SLOW AND FAST ESCAPE FOR OPEN INTERMITTENT MAPS

MARK F. DEMERS AND MIKE TODD

ABSTRACT. If a system mixes too slowly, putting a hole in it can completely destroy the richness of
the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly
mixing measures. We show that there are three regimes: 1) standard hyperbolic-like behavior
where the rate of mixing is faster than the rate of escape through the hole, there is a unique
limiting absolutely continuous conditionally invariant measure (accim) and there is a complete
thermodynamic description of the dynamics on the survivor set; 2) an intermediate regime, where
the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the
thermodynamic picture breaks down; 3) a subexponentially mixing regime where the slow mixing
means that mass simply accumulates on the parabolic fixed point. We give a complete picture of
the transitions and stability properties (in the size of the hole and as we move through the family)
in this class of open systems. In particular we are able to recover a form of stability in the third
regime above via the dynamics on the survivor set, even when no limiting accim exists.

1. INTRODUCTION AND STATEMENT OF RESULTS

Dynamical systems with holes are examples of systems in which the domain is not invariant under
the dynamics. Such systems arise in a variety of contexts: For example, in the study of non-
attracting invariant sets, as well as in non-equilibrium dynamical systems, in which mass or energy
is allowed to enter or escape. In this latter context, a system with a hole can be viewed as a
component of a much larger system of interacting components. Examples of such studies include
metastable states [KL2, [GHW| BV, [DoW], coherent sets in nonautonomous systems [ErP], and
diffusion in extended systems [DGKK].

To date, systems with holes have been studied principally in situations in which the rate of mixing of
the closed system (before the introduction of the hole) is exponential and therefore the rate of escape
from the system is also exponential. Such systems include expanding maps [PY] [CMS| [CV] [LM],
Smale horseshoes [C], Anosov diffeomorphisms [CM, [CMT], certain unimodal maps [BDM]|, and
dispersing billiards [DWYT, D3] [D4], to name but a few.

In all these papers, the main focus is the existence and physical properties of conditionally invariant
measures, which describe the limiting distribution of mass conditioned on non-escape. Given a
dynamical system, (7', X, %), one identifies a measurable set H € # and studies the open system,

o

T:X — X, where X = X \ H. The n-step survivor sets are defined by X" = N T7*(X), which
correspond to the non-invariant domains of the iterates of the map, 7" = T"| ...
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A measure p on X is called conditionally invariant if

Tu(4) _ p(X'NT(4))

) .

Tp(X) u(X)

= pu(A) for all A € £.

If we set u(X') = A, the relation above can be iterated to obtain 77u(A) = A"u(A), so that a
conditionally invariant measure necessarily predicts an exponential rate of decay of mass from the
open system. Unfortunately, under quite general conditions, uncountably many such measures exist
for any eigenvalue A € (0, 1), even if one restricts to measures absolutely continuous with respect
to a given reference measure [DY], so existence questions are meaningless.

In order to obtain a physically relevant measure, one fixes a reference measure m and focuses on the
existence and properties of limiting distributions obtained by pushing forward m and conditioning
on non-escape, i.e. studying limit points of the sequence mT(’:;(mn 7 For systems with exponential rates
of escape, such limiting distributions are often conditionally invariant measures which describe
the limiting dynamics with respect to a large class of reference measures, and enjoy many of
the properties that equilibrium measures enjoy in closed systems. Moreover, in many cases the
eigenvalue \ associated with such measures describes the exponential rate of escape from the open

system with respect to m,

1 °
—logA = — lim —logm(X™"). (1.1)
n—oo n
Such limiting distributions have been constructed for all the specific systems listed above, under

some assumptions on the size or geometry of the holes.

Recently, there has been interest in open systems exhibiting subexponential rates of escape [DG
APT] DR, FMS|KM], and in particular their relation to slowly mixing systems from non-equilibrium
statistical mechanics [Ya]. Such open systems exhibit qualitatively different behavior from sys-
tems with exponential escape rates. For example, conditionally invariant measures no longer
have a physical interpretation as limiting distributions (although arbitrarily many still exist) and
Tm
m(X")
X .= Nico T74(X \ H), the set of points which never enter the hole [DF]. From the point of view
of limiting distributions, systems with subexponential rates of escape are unstable with respect to
leaks in the system.

limit points of are typically singular (with respect to m) invariant measures supported on

In the present paper, we introduce holes into a class of Manneville-Pomeau maps f = f, of the
unit interval with intermittent behavior. We consider the dynamics of the open system from the
point of view of the family of geometric potentials, t¢p = —tlog|Df|, t € [0,1]. When ¢ = 1, the
conformal measure with respect to ¢ = —log|Df| is Lebesgue measure, with respect to which
these maps have polynomial rates of mixing. As such, the open system has no physically relevant
conditionally invariant measure absolutely continuous with respect to Lebesgue [DF]. But for ¢ < 1,
the maps admit conformal measures m; with respect to t¢ that are exponentially mixing and so
have exponential rates of escape, where the mixing rate converges to zero as t — 1, yielding an
excellent test bed for the study of slow mixing with holes.

Fixing a hole H as described in Section we are able to precisely characterize the dynamics of
the open system in terms of the parameter ¢ in 3 distinct regimes: ¢ € [0,¢), ¢ € [t7,1), and t = 1,
where t is the Hausdorff dimension of the survivor set.

e When t € [0,t), the escape rate (1.1]) with respect to m; is slower than the rate of mixing
of the closed system, and so the transfer operator associated with the open system has
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a spectral gap. In this setting, the classical results proved for strongly hyperbolic open
systems mentioned above are recovered (Theorem .
e When t € [tH ,1), the escape rate with respect to m; equals the rate of mixing of the
closed system and the associated transfer operator for the open system has no spectral gap;
fime
| Frm
absolutely continuous with respect to m; (Theorem .
e When ¢ = 1, the rate of escape with respect to Lebesgue is polynomial and the sequence
fimy

[ frma]

however, averaged limit points of the form , yield conditionally invariant measures,

converges to the point mass at the neutral fixed point [DF].

In order to recover a form of stability for the open system when ¢ = 1, we use an induced map

to construct an invariant measure on the survivor set. When ¢ € [0,¢/], these measures maximize

the pressure on the survivor set and satisfy an escape rate formula (see Theorem . When

te (tH , 1], these measures do not maximize the pressure on the survivor set, but they do converge

to the absolutely continuous equilibrium state for the closed system as the hole shrinks to a point

(Theorem . Thus, although the system is unstable with respect to leaks from the point of
fema

view of the physical limit lim -#—- when ¢t = 1, we are able to recover a type of stability from
n—oo |fimil

the point of view of these invariant measures supported on the survivor set.

