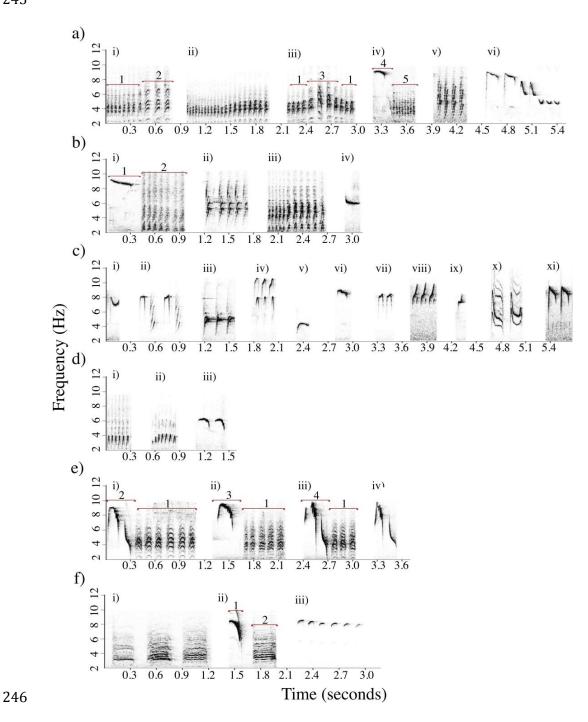
171 present for one or more trials and thus we collected data for fewer than three

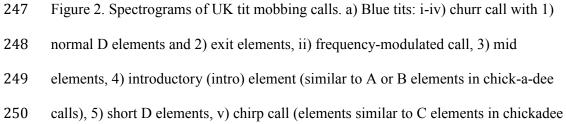
172 treatments (n = 9 sites).

173

174 We began presentations once we had confirmed the presence of the focal species 175 (acoustically or visually) near the feeder. We placed the taxidermy mount on a 1.5 m 176 pole approximately 2 m from the bird feeder. Because head orientation is important in 177 predator threat assessment (Book & Freeberg, 2015), we ensured that the mount faced 178 the bird feeder in all trials. We then retreated to a minimum distance of 4 m away and 179 hid behind cover. A trial began when an individual of the focal species either: 1) came 180 within 5 m of the mount; 2) came within 7 m of the mount with its body and head 181 oriented towards the mount for 20 seconds more than once in 2 minutes; or 3) began 182 mobbing the mount, by producing mobbing calls, rapidly changing perches, and wing 183 flicking while oriented towards the mount, or flying at the mount in an aggressive 184 fashion. Starting at this time point, we recorded when birds began to mob, and all 185 vocalizations that were produced for 5 minutes before removing the mount. Distances 186 were not physically marked in the field but, prior to beginning the manipulations, the 187 researchers were trained to determine by eye when birds were within 3, 5, and 7 188 meters of the mount. We recorded all trials with a Sennheiser ME 66 super-cardioid 189 microphone (Sennheiser Electronics, Hanover, Germany) and a Marantz PMD660 190 solid-state sound recorder (Marantz America, LLC., Mahwah, N.J., USA) with a bit-191 depth of 24 bits and a sampling rate of 48 kHz. 192

At each simulated predator encounter we recorded the total number of individuals of each species present and kept track of which species met any of the above mobbing criteria, and therefore was considered to participate in the mobbing event. Due to environmental conditions and the variation in flock size (mean  $\pm$  standard error: 7.47  $\pm$ 


11


| 197 | 0.40 individuals/flock) and composition (number of species: $2.86 \pm 0.09$                         |
|-----|-----------------------------------------------------------------------------------------------------|
| 198 | species/flock), sample sizes varied across species: blue: n= 47 locations (control n =              |
| 199 | 41, buzzard n = 42, sparrowhawk n = 43), great: $n = 43$ locations (control n = 35,                 |
| 200 | buzzard n = 41, sparrowhawk n = 42), coal: n = 41 locations (control n = 34, buzzard                |
| 201 | n = 35, sparrowhawk n = 36), crested: n = 14 locations (control n = 14, buzzard n =                 |
| 202 | 14, sparrowhawk n = 13), marsh: $n = 9$ locations (control $n = 9$ , buzzard $n = 9$ ,              |
| 203 | sparrowhawk $n = 9$ ), and willow: $n = 7$ locations (control $n = 7$ , buzzard $n = 6$ ,           |
| 204 | sparrowhawk $n = 7$ ), as did the average number of conspecifics present during a trial             |
| 205 | (mean $\pm$ standard error): blue: 3.00 $\pm$ 0.21 , great: 2.37 $\pm$ 0.14, coal: 3.51 $\pm$ 0.38, |
| 206 | crested: $1.73 \pm 0.11$ , marsh: $1.59 \pm 0.10$ , and willow: $1.52 \pm 0.11$ .                   |
| 207 |                                                                                                     |
| 208 | Ethical note                                                                                        |
| 209 |                                                                                                     |
| 210 | All of this work was approved by the University of St Andrews School of Biology                     |
| 211 | Ethics Committee (01112013) and Scottish National Heritage, and followed                            |
| 212 | ASAB/ABS guidelines for treatment of animals in research. As we conducted                           |
| 213 | predator presentations during the winter months, we restricted our simulated predator               |
| 214 | encounters to the period from one hour after sunrise to one hour before sundown so                  |
| 215 | that birds could prepare for, and recover from, the hours of darkness. As predator                  |
| 216 | encounters are stressful for the animals involved, we limited predator presentations to             |
| 217 | 5 minutes once individuals began to respond. We then removed the stimulus and left                  |
| 218 | the area as quickly as possible to allow the individuals to recover and return to                   |
| 219 | feeding.                                                                                            |
|     |                                                                                                     |

220

### 222 Acoustic analysis

| 224 | For all acoustic analyses, we used Raven Pro v 1.5 software (Bioacoustics Research       |
|-----|------------------------------------------------------------------------------------------|
| 225 | Program, 2014) with a fast Fourier transform (FFT) size of 1050 samples, a Hann          |
| 226 | window function, and a spectrogram frequency grid resolution of 23.04 Hz. We             |
| 227 | analyzed all calls produced within three minutes of the onset of mobbing by manually     |
| 228 | selecting all calls and visually categorizing them by call type and call features (Table |
| 229 | 1, Figure 2). All call types were clearly distinguished from one another as they were    |
| 230 | classed into different types based on clearly visible structural differences.            |
| 231 | Additionally, each species has a unique repertoire of calls making species               |
| 232 | identification relatively straightforward even when multiple species were calling        |
| 233 | during a trial (Table 1, Figure 2). To confirm the reliability of the categorization of  |
| 234 | calls by NC, we asked six people to categorize the calls. Nearly all of the              |
| 235 | classifications (89%) had high repeatability across individuals (inter-class correlation |
| 236 | (ICC) values > 0.80; Nakagawa & Schielzeth, 2010). The four calls that received          |
| 237 | scores below 0.80 all included subtle variation, and so were re-scored by an individual  |
| 238 | familiar with Paridae vocalizations. Repeated scores conducted by this trained           |
| 239 | individual ranged from $0.77 - 1.0$ , with only one call type (short calls) receiving an |
| 240 | ICC score below 0.80. In instances in which multiple calls overlapped it could have      |
| 241 | been more difficult to determine the number or type of elements, but this occurred       |
| 242 | infrequently and closer examination of each instance allowed the number of elements      |
| 243 | to be determined.                                                                        |
|     |                                                                                          |





| 251 | calls), vi) tonal call (similar to blue tit song). b) Great tits: i) jar/rattle call with 1)   |
|-----|------------------------------------------------------------------------------------------------|
| 252 | intro element (similar to chickadee A or B elements) and 2) jar/rattle elements , ii)          |
| 253 | chirp call, ix) D call, x) tonal call. c) Coal tits: i) bowl element, ii) chirp elements       |
| 254 | (with peak elements), iii) dot elements, iv) hook elements, v) mound elements, vi) mt          |
| 255 | elements, vii) peak elements, viii) s-dot element, ix), s elements, x) squeak elements,        |
| 256 | xi) slide elements. d) Crested tits: i) normal trill call, ii) frequency-modulated trill       |
| 257 | call, iii) tonal call. e) Marsh tits: i-iii) dä/D or complete calls with 1) dä/D elements,     |
| 258 | 2) full whole tonal element, 3) peak whole tonal element, 4) broken whole tonal                |
| 259 | element, iv) ptew call. f) Willow tits: i) tää-tää call, ii) si-tää-tää call, with 1) si intro |
| 260 | element and 2) tää/D element, iii) zizi call. All spectrograms are scaled to one               |
| 261 | another. For some call names we used new phonetic terminology, while for others call           |
| 262 | names came from other sources: all species: (J. P. Hailman, 1989), marsh & willow              |
| 263 | tits: (Haftorn, 1993), (Japanese) great tit: (Suzuki, 2014).                                   |

| Infori    |
|-----------|
| natior    |
| ı encodir |
| ling in   |
| Paridae   |
|           |

| 264                                                                                           |
|-----------------------------------------------------------------------------------------------|
| Table 1.                                                                                      |
| Definitio                                                                                     |
| ion of call a                                                                                 |
| nd elemer                                                                                     |
| Table 1. Definition of call and element types for each tit species with references to spectro |
| r each tit                                                                                    |
| species w                                                                                     |
| ith referen                                                                                   |
| nces to spo                                                                                   |
| oectrogram                                                                                    |
| examples                                                                                      |
| s (Figure 2).                                                                                 |
|                                                                                               |

| Species     | Call type                  | Call description                                                                                                | Element      | Element description                                           | Spectrogram<br>figure |
|-------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------|-----------------------|
| Blue tit    | Churr                      | Calls containing D elements                                                                                     | D            | broadband with distinct peak shaped frequency bands           | 2a i - iv             |
|             | $\sim$ Short               | Churr calls containing short D elements that appear as a stack of dots $-$ Figure 2.2a iv 5                     | intro        | narrowband                                                    | 2a iv A               |
|             | $\sim$ Frequency-modulated | Churr calls containing D elements that vary in peak frequency across the call – Figure 2.2a ii                  | mid          | D elements structurally different from those before and after | 2a iii 3              |
|             |                            |                                                                                                                 | exit         | D elements structurally different from those before           | 2a i 2                |
|             | Chirp                      | Calls containing chirp elements                                                                                 | chirp        | broadband short call with two distinct dots on right side     | 2a v                  |
|             |                            |                                                                                                                 | intro        | narrowband                                                    |                       |
|             | Tonal                      | Calls containing only tonal elements                                                                            | tonal        | narrowband                                                    | 2a vi                 |
| Great tit   | Jar / rattle               | Calls containing jar / rattle elements                                                                          | jar / rattle | broadband with no distinct frequency bands and triangle       | 26.20                 |
|             |                            |                                                                                                                 | intro        | narrowband                                                    | 2b i 1                |
|             | D                          | Calls containing D elements                                                                                     | D            | broadband with distinct peak shaped frequency bands           | 2b iii                |
|             |                            |                                                                                                                 | intro        | narrowband                                                    |                       |
|             | Cump                       | сянь сончанний сил р стептень                                                                                   | intro        | narrowband                                                    | 2011                  |
|             | Tonal                      | Calls containing only tonal elements                                                                            | tonal        | narrowband                                                    | 2b iv                 |
| Coal tit    | Single or multi            | Single calls contain strings of only one element type,<br>multi calls contain strings of multiple element types | Bowl         | bowl shape                                                    | 201                   |
|             |                            | -                                                                                                               | chirp        | peak with thin broadband line                                 | 20 ii                 |
|             |                            |                                                                                                                 | dot          | line with dot on right side                                   | 2c iii                |
|             |                            |                                                                                                                 | hook         | hook shape at top and line under                              | 2c iv                 |
|             |                            |                                                                                                                 | mound        | mound shape                                                   | 2c v                  |
|             |                            |                                                                                                                 | mt           | bumpy mound shape                                             | 2c vi                 |
|             |                            |                                                                                                                 | peak         | narrowband increase in frequency                              | 2c vii                |
|             |                            |                                                                                                                 | s-dot        | s shape with dot/dash under                                   | 2c viii               |
|             |                            |                                                                                                                 | S            | s shape with no dot/dash under                                | 2c ix                 |
|             |                            |                                                                                                                 | squeak       | broadband with frequency bands                                | 2c x                  |
|             |                            |                                                                                                                 | slide        | narrowband decreasing in frequency                            | 2c xi                 |
| Crested tit | Trill                      | Calls containing trill elements                                                                                 | trill        | broadband line                                                | 2d i & ii             |
|             | $\sim$ Frequency-modulated | Calls containing trill notes that shift in frequency over the course of the call Figure 2.2d ii                 | intro        | narrowband                                                    |                       |
|             | Tonal                      |                                                                                                                 | tonal        | narrowband                                                    | 2d iii                |
| Marsh tit   | Complete                   | Calls containing both dä / D and tonal elements                                                                 | dă/D         | broadband with distinct frequency bands                       | 2e i - iii 1          |
|             | Tonal                      | Non-broadband frequency-modulated notes                                                                         | whole        | peak shape meets at top                                       | 2e i 2                |

# Information encoding in Paridae

|                                                   |                                                |            |             | Willow tit                                           |                                     |                                         |                       |                                 |
|---------------------------------------------------|------------------------------------------------|------------|-------------|------------------------------------------------------|-------------------------------------|-----------------------------------------|-----------------------|---------------------------------|
| Zizi                                              | Tää-tää                                        |            |             | Si-tää-tää                                           | Ptew                                | Dä / D                                  |                       |                                 |
| Calls containing only zi elements Figure 2.2f iii | Calls containing only D elements Figure 2.2f i |            | 2.2f ii     | Calls containing both D and si intro elements Figure | Calls containing only ptew elements | Calls containing only dä / D elements.  |                       |                                 |
| Ы.                                                | tää / D                                        | si intro   |             | tää / D                                              | ptew                                | Dä / D                                  | peak                  | full                            |
| narrowband                                        | broadband with distinct frequency bands        | narrowband |             | broadband with distinct frequency bands              | tonal calls                         | broadband with distinct frequency bands | only has peak element | has both peak and slide element |
| 2f iii                                            | 2f i                                           | 2f ii 1    | 2f i & ii 2 |                                                      | 2e iv                               |                                         | 2e ii 3               | 2e i 2 & iii 4                  |