One of the principal tools we use is a Young tower, which is a type of Markov extension for the
open system. It is of independent interest that in order to obtain the sharp division between
the regimes listed above, we significantly strengthen previous results on Young towers with holes.
Specifically, we prove the existence of a spectral gap for the associated transfer operator under a
weak asymptotic condition: The escape rate from the tower is strictly less than the rate of decay in
the levels of the tower. Previous results [D1, BDM, [DWY1] assumed strong control on the amount
of mass lost at each step, while we are able to prove comparable results under this much weaker
and more natural condition. Our results are in some sense optimal: When the escape rate equals
the rate of decay in the levels of the tower, the essential spectral radius and spectral radius of the
associated transfer operator on the relevant function space coincide. This optimality suggests that
these results provide a new paradigm for open non-uniformly hyperbolic systems in general.

The paper is organized as follows. In the remainder of Section [I] we state our assumptions precisely,
define the relevant terminology and state our main results. In Section[2]we provide some background
and initial results on pressure, while in Section 3| we prove an essential inequality relating the escape
rate to the difference in pressures between the open and closed systems. In Sections [ [5] and [6] we
prove our main theorems in the three regimes outlined above. Section [7] contains some examples of
large holes that do not satisfy our conditions and some analysis of the dynamics in such cases.

1.1. Class of maps. For v € (0,1), we will study the class of Manneville-Pomeau maps defined
by

fef iz {xa +2027) iz €[0,1/2)
2 — 1 if z € [1/2,1].
Such maps exhibit intermittent behavior due to the neutral fixed point 0 and have been well-studied,
most commonly from the point of view of Lebesgue measure [Y2l, [LSV1], which is the conformal
measure with respect to the potential ¢ := —log|Df|. We will be interested in the related family
of geometric potentials t¢, t € [0, 1], and their associated pressures.
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For a dynamical system (7, X, %) with some measurable and metric structure and a measurable
potential ¥ : X — [—00, 00|, we define the pressure of this system to be

P(y) = Pr) = sup{hT<u>+/w i e My and — [ i < oo}.

Here, Mr is the set of ergodic, T-invariant probability measures on X and h,(7T) is the metric
entropy of u. Note that the restriction on the integral is to deal with cases where the system has
infinite entropy, so that the sum defining the pressure may not make sense.

For our class of maps and potentials, we set p(t) := P(t¢). Note that p(t) = 0 for t > 1. It is
well-known that for ¢ < 1 there exists a unique (t¢ — p(t))-conformal measure m; (note that m; is
Lebesgue measure). Moreover,

e For v € (0,1) and ¢t = 1, there is an equilibrium state p; for ¢ that is absolutely continuous
with respect to my. The system is subexponentially mixing with respect to ;.

e For ¢ < 1, there exists a unique equilibrium state u; for t¢, which is exponentially mixing
and furthermore equivalent to m;.

(These facts can be derived from [S3, Proposition 1]; for an alternative perspective on parabolic
systems see [MU, Chapter 8].) We will study the dynamics of the related open system with respect
to this family of potentials, taking their associated conformal measures m; as our reference measures.

1.2. Introduction of holes. We next introduce a hole H into the system, which in this paper
will be a finite union of intervals. The sets I = N of"(I\ H), n > 0, denote the set of points
that have not entered H by time n. Define f = flj1 to be the map with the hole and its iterates,
f” := f"|jn. The dynamics of this map define the open system.

A particularly convenient form of hole is defined as follows. Let P; be the standard renewal
partition, i.e., Z € P; implies Z is an interval for which either f(Z) € Py, or Z = [1/2,1). We then
let P, := P11V (\/Z;(l) f7%{0,1/2),[1/2, 1)}) We fix Ny > 0 and then define a hole to be some

collection of elements of Py,: we call such a set a Markov hole.

Before formulating a condition on the hole, we introduce an induced map F , defined as the first
return map to Y = [1/2,1)\ H under f. Let 7 : ¥ — N denote the inducing time, so that either
F(z) = f7@(z) € Y or F(z) = f7@(z) € H. In the absence of a hole, F': Y — Y would be a
full-branched map; however, once a hole has been introduced, F is no longer full branched. Let Q
denote the coarsest partition of Y by images of first returns of elements of Py,. Note that Q is a
finite partition of Y\ H due to our definition of P;.

The classical definitions of transitivity via open sets no longer make sense for the open systemlﬂ
(since everything except the hole would be transient), so we adopt the following combinatorial
definition in terms of the Markov partition.

We say that H is non-swallowing if:

(1) Q is transitive on elements: For each pair Q1,Q2 € Q, In € N such that f"(Ql) NQy # 0;
(2) For all 6 >0, mi(F(1/2,1/2+4)) > 0.

IThe open system can be decomposed into a disjoint union of open intervals I = U, I"=1\ I" (mod 0) such
that f(/"" '\ [") =12\ """ and f*(I"" '\ ") C H.
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Otherwise, we call the hole swallowing. Define X :=Y \ H = Ugeo@. Note that our definition of
non-swallowing implies that F'|y is transitive on elements, but not necessarily aperiodic; however,
in Lemma we will show that f is aperiodic on elements with this definition.

Condition (2) ensures that the system has repeated passes through a neighborhood of the neutral
fixed point: Were this condition violated, much of the non-expansive behavior present in the closed
system would be lost or trivialized. Examples of swallowing holes and a brief description of the
dynamics in these nontransitive cases are given in Section [7] For our main results, we will assume
that our hole is non-swallowing.

Below we record two important facts about the open system that follow from the definition of
non-swallowing.

Lemma 1.1. Let X;, i € N, denote the mazximal intervals in [1/2, 1] on which F is smooth and
injective. Then there exists K1 > 0 so that |{T =n}| < < Kin U *3) and #{i:7(X;) =n} < Cn, for
some Cn, = 1 depending only on Ny. Moreover, if H is non- swallowmg then there exists Ko > 0
such that for any N € N, there exists n > N with [{T =n}| > Kon~ (1+3)

Proof. The first fact follows immediately from standard constructions. See for example, [Y2, [LSVI].
The second uses the same constructions, with the added information that there are inducing do-
mains arbitrarily close to 1/2. O

Lemma 1.2. If H is a non-swallowing Markov hole then the survivor set I = N 0[” has positive
entropy.

Proof. Let A and B be 1-cylinders for F. By definition of non-swallowing, there exist n4, ng € N
be such that f"4(A) = f"B8(B) = X. Then our system contains a horseshoe with entropy at least
log2/ max{n4,ng} > 0. O

Given the potential ¢ = —log|Df|, set " to be the punctured potential,
ST (2) — {gb(x) if €T\ H,

-0 ifzeH

Then let p(t) = P(t¢) and p(t) := P(t¢). Due to the neutral fixed point, it is clear that
p(t) = pf(t) >0, for t € [0,1]. Also, since ¢ is bounded, the condition — 1l o dv < oo is equivalent
to v(H) = 0, which implies the supremum in P(t¢') is over invariant measures supported on the
survivor set, 1.

1.3. Transfer Operator. We will study the evolution of measures from the point of view of the
transfer operators associated with our family of potentials. Given the potential t¢, we define the
associated transfer operator acting on L'(m;) by

Lif(x) = Lgpiyf(x) = Y fy)e?W
yef~lz

When we introduce a hole, the transfer operator for the open system corresponds to the transfer
operator for the punctured potential,

Eotf(x) = £t¢H_p(t)f(ZC) = ﬁtqb—p(t)(lfl . f)(x) = Z f(y)€t¢(y)—p(t)

yef-lz
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Since my is conformal with respect to t¢ — p(t), we have
/é?fdmt = [ fdm,
ITL

so that the spectral properties of L are tied to the rate of escape of the open system with respect
to my.

1.4. Main results. The standing assumptions of this section are that f = f, is a map as described
above and H is a non-swallowing hole.

One of the key quantities associated with an open system is the exponential rate of escape. We
will be primarily concerned with the rate of escape with respect to the conformal measures m;. To
this end we define,

_ 1 . 1 o
log Ay = lim sup Z logm(I*) and log ), = limkinf z log my (1),
k
and when these two quantities coincide we denote the common value log A;.

A fundamental relation between pressure and escape is given by the following proposition, which
we prove in Section [3]

Proposition 1.3. For any t € [0, 1], we have
log A, > p(t) — p(t).

In fact, Corollary shows that for the class of maps we study here, the inequality above is always
an equality.

Whether the punctured pressure p' (t) is positive or zero has a strong influence on the dynamics
of the open system with respect to the reference measure m;. The following series of results
characterizes this behavior in the relevant regimes. To this end, define

t .= sup{t e R: pf(t) > 0}.

By Lemma the following result applies in all non-swallowing cases.
Lemma 1.4. If I has positive entropy, then t¥ € (0,1] and p™ (t) = 0.

Proof. First note that ¢ ~ p'(t) is a continuous function of t since ¢ is bounded. We have
pH(t) < p(t) =0 for all t > 1, and indeed p (1) = 0 as well, since for example hs, (f) + [ ¢ déy = 0
where &y denotes the point mass at 0. Also, p(0) > 0 since the entropy on I is assumed to be
positive. Thus, by the continuity of pf(t), ¥ is finite and is contained in (0, 1]. O

Note that techniques described later in this paper further show that t < 1 for any non-trivial
hole.

Our next proposition establishes t¥ as the Hausdorff dimension of the survivor set and describes
the behavior of the pressure function on both sides of tf. As in [IT2], we say that a potential
¢ is recurrent if there exists a finite conservative (¢ — P(¢))-conformal measure; and transient
otherwise. Recurrence can also be related to induced potentials. The potential for the induced
map F' corresponding to ¢ is

T—1
=0
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The following is [IT1, Lemma 4.1]. We note that the result only requires that the induced potential
® has good distortion properties, for example is locally Holder (see Section .

Lemma 1.5. P(® — P(¢)7) < 0.

As described in Section [2.1] below, for our choice of inducing scheme, ¢ is recurrent if and only if
P(® — P(¢)T) =0.

Proposition 1.6. Suppose that H is a non-swallowing Markov hole.

) p(t7) =0 and P(t" @) = 0.
) dim (ioo) =tH

(c) t7 > 135

(d) If t >t then p H(t) =0 and we have P(t<I>H —pH (1)) < 0. Hence to! is transient.
e) ft < tH, then pf (t) > 0 and P(t®" — pH (t)7) = 0. Hence t¢! is recurrent.

£) DpP(t") = 0 if t" € (v/(1+7),2v/(1 +7)]. Otherwisd] D~p () < 0.

Proposition suggests that t = ¢t is a dividing line between qualitatively different behaviors
of the dynamics with respect to the conformal measures m;. The following theorem demonstrates
that the dynamics is strongly hyperbolic in the regime ¢ € [0,¢7). The proof of the theorem uses
the induced map F' : Y O to construct an extension of the open system, known as a Young tower,
which we denote by A. Young towers are defined precisely in Section

Theorem 1.7. (The case t € [0,t): uniformly hyperbolic behavior.) Fiz q > 0 which will deter-
mine the class of C? functions that we will lift to A.

Ifﬂ —log A\t < p(t), then the following hold.

(1) A\t < 1 exists and is the spectral radius of the punctured transfer operator on the tower. The
associated eigenvector projects to a monnegative function gy, which is bounded away from
zero on I\ H and satisfies Eotgt = M\ G-

(2) pH(t) =log A\ + p(t) > 0.

(3) There is a unique (tp™ — pf(t))-conformal measure mi. This is singular with respect to

my and supported on I,
(4) The measure v, := gymi! is an equilibrium state for tp™ — pt(t). Moreover,

vi() = Hm A7™ [ 1bge dmy, for all ¢ € C°(I).
I’I’L

n—oo

(5) The measure ufl := gimy is a conditionally invariant measure with eigenvalue Ny and is a
limiting distribution in the following sense. Let ¢ € CU(I) satisfy ¥ > 0, with v (¢) > 0.
Then
Liy

‘£?¢|L1(mt) L1(my)

for some C > 0 independent of ¥ and o < 1 depending only on q.

— Gt < Co"[lca

2By D™, we mean the derivative with respect to ¢ from the left.

3The condition — log \; < p(t) requires the rate of escape to be slow compared to the pressure, which in this case
coincides with the rate of mixing of the closed system with respect to the equilibrium state p:. For a given hole and
fixed values of v and ¢, this condition can be verified numerically: the pressure can be approximated via periodic
orbits (for example, by adapting the ideas in [BJP]) and the escape rate can be approximated by volume estimates.
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We remark that the convergence to pf described in (5) above holds for a larger class of functions
than C%(I). In particular, it holds for ¢¥, where g? is the invariant density defining the equilibrium
state p; for the closed system with potential t¢ — p(t); this also implies that the escape rates with
respect to both m; and u; are the same.