### 265 *Statistical analysis*

266 Effect of predator threat on calling behaviour

| 267 | To test how UK tit species encode information about predator threat in their mobbing   |
|-----|----------------------------------------------------------------------------------------|
| 268 | calls, we focused on the four ways in which the other Parids encode information: 1)    |
| 269 | call rate (calls/individual/minute), 2) total number of elements in a call (henceforth |
| 270 | 'element number'; or in the case of call types that are composed of different element  |
| 271 | types, the number of each element type), 3) proportion of all calls produced during a  |
| 272 | mobbing event that contained particular note types during a mobbing event              |
| 273 | (henceforth 'proportion'), and 4) the number of mobbing events in which birds          |
| 274 | produced a particular call type divided by the total number of mobbing events          |
| 275 | (henceforth 'propensity'; Baker & Becker, 2002; Bartmess-LeVasseur et al., 2010;       |
| 276 | Ficken, Hailman, & Hailman, 1994; Hetrick & Sieving, 2011; Soard & Ritchison,          |
| 277 | 2009; Templeton et al., 2005).                                                         |
| 278 |                                                                                        |
|     |                                                                                        |

279 To determine whether the birds used any of these ways of encoding information, we 280 generated linear mixed models or generalized linear mixed models with a Gaussian or 281 binomial error structure respectively depending on the distribution and type 282 (continuous or binomial) of the data. We constructed these models for each species 283 separately as they appeared to differ in their combinations of different call and note 284 types (Figure 2), and as each species had a range of call/note types, we tested if each 285 species employed the encoding mechanisms for each call/note type to differentiate 286 between different threat predators.

287

We used these statistical models to test if the bird changed a specific call/note type in response to different predator threat levels for each of the four ways of encoding 290 information. Our response variable was the way information was encoded for each 291 call/note type described above, and our fixed effects were the predator threat level and 292 three variables that accounted for the experimental design: the mount presentation 293 order, the mount exemplar, and the number of conspecifics present. To control for 294 between-feeder variation we included date and geographic region as random effects. 295 We also included a nested term 'calls per trial' that accounted for the number of calls 296 (each trial at each location had varying numbers of calls produced by each species) at 297 each feeder location during each trial. This term helped to minimize pseudoreplication 298 of calls. We transformed the data using a log or boxcox transform for any response 299 variable with non-normal residuals. For the binomial models where all calls of one of 300 the levels of stimulus:order or stimulus:mount exemplar consisted of all 1 or 0, the 301 models could not converge, so we ran these models as linear mixed models. We ran 302 type III Wald Chi-square tests to check for significant effects of threat level for each 303 call type for each way of information encoding for all species (Table 1). For models 304 where threat level had a significant effect, we tested if the effect was different for 305 different predator threats by running a planned comparison between buzzard and 306 sparrowhawk by re-ordering stimulus levels and re-running the model (Table 1). 307 Generalized linear mixed models were fit by maximum likelihood using the Laplace 308 approximation, while linear mixed models were fit using REML and t-tests used 309 Satterthwaite approximations to generate degrees of freedom. This allowed us to test 310 what call/note types each species used to differentiate between predator threats, and 311 what information encoding mechanisms each species used. While the chance of 312 committing a type I error is higher when multiple tests are being performed, we did 313 not apply a correction such as a Bonferroni correction as we, like others, felt that the 314 chance of committing type II errors sufficiently high that biologically meaningful

| 315 | patterns would have been obscured (Feise, 2002; Perneger, 1998; Rothman, 1990).             |
|-----|---------------------------------------------------------------------------------------------|
| 316 | Instead, to help assess the robustness of our results, we calculated both marginal and      |
| 317 | conditional R <sup>2</sup> values specific for linear and generalized linear mixed models   |
| 318 | (Nakagawa & Schielzeth, 2012) for the overall models (Table 2) and 95% confidence           |
| 319 | intervals for model estimates (Table 3) We conducted all statistical analyses in R          |
| 320 | v3.1.2 (R Core Team, 2014), using the lme4 (Bates, Maechler, Bolker, & Walker,              |
| 321 | 2014) package. In our results the ways of encoding information about predator threat        |
| 322 | are as follows: 1) call rates are reported as calls/individual/minute, 2) element number    |
| 323 | values as the number of elements/call, 3) all proportions as the number of calls that       |
| 324 | were of a call type/total number of calls or the number of calls containing that element    |
| 325 | type/total number of calls that can contain that element type (e.g. as within great tit     |
| 326 | jar/rattle call types some calls have introductory elements, we calculated the              |
| 327 | proportion of calls that contain introductory elements by dividing the number of calls      |
| 328 | rattle/jar calls with introductory elements by the total number of rattle/jar calls; Figure |
| 329 | 2, Table 1), and 4) propensities as the number of mobbing events where the call or          |
| 330 | element type occurred/ total number of mobbing events.                                      |
| 331 |                                                                                             |

332 *Effect of phylogeny on calling behaviour* 

333 To determine if phylogeny explained the pattern of ways encoding information across

the species tested, we looked for phylogenetic signal using Pagel's lambda

335 (Freckleton, Harvey, & Pagel, 2002; Pagel, 1999). We calculated Pagel's lambda for

- a tree with correct branch lengths, and one that had been collapsed into a large
- polytomy (no phylogenetic signal) and then compared the maximum likelihood of
- both lambdas using a maximum likelihood test. However, as many of the measures of
- 339 phylogenetic signal are not as reliable with trees under 20 species (Freckleton,

- Harvey, & Pagel, 2002; Münkemüller et al., 2012; Pagel, 1999) we are cautious about
- 341 the results of these tests.
- 342
- 343 *Effect of ecology on behaviour*
- 344 To determine if ecology explained the pattern of ways of encoding information across
- 345 the species, we collected ecological information from the published literature
- 346 (Alatalo, 1981; Cramp, 1993; Deadman, 2014; Ekman, 1989; Fisher, 1982; Gimm,
- 347 1960; Morse, 1978; Perrins, 1979) on foraging niche, dominance, and gregariousness
- 348 for each species and included them as explanatory variables in our statistical models.
- 349 We chose these variables because each has been suggested as having an effect on
- anti-predatory behaviour (Goodale et al., 2010).
- 351

Foraging niche, as measured by the height and distance from a tree trunk, influencesthe exposure and vulnerability of a species when foraging and can therefore affect the

- 354 vulnerability of a species to predation. For example a species that forages high up in
- trees or on insects in the air spend more time scanning the sky and may be more likely
- to see, and respond to, an aerial predator while a species that forages near to, or on,
- the ground may not (Goodale et al., 2010; Goodale & Kotagama, 2005a; Lima, 1993;
- 358 Magrath et al., 2014). Greater racket-tailed drongos, *Dicrurus paradiseus* (Goodale &
- 359 Kotagama, 2005a) and red-cap moustached tamarins, Saguinus mystax pileatus
- 360 (Peres, 1993) for example, both forage high up off the ground (sallying and upper
- 361 canopy respectively) and are the species in their mixed-species groups that are most
- 362 likely to detect aerial predators.
- 363

| 364 | Interspecific dominance, as measured by shifts in foraging niche in the presence and    |
|-----|-----------------------------------------------------------------------------------------|
| 365 | absence of heterospecifics (Alatalo, 1981; Perrins, 1979), can affect the likelihood of |
| 366 | a species to eavesdrop on, rather than produce information about predator threats.      |
| 367 | Because a dominant individual is in a better position to eavesdrop on information       |
| 368 | provided by subordinates (Gill & Bierema, 2013; Goodale et al., 2010), rather than to   |
| 369 | produce information about predators, it has less need of a variety of ways to encode    |
| 370 | information (Furrer & Manser, 2009; Marler, 1967).                                      |
| 371 |                                                                                         |
| 372 | Gregariousness, measured as the average size of a conspecific winter flock, could also  |
| 373 | affect the chance of seeing a predator, and therefore the propensity to produce calls,  |
| 374 | and the complexity of signalling might increase with increased group size (Freeberg     |
| 375 | & Harvey, 2008; Goodale et al., 2010; Magrath et al., 2014; Manser et al., 2014).       |
| 376 | Orange-billed babblers, Turdoide rsufescens (Goodale & Kotagama, 2005b) and red-        |
| 377 | cap moustached tamarinds (Peres, 1993) are the most abundant species in their mixed     |
| 378 | species flocks and tend to spend more time scanning and respond to more potential       |
| 379 | threats, respectively, than do their flock mates. Downy woodpeckers, Picoides           |
| 380 | pubescens (Sullivan, 1985) and yellow mongoose, Cynictis penicillata (le Roux,          |
| 381 | Cherry, & Manser, 2008) tend to produce alarm calls only when heterospecifics are       |
| 382 | present, while the anti-predator vocal repertoire size of mongoose species,             |
| 383 | Herpestidae, increases with group size and social complexity (Manser et al., 2014).     |
| 384 |                                                                                         |
| 385 | To determine if there was a correlation between each species' ecology and the ways      |
| 386 | in which they encoded predator threat information we ran four generalized linear        |
| 387 | models with binomial error structure including the ways of encoding information as      |
| 388 | our response variable. We ran an analysis of deviance on the model to test for          |
|     |                                                                                         |

| 389 | significant effects of the three ecological variables - foraging niche, dominance, and                                 |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 390 | gregariousness - on the ways that each species encoded information about predator                                      |
| 391 | threat.                                                                                                                |
| 392 |                                                                                                                        |
| 393 | RESULTS                                                                                                                |
| 394 |                                                                                                                        |
| 395 | Blue tits                                                                                                              |
| 396 |                                                                                                                        |
| 397 | Blue tits used all four ways of encoding information to differentiate between                                          |
| 398 | predators and non-threats and to differentiate between different levels of threat (Table                               |
| 399 | 2; Figure 3). Blue tits increased their call rate to predators: they called the least to                               |
| 400 | controls, more to buzzards, and the most to sparrowhawks (mean $\pm$ standard error,                                   |
| 401 | conditional $R^{2}_{GLMM}$ ; control: 1.06 ± 0.24; buzzard: 2.12 ± 0.37; sparrowhawk: 6.21 ±                           |
| 402 | 0.73; $R^{2}_{GLMM} = 0.613$ ). Blue tits increased the total number of elements and D notes                           |
| 403 | as threat increased, and decreased the number of mid notes to buzzards compared to                                     |
| 404 | the other stimuli (elements: control $8.69 \pm 0.21$ , buzzard $10.38 \pm 0.25$ , sparrowhawk                          |
| 405 | $13.01 \pm 0.17$ , $R^{2}_{GLMM} = 0.305$ ; D: control $9.26 \pm 0.28$ , buzzard $11.53 \pm 0.33$ ,                    |
| 406 | sparrowhawk 14.05 $\pm$ 0.19, R <sup>2</sup> <sub>GLMM</sub> = 0.699; mid: control 2.57 $\pm$ 0.30, buzzard 1.76 $\pm$ |
| 407 | 0.17, sparrowhawk $3.22 \pm 0.19$ , $R^2_{GLMM} = 0.478$ ; Table 2). Blue tits produced a                              |
| 408 | smaller proportion of the churr mobbing calls that include exit notes compared to                                      |
| 409 | either controls or sparrowhawks than to buzzards, and a smaller proportion of calls                                    |
| 410 | with chirp notes to sparrowhawks than to controls or buzzards (exit: control 0.21 $\pm$                                |
| 411 | 0.02, buzzard 0.16 $\pm$ 0.01, sparrowhawk 0.21 $\pm$ 0.01, $R^{2}_{GLMM}$ = 0.469; chirp: control                     |
| 412 | $0.31 \pm 0.02$ ; buzzard $0.32 \pm 0.02$ , sparrowhawk $0.10 \pm 0.01$ , $R^{2}_{GLMM} = 0.668$ ; Table               |
| 413 | 2). Blue tits also increase the proportion of tonal notes as threat increases (control                                 |
|     |                                                                                                                        |

| 414 | $0.12 \pm 0.01$ , buzzard $0.15 \pm 0.02$ , sparrowhawk $0.20 \pm 0.01$ , $R^{2}_{GLMM} = 0.533$ ). Blue               |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 415 | tits increased their propensity to produce mid, exit, tonal, frequency modulated, and                                  |
| 416 | short notes to high-threat predators compared to low-threat predators or controls (mid:                                |
| 417 | control 0.07 $\pm$ 0.04, buzzard 0.15 $\pm$ 0.05, sparrowhawk 0.44 $\pm$ 0.08, R <sup>2</sup> <sub>GLMM</sub> = 0.488; |
| 418 | exit: control 0.40 $\pm$ 0.08, buzzard 0.40 $\pm$ 0.07, sparrowhawk 0.84 $\pm$ 0.06, R <sup>2</sup> <sub>GLMM</sub> =  |
| 419 | 0.251; tonal: control 0.24 $\pm$ 0.07, buzzard 0.40 $\pm$ 0.07, sparrowhawk 0.65 $\pm$ 0.07,                           |
| 420 | $R^{2}_{GLMM} = 0.247$ ; frequency modulated: control $0.31 \pm 0.07$ , buzzard $0.32 \pm 0.07$ ,                      |
| 421 | sparrowhawk 0.67 $\pm$ 0.07, R <sup>2</sup> <sub>GLMM</sub> = 0.607; short: 0.44 $\pm$ 0.08, exit 0.84 $\pm$ 0.06,     |
| 422 | sparrowhawk $0.95 \pm 0.03$ , $R^{2}_{GLMM} = 0.370$ ; Table 2).                                                       |
| 423 |                                                                                                                        |
| 424 | Great tits                                                                                                             |
| 425 |                                                                                                                        |
| 426 | To differentiate one or both predators from the control great tits used three ways of                                  |
| 427 | encoding information: call rate, proportion, and propensity. However, they only used                                   |
| 428 | call rate to differentiate between high and low threat predators (Table 2; Figure 3).                                  |
| 429 | Great tits had a higher call rate in response to high threats compared to controls and                                 |
|     |                                                                                                                        |

430 buzzards (control:  $1.00 \pm 0.21$ , buzzard:  $3.27 \pm 0.61$ , sparrowhawk:  $8.54 \pm 1.17$ ,

431  $R^{2}_{GLMM} = 0.465$ ; Table 2). They decreased the proportion of calls that contained chirp

432 elements and increased the propensity to produce jar/rattle calls during a mobbing

433 event to predators compared to controls (chirp proportion: control  $0.14 \pm 0.21$ ,

434 buzzard  $0.02 \pm 0.01$ , sparrowhawk  $0.009 \pm 0.002$ ,  $R^{2}_{GLMM} = 0.578$ ; jar/rattle

435 propensity: control  $0.68 \pm 0.08$ , buzzard  $0.81 \pm 0.06$ , sparrowhawk  $0.95 \pm 0.03$ ,

436 
$$R^2_{GLMM} = 0.271$$
; Table 2).

437

438 *Coal tits* 

| 440 | Coal tits encoded information in three ways to differentiate between controls and                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 441 | predator threats: call rate, element number, and propensity (Table 2). Coal tits only                                    |
| 442 | used element number, however, to differentiate between predators of varying threat                                       |
| 443 | levels in their mobbing calls (Table 2; Figure 3). Coal tits increased their call rate as                                |
| 444 | threat increased (control: $0.45 \pm 0.11$ , buzzard: $2.53 \pm 0.56$ , sparrowhawk: $5.25 \pm$                          |
| 445 | 1.00, $R^2_{GLMM} = 0.347$ ). Coal tits produced more hook and mt elements to buzzards                                   |
| 446 | than either controls or sparrowhawks (hook: control $1.69 \pm 0.16$ , buzzard $3.91 \pm 0.23$ ,                          |
| 447 | sparrowhawk 3.62 $\pm$ 0.30, R <sup>2</sup> <sub>GLMM</sub> = 0.490, mt: control 1.43 $\pm$ 0.14, buzzard 2.97 $\pm$     |
| 448 | 0.38, sparrowhawk $1.47 \pm 0.12$ , $R^{2}_{GLMM} = 0.313$ ; Table 2). Coal tits produced fewer                          |
| 449 | squeak and more mound elements to controls than to predator threats, and more s-dot                                      |
| 450 | elements as threat increased (squeak: control $2.71 \pm 1.39$ , buzzard $2.73 \pm 0.16$ ,                                |
| 451 | sparrowhawk 2.79 $\pm$ 0.10, R <sup>2</sup> <sub>GLMM</sub> = 0.198; mound: control 2.50 $\pm$ 0.50, buzzard 1.93        |
| 452 | $\pm$ 0.28, sparrowhawk 1.77 $\pm$ 0.14, R <sup>2</sup> <sub>GLMM</sub> = 0.608; s-dot: control 2.09 $\pm$ 0.34, buzzard |
| 453 | $3.36 \pm 0.10$ , sparrowhawk $4.15 \pm 0.17$ , $R^2_{GLMM} = 0.319$ ; Table 2). Coal tits decreased                     |
| 454 | their propensity to produce mound or squeak elements in response to controls                                             |
| 455 | compared to predatory stimuli (mound: control $0.06 \pm 0.04$ , buzzard $0.29 \pm 0.08$ ,                                |
| 456 | sparrowhawk 0.51 $\pm$ 0.08, R <sup>2</sup> <sub>GLMM</sub> = 0.300; squeak: control 0.14 $\pm$ 0.01=6, buzzard          |
| 457 | $0.47 \pm 0.09$ , sparrowhawk $0.63 \pm 0.08$ , $R^{2}_{GLMM} = 0.473$ ; Table 2).                                       |
| 458 |                                                                                                                          |
| 459 | Crested tits                                                                                                             |

460

461 Crested tits differentiated one or both predators from the control in three ways: call

462 rate, proportion, and propensity. However, they only used proportion and propensity

to differentiate between different threat predators (Table 2; Figure 3). They increased

| 464 | their call rate as | threat increased | , produced | l a hig | her proportior | of frequency |
|-----|--------------------|------------------|------------|---------|----------------|--------------|
|-----|--------------------|------------------|------------|---------|----------------|--------------|

- 465 modulated calls, and a lower propensity to produce tonal notes in response to
- 466 buzzards compared to controls and sparrowhawks (rate: control  $11.71 \pm 4.33$ , buzzard
- 467  $14.92 \pm 3.38$ , sparrowhawk  $16.32 \pm 2.30$ ,  $R^{2}_{GLMM} = 0.479$ ; frequency modulated
- 468 proportion: control  $0.61 \pm 0.02$ , buzzard  $0.75 \pm 0.01$ , sparrowhawk  $0.73 \pm 0.01$ ,
- 469  $R^{2}_{GLMM} = 0.364$ ; tonal propensity: control 0.21 ± 0.11, buzzard 0.08 ± 0.08,
- 470 sparrowhawk  $0.38 \pm 0.14$ ,  $R^{2}_{GLMM} = 0.289$ ; Table 2; Figure 3).
- 471
- 472 Marsh tits
- 473

474 Marsh tits used all four ways of encoding information to differentiate both between 475 predators and non-threats and between predators of different threat levels (Table 2; 476 Figure 3). Marsh tits increased their call rate to predators compared to controls, 477 decreased the number of dä/D elements in response to buzzards compared to controls 478 or sparrowhawks, and decreased the proportion of full tonal notes to buzzards 479 compared to controls and sparrowhawks (rate: control:  $1.24 \pm 0.35$ ; buzzard:  $1.26 \pm$ 480 0.30; sparrowhawk:  $4.56 \pm 0.85$ ,  $R^2_{GLMM} = 0.740$ ; dä/D elements: control:  $0.21 \pm$ 0.11; buzzard:  $0.08 \pm 0.08$ ; sparrowhawk:  $0.38 \pm 0.14$ ,  $R^{2}_{GLMM} = 0.324$ ; proportion of 481 482 full tonal notes: control:  $0.71 \pm 0.07$ ; buzzard:  $0.49 \pm 0.08$ ; sparrowhawk:  $0.53 \pm 0.03$ , 483  $R^{2}_{GLMM} = 0.370$ ; Table 2). They also increased their propensity to produce peak tonal 484 elements, all tonal, and ptew calls to higher threat predators (peak tonal: control 0.33 485  $\pm$  0.17, buzzard 0.56  $\pm$  0.18, sparrowhawk 0.89  $\pm$  0.11, R<sup>2</sup><sub>GLMM</sub> = 0.608; tonal: control  $0.78 \pm 0.15$ , buzzard  $0.89 \pm 0.11$ , sparrowhawk  $1.00 \pm 0.00$ , R<sup>2</sup><sub>GLMM</sub> = 0.398; ptew: 486 control  $0.78 \pm 0.05$ , buzzard  $0.89 \pm 0.11$ , sparrowhawk  $1.00 \pm 0.00$ ,  $R^{2}_{GLMM} = 0.398$ ; 487 488 Table 2).

490 Willow tits

491

493 but did not differentiate between predators of different threat levels (Table 2; Figure

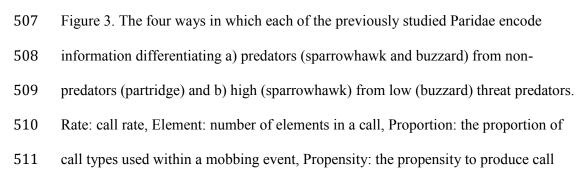
494 3). Willow tits increased their call rate in response to predators (mean  $\pm$  standard

495 error; buzzard:  $1.72 \pm 0.42$ ; sparrowhawk;  $2.04 \pm 0.25$ ,  $R^{2}_{GLMM} > 0.999$ ) compared to

496 controls (control:  $0.71 \pm 0.28$ ; Table 2). Willow tits also increased the number of total

497 elements and decreased the number of si intro elements as predator threat increased

498 (elements: control 2.40  $\pm$  0.22, buzzard 2.86  $\pm$  0.14, sparrowhawk, 3.59  $\pm$  0.12,


499  $R^{2}_{GLMM} = 0.201$ ; si intro: control 2.00 ± 0.49, buzzard 2.51 ± 0.19, sparrowhawk 2.83

500 
$$\pm 0.14$$
, R<sup>2</sup><sub>GLMM</sub> = 0.207; Table 2).

501

For all species, we observed some order and mount exemplar effects in the statistical
models, but as none of these effects were consistent across call types, ways of
encoding information, stimulus species, or responding tit species, they are not
included in our results.

| a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Periparus ater</i> (coal tit)                                                                                                                                                                                                                                                                                                     | Rate             | Element      | Proportion<br>X       | Propensity      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Baeolophus bicolor (tufted titmouse)                                                                                                                                                                                                                                                                                                 | $\checkmark$     | $\checkmark$ | ?                     | $\checkmark$    |
| n and a second s | Lophophanes cristatus (crested tit)                                                                                                                                                                                                                                                                                                  | 1                | ×            | 1                     | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Poecile palustris</i> (marsh tit)                                                                                                                                                                                                                                                                                                 | 1                | 1            | 1                     | 1               |
| D 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Poecile montanus (willow tit)                                                                                                                                                                                                                                                                                                        | 1                | 1            | ×                     | ×               |
| Paridae _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>Poecile carolinensis</i> (Carolina chickadee)                                                                                                                                                                                                                                                                                     | $\checkmark$     | $\checkmark$ | ?                     | ?               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Poecile atricapillus (black-capped chickadee)                                                                                                                                                                                                                                                                                        | )                | $\checkmark$ | $\checkmark$          | $\checkmark$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Poecile gambeli</i> (mountain chickadee)                                                                                                                                                                                                                                                                                          | $\checkmark$     | $\checkmark$ | ?                     | ?               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Cyanistes caeruleus</i> (blue tit)                                                                                                                                                                                                                                                                                                | 1                | 1            | 1                     | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parus major (great tit)                                                                                                                                                                                                                                                                                                              | 1                | ×            | 1                     | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Parus minor</i> (Japanese great tit)                                                                                                                                                                                                                                                                                              | $\checkmark$     | $\checkmark$ | $\checkmark$          | $\checkmark$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                      |                  |              |                       |                 |
| b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                      | Rate             | Element      | Proportion            | Propensity      |
| b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Periparus ater</i> (coal tit)                                                                                                                                                                                                                                                                                                     | Rate<br>X        | Element      | Proportion<br>X       | Propensity<br>X |
| b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>Periparus ater</i> (coal tit) <i>Baeolophus bicolor</i> (tufted titmouse)                                                                                                                                                                                                                                                         |                  | _            |                       |                 |
| b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                      |                  | _            | X                     |                 |
| b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Baeolophus bicolor (tufted titmouse)                                                                                                                                                                                                                                                                                                 | ×<br>√           | 1            | X                     |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Lophophanes cristatus</i> (crested tit)                                                                                                                                                                                                                                                                                           | ×<br>√           | 1            | X                     |                 |
| b)<br>Paridae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>Baeolophus bicolor</i> (tufted titmouse)<br><i>Lophophanes cristatus</i> (crested tit)<br><i>Poecile palustris</i> (marsh tit)                                                                                                                                                                                                    | ×<br>×<br>×      | ✓<br>✓<br>✓  | ×<br>?                | ×<br>√<br>√     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Baeolophus bicolor</i> (tufted titmouse)<br><i>Lophophanes cristatus</i> (crested tit)<br><i>Poecile palustris</i> (marsh tit)<br><i>Poecile montanus</i> (willow tit)                                                                                                                                                            | ×<br>×<br>×<br>× | ✓<br>✓<br>✓  | ×<br>?<br>✓<br>✓<br>× | ×<br>√<br>√     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Baeolophus bicolor</i> (tufted titmouse)<br><i>Lophophanes cristatus</i> (crested tit)<br><i>Poecile palustris</i> (marsh tit)<br><i>Poecile montanus</i> (willow tit)<br><i>Poecile carolinensis</i> (Carolina chickadee)                                                                                                        | ×<br>×<br>×<br>× | ✓<br>✓<br>✓  | ×<br>?<br>✓<br>✓<br>× | ×<br>√<br>√     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Baeolophus bicolor</i> (tufted titmouse)<br><i>Lophophanes cristatus</i> (crested tit)<br><i>Poecile palustris</i> (marsh tit)<br><i>Poecile montanus</i> (willow tit)<br><i>Poecile carolinensis</i> (Carolina chickadee)<br><i>Poecile atricapillus</i> (black-capped chickadee)                                                | ×<br>×<br>×<br>× | ✓<br>✓<br>✓  | ×<br>?<br>✓<br>✓<br>× | ×<br>√<br>√     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>Baeolophus bicolor</i> (tufted titmouse)<br><i>Lophophanes cristatus</i> (crested tit)<br><i>Poecile palustris</i> (marsh tit)<br><i>Poecile montanus</i> (willow tit)<br><i>Poecile carolinensis</i> (Carolina chickadee)<br><i>Poecile atricapillus</i> (black-capped chickadee)<br><i>Poecile gambeli</i> (mountain chickadee) | ×<br>×<br>×<br>× | ✓<br>✓<br>✓  | ×<br>?<br>✓<br>✓<br>× | ×<br>√<br>√     |



- 515 et al., 2013). Published data derived from: black-capped chickadee: (Baker & Becker,
- 516 2002; Billings et al., 2015; Clemmons & Lambrechts, 1992; Templeton et al., 2005),
- 517 tufted titmouse: (Bartmess-LeVasseur et al., 2010; Courter & Ritchison, 2010;
- 518 Hetrick & Sieving, 2011; Sieving et al., 2010), Carolina chickadee: (Bartmess-
- 519 LeVasseur et al., 2010; Hetrick & Sieving, 2011; Soard & Ritchison, 2009), Mexican
- 520 chickadee: (Billings et al., 2015), Japanese great tit: (Suzuki, 2012; 2014; Suzuki &
- 521 Ueda, 2013).