The following variational principle relating the escape rate to the pressure for ¢ € [0, 1] is a sim-
ple consequence of Proposition [I.3 and Theorem Notice that it also justifies identifying the
condition —log \¢ < p(t) with the condition ¢ € [0,#) in the statement of Theorem

Corollary 1.8. For allt € [0,1],
—log A\t < p(t) if and only if p™ (t) > 0 if and only if t < t*.
Moreover, for all t € [0,1], N\ exists and log Ay = p (t) — p(t).

Our next result shows that in the regime ¢t € [0,¢), the conditionally invariant measures uf’ we
construct vary continuously as the hole shrinks to a point.

Theorem 1.9. Fiz z € (0,1] and let (H;)ien be a nested sequence of intervals which are non-
swallowing Markov holes for f and for which Ni~oH; = {z}. Then letting — log )\fli denote the
associated escape rate and gfli denote the (normalized) eigenvector associated to )\fli from Theo-
rem we have )\f{i — 1 and gfli — g% in LY(my) as i — oo, where uy = gYmy is the unique
equilibrium measure for t¢ — p(t).

It follows from Corollary and Theorem that pi(t) — p(t) and tfi — 1 as i — oo (see
Lemma . Thus each fixed ¢ < 1 eventually satisfies t < ¢! for all H; sufficiently small and so
Theorem [I.9] implies p; is stable with respect to small leaks in the system.

Remark 1.10. A natural question in light of the continuity of X! proved in Theorem is whether
M is differentiable as well (as a function of H). While on a global scale the graph of the escape
rate function forms a devil’s staircase [DW], the derivative of the escape rate may still exist as the
hole shrinks to a point, as in [BY|KL2]. Although this result is likely to hold in the present setting,
a sequence of holes requires a sequence of increasingly refined Markov partitions. Thus proving
such a result would require either adapting the approach of [EP| to the countable state setting, or
constructing a uniform sequence of towers over a single base as in [DT]. Since the present paper is
already of considerable length, we do not include this result here.

Finally, we fix H and address the regime ¢ > t!| where we obtain weaker results than Theorem
due to the absence of a spectral gap.

Theorem 1.11. For each t € [0,1), all limit points of the sequence {mﬁgl} are absolutely
t HLl(my) ) neN

continuous with respect to m; with log-Holder continuous densities on elements of Py, .

1 . o -
Moreover, setting a; = jt(H?)*l/\t_] and Z, = Z?Zl aj|£i1|L1(mt), all limit points of the averages
Z%L Sy ai,Coél are absolutely continuous conditionally invariant measures with eigenvalue A\, and

the averages converge in L'(my).

Although Theorem applies to all ¢ € [0, 1), in light of Theorem[L.7] it only gives new information
for ¢ € [t 1). It may be of independent interest that the proof of absolute continuity for all limit

points of £yl holds independently of the proof of Theorem This is in sharp

|E?1|L1<mt) neN
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contrast to the case t = 1 for which Sima
| frma|

point [DEF].

converges weakly to the point mass at the neutral fixed

Next we turn our attention to invariant measures on the survivor set. By Theorem we have v,
an equilibrium measure for t¢f — pf () for t < t¥ that is supported on I°°. Our next result shows
that in fact, one can construct physically meaningful invariant measures on I even for t > t1 ,
including for ¢ = 1, which are not simply the point mass at the neutral fixed point and indeed
contain no atoms. For ¢t > ¢ these measures do not maximize pressure on the survivor set (in
this regime the point mass at 0 does this), but they do converge to the equilibrium measure for the
unpunctured potential t¢ — p(t) as the hole shrinks to a point.

In order to obtain sufficient expansion for our map, we will consider the induced map F and
work with F2 rather than . The induced hole for F is defined by H = H if H C [1/2,1] and
H = F~Y(f"(H)) if H C [0,1/2], where 7 is the first hitting time to Y. Since we will be working
with F2, the hole will effectively be H U F ~1(H), which always has countably many connected
components in Y = [1/2,1]. Let Y, C Y be such that f(Y,,) = J,, i.e. these are 1-cylinders for
F before the introduction of the hole. Set Y;; = ¥; N F~1(Y;) and note that this is the maximal
partition on which the return time 72 = 7 + 7 o F' is constant.

Fix z € (0,1] and let (H¢).¢[o¢,] be a nested family of intervals (not necessarily elements of a Markov
partition) containing z and such that H. has length €. Let 13"5 denote the map corresponding to H.
and let Y* = N (F~(Y \ H.). Let {Z < }ren denote the countable collection of maximal intervals

on which ﬁg is smooth. Note that each interval Zj . is contained in some Y; ;. We shall need the
following condition on the family (H;):<c,.

(H)  Let (H:)e<e, be as above. Assume inf inf ]Ff(ZkE)\ > 0.
e€[0,e0] k

Remark 1.12. Assumption (H) is generically satisfied: if z is not an endpoint of one of the

intervals Yy, C (1/2,1] or one of the intervals J, C (0,1/2], then (H) is satisfied for e sufficiently
small.

If one is interested only in the case t = 1, then one can work with F rather than F? and condition
(H) can be stated in terms of F.(Yy). In that case, only the points z = 0 and z = 1/2 would be
excluded by (H).

For t € [0, 1], recalling the definition of induced potential in (T.2), let P,. = P(t® — 7p=(t)). In
Lemma [6.1| we will prove that there exists a (t® — 7pl (¢) — P, .)-conformal measure 7, g for F on
Y, which has no atoms.

Theorem 1.13. Let (H:):<c, be a nested family of intervals (not necessarily elements of a Markov
partition) satisfying (H).

If eo is sufficiently small, for t € [0,1], 15'E admits a physical conditionally invariant measure [y,
absolutely continuous with respect to my p, with eigenvalue Ay . The limit

n—oo

VY,S(w) = lim AZ? {/nd}d/ﬂf,s (13)

exists for each 1 € CO(Y) and defines an ergodic invariant probability measure vy, supported on
the survivor set Y° = I2°NY . Moreover,

log At . = P(t®s — 7p'=(t)) — P(t® — 7p"=(¢))



10 M.F. DEMERS AND M. TODD

and vy is an equilibrium measure for the potential t®He — rptl=(t) — P(t®He — rpHe(t)).

The measure vy, projects to a probability measure vy, with the following properties:

(1) vy, is an invariant measure for f supported on the survivor set Igo,

(2) vy, is an equilibrium state for tpfs — pf=(t) — P(t®He — 7ptle(t)) - 1y ; so if t < tHe then
vy, is an equilibrium state for t¢fls — pf=(t), i.e. it coincides with the measure v from
Theorem |1.77;

(3) for fized t, the free energy hyy (f) + [ toHe dvy, is continuous in e for e > 0 close enough
to 0;

(4) for fized €, the free energy of vy, = vu.; is analytic for t € (t,1) and continuous on the
closure, [t 1];

(5) vy, converges weakly (when integrated against both continuous functions and functions of
bounded variation) to the equilibrium measure u; for the closed system as e — 0.

Remark 1.14. Note that vy, is not a measure which mazimizes the pressure h,(f) +t [ ¢He dv
on I when t > t=. One has

0= hay () + 1 / o1 d,

where dg denotes the point mass at 0. On the other hand, for the induced system, for any t < 1,

we have for the original map f,
pP(e™ —rpfe(t)) = g
hy +t / He quy, = +pfe(t
w0+t [ 6y, = D) i -,
= (P(te™ — rp™e (1)) ve(Y) + (1),

where the final equality follows from Kac’s formula. Using Proposition when t > t= then
p=(t) = 0 and P(t®"=) < 0 so the right hand side of (1.4) is negative.

Conversely, when t < tHe then pHe(t) > 0 and P(t®"= — 7pH=(t)) = 0, so the right hand side of
(T.4) is positive and vy is indeed an equilibrium state for t¢fe — pHe(t) as stated in Theorem .

When t = tfe | pH=(tHe) = P(tH=®H=) = 0 as in Proposition (a), so the right hand side of (|1.4)
is 0 and again vy, is an equilibrium state for t¢fs — pHe(t).

Note that ¢ = 1 is the only value of ¢ € [0, 1] which is not eventually less than ¢/ as H shrinks to
a point. Despite this, the sequence of measures v, constructed in Theorem [L.13| converges to the
SRB measure pup for the closed system as € — 0. From the point of view of the invariant measure
on I °°  then, this theorem recovers a form of stability of the SRB measure for the system in the
presence of small leaks. This is in contrast to the instability of the SRB measure from the point of
view of limiting distributions in the open system, since fm1/|f™m1| — 0o as n — oo [DE].

2. BASIC PRESSURE RESULTS

In this section we will start by recalling thermodynamic formalism for symbolic systems, and then
push this onto our system, proving Proposition [1.6]

2.1. Thermodynamic formalism in symbolic spaces. Let (X,0) be a one-sided Markov shift
over the countable alphabet N. This means that there exists a matrix (¢;;)nxn of zeros and ones
(with no row and no column made entirely of zeros) such that

o= {(;pn)neN ez, = 1 for every i € N} .
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The shift map o : ¥ — ¥ is defined by o(z1zoxse...) = (x222...). We will always assume the
system (3, o) to be topologically transitive (but not necessarily mixing), which means that for any
two elements a,b € N, there is a sequence (zy,)neny € X with 2y = a and x,, = b for some n € N.
Note that the theory usually assumes the stronger condition of topological mixing (see [S1] for a
precise definition), but in [BS] this was shown to be unnecessary. The space ¥ endowed with the
topology generated by the cylinder sets

Ci1i2---in = {(mn)neN € T; = ij for j € {1,2,3 .. n}},
is a non-compact space. We define the n* variation of a function ¢ : ¥ — R by
varn(¢) = sup sup  [p(x) — o (y)l-
(i1...in)EN? ,Y€C; iy iy,

A function ¢ : ¥ — R is locally Holder if there exists 0 < v < 1 and C > 0 such that for every
n € N we have var,(¢) < Cy™.

Given a potential ¢ : ¥ — R, let S,é(z) := Zz;é $(c*z), be the n-th ergodic sum. A measure u
on X is called a Gibbs measure for ¢ if there exist K > 1 and P € R such that, given the n-cylinder
Ci1i2...in7 for each z € Ci1i2...in7

1 N(Ciﬂz---in)
E g eSn¢(3§)—nP g K

Here P is called the Gibbs constant of p.

The Gurevich Pressure of a locally Holder potential ¢ : U, X,, — R was introduced by Sarig in [S1],
generalizing Gurevich’s definition of entropy. It is defined by letting

Zn((b) = Z esn(b(x)]lXi(x)a
or=x
where 1x,(x) denotes the characteristic function of the cylinder X;, and the Gurevich pressure is

lim 08(Zu(9))

n—o0

Pa(o) ==

where the limit exists by almost superadditivity ([S1, Theorem 1]). The limit always exists and its
value does not depend on the cylinder X; considered. This notion of pressure satisfies the following
variational principle: if ¢ is a locally Holder potential then by [S1l, Theorem 3],

Pa(¢) = P().

Hence we can write P in place of Pg. A measure attaining the supremum above will be called an
equilibrium measure for ¢.

)

The potential ¢ is called recurrent if

S Zu(@)e @ = o,

and otherwise it is called transient. Note that due to [S2, Theorem 1], in this setting this definition
of transience is equivalent to that given in the previous section. Defining Z(¢) similarly to Z,(¢),
but only summing over those periodic points which make their first return to X; at time n, we say
that a recurrent potential ¢ is positive recurrent if

> nZi(¢)e e < oo,

and otherwise ¢ is null recurrent. Again this definition is independent of X;, and indeed a k-cylinder
yields the same result.
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It is easy to see from the definition of Pg that the pressure function is convex, when finite (one can
also easily prove this from the basic definition of pressure P). Hence we have the following lemma.

Lemma 2.1. Suppose that ¢ : ¥ — R is locally Holder and t, < to are such that Pg(tp) < oo for
t € (t1,t2). Then t — Pg(tp) is continuous on (t1,t2).

We say that (X2, 0) has the big images and preimages (BIP) property if
3b1,...,by € N such that V a € N, 3i, j such that tp,4ta, = 1.

A simple example of such a system is the full shift on N. As in [S4], we can set

Zn(¢): Z eanﬁ(a:)?

or=x

i.e., we needn’t restrict ourselves to X;, and it can be shown that

P(é) = lim log(Zn(9))

n— 00 n
Moreover, P(¢) < oo if and only if Z;(¢)) < oc.

Theorem 2.2 ([S4]). Pg(¢) < oo if and only if there is an invariant Gibbs measure p for ¢ with
Gibbs constant Pg(¢). Moreover, if h(p) < co (equivalently [ ¢ > —oo) then p is an equilibrium
state for ¢.