512

513

|   | Г        |
|---|----------|
|   | <u> </u> |
|   | T        |
|   | <u> </u> |
|   | Э.       |
|   | ⊐.       |
|   | 2        |
|   | بع       |
|   | Ξ.       |
|   | 5        |
|   | Ξ.       |
|   |          |
|   | Ð        |
|   | <b>_</b> |
|   | Ξ.       |
|   | 0        |
|   | 0        |
|   | d        |
|   | E٠       |
|   | Ξ.       |
| C | ρť       |
| ` | Ξ.       |
|   | <u> </u> |
|   | 1        |
|   | Ъ        |
|   | ~~       |
|   | 8        |
|   | Э.       |
|   | 5        |
|   | 5        |
|   | <u>a</u> |
|   | (D       |

523 Table 2. Type III Wald Chi-square test results for predator type (control, buzzard, or sparrowhawk) as a significant predictor of variation in

524 vocal response. Planed comparison t and z test results. Only comparisons with P values  $\leq 0.05$  shown here (with the exception of zizi calls); full

table is included in supplemental material.

| Marsh Tit                                                                               | Crested Tit                                                                                  | Coal Tit                                                     | Great Tit                                                                                                                     | Species<br>Blue Tit                                                                                           |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Proportion of<br>Propensity to use<br>Call rate<br>Number of<br>Proportion of           | Propensity to use<br>Call rate                                                               | Proportion of<br>Propensity to use<br>Call rate<br>Number of | Propensity to use<br>Call rate                                                                                                | Encoding Method<br>Call rate<br>Number of<br>Proportion of                                                    |
| Frequency-modulated calls<br>Tonal calls<br>All<br>dä/D elements<br>Full tonal elements | Mound elements<br>Mt elements<br>S-dot elements<br>Squeak elements<br>Squeak elements<br>All | Chirp calls<br>Jar/rattle calls<br>All<br>Hook elements      | Chirp calls<br>Tonal calls<br>Mid elements<br>Exit elements<br>Tonal calls<br>Frequency-modulated calls<br>Short calls<br>All | Element Type<br>All<br>Total elements<br>Mid elements<br>D elements<br>Exit calls                             |
| 0.144<br>0.289<br>0.469<br>0.259<br>0.255                                               | 0.072<br>0.310<br>0.139<br>0.057<br>0.250<br>0.269<br>0.321                                  | 0.065<br>0.192<br>0.239<br>0.226                             | 0.221<br>0.153<br>0.288<br>0.218<br>0.243<br>0.223<br>0.312<br>0.382                                                          | R <sup>2</sup> <sub>GLMM</sub><br>Margianl Con<br>0.409<br>0.105<br>0.120<br>0.178<br>0.113                   |
| 0.346<br>0.289<br>0.740<br>0.324<br>0.370                                               | 0.608<br>0.313<br>0.198<br>0.198<br>0.300<br>0.473<br>0.479                                  | 0.578<br>0.271<br>0.347<br>0.490                             | 0.668<br>0.533<br>0.488<br>0.251<br>0.247<br>0.607<br>0.370<br>0.370<br>0.465                                                 | Conditional<br>0.613<br>0.305<br>0.478<br>0.699<br>0.469                                                      |
| 6.32<br>6.45<br>10.39<br>12.69<br>6.88                                                  | 7.05<br>21.84<br>11.97<br>7.27<br>9.75<br>18.58<br>6.21                                      | 7.55<br>10.96<br>15.46<br>11.19                              | 17.04<br>14.17<br>33.01<br>14.78<br>14.35<br>9.63<br>17.27<br>44.00                                                           | $\chi^2$<br>43.10<br>20.54<br>6.76<br>28.84<br>6.27                                                           |
| 0.042<br>0.040<br>0.006<br>0.002<br>0.031                                               | 0.029<br><0.001<br>0.003<br>0.026<br>0.008<br><0.001                                         | 0.023<br><0.004<br>0.004                                     | <pre>&lt;0.001 &lt;.001 &lt;.0001 &lt;.0001 &lt;.0001 &lt;.0001 &lt;.0008 &lt;.0001 </pre>                                    | P<br><0.001<br><0.034<br>0.034                                                                                |
| 2.496<br>-1.173<br>-1.732<br>0.061<br>-1.996                                            | 0.307<br>3.993<br>1.771<br>-2.656<br>2.137<br>3.703<br>-0.047                                | -1.162<br>2.625<br>2.093<br>3.098                            | 2.511<br>1.105<br>-0.389<br>3.604<br>0.490<br>-1.538<br>0.368<br>1.822                                                        | Control-<br>Buzzard<br>T<br>0.164<br>-1.546<br>-1.279<br>0.888<br>-1.060                                      |
| <b>0.013</b><br>0.251<br>0.108<br>0.952<br><b>0.046</b>                                 | 0.761<br><b>0.001</b><br>0.083<br><b>0.0035</b><br><b>&lt;0.001</b><br>0.963                 | 0.249<br>0.010<br>0.039<br>0.004                             | 0.012<br>0.269<br>0.698<br>0.625<br>0.124<br>0.713<br>0.071                                                                   | rol-<br>P<br>0.870<br>0.126<br>0.242<br>0.375<br>0.289                                                        |
| 0.456<br>1.940<br>2.816<br>-3.491<br>0.834                                              | -1.557<br>0.049<br>1.343<br>-2.663<br>2.889<br>3.331<br>2.432                                | -2.723<br>2.870<br>3.856<br>0.625                            | -1.878<br>3.649<br>5.280<br>-0.694<br>3.695<br>2.200<br>4.014<br>6.569                                                        | Control-<br>Sparrowhawk<br>T <i>P</i><br>6.345 <0.00<br>1.914 0.05<br>0.563 0.58<br>5.346 <0.00<br>1.677 0.09 |
| 0.648<br><i>0.063</i><br><b>0.0013</b><br>0.404                                         | 0.128<br>0.961<br>0.187<br>0.008<br>0.005<br>0.001<br>0.022                                  | <b>0.008</b><br><0.005<br>0.537                              | 0.060<br><0.001<br><0.489<br><0.001<br><0.001<br><0.001<br><0.001<br><0.001                                                   | rtrol-<br>P<br><0.001<br>0.059<br>0.584<br><0.001<br>0.094                                                    |
| -2.207<br>2.318<br>3.140<br>-3.084<br>2.482                                             | -2.258<br>-4.667<br>-0.773<br>0.193<br>0.393<br>-0.651<br>1.602                              | -1.740<br>0.346<br>1.216<br>-2.700                           | 66         -4.104         <0.001           01         2.587         0.010           01         5.044         <0.001           | Buzz<br>Sparrov<br>T<br>5.452<br>3.248<br>2.579<br>3.564<br>2.435                                             |
| 0.027<br>0.028<br>0.006<br>0.004<br>0.013                                               | <b>0.033</b><br><b>&lt;0.001</b><br>0.446<br>0.848<br>0.695<br>0.517<br>0.121                | <i>0.086</i><br>0.730<br>0.227<br><b>0.012</b>               | <ol> <li>&lt;0.001</li> <li>0.010</li> <li>0.001</li> <li>0.001</li> <li>0.004</li> <li>0.003</li> <li>&lt;0.001</li> </ol>   | 2ard-<br><i>P</i><br><b>&lt;0.001</b><br><b>0.002</b><br>0.276<br><b>&lt;0.001</b><br><b>0.015</b>            |

# Information encoding in Paridae

|                   |                   |                | Willow Tit |            |                     |                    |
|-------------------|-------------------|----------------|------------|------------|---------------------|--------------------|
| Propensity to use |                   | Number of      | Call rate  |            |                     | Propensity to use  |
| Zizi calls        | Si intro elements | Total elements | All        | Ptew calls | Peak tonal elements | All tonal elements |
| 0.234             | 0.207             | 0.129          | 0.445      | 0.398      | 0.501               | 0.398              |
| 1.000             | 0.207             | 0.201          | 1.000      | 0.398      | 0.608               | 0.398              |
| 5.96              | 16.46             | 7.89           | 46.36      | 8.29       | 12.36               | 8.28               |
| 0.051             | < 0.001           | 0.019          | < 0.001    | 0.016      | 0.002               | 0.016              |
| 2.420             | 0.360             | -0.222         | 3.721      | -0.636     | 3.091               | -0.636             |
| 0.036             | 0.719             | 0.826          | 0.007      | 0.534      | 0.008               | 0.534              |
| -1.234            | -4.053            | 2.803          | 1.994      | 2.703      | 2.316               | 2.703              |
| 0.246             | < 0.001           | 0.025          | 0.086      | 0.016      | 0.036               | 0.016              |
| -0.446            | -1.685            | 1.634          | 0.602      | 2.519      | 0.144               | 2.519              |
| 0.665             | 0.093             | 0.167          | 0.561      | 0.023      | 0.888               | 0.023              |

- 528 linear mixed models determining if predatory type (control, buzzard, or sparrowhawk)
- had a significant effect on the variation in vocal response of UK tit species (Table 2).

|                                   |                   |                           |             |                   | 9570 Connue | 95% Confidence interval |  |  |
|-----------------------------------|-------------------|---------------------------|-------------|-------------------|-------------|-------------------------|--|--|
| Species                           | Encoding Method   | Element Type              | Stimulus    | model<br>estimate | lower       | upper                   |  |  |
| Blue Tit                          | Call rate         | All                       | Control     | 4.076             | -2.090      | 4.46                    |  |  |
|                                   |                   |                           | Buzzard     | 1.189             | -2.470      | 10.62                   |  |  |
|                                   |                   |                           | Sparrowhawk | 8.971             | 0.834       | 17.10                   |  |  |
| Number of                         | Number of         | Total elements            | Control     | 9.620             | 6.802       | 12.43                   |  |  |
|                                   |                   |                           | Buzzard     | 7.310             | 1.563       | 13.05                   |  |  |
|                                   |                   |                           | Sparrowhawk | 12.463            | 6.734       | 18.19                   |  |  |
|                                   | Number of         | Mid elements              | Control     | 3.716             | 1.439       | 5.99                    |  |  |
|                                   |                   |                           | Buzzard     | 2.235             | -2.311      | 6.78                    |  |  |
|                                   |                   |                           | Sparrowhawk | 4.241             | 0.138       | 8.34                    |  |  |
|                                   | Number of         | D elements                | Control     | 1.745             | 1.597       | 1.89                    |  |  |
|                                   |                   |                           | Buzzard     | 1.810             | 1.518       | 2.10                    |  |  |
|                                   |                   |                           | Sparrowhawk | 2.121             | 1.835       | 2.40                    |  |  |
|                                   | Proportion of     | Exit calls                | Control     | -1.822            | -3.016      | -0.62                   |  |  |
|                                   |                   |                           | Buzzard     | -2.705            | -5.532      | 0.12                    |  |  |
|                                   |                   |                           | Sparrowhawk | -0.606            | -3.221      | 2.00                    |  |  |
|                                   | Proportion of     | Chirp calls               | Control     | -2.933            | -4.600      | -1.26                   |  |  |
|                                   | I                 | 1 I                       | Buzzard     | -0.376            | -4.039      | 3.28                    |  |  |
|                                   |                   |                           | Sparrowhawk | -4.924            | -8.668      | -1.17                   |  |  |
|                                   | Proportion of     | Tonal calls               | Control     | -4.670            | -6.436      | -2.90                   |  |  |
|                                   |                   |                           | Buzzard     | -3.759            | -7.140      | -0.37                   |  |  |
|                                   |                   |                           | Sparrowhawk | -1.672            | -5.048      | -0.37                   |  |  |
|                                   | Propensity to use | Mid elements              | Control     |                   |             |                         |  |  |
| riopensity to use                 | who elements      |                           | 0.034       | -0.177            | 0.24        |                         |  |  |
|                                   |                   |                           | Buzzard     | -0.017            | -0.486      | 0.45                    |  |  |
|                                   | Propensity to use | Exit elements             | Sparrowhawk | 0.779             | 0.292       | 1.26                    |  |  |
|                                   | Topensity to use  | Exit elements             | Control     | 0.133             | 0.046       | 0.56                    |  |  |
|                                   |                   |                           | Buzzard     | 0.134             | -0.286      | 0.90                    |  |  |
|                                   | Decement          | Tanalaslla                | Sparrowhawk | 0.792             | 0.346       | 1.58                    |  |  |
|                                   | Propensity to use | Tonal calls               | Control     | -0.009            | -0.250      | 0.23                    |  |  |
|                                   |                   |                           | Buzzard     | 0.074             | -0.500      | 0.64                    |  |  |
|                                   |                   |                           | Sparrowhawk | 0.666             | 0.067       | 1.26                    |  |  |
|                                   | Propensity to use | Frequency-modulated calls | Control     | 0.691             | 0.125       | 0.97                    |  |  |
|                                   |                   |                           | Buzzard     | 0.793             | 0.132       | 1.61                    |  |  |
|                                   |                   |                           | Sparrowhawk | 1.613             | 0.692       | 1.96                    |  |  |
|                                   | Propensity to use | Short calls               | Control     | 0.288             | 0.069       | 0.50                    |  |  |
|                                   |                   |                           | Buzzard     | 0.344             | -0.175      | 0.86                    |  |  |
|                                   |                   |                           | Sparrowhawk | 0.948             | 0.407       | 1.49                    |  |  |
| Great Tit Call rate Proportion of | Call rate         | All                       | Control     | 2.479             | -0.433      | 5.39                    |  |  |
|                                   |                   |                           | Buzzard     | 6.122             | -0.709      | 12.95                   |  |  |
|                                   |                   |                           | Sparrowhawk | 16.091            | 9.117       | 23.06                   |  |  |
|                                   | Proportion of     | Chirp calls               | Control     | 0.131             | 0.028       | 0.23                    |  |  |
|                                   |                   |                           | Buzzard     | 0.200             | -0.156      | 0.28                    |  |  |
|                                   | <b>D</b>          | T (] ]]                   | Sparrowhawk | 0.301             | -0.264      | 0.18                    |  |  |
|                                   | Propensity to use | Jar/rattle calls          | Control     | 0.438             | 0.206       | 0.67                    |  |  |
|                                   |                   |                           | Buzzard     | 0.849             | 0.311       | 1.38                    |  |  |
| 0.17                              |                   |                           | Sparrowhawk | 0.911             | 0.356       | 1.46                    |  |  |
| Coal Tit                          | Call rate         | All                       | Control     | 0.431             | -2.258      | 3.12                    |  |  |
|                                   |                   |                           | Buzzard     | 4.633             | -1.991      | 11.25                   |  |  |
|                                   |                   |                           | Sparrowhawk | 7.247             | 1.094       | 13.40                   |  |  |
|                                   | Number of         | Hook elements             | Control     | 1.737             | 1.055       | 2.86                    |  |  |

95% Confidence interval

### Information encoding in Paridae

|             |                   |                           | Buzzard     | 4.608   | 2.528   | 8.455  |
|-------------|-------------------|---------------------------|-------------|---------|---------|--------|
|             |                   |                           | Sparrowhawk | 2.959   | 1.706   | 5.153  |
|             | Number of         | Mound elements            | Control     | 2.707   | 0.960   | 7.627  |
|             |                   |                           | Buzzard     | 3.905   | 1.338   | 11.435 |
|             |                   |                           | Sparrowhawk | 3.192   | 1.156   | 8.832  |
|             | Number of         | Mt elements               | Control     | 1.607   | 1.035   | 2.495  |
|             |                   |                           | Buzzard     | 7.049   | 3.404   | 14.997 |
|             |                   |                           | Sparrowhawk | 2.619   | 1.666   | 4.116  |
|             | Number of         | S-dot elements            | Control     | 2.315   | 1.293   | 4.148  |
|             |                   |                           | Buzzard     | 4.258   | 2.224   | 4.395  |
|             |                   |                           | Sparrowhawk | 3.853   | 2.113   | 4.495  |
|             | Number of         | Squeak elements           | Control     | 10.472  | 3.042   | 36.042 |
|             |                   |                           | Buzzard     | 10.647  | 3.091   | 36.676 |
|             |                   |                           | Sparrowhawk | 10.655  | 3.095   | 36.681 |
|             | Propensity to use | Mound elements            | Control     | -0.057  | -0.287  | 0.173  |
|             |                   |                           | Buzzard     | 0.368   | -0.251  | 0.988  |
|             |                   |                           | Sparrowhawk | 0.452   | -0.123  | 1.027  |
|             | Propensity to use | Squeak elements           | Control     | 0.036   | -0.209  | 0.281  |
|             |                   |                           | Buzzard     | 0.801   | 0.151   | 1.451  |
|             |                   |                           | Sparrowhawk | 0.654   | 0.046   | 1.262  |
| Crested Tit | Call rate         | All                       | Control     | 10.084  | -5.110  | 25.277 |
|             |                   |                           | Buzzard     | 9.511   | -29.763 | 48.786 |
|             |                   |                           | Sparrowhawk | 31.261  | -0.998  | 63.519 |
|             | Proportion of     | Frequency-modulated calls | Control     | -0.430  | -2.066  | 1.205  |
|             |                   |                           | Buzzard     | 2.832   | -1.365  | 7.029  |
|             |                   |                           | Sparrowhawk | -0.057  | -3.297  | 3.183  |
|             | Propensity to use | Tonal calls               | Control     | 0.186   | -0.309  | 0.680  |
|             |                   |                           | Buzzard     | -0.309  | -1.632  | 1.013  |
|             | Call rate         | All                       | Sparrowhawk | 0.751   | -0.315  | 1.817  |
| Marsh Tit   |                   |                           | Control     | 4.076   | -0.043  | 8.196  |
|             |                   |                           | Buzzard     | 1.189   | -6.198  | 8.576  |
|             |                   |                           | Sparrowhawk | 8.971   | 1.444   | 16.498 |
|             | Number of         | Dä/D elements             | Control     | -7.905  | -17.199 | 1.389  |
|             |                   |                           | Buzzard     | -7.717  | -23.088 | 7.653  |
|             |                   |                           | Sparrowhawk | -21.884 | -39.026 | -4.741 |
|             | Proportion of     | Full intro elements       | Control     | 0.997   | 0.849   | 1.000  |
|             |                   |                           | Buzzard     | 1.029   | 0.850   | 1.484  |
|             |                   |                           | Sparrowhawk | 1.821   | 0.960   | 1.994  |
|             | Propensity to use | All tonal elements        | Control     | 0.821   | 0.145   | 1.498  |
|             |                   |                           | Buzzard     | 0.643   | -0.584  | 1.870  |
|             |                   |                           | Sparrowhawk | 1.571   | 0.351   | 2.792  |
|             | Propensity to use | Peak tonal elements       | Control     | -0.827  | -1.761  | 0.107  |
|             |                   |                           | Buzzard     | 0.416   | -1.306  | 2.137  |
|             |                   |                           | Sparrowhawk | 0.505   | -1.556  | 2.567  |
|             | Propensity to use | Ptew calls                | Control     | 0.821   | 0.145   | 1.498  |
|             |                   |                           | Buzzard     | 0.643   | -0.584  | 1.870  |
|             |                   |                           | Sparrowhawk | 1.571   | 0.351   | 2.792  |
| Willow Tit  | Call rate         | All                       | Control     | 1.335   | -0.194  | 2.864  |
|             |                   |                           | Buzzard     | 3.045   | 0.615   | 5.475  |
|             |                   |                           | Sparrowhawk | 2.817   | -0.169  | 5.804  |
|             | Number of         | Total elements            | Control     | 4.012   | 1.738   | 9.261  |
|             |                   |                           | Buzzard     | 4.953   | 2.289   | 10.869 |
|             |                   |                           | Sparrowhawk | 6.649   | 3.077   | 14.456 |
|             | Number of         | Si intro elements         | Control     | 0.745   | 0.555   | 0.936  |
|             |                   |                           | Buzzard     | 0.772   | 0.437   | 1.108  |
|             |                   |                           | Sparrowhawk | 0.563   | 0.285   | 0.842  |
|             | Propensity to use | Zizi calls                | Control     | -0.065  | -1.300  | 1.169  |
|             |                   |                           | Buzzard     | 1.008   | -1.096  | 3.111  |
|             |                   |                           | Sparrowhawk | -0.959  | -3.613  | 1.695  |
|             |                   |                           | *           |         |         |        |

## 532 PHYLOGENY AND ECOLOGY

- 533 Phylogenetic signal did not explain which species used which ways of encoding
- information about predator threat in their mobbing calls (rate:  $\chi^2_1 = -0.03$ , P = 1;
- number of elements:  $\chi^2_1 = -1.37$ , P = 1; proportion:  $\chi^2_1 = -6.36$ , P = 1; propensity:  $\chi^2_1$
- = -1.30, P = 1). Ecology also did not explain variation in which species used each
- 537 method of encoding information about predator threat in their mobbing calls (rate:
- 538 foraging niche F(2) = 1.05, P = 0.431, dominance F(2) = 6.59, P = 0.054,
- 539 gregariousness F(2) = 2.77, P = 0.176; number of elements: foraging niche F(2) =
- 540 2.66, P = 0.184, dominance F(2) = 1.91, P = 0.262, gregariousness F(2) = 1.05, P =
- 541 0.431; proportion: foraging niche F(2) = 0.26, P = 0.810, dominance F(2) = 1.39, P =
- 542 0.515, gregariousness F(2) < 0.001, P > 0.999; propensity: foraging niche F(2) = 0.52,
- 543 P = 0.657, dominance F(2) = 2.77, P = 0.265, gregariousness F(2) < 0.001, P >
- 544 0.999).

# Information encoding in Paridae

# 545 Table 4. Ecology of tested Paridae species. Species grouped by number and type of ways they encode information about predator threat (left

546 columns).

| Willow tit | Crested tit | Coal tit | Great tit | Mountain<br>chickadee | Carolina<br>chickadee | Tufted titmouse | Blue tit | Marsh tit | Japanese<br>great tit | Black-capped<br>chickadee | Species                            |                           |
|------------|-------------|----------|-----------|-----------------------|-----------------------|-----------------|----------|-----------|-----------------------|---------------------------|------------------------------------|---------------------------|
| х          | Х           | Х        | 0         | 0                     | 0                     | 0               | 0        | 0         | 0                     | 0                         | Call                               |                           |
| Х          | X           | 0        | х         | 0                     | 0                     | 0               | 0        | 0         | 0                     | 0                         | Element<br>number                  | Encod                     |
| X          | 0           | Х        | Х         | ;                     | ;                     | į,              | 0        | 0         | 0                     | 0                         | Proportion                         | Encoding Method           |
| Х          | 0           | Х        | Х         | ?                     | ?                     | 0               | 0        | 0         | 0                     | 0                         | Propensity                         |                           |
|            |             | 0        |           | 0                     |                       |                 | 0        |           |                       | 0                         | upper                              | Pre                       |
|            | 0           |          |           |                       | 0                     | 0               |          |           |                       |                           | mid                                | Preferred foraging height |
| 0          |             |          | 0         |                       |                       |                 |          | 0         | 0                     |                           | low/ground                         | ng height                 |
|            |             |          | 0         |                       |                       | 0               | 0        |           | 0                     | 0                         | dominant                           |                           |
|            | 0           |          |           |                       | 0                     |                 |          | 0         |                       |                           | mid                                | Dominance                 |
| 0          |             | 0        |           | 0                     |                       |                 |          |           |                       |                           | subordinate                        | e                         |
| 0          | 0           |          |           |                       | 0                     | 0               |          | 0         |                       |                           | small                              |                           |
|            |             |          | 0         | 0                     |                       |                 |          |           | 0                     | 0                         | mid subordinate small medium large | Gregariousness            |
|            |             | 0        |           |                       |                       |                 | 0        |           |                       |                           | large                              |                           |

| 549 | We found that the UK tit species varied in both the types and degree to which they        |
|-----|-------------------------------------------------------------------------------------------|
| 550 | encode information about predators. UK tits all responded to predators with mobbing       |
| 551 | calls and all communicated the presence of a predator by increasing call rate relative    |
| 552 | to their responses in control trials. Each species varied in the ways they                |
| 553 | communicated predator presence and differentiated between low and high threat             |
| 554 | predators. These results are not consistent with the presumption that all Paridae use     |
| 555 | the same mechanisms to encode similar information about predators.                        |
| 556 |                                                                                           |
| 557 | Variation across species in signalling strategy could potentially be explained by         |
| 558 | relatedness: those species more closely related should be more similar in terms of the    |
| 559 | ways of encoding information they use to encode information about predators. The          |
| 560 | presence or absence of alarm calling as a behaviour in rodents appears to be well         |
| 561 | explained by phylogeny, though this says nothing concerning the specific ways of          |
| 562 | encoding information in these calls (Shelly & Blumstein, 2005). We found no               |
| 563 | correlation between the Parid phylogeny and the pattern of ways of encoding               |
| 564 | information. Additionally, we could find no patterns in the ways the traits mapped        |
| 565 | onto the phylogeny that would explain the ways of encoding information used by the        |
| 566 | species we tested. Marsh tits, for example, encode information in the same ways as do     |
| 567 | blue tits, one of their more distant relatives, while they share only half of the ways of |
| 568 | communicating the presence of a predator and none of the same ways of                     |
| 569 | communicating the threat of a predator, with congeneric willow tits. Relatedness          |
| 570 | similarly fails to explain the variation in the number and mechanisms across the rest     |
| 571 | of the phylogeny. These patterns are similar to those found in marmots, which also        |

vary the ways in which they encode information about predators based on a factorother than phylogenetic relatedness (Blumstein, 2007).