Let C), be a cylinder and ¢ : C,, — C), the first return map to C,, with return time r¢,. (Cp,a) is
known as the induced system on C,,. Given a potential ¢ : ¥ — R, let ¥ : C,, — C,, be defined by

U(x) = Sy, d(x) = 500 p(oha).

Given a o-invariant measure p, giving positive mass to C,, we call i = /ﬁ'g:) the lift of u. By

Kac’s Lemma, this is g-invariant. Conversely, given a g-invariant measure v, if v lifts to v, then v
is called the projection of . Abramov’s formula gives

h(D):(/rcn dD)h(y)and /\IJdD:</TCn dz7> </1/1du>.

We note that these results also pass to induced maps which are not first return maps.

Given a metric on X, a potential ¥ : 3 — R is called a metric potential if there exists K > 1 such
that
1

1t 1
Kjl:Io Y(oix)

P(oz)

n—1
< diam([iy, ..., in)) < K [
j=0

The following is [, Theorem 3.1], adapted slightly. The proof uses inducing to some domain to
produce a BIP system, so we change the statement to include this explicitly rather than talking
about recurrent points as in [I].

Theorem 2.3. If (X,0) has the BIP property and is topologically transitive and v is a metric
potential, then

dimpg (X) = t* := inf{t : Pg(—tlogy) < 0}.
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2.2. Preliminary results on pressure for our systems. For A contained in some interval,
we say that the map 7' : A — A is Markov if there exists a countable Markov shift (X,0) and
a continuous bijective map m : ¥ — A such that Tonm = moo. We will use the notation
[i1,...,0n) :=7(Cy, . 4,). We will also lift potentials ¢ : A — R to their symbolic version ¢ o7 which
we will require to be locally Holder.

Now we return to our open system ( f I H). Recall that X = Ugeo@ and let X denote the set
of points which map infinitely often into X under F In the following, we will use the fact that the
natural symbolic coding of the system F: X% —5 X gatisfies the BIP property and is transitive,
although it may be not mixing. This means that all the results in Section pass to our system:
here our potential ® lifts to a metric potential on the symbolic model (that is, compatible with the
Euclidean metric on [0,1)), thus also inducing a compatible metric. We also note that any ergodic
measure on I*° with positive entropy must give positive measure to X, which, since F is a first
return map, by Kac’s Lemma means that it must lift to the induced system (X, F)

The next lemma follows immediately from the structure of our system.

Lemma 2.4. Suppose that H is a non-swallowing Markov hole. Then
1%\ (Ukzof_k()ofoo))

consists of at most the countable set of preimages of 0.
We close this section with the proof of our first main result, Proposition

Proof of Proposition[I.6. The fact that pf (t) = 0 is part of Lemma The following claim then
completes the proof of (a).

Claim. P(t# @) =0.

Proof. The fact that P(t7®H) < 0 is Lemma Moreover by definition of t¥, if t < t# there
must be a measure p on I°° of positive entropy Wlth h(p) + [té dp > 0. Since any measure on I
of positive entropy lifts to our inducing scheme, Abramov s formula implies that P(t®#) > 0. So
by the continuity of ¢ — P(t®!), when finite (Lemma , to complete the proof of the claim, we
need to show that there is t < ¢ such that P(t®H) < oo.

As described in Sectionﬂ, P(t"®) < 0 implies that Z; (t7 ®) < oo, which means that 3" X" <
oo. Since by Lemmal[I.1] the diameter of each of the domains in this sum is polynomially small in the
inducing time, and the number of domains with the same inducing time is uniformly bounded, this
also implies that there exists ¢ < t such that Z;(t®) < co. Hence P(t®) < 0o, as required. [

By Theorem dimpy (X>) = t. By Lemma dimp (1) = dimpy (X>) = t¥ proving (b).

For (c), by Lemma we have Y. |X;|" < oo if and only if ¢ > ﬁ, since the number of domains

with the same inducing time is uniformly bounded by C,. As in the claim, ), X, < 00 so (c)
follows immediately.

We next prove (d). Let dy denote the Dirac mass at 0. Since H is a non-swallowing hole and
h(do) = [ ¢ dsy = 0, the variational definition of pressure implies p(t) > 0 for all ¢t € R.
The claim implies p (t) = 0, so since p” is decreasing, p™(t) = 0 for all t > t. Hence
P(t®" — rpH(t)) = P(t®) for t > ! so the final part of (d) follows since t — P(t®) is strictly
decreasing.
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For (e), by definition pf (t) > 0. Again as in Lemma P(t®H — pH(t)7) < 0. By the continuity
of pressure, in domains where it is finite (Lemma we only need show that for any small § > 0,
0 < P(t®" — (pf(t) — §)T) < co. However, from the variational definition of pressure, there must
exist an ergodic invariant measure with positive entropy p such that

h(u) + /t¢H dp > pH(t) — 6.

This measure must lift to a measure pup on (Y, F'). By the Abramov formula,

) + [ 097 = ((0) — 6)7 dur = ( [ dﬂF) (h(u) + [16 — 0" -0 du) =0,

Hence the variational principle implies P(t®" — (pf(t) — 6)7) > 0. The fact that this pressure
is also finite when § > 0 is small follows from the fact that if § < p'(t), then clearly Z;(t®# —
(p™ (t) — §)T) < oo since |{T = n}| is subexponential and the number of domains with 7 = n is
uniformly bounded by Lemma [1.1

(f) is a standard consequence of the null-recurrence of t¢, see for example [ITT), Section 8-9]. O

3. PROOF OF PROPOSITION [L.3]

The proof relies on a volume lemma argument (c.f. [Y1,[DWY1]) applied to the conformal measures
m;. However, in order to obtain the volume estimates we need, we shall rely on the following cylinder
structure, which is coarser than P,,.

Let D := {[0,1/2),[1/2,1)} and let D, := \/}Zy f~*D. Now for x € [0,1), let D, (x) denote the
element of D, containing x. The next lemma follows from ‘tempered distortion’; see [JR] for a
proof.

Lemma 3.1. There exists a sequence (V,,)n, C (0
D e D, and any z,y € D, |log Df"(x) —log D f™

,00) where V,, — 0 as n — oo such that for any
(y)] < nV,.

Using this lemma in conjunction with the Mean Value Theorem, we will estimate the m;-measure
of elements of D,,.

Recalling that H is a union of elements of Py, let NO be such that H is a union of elements of

Dy, -

Suppose v is an ergodic invariant probability measure for f supported on 1°° such that v(0D1) = 0.
This assumption excludes v = §y and v = d1, the point masses at 0 and 1, respectively. Since D;
is a generating partition for f, the Shannon-McMillan-Breiman Theorem yields,

nh_{go —% logv(Dy(x)) = hy(f)

for v-a.e. z.