574

575 If relatedness does not explain the number or ways of encoding information used by 576 UK tits, aspects of their natural history might. Some species may be pre-disposed 577 through their ecology to be better equipped to notice and respond to predators, and 578 these species therefore may use a greater variety of ways of communicating that 579 information (Goodale, Beauchamp, Magrath, Nieh, & Ruxton, 2010). However, our 580 tests indicated no correlations between any of the three ecological variables we 581 examined and the ways in which the different species encoded predator threat 582 information. If foraging niche explained ways of encoding information then we would 583 have expected that outer/upper canopy-foraging blue and coal tits should be more 584 similar in the ways in which they encode information, relative to species that forage in 585 locations with limited visibility (lower trunk foraging: marsh, willow, and great tits) 586 as these species are less exposed to predatory raptors (Gibb, 1960; Morse, 1978; 587 Nakamura, 1970; Perrins, 1979). Blue and marsh tits are, however, more similar in 588 the ways in which they respond to predators (both presence and threat) than are blue 589 and coal tits. Foraging niche, at least, does not seem to be an especially useful 590 explanation for the variation in the ways of encoding information. Similarly, we 591 would have expected species that travel in larger winter flocks, such as blue, great, 592 and coal tits, to use more ways of encoding information relative to those less 593 gregarious species (crested, marsh, and willow tits; Deadman, 2014; Ekman, 1979; 594 1989; Fisher, 1982; Morse, 1978). As the more gregarious tit species are, however, no 595 more likely to use more ways of encoding information than the less gregarious 596 species, gregariousness during winter also is not a good explanation for the variation

| 597 | we see . Finally, if interspecific dominance influenced ways of encoding information          |
|-----|-----------------------------------------------------------------------------------------------|
| 598 | we would have expected the more dominant great and blue tits to use more similar              |
| 599 | ways of encoding information. However blue and great tits were no more similar in             |
| 600 | the ways they encode information than are the more subordinate coal or willow tits            |
| 601 | (Alatalo, 1981; Cramp, 1993; Perrins, 2012). Given that neither phylogeny or any of           |
| 602 | the more plausible natural history traits provide an explanation for the variation in the     |
| 603 | number or ways that the UK species use to encode predator information in their                |
| 604 | mobbing calls, the question becomes why do these species communicate predator                 |
| 605 | threat with such variety?                                                                     |
| 606 |                                                                                               |
| 607 | There are two common explanations for the use of multiple ways of encoding                    |
| 608 | information about a single event or threat. The first is that the multiplicity is an          |
| 609 | artefact of the signaller's internal state: as the animal's internal state affects a suite of |
| 610 | aspects of its vocal response via arousal, an increase in that animal's arousal (fear)        |
| 611 | will result in an increase in the call rate, number of elements, or even different call       |
| 612 | types (Blumstein, 2007; Blumstein & Armitage, 1997; J. P. Hailman & Ficken, 1996;             |
| 613 | Marler, Evans, & Hauser, 1992; Seyfarth & Cheney, 2003). This explanation                     |
| 614 | presupposes that the information provided to receivers is redundant but that the              |
| 615 | variety in the ways the information is provided leads to a stronger or more urgent            |
| 616 | signal (Blumstein & Armitage, 1997; Marler et al., 1992).                                     |
| 617 |                                                                                               |
| 618 | The second explanation is that each way of encoding information is used to                    |
| 619 | communicate different information about the thereat, enabling a signaller to increase         |
| 620 | the amount of information it can deliver (Marler et al., 1992; Suzuki, Wheatcroft, &          |
| (21 | Criscon 2010 Hans the information while negativing to the same threat is not                  |

621 Griesser, 2016). Here the information, while pertaining to the same threat, is not

| 622 | redundant. For example, Japanese great tit mobbing calls contain different element    |
|-----|---------------------------------------------------------------------------------------|
| 623 | types that elicit two different types of behaviour: A, B and C notes elicit scanning  |
| 624 | behaviour, while D notes elicit approach behaviour (Suzuki, 2016). In order to        |
| 625 | address why related species use different ways to encode predator threat, we need to  |
| 626 | establish what specific information it is that they encode (Templeton et al., 2005).  |
| 627 | Redundancy does seem to explain changes in the acoustic features of the calls that    |
| 628 | California ground squirrels, Spermophilus beecheyi, use to signal state of arousal    |
| 629 | (Owings & Virginia, 1978). Conversely, signallers might use different ways of         |
| 630 | encoding information to encode different types of information, predatory category     |
| 631 | using propensity and distance using call rate (Griesser, 2008; Suzuki et al., 2016).  |
| 632 | This appears to be relatively common among primates. Blue monkeys, Cercopithecus      |
| 633 | mitis stuhlmanni, for example, signal predator type using propensity of certain call  |
| 634 | types, but change the rate of each call type as predator distance decreases to signal |
| 635 | increased threat (Murphy et al., 2013).                                               |
| 636 |                                                                                       |

637 As UK tit species each use different ways to encode information in their calls, and as 638 there is no explanation for this variation in either their phylogenetic relatedness or 639 their ecology, they may provide a fruitful system for investigating how species might 640 use different ways of encoding information to encode redundant or additive 641 information. Although the information encoded in these types of vocalizations is well 642 researched, the causes of the intra- and interspecific differences remain unclear. 643 Investigating the prevalence of the multiple ways of encoding information across 644 species and by addressing the types of information that these different approaches 645 achieve may allow us to derive further evolutionary insights into variation in 646 information encoding strategies.

| 647 |                                                                                       |
|-----|---------------------------------------------------------------------------------------|
| 648 | REFERENCES                                                                            |
| 649 |                                                                                       |
| 650 | Alatalo, R. V. (1981). Interspecific Competition in Tits Parus spp. and the goldcrest |
| 651 | Regulus regulus: Foraging Shifts in Multispecific Flocks. Oikos, 37(3), 335–344.      |
| 652 |                                                                                       |
| 653 | Baker, M. C., & Becker, A. M. (2002). Mobbing calls of black-capped chickadees:       |
| 654 | Effects of urgency on call production. The Wilson Bulletin, 114(4), 510-516.          |
| 655 |                                                                                       |
| 656 | Bartmess-LeVasseur, J., Branch, C. L., Browning, S. A., Owens, J. L., & Freeberg, T.  |
| 657 | M. (2010). Predator stimuli and calling behavior of Carolina chickadees (Poecile      |
| 658 | carolinensis), tufted titmice (Baeolophus bicolor), and white-breasted nuthatches     |
| 659 | (Sitta carolinensis). Behavioral Ecology and Sociobiology, 64(7), 1187–1198.          |
| 660 | http://doi.org/10.1007/s00265-010-0935-y                                              |
| 661 |                                                                                       |
| 662 | Bates, D., Maechler, M., Bolker, B. M., & Walker, S. (2014, September 30). lme4:      |
| 663 | Linear mixed-effects models using "Eigen" and S4.                                     |
| 664 |                                                                                       |
| 665 | Billings, A. C., Greene, E., & La Lucia Jensen, De, S. M. (2015). Are chickadees      |
| 666 | good listeners? Antipredator responses to raptor vocalizations. Animal Behaviour,     |
| 667 | 110, 1-8. http://doi.org/10.1016/j.anbehav.2015.09.004                                |
| 668 |                                                                                       |
| 669 | Bioacoustics Research Program. (2014, September 30). Raven Pro: Interactive Sound     |
| 670 | Analysis Software (Version 1.5). Ithaca, NY: The Cornell Lab of Ornithology.          |
| 671 |                                                                                       |

| 672 | Blumstein, D. T. (2007). The Evolution, Function, and Meaning of Marmot Alarm        |
|-----|--------------------------------------------------------------------------------------|
| 673 | Communication. In Advances in the Study of Behavior Vol. 37 (Vol. 37, pp. 371-       |
| 674 | 401). Elsevier. http://doi.org/10.1016/S0065-3454(07)37008-3                         |
| 675 |                                                                                      |
| 676 | Blumstein, D. T., & Armitage, K. B. (1997). Alarm calling in yellow-bellied          |
| 677 | marmots: I. The meaning of situationally variable alarm calls. Animal Behaviour,     |
| 678 | 53, 143–171.                                                                         |
| 679 |                                                                                      |
| 680 | Book, D. L., & Freeberg, T. M. (2015). Titmouse calling and foraging are affected by |
| 681 | head and body orientation of cat predator models and possible experience with real   |
| 682 | cats. Animal Cognition, 18(5), 1155-1164. http://doi.org/10.1007/s10071-015-         |
| 683 | 0888-7                                                                               |
| 684 |                                                                                      |
| 685 | Clemmons, J. R., & Lambrechts, M. M. (1992). The waving display and other nest       |
| 686 | site anti-predator behavior of the black-capped chickadee. The Wilson Bulletin,      |
| 687 | 104(4), 749–756.                                                                     |
| 688 |                                                                                      |
| 689 | Courter, J. R., & Ritchison, G. (2010). Alarm calls of tufted titmice convey         |
| 690 | information about predator size and threat. Behavioral Ecology, 21(5), 936–942.      |
| 691 |                                                                                      |
| 692 | Cramp, S. (1993). Handbook of the birds of Europe the Middle East and North Africa.  |
| 693 | (C. M. Perrins, D. J. Brooks, E. Dunn, R. Gillmor, J. Hall-Craggs, B. Hillcoat, et   |
| 694 | al., Eds.) Oxford, New York: Oxford University Press.                                |
| 695 |                                                                                      |
| 696 | Curio, E. (1978). The adaptive significance of avian mobbing. I. Teleonomic          |

| 697 | hypotheses and predictions. Zeitschrift Fur Tierpsychologie, 48, 175-183.              |
|-----|----------------------------------------------------------------------------------------|
| 698 |                                                                                        |
| 699 | Curio, E., Klump, G. M., & Regelmann, K. (1983). An anti-predator response in the      |
| 700 | great tit (Parus major): is it tuned to predator risk? Oecologia, 60(1), 83-88.        |
| 701 |                                                                                        |
| 702 | Deadman, A. J. (1973). A population study of the coal tit (Parus ater) and crested tit |
| 703 | (Parus cristatus) in a Scottish pine plantation (Doctoral thesis). Aberdeen, U.K.:     |
| 704 | University of Aberdeen.                                                                |
| 705 |                                                                                        |
| 706 | Ekman, J. (1979). Coherence, composition and territories of winter social groups of    |
| 707 | the willow tit Parus montanus and the crested tit P. cristatus. Ornis Scandinavica,    |
| 708 | 10(1), 56–68.                                                                          |
| 709 |                                                                                        |
| 710 | Ekman, J. (1989). Ecology of non-breeding social systems of Parus. The Wilson          |
| 711 | Bulletin, 101(2), 263–288.                                                             |
| 712 |                                                                                        |
| 713 | Evans, C. S., Macedonia, J. M., & Marler, P. (1993). Effects of apparent size and      |
| 714 | speed on the response of chickens, Gallus gallus, to computer-generated                |
| 715 | simulations of aerial predators. Animal Behaviour, 46, 1-11.                           |
| 716 |                                                                                        |
| 717 | Feise, R. J. (2002). Do multiple outcome measures require p-value adjustment. BMC      |
| 718 | Medical Research Methodology, 2(8), 1–4.                                               |
| 719 |                                                                                        |
| 720 | Ficken, M. S., Hailman, E. D., & Hailman, J. P. (1994). The chick-a-dee call system    |
| 721 | of the Mexican chickadee. Condor, 96(1), 70-82.                                        |

| 722 |                                                                                        |
|-----|----------------------------------------------------------------------------------------|
| 723 | Fisher, D. J. (1982). Report on roving tit flocks project. British Birds, 75, 370-374. |
| 724 |                                                                                        |
| 725 | Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic Analysis and        |
| 726 | Comparative Data: A Test and Review of Evidence. American Naturalist, 160(6),          |
| 727 | 712-726. http://doi.org/10.1086/343873                                                 |
| 728 |                                                                                        |
| 729 | Freeberg, T. M., & Harvey, E. M. (2008). Group size and social interactions are        |
| 730 | associated with calling behavior in Carolina chickadees (Poecile carolinensis).        |
| 731 | Journal of Comparative Psychology, 122(3), 312–318.                                    |
| 732 | http://doi.org/10.1037/0735-7036.122.3.312                                             |
| 733 |                                                                                        |
| 734 | Furrer, R. D., & Manser, M. B. (2009). The evolution of urgency-based and              |
| 735 | functionally referential alarm calls in ground-dwelling species. American              |
| 736 | Naturalist, 173(3), 400-410. http://doi.org/10.1086/596541                             |
| 737 |                                                                                        |
| 738 | Gibb, J. A. (1960). Populations of tits and goldcrests and their food supply in pine   |
| 739 | plantations. Ibis, 102(2), 163–208.                                                    |
| 740 |                                                                                        |
| 741 | Gill, S. A., & Bierema, A. M. K. (2013). On the meaning of alarm calls: a review of    |
| 742 | functional reference in avian alarm calling. Ethology, 119, 449-461.                   |
| 743 |                                                                                        |
| 744 | Gill, S. A., & Sealy, S. G. (2004). Functional reference in an alarm signal given      |
| 745 | during nest defense: seet calls of yellow warblers denote brood-parasitic brown-       |

| 746 | headed cowbirds. <i>Behavioral Ecology and Sociobiology</i> , 56(1), 71–80.                    |
|-----|------------------------------------------------------------------------------------------------|
| 747 |                                                                                                |
| 748 | Goodale, E., & Kotagama, S. W. (2005a). Alarm calling in Sri Lankan mixed-species              |
| 749 | bird flocks. Auk, 122(1), 108–120.                                                             |
| 750 |                                                                                                |
| 751 | Goodale, E., & Kotagama, S. W. (2005b). Testing the roles of species in mixed-                 |
| 752 | species bird flocks of a Sri Lankan rain forest. Journal of Tropical Ecology, 21(6),           |
| 753 | 669–676.                                                                                       |
| 754 |                                                                                                |
| 755 | Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C., & Ruxton, G. D. (2010).               |
| 756 | Interspecific information transfer influences animal community structure. Trends               |
| 757 | in Ecology & Evolution, 25(6), 354-361. http://doi.org/10.1016/j.tree.2010.01.002              |
| 758 |                                                                                                |
| 759 | Graham, I. M., Redpath, S. M., & Thirgood, S. J. (1995). The diet and breeding                 |
| 760 | density of Common Buzzards Buteo buteo in relation to indices of prey abundance.               |
| 761 | Bird Study, 42(2), 165-173. http://doi.org/10.1080/00063659509477162                           |
| 762 |                                                                                                |
| 763 | Griesser, M. (2008). Referential calls signal predator behavior in a group-living bird         |
| 764 | species. Current Biology, 18(1), 69-73.                                                        |
| 765 |                                                                                                |
| 766 | Haftorn, S. (1993). Ontogeny of the vocal repertoire in the willow tit <i>Parus montanus</i> . |
| 767 | Ornis Scandinavica, 24(4), 267–289.                                                            |
| 768 |                                                                                                |
| 769 | Hailman, J. P. (1989). The Organization of Major Vocalizations in the Paridae. The             |
| 770 | Wilson Bulletin, 101(2), 305–343.                                                              |

| 771 |                                                                                        |
|-----|----------------------------------------------------------------------------------------|
| 772 | Hailman, J. P., & Ficken, M. S. (1996). Comparative Analysis of Vocal Repertoires,     |
| 773 | with Reference to Chickadees. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology         |
| 774 | and Evolution of Acoustic Communication in Birds (pp. 136–159). Ithaca.                |
| 775 |                                                                                        |
| 776 | Hetrick, S. A., & Sieving, K. E. (2011). Antipredator calls of tufted titmice and      |
| 777 | interspecific transfer of encoded threat information. Behavioral Ecology, 23(1),       |
| 778 | 83–92.                                                                                 |
| 779 |                                                                                        |
| 780 | Johansson, U. S., Ekman, J., Bowie, R. C. K., Halvarsson, P., Ohlson, J. I., Price, T. |
| 781 | D., & Ericson, P. G. P. (2013). A complete multilocus species phylogeny of the tits    |
| 782 | and chickadees (Aves: Paridae). Molecular Phylogenetics and Evolution, 69(3),          |
| 783 | 852-860. http://doi.org/10.1016/j.ympev.2013.06.019                                    |
| 784 |                                                                                        |
| 785 | Klump, G. M., & Shalter, M. D. (1984). Acoustic behaviour of birds and mammals in      |
| 786 | the predator context. Zeitschrift Fur Tierpsychologie - Journal of Comparative         |
| 787 | Ethology, 66, 189–226.                                                                 |
| 788 |                                                                                        |
| 789 | Langham, G. M., Contreras, T. A., & Sieving, K. E. (2006). Why pishing works:          |
| 790 | Titmouse (Paridae) scolds elicit a generalized response in bird communities.           |
| 791 | Ecoscience, 13(4), 485–496.                                                            |
| 792 |                                                                                        |
| 793 | Latimer, W. (1977). A comparative study of the songs and alarm calls of some Parus     |
| 794 | species. Zeitschrift Fur Tierpsychologie, 45, 414–433.                                 |

| 796 | le Roux, A., Cherry, M. I., & Manser, M. B. (2008). The audience effect in a        |
|-----|-------------------------------------------------------------------------------------|
| 797 | facultatively social mammal, the yellow mongoose, Cynictis penicillata. Animal      |
| 798 | Behaviour, 75(3), 943-949. http://doi.org/10.1016/j.anbehav.2007.07.014             |
| 799 |                                                                                     |
| 800 | Lima, S. L. (1993). Ecological and evolutionary perspectives on escape from         |
| 801 | predatory attack: a survey of North American birds. The Wilson Bulletin, 105(1),    |
| 802 | 1–47.                                                                               |
| 803 |                                                                                     |
| 804 | Magrath, R. D., Haff, T. M., Fallow, P. M., & Radford, A. N. (2014). Eavesdropping  |
| 805 | on heterospecific alarm calls: from mechanisms to consequences. Biological          |
| 806 | Reviews, 90(2), 1-27. http://doi.org/10.1111/brv.12122                              |
| 807 |                                                                                     |
| 808 | Manser, M. B. (2001). The acoustic structure of suricates' alarm calls varies with  |
| 809 | predator type and the level of response urgency. Proceedings of the Royal Society   |
| 810 | B:Biological Sciences, 268(1483), 2315–2324.                                        |
| 811 |                                                                                     |
| 812 | Manser, M. B., Jansen, D. A. W. A. M., Graw, B., Hollén, L. I., Bousquet, C. A. H., |
| 813 | Furrer, R. D., & le Roux, A. (2014). Vocal Complexity in Meerkats and Other         |
| 814 | Mongoose Species. Advances in the Study of Behavior (1st ed., Vol. 46, pp. 281-     |
| 815 | 310). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800286-5.00006-7               |
| 816 |                                                                                     |
| 817 | Marler, P. (1955). Characteristics of some animal calls. Nature, 176(4470), 6-8.    |
| 818 |                                                                                     |
| 819 | Marler, P. (1967). Animal communication signals. Science, 157(3790), 769–774.       |
| 820 |                                                                                     |

| 821 | Marler, P., | Evans. | C. S., 6 | & Hauser. | M. D. | (1992) | ). Animal | signals: | Motivational, |
|-----|-------------|--------|----------|-----------|-------|--------|-----------|----------|---------------|
|     |             | ,      |          |           |       | (      | ,         | ~        |               |

- 822 referential, or both? In H. Papoušek, U. Jürgens, & M. Papoušek (Eds.), Nonverbal
- 823 *Vocal Communication: Comparative and Developmental Approaches* (pp. 64–84).
- 824 Cambridge: Cambridge University Press.
- 825
- 826 Millon, A., Nielsen, J. T., Bretagnolle, V., & Møller, A. P. (2009). Predator-prey
- relationships in a changing environment: the case of the sparrowhawk and its avian
- prey community in a rural area. *Journal of Animal Ecology*, 78(5), 1086–1095.
- 829 http://doi.org/10.1111/j.1365-2656.2009.01575.x
- 830
- 831 Morse, D. H. (1978). Structure and foraging patterns of flocks of tits and associated
- species in an English woodland during the winter. *Ibis*, *120*(3), 298–312.
- 833 http://doi.org/10.1111/j.1474-919X.1978.tb06790.x
- 834
- 835 Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., &
- Thuiller, W. (2012). How to measure and test phylogenetic signal. *Methods in*
- 837 *Ecology and Evolution*, *3*(4), 743–756. http://doi.org/10.1111/j.2041-
- 838 210X.2012.00196.x
- 839
- 840 Murphy, D., Lea, S. E. G., & Zuberbühler, K. (2013). Male blue monkey alarm calls
- encode predator type and distance. *Animal Behaviour*, 85(1), 119–125.
- 842 http://doi.org/10.1016/j.anbehav.2012.10.015
- 843
- Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian
- data: a practical guide for biologists. *Biological Reviews*, 85, 935-956.

Nakagawa, S., & Schielzeth, H. (2012). A general and simple method for obtaining  $R^2$ 

| 846 | http://doi.org/10.111 | 1/j.1469-185X.2010.00141.x |
|-----|-----------------------|----------------------------|
|-----|-----------------------|----------------------------|

847

| 849 | from generalized linear mixed-effects models. Methods in Ecology and Evolution,                   |
|-----|---------------------------------------------------------------------------------------------------|
| 850 | 4(2), 133–142. http://doi.org/10.1111/j.2041-210x.2012.00261.x                                    |
| 851 |                                                                                                   |
| 852 | Nakamura, T. (1970). A study of Paridae community in Japan, 141–169.                              |
| 853 |                                                                                                   |
| 854 | Owings, D. H., & Virginia, R. A. (1978). Alarm calls of California ground squirrels               |
| 855 | (Spermophilus beecheyi). Zeitschrift Fur Tierpsychologie, 46(1), 58–70.                           |
| 856 |                                                                                                   |
| 857 | Pagel, M. (1999). Inferring the historical patterns of biological evolution. <i>Nature</i> , 401, |
| 858 | 877–884.                                                                                          |
| 859 |                                                                                                   |
| 860 | Peres, C. A. (1993). Anti-predation benefits in a mixed-species group of Amazonian                |
| 861 | tamarins. Folia Primatologica; International Journal of Primatology, 61(2), 61–                   |
| 862 | 76.                                                                                               |
| 863 |                                                                                                   |
| 864 | Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical                 |
| 865 | Journal, 316(7139), 1236–1238. http://doi.org/10.1136/bmj.316.7139.1236                           |
| 866 |                                                                                                   |
| 867 | Perrins, C. M. (1979). British Tits. (M. Davies, J. Gilmour, K. Mellanby, & E.                    |
| 868 | Hosking, Eds.) (1st ed.). London, U.K.: William Collins Sons & Co. Ltd.                           |
| 869 |                                                                                                   |
| 870 | Petty, S. J., Patterson, I. J., Anderson, D. I. K., Little, B., & Davison, M. (1995).             |

| 871 | Numbers, breeding performance, and diet of the sparrowhawk Accipiter nisus and         |
|-----|----------------------------------------------------------------------------------------|
| 872 | merlin Falco columbarius in relation to cone crops and seed-eating finches. Forest     |
| 873 | Ecology and Management, 79, 133–146.                                                   |
| 874 |                                                                                        |
| 875 | Placer, J., & Slobodchikoff, C. N. (2000). A fuzzy-neural system for identification of |
| 876 | species-specific alarm calls of Gunnison's prairie dogs. Behavioural Processes, 52,    |
| 877 | 1–9.                                                                                   |
| 878 |                                                                                        |
| 879 | Placer, J., & Slobodchikoff, C. N. (2004). A method for identifying sounds used in the |
| 880 | classification of alarm calls. Behavioural Processes, 67(1), 87-98.                    |
| 881 | http://doi.org/10.1016/j.beproc.2004.03.001                                            |
| 882 |                                                                                        |
| 883 | R Core Team. (2014). R: A language and environment for statistical computing (3rd      |
| 884 | ed.). Vienna, Austria: R Foundation for Statistical Computing.                         |
| 885 |                                                                                        |
| 886 | Randler, C. (2012). A possible phylogenetically conserved urgency response of great    |
| 887 | tits (Parus major) towards allopatric mobbing calls. Behavioral Ecology and            |
| 888 | Sociobiology, 66(5), 675–681.                                                          |
| 889 |                                                                                        |
| 890 | Rothman, K. J. (1990). No adjustments are needed for multiple comparisons.             |
| 891 | Epidemiology, $1(1)$ , 43–46.                                                          |
| 892 |                                                                                        |
| 893 | Seyfarth, R. M., & Cheney, D. L. (2003). Signalers and receivers in animal             |
| 894 | communication. Annual Review of Psychology, 54, 145–173.                               |
| 895 |                                                                                        |

| 896 | Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls:     |
|-----|-------------------------------------------------------------------------------------|
| 897 | Semantic communication in a free-ranging primate. Animal Behaviour, 28(4),          |
| 898 | 1070–1094.                                                                          |
| 899 |                                                                                     |
| 900 | Shelly, E. L., & Blumstein, D. T. (2005). The evolution of vocal alarm              |
| 901 | communication in rodents. Behavioral Ecology, 16(1), 169-177.                       |
| 902 | http://doi.org/10.1093/beheco/arh148                                                |
| 903 |                                                                                     |
| 904 | Sieving, K. E., Hetrick, S. A., & Avery, M. L. (2010). The versatility of graded    |
| 905 | acoustic measures in classification of predation threats by the tufted titmouse     |
| 906 | Baeolophus bicolor: exploring a mixed framework for threat communication.           |
| 907 | Oikos, 119(2), 264–276.                                                             |
| 908 |                                                                                     |
| 909 | Slobodchikoff, C. N. (2010). Alarm calls in mammals and birds. Encyclopedia of      |
| 910 | Animal Behavior, 40–43.                                                             |
| 911 |                                                                                     |
| 912 | Soard, C. M., & Ritchison, G. (2009). Chick-a-dee calls of Carolina chickadees      |
| 913 | convey information about degree of threat posed by avian predators. Animal          |
| 914 | Behaviour, 78(6), 1447–1453.                                                        |
| 915 |                                                                                     |
| 916 | Sullivan, K. (1985). Selective alarm calling by downy woodpeckers in mixed-species  |
| 917 | flocks. Auk, 184–187.                                                               |
| 918 |                                                                                     |
| 919 | Suzuki, T. N. (2012). Referential mobbing calls elicit different predator-searching |
| 920 | behaviours in Japanese great tits. Animal Behaviour, 84(1), 53–57.                  |

| 921 |                                                                                        |
|-----|----------------------------------------------------------------------------------------|
| 922 | Suzuki, T. N. (2014). Communication about predator type by a bird using discrete,      |
| 923 | graded and combinatorial variation in alarm calls. Animal Behaviour, 87, 59-65.        |
| 924 |                                                                                        |
| 925 | Suzuki, T. N. (2016). Semantic communication in birds: evidence from field research    |
| 926 | over the past two decades. Ecological Research, 1–14.                                  |
| 927 |                                                                                        |
| 928 | Suzuki, T. N., & Ueda, K. (2013). Mobbing calls of Japanese tits signal predator type: |
| 929 | field observations of natural predator encounters. The Wilson Journal of               |
| 930 | Ornithology, 125(2), 412–415.                                                          |
| 931 |                                                                                        |
| 932 | Suzuki, T. N., Wheatcroft, D. J., & Griesser, M. (2016). Experimental evidence for     |
| 933 | compositional syntax in bird calls. Nature Communications, 7, 1-7.                     |
| 934 | http://doi.org/10.1038/ncomms10986                                                     |
| 935 |                                                                                        |
| 936 | Swann, R. L., & Etheridge, B. (2009). A comparison of breeding success and prey of     |
| 937 | the Common Buzzard Buteo buteo in two areas of northern Scotland. Bird Study,          |
| 938 | 42(1), 37-43. http://doi.org/10.1080/00063659509477146                                 |
| 939 |                                                                                        |
| 940 | Šálek, M., Marhoul, P., Pintíř, J., Kopecký, T., & Slabý, L. (2004). Importance of     |
| 941 | unmanaged wasteland patches for the grey partridge Perdix perdix in suburban           |
| 942 | habitats. Acta Oecologica, 25(1-2), 23–33.                                             |
| 943 | http://doi.org/10.1016/j.actao.2003.10.003                                             |
| 944 |                                                                                        |
|     |                                                                                        |