By Lemma conformality and the fact that f"(Dy,(x)) = [0,1), we have
mu(Da(2)) 3 my(f"( D)) SnO0EI41) _ 18,00 nlp(0)+75) (3.1)

Now for € > 0, define

Gep = {x el>: %Sntqﬁ(x) > t/qﬁ dv — e and v(Dy(x)) < e”(h”s)} :
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By the ergodic theorem and the Shannon-McMillan-Breiman theorem, for o > 0 we may choose n
so large that v(Ge ) > 1 — o for all n sufficiently large.

By choice of H, for n > Ny and D € Dy, if I®nD # 0, then D C N1 Let K, = {D €
Dy, : DN Gey # 0} Note that by construction we must have v(Upex, D) > 1 — o for sufficiently
large n. Thus by definition of G, the cardinality of I, must be at least (1 — o)e™ P =2 These
considerations together with yield,

mt(janofl) > Z my(D) > Z e[ tedv—p(t)—e) > (1— U)en(hﬁtfqﬁdvfp(t)*%)_
DeKn DeKn
Now taking logs and dividing by n yields, log A, > h, + ¢ [ ¢dv — p(t) — 2¢, and since this is true
for each € > 0, we conclude log A\, > h, +t [ ¢dv — p(t).

We treat the case v = §y separately. In this case Pj, (t¢p™) = 0, so the required inequality will hold
if log A, > —p(t). This is immediate since I" D [0, a,,) for n sufﬁciently large. Thus

me(I™) = my([0, an)) OZ |J;|te™ > C'nlle M),
i=n

and log A\, > —p(t) follows.

The only other ergodic invariant measure which gives positive mass to 9D is d1, the point mass at
1. Clearly Pj, (t¢™) = —tlog2 and so by our previous work,

log Ay > —p(t) > —tlog2 — p(t) = Ps, (t6") — p(1).

We have shown that

log A, > sup {h f) +t/gz5Hd1/ : v is f-invariant and ergodic and v(H) = O} —p(t),

which is precisely what is required for the proposition.

4. PROOFS OF THEOREMS AND [[L9 AND COROLLARY [L.§]

In this section we prove results in the uniformly hyperbolic regime: for ¢ € [0, t), the exponential
tail decays faster than the rate of escape.

We will prove Theorem by using the induced map F': Y O, and an associated object known as
a Young tower. We begin by recalling some basics about Young towers.

4.1. Defining the Young Tower. Given the inducing scheme with a hole, (Y, F, 7, H), we define
the corresponding Young tower as follows. Recall the finite partition Q of images in Y on which
F is transitive on elements defined in Section Define Ag = X and denote by Ag;, the finitely
many elements of @ comprising X. Let

A={(z,n) € Ag x N |n<7(x)}

A is viewed schematically as a tower with Ay, = Al,—; as the fth level of the tower. The tower
map, fa, is defined by fa(z,¢) = (x,£+ 1) if £+ 1 < 7(x) and either f7(x) € H, in which case
we define a hole H,; C A, or f7(x) € Ag, in which case fa(z,7(x) —1) = (f"(x),0) = (F(z),0).
There is a canonical projection 7 : A — [ satisfying mo fao = fom. Ay is identified with Ugeo/@
so that 7|a, = Id.
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Let { X;} denote the maximal partition of Ag = X into intervals such that 7y is constant on each X;.
The partition {X;} then induces a countable Markov partition {A,;} on A via the identification
A= fA( j), for 0 < £ < 7(Xj;). On level £ = 0, we insist on keeping the partition finite and use
Ag; as our partition elements. Since f is expanding, the partition {X;}, and hence the partition
{A;}, is generating.

Note that since H is a 1-cylinder in PNO, by definition of {X;}, H := 7' H is the union of countably
many partition elements Ay ;. We set A=A \ H and refer to the corresponding partition elements
as Ag’j. Similarly, we define A" = Nizo ]‘ZZA and fA = fRlzn,n €N

Given a potential ¢ and a (p-conformal reference measure m on I, we define a reference measure

m on A by m =m on Ag and mM|a, = (fA)*m|Ae_1ﬁfglAe for £ > 1. For x € Ay, let 27 := f~'x
denote the pullback of x to Ag. We define the induced potential on A by
pa(x) = Srp(x™) for z € fi'(Ag) and oA =0 on A\ f3'(Ao). (4.1)

With these definitions, the measure m is ¢a-conformal.

Lemma 4.1. Fort € [0,1), let Ty be the measure on A induced by my, the conformal measure
for the potential t¢ — p(t). There exists C > 0, independent of t, such that for n > 0, m(4A,) <

Cﬁn_tu"%)e_”p(ﬂ.

Proof. This follows immediately from Lemma and the definition of m; since my(t = n) =~
n_t(l""%)efnp(t) m

due to conformality and the growth in D f™ given by (D1) of Section

We define the transfer operator LD’,SOZ associated with the punctured potential gog and acting on
L'(m) by
Lonb(a) = Y d(@)e® W15, (y) = L3, (W14.)(@).

fRy=x

With these definitions, £ satisfies the following change of variable formula,
/ £r H¢ dm = wdm
which in turn links the spectral properties of ﬁ@og to the escape rate with respect to m.

In order to translate between densities on I and on A, for ¢ € L'(m) on A, define the projection

where J,,7 is the Jacobian of © with respect to the measures m and m. Then Pmmzﬁ € L'(m) and
L3 (Prm®) = Prn(LEy0)-

Indeed, the following lemma shows that the escape rates from I and from A are the same.

Lemma 4.2. Let my; be the measure on A induced by my as in Lemma . Then for each t € [0, 1],

_ 1 °
log Ay = limsup — log m;(I") = lim sup — log mt(A")
n n

n
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Proof. When t = 1, p(t) = 0 and the above quantities are all 0, so equality is trivial. Now assume
t<1.

Recall the finite partition Q of [1/2,1] \ H defined in Section on which F is transitive on
elements. It follows from the definition of non-swallowing that I C U;of*(UgeoQ) = m(A) up to
a countable collection of points comprising the pre-images of 0. Thus

1 1 . o
log \; = lim sup log my(I™) = limsup — logm,(I" N (A)). (4.3)
n

n

Due to the transitivity and finitely many elements of ©Q, we may choose a collection of indices,
K :={(¢,j)} with £ < L for some L > 0 such that 7(U j)exAe,;) = 7(A) and T(Ag ;)N (Ap j) =10
for all pairs (¢,7) # (¢, ') in K. Further, we may choose K so that all elements of the base, Ag;;,
belong to K.