945 Templeton, C. N., Greene, E., & Davis, K. (2005). Allometry of alarm calls: black-

| 946 | capped chickadees encode information about predator size. Science, 308(5730),        |
|-----|--------------------------------------------------------------------------------------|
| 947 | 1934–1937.                                                                           |
| 948 |                                                                                      |
| 949 | Townsend, S. W., & Manser, M. B. (2013). Functionally referential communication in   |
| 950 | mammals: the past, present and the future. <i>Ethology</i> , 119(1), 1–11.           |
| 951 | http://doi.org/10.1111/eth.12015                                                     |
| 952 |                                                                                      |
| 953 | Wilson, D. R., & Mennill, D. J. (2011). Duty cycle, not signal structure, explains   |
| 954 | conspecific and heterospecific responses to the calls of black-capped chickadees     |
| 955 | (Poecile atricapillus). Behavioral Ecology, 22(4), 784–790.                          |
| 956 |                                                                                      |
| 957 | Yorzinski, J. L., & Vehrencamp, S. L. (2009). The effect of predator type and danger |
| 958 | level on the mob calls of the American crow. Condor, 111(1), 159–168.                |
| 959 | http://doi.org/10.1525/cond.2009.080057                                              |
| 960 |                                                                                      |
| 961 |                                                                                      |
| 962 |                                                                                      |
| 963 |                                                                                      |
| 964 |                                                                                      |
| 965 |                                                                                      |
| 966 |                                                                                      |
| 967 |                                                                                      |
| 968 |                                                                                      |
| 969 |                                                                                      |

-

| Great Tit                                                      | !<br>                                       |                                                |               |                                |             |                           |             |                  |            |           |               |                |                |                 |               |              |                |                | Blue Tit  | Species             |
|----------------------------------------------------------------|---------------------------------------------|------------------------------------------------|---------------|--------------------------------|-------------|---------------------------|-------------|------------------|------------|-----------|---------------|----------------|----------------|-----------------|---------------|--------------|----------------|----------------|-----------|---------------------|
| Call rate<br>Number of                                         | 1                                           |                                                |               | Propensity to use              |             |                           |             |                  |            |           | Proportion of |                |                |                 |               |              |                | Number of      | Call rate | Encoding method     |
| All<br>Total elements<br>Intro elements<br>Jar/rattle elements | Frequency-modulated calls<br>Short elements | D elements<br>Chirp elements<br>Tonal elements | Exit elements | Intro elements<br>Mid elements | Short calls | Frequency-modulated calls | Tonal calls | D calls          | Exit calls | Mid calls | Intro calls   | Tonal elements | Chirp elements | D elements      | Exit elements | Mid elements | Intro elements | Total elements | All       | Call / element type |
|                                                                |                                             | w w                                            | 2             |                                |             |                           |             |                  |            | ~~~~      |               |                |                |                 |               |              |                |                |           | Normality           |
| log<br>log                                                     |                                             |                                                |               |                                |             |                           |             |                  |            |           |               |                |                | boxcox:<br>0.29 | log           |              | log            |                |           | Transform           |
| lmer<br>lmer<br>lmer                                           | glmer<br>lmer                               | lmer<br>glmer<br>Imer                          | lmer          | glmer<br>lmer                  | glmer       | glmer                     | glmer       | glmer            | glmer      | lmer      | glmer         | lmer           | lmer           | lmer            | lmer          | lmer         | lmer           | lmer           | lmer      | Model<br>Type       |
| identity<br>Gaussian<br>Gaussian                               | Gaussian<br>Gaussian                        | Gaussian<br>Gaussian                           | Gaussian      | binomial<br>Gaussian           | binomial    | binomial                  | binomial    | binomial         | binomial   | Gaussian  | binomial      | Gaussian       | Gaussian       | Gaussian        | Gaussian      | Gaussian     | Gaussian       | Gaussian       | identity  | Family              |
| log<br>identity<br>identity<br>identity                        | logit<br>identity                           | identity<br>logit<br>identity                  | identity      | logit<br>identity              | logit       | logit                     | logit       | logit            | logit      | identity  | logit         | identity       | identity       | identity        | identity      | identity     | identity       | identity       | log       | Link                |
| 44.00<br>0.65<br>0.38<br>0.05                                  | 9.63<br>17.27                               | 3.06<br>4.78<br>14.35                          | 14.78         | 1.59<br>33.01                  | 3.83        | 3.16                      | 14.17       | 4.18<br>17.04    | 6.27       | 3.25      | 1.68          | 1.26           | 0.92           | 28.84           | 0.18          | 6.76         | 2.38           | 20.54          | 43.10     | χ2                  |
| <0.001<br>0.721<br>0.827<br>0.975                              | 0.008<br><0.001                             | 0.217<br>0.092                                 | 0.001         | 0.451                          | 0.148       | 0.206                     | 0.001       | <b>&lt;0.001</b> | 0.044      | 0.197     | 0.432         | 0.553          | 0.630          | <0.001          | 0.912         | 0.034        | 0.305          | <0.001         | <0.001    | p<br>value          |

Supplementary table 1. Type III Wald Chi-square test results for predator type (control, buzzard, or sparrowhawk) as a significant predictor of

Information encoding in Paridae

970

971 variation in vocal response. Planed comparison t and z test results. § indicates either non-normally distributed residuals (linear mixed models) or

## Coal tit Proportion of Number of Call rate Propensity to use Proportion of Slide elements S-dot elements Multi calls Squeak elements Slide elements S-dot elements S elements Mt elements Dot elements S elements Peak elements Mt elements Hook elements Churp elements Total elements All Intro elements Intro calls Tonal elements Peak elements Mound elements Hook elements Churp elements Bowl elements Squeak elements Mound elements Dot elements Bowl elements Tonal elements Chirp elements D elements Jar/rattle elements Tonal calls Chirp calls D calls Jar/rattle calls Chirp elements ŝ $\infty$ $\infty$ $\infty \infty$ 8 log log boxcox:-0.48 log log log boxcox:-0.30 log boxcox:-8.41 boxcox:-1.70 glmer Imer glmer glmer glmer lmer lmer glmer Imer lmer lmer lmer lmer lmer lmer lmer lmer glmer glmer glmer glmer lmer Gaussian binomial identity binomial binomial Gaussian binomial Gaussian Gaussian binomial Gaussian binomial Gaussian Gaussian Gaussian Gaussian Gaussian binomial binomial binomial Gaussian identity logit cloglog cloglog cloglog identity identity logit identity logit identity logit identity identity identity log logit logit 21.84 11.19 11.97 3.16 15.46 3.68 10.96 3.54 5.42 0.98 3.18 0.34 3.18 7.05 0.63 0.53 0.39 0.50 4.25 1.87 3.71 0.48 0.13 7.55 1.85 0.56 0.40 5.11 0.56 2.95 2.70 1.44 1.21 2.25 7.27 1.78 <0.001 **<0.001** 0.159 0.486 0.441 0.545 0.758 0.229 0.260 0.170 0.067 **0.026** 0.844 0.324 0.614 0.204 0.206 0.003 0.204 0.412 0.029 0.0040.729 0.766 0.825 0.119 0.393 0.939 0.023 0.789 0.157 0.004 0.819 0.078 0.397 0.756

## Information encoding in Paridae

|                                                                                                                                                                                                                           | Marsh Tit                                                                                                                                                                    | Crested<br>Tit                                                                                                                                                                                                                                                                  |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Propensity to use                                                                                                                                                                                                         | Propensity to<br>produce<br>Call rate<br>Number of<br>Proportion of                                                                                                          | Call rate<br>Number of<br>Proportion of                                                                                                                                                                                                                                         | Propensity to use |
| Peak tonal elements<br>Broken tonal elements<br>Whole tonal elements<br>Ptew calls<br>dä/D calls<br>Complete calls<br>Intro elements<br>dä/D elements<br>All tonal elements<br>Full tonal elements<br>Peak tonal elements | Trill calls<br>Frequency-modulated calls<br>Total elements<br>Intro elements<br>da/D elements<br>da/D elements<br>da/D elements<br>All tonal elements<br>Full tonal elements | Churp elements<br>Dot elements<br>Hook elements<br>Mound elements<br>Selements<br>S-dot elements<br>S-dot elements<br>Slide elements<br>Squeak elements<br>Multi calls<br>All<br>Total elements<br>Trill elements<br>Trill elements<br>Trill calls<br>Frequency-modulated calls | Bowl elements     |
| w w w w                                                                                                                                                                                                                   | w w w w                                                                                                                                                                      | w w w                                                                                                                                                                                                                                                                           |                   |
|                                                                                                                                                                                                                           | log                                                                                                                                                                          | bo<br>Bo                                                                                                                                                                                                                                                                        |                   |
| glmer<br>glmer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer                                                                                                                                                            | Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer                                                                                                                 | Imer<br>Imer<br>Imer<br>glmer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer<br>Imer                                                                                                                                                                                           | lmer              |
| Gaussian<br>binomial<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian                                                                                                                              | Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian                                                                                 | Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian<br>Gaussian                                                                                                                                                | Gaussian          |
| identity<br>logit<br>logit<br>identity<br>identity<br>identity<br>identity<br>identity                                                                                                                                    | identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity                                                                     | identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity<br>identity                                                                                                                        | identity          |
| 3.38<br>5.44<br>0.96<br>0.96<br>0.54<br>8.28<br>8.28<br>2.98                                                                                                                                                              | 4.72<br>6.45<br>10.39<br>0.10<br>0.06<br>6.88                                                                                                                                | 2.41<br>9.222<br>1.41<br>1.25<br>1.25<br>1.25<br>1.25<br>1.25<br>2.93<br>2.293<br>2.293<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.5                                                                                                                          | 1.64              |
| 0.184<br>0.131<br>0.972<br>0.960<br>0.960<br>0.764<br>0.764<br>0.266<br>0.226                                                                                                                                             | 0.094<br>0.040<br>0.503<br>0.002<br>0.950<br>0.972<br>0.972<br>0.972                                                                                                         | 0.300<br>0.216<br>0.329<br>0.487<br>0.487<br>0.487<br>0.487<br>0.487<br>0.487<br>0.487<br>0.487<br>0.487<br>0.243<br>0.243<br>0.243<br>0.243<br>0.760<br>0.243                                                                                                                  | 0.440             |

# Information encoding in Paridae

| Information |
|-------------|
| encoding    |
| in Paridae  |

|            |                  |              |             |                   |            |                  |               |              |             |                   |              |             |          |                   |          | Tit            | Willow    |            |            |                      |                       |
|------------|------------------|--------------|-------------|-------------------|------------|------------------|---------------|--------------|-------------|-------------------|--------------|-------------|----------|-------------------|----------|----------------|-----------|------------|------------|----------------------|-----------------------|
|            |                  |              |             | Propensity to use |            |                  |               |              |             | Proportion of     |              |             |          |                   |          | Number of      | Call rate |            |            |                      |                       |
| Zizi calls | Si-tää-tää calls | Tää elements | Zi elements | Si intro elements | Zizi calls | Si-tää-tää calls | Tää-tää calls | Tää elements | Zi elements | Si intro elements | Tää elements | Zi elements |          | Si intro elements |          | Total elements | All       | dä/D calls | Ptew calls | Whole tonal elements | Broken tonal elements |
|            |                  |              |             |                   |            | ss               |               |              |             |                   |              |             |          |                   |          |                |           |            |            |                      | ŝ                     |
|            |                  |              |             |                   |            |                  |               |              |             |                   | log          | 0.48        | boxcox:- | 0.22              | boxcox:- | log            |           |            |            |                      |                       |
| lmer       | lmer             | lmer         | lmer        | lmer              | lmer       | lmer             | glmer         | glmer        | glmer       | glmer             | lmer         | lmer        |          | lmer              |          | lmer           | lmer      | lmer       | lmer       | lmer                 | lmer                  |
| Gaussian   | Gaussian         | Gaussian     | Gaussian    | Gaussian          | Gaussian   | Gaussian         | binomial      | binomial     | binomial    | binomial          | Gaussian     | Gaussian    |          | Gaussian          |          | Gaussian       | Gaussian  | Gaussian   | Gaussian   | Gaussian             | Gaussian              |
| identity   | identity         | identity     | identity    | identity          | identity   | identity         | logit         | logit        | logit       | logit             | identity     | identity    |          | identity          |          | identity       | identity  | identity   | identity   | identity             | identity              |
| 5.96       | 3.65             | 5.75         | 2.71        | 2.71              | 0.76       | 1.88             | 0.13          | 0.46         | 0.17        | 0.13              | 5.73         | 1.03        |          | 16.46             |          | 7.89           | 46.36     | 0.41       | 8.29       | 2.73                 | 2.15                  |
| 0.051      | 0.162            | 0.057        | 0.258       | 0.258             | 0.684      | 0.391            | 0.938         | 0.795        | 0.919       | 0.938             | 0.057        | 0.599       |          | <0.001            |          | 0.019          | <0.001    | 0.815      | 0.016      | 0.256                | 0.341                 |

\*Acknowledgments

## 1 Acknowledgements

2

3 We thank the Richard K Broughton, St Andrews Botanic Garden, the Rothiemurchus 4 Estate, Cublin Forest, Boat of Garten, the National Parks & Reserve managers, the 5 Forestry Comission, Scottish National Heritage, Yorkshire and Northumberland Wildlife 6 Trusts, and many homeowners for providing access to their gardens and lands. We are 7 grateful Erick Greene for the idea to use 'robo-raptors' and his help designing them and 8 George Jamieson who created the taxidermy mounts. We also thank members of the 9 Healy and Templeton labs for helpful suggestions on the experimental design and 10 interpretation, and Dr. Michael Morrissey for his advice on statistical models. Finally we 11 thank Scott MacDougall-Shackleton, Toshitaka Suzuki, and an anonymous reviewer for 12 their constructive comments on earlier versions of the manuscript. This research was 13 approved by the University of St Andrews School of Biology Ethics Committee 14 (01112013) and funded by NERC (NE/J018694/1), the Royal Society (RG2012R2), the 15 M. J. Murdock Charitable Trust (2014199), and the University of St Andrews (University of St Andrews 600<sup>th</sup> Year Scholarship and the St Leonard's Fee Scholarship). 16