Now let Py be the projection defined by (4.2]) with respect to the measures m; and m;. Denote by
Jim the relevant Jacobian. On each Ay ; for (6 j) € K, define ¢(z) = Jym(z). Set ¢ = 0 elsewhere
on A. Then by construction of K, Py t@ZJ = 1 (A)-

Note that by conformality, for x € Ay, Jim(z) = e~ t5e0(@)+p()  Thus there exists M > 0, depending
on L, such that 1 < w M on A. Also, Jym =1 on Ag so that zp =1 on Ag

Now integrating,
o 1 ~ 1 ~ 1 . e
mt(A") = / 1 dm; > w dm; = / P7r,t¢ dm; = —mt(I” N W(A)),
An M M 71.(An) M
so we deduce limsup,, % log my(I™) < limsup,, 1 log m(A™), using (.3)).

On the other hand, notice that since L) [0, antp], where h denotes the maximal index such that
J, N H # 0, we have X\ > e P®). Thus by Lemma

m(A") = / dmy +/ dmy < n/ dim, + Ce P
Ann(r<n) Ann(r>n) ArnAg

<n | O dmy + Ce PO < nmy (1) 4 Ce P07,
AN
Since as noted above, A; > e P(*) we conclude that limsup,, Llog my(A™) < limsup,, Llog my(I™).
O

4.2. Abstract Results for Young Towers with Holes. In this section, we prove results about
an abstract Young tower with holes which may be of independent interest: We prove the transfer
operator on the tower has a spectral gap in a space of Holder continuous functions under the
assumption that the escape rate is slower than the decay rate in the levels of the tower. After
stating our assumptions formally below, we will describe how the present results generalize the
existing results of [BDM] and related references.

We assume that we have a tower map fa : A O with a countable generating Markov partition
{A(;} and such that the return map to the base has finitely many images, denoted by Ag;. We
further assume that our reference measure m is conformal with respect to a potential pa.

In this context, we assume the following properties of the tower map.

(P1) (Exponential tail.) There exist constants C,« > 0 such that m(A,) < Ce™*", for n € N.
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We define a natural metric adapted to the dynamics as follows. Let 7"(x) be the time of the nth
return of x to Ag. Define the separation time on A to be

s(x,y) = min{n > 0: f1 (), fA (y) lie in different partition elements Ag;}.

s(x,y) is finite m-almost everywhere since {Ay;} is a generating partition for f7. Chooseﬂ >0
and define a metric ds on A by ds(z,y) = e 95@Y),

We introduce a hole H in A which is the union of countably many partition elements Ay ;, i.e.
H = UgrHyy where Hyj = Ay for some j. Set Hy = U;Hy; C Ay For simplicity we assume
that the base Ay contains no holes (this can always be arranged in the construction of the tower
by choosing a suitable reference set X). We assume that fA is transitive and aperiodic on the
elements {Ag;} after the introduction of the hole.

(P2) (Slow escape.) Define log A = limsup,,_, . %logﬁ(&"). We assume that —log A < a.
(P3) (Bounded distortion.) We suppose that e¥2 is Lipschitz in the metric ds. Furthermore, we
assume there exits Cy > 0 such that for all z,y € A and n > 0,

eSneal)=Sneal) 1| < Cyds(fRw, fRY)- (4.4)
(P4) (Subexponential growth of potential) For each € > 0, there exists C' > 0, such that

1Sroa(2)] < Ces™®)  at first return times 7 for all 2 € Ag. (4.5)

A spectral gap for tower maps with holes was established in [BDM] (see also [D1, D2, DWYT],
DWY?2] for applications) under stronger conditions than those listed here.

Remark 4.3. There are two significant differences between our assumptions and those in [BDM].
(1) The metric ds in [BDM] uses a stronger notion of separation time which requires the derivative
of the underlying map f to grow exponentially at return times; since our maps have only polynomial
growth in the derivative, we adopt a weaker metric which requires significant changes to our function
space arguments; in particular, see the proofs of Lemmas and . (2) The assumption in
IBDM]| on the size of the hole is comparatively strict, allowing one to control the mazimum amount
of mass lost in a single iterate of the map; by contrast, our assumption (P2) only assumes that the
tail decay is faster than the escape rate asymptotically, which again requires significant revisions to
the proof of the spectral gap.

Choose f satisfying —log A < 8 < a. We define the standard weighted L>°-norm on the space of
functions on A, given by

[¥lloo = supsup{e™ ()] : @ € A},
along with a Lipschitz norm
[l = supe™ sup{e™ V() — Yy 2,y € Ad).
We define a Banach space (B, || - ||g) where ||¢|8 = [¢|Lip + |¥]/co-

We proceed to prove the quasi-compactness for the punctured transfer operator /:’A = Eowg (i.e.,

with punctured potential ¢&) acting on B under assumptions (P1)—(P4).

4n this abstract setting, the choice of § > 0 is constrained only by (P3); however, in applications, § will be
constrained by the expansion and regularity of the underlying map f. We will introduce this restriction on § when
we apply this abstract framework to our map with neutral fixed point in Section
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To do this, let 15 denote the function which takes constant value eBt on A;. Note 1z € B since
| 1s]|8 = 1. Define

1
)\5 = hmsup log/° 1gdm,
AT
and note that Ag > A > e~ by (P2).

Lemma 4.4. The spectral radius of LA on B is at least Xg.

Proof. Note
Jo wsam = [ L35 dm < 30 e mANIER (1) o < 30 O£ 15l < O
¢ ¢
Thus lim sup,, 711 log HE | > limsup,, Log [ An lgdm = log A as required. O

Next we prove that the essential spectral radius is strictly smaller than Xg. This bound, together
with the preceding lemma, will imply that £ is quasi-compact as an operator on B.

Lemma 4.5 (Lasota-Yorke Inequality). There exists o < A\g and C' > 0 such that for all ) € B
and n > 0,

I£A%]5 < Co™|[4]8 + Cl| 11 (my
Proof. Fix ¥ € Band n > 0

Step 1. For £ > n and = € Ay, we estimate

[Lx(@)| = [0 (f3"2)] < T )19 .

Thus ||£ VA, lloo < €Yo Similarly, for z,y € Ay,

e DL Y () — LRY(y)| = e U g (fra) — (£,
since the separation time for xz,y is the same as that for f,"z and f\"y. Thus HEOZWAEHL@ <

e P71 ¢| Lip-

Step 2. Now let x € Ay. We have
@)= Y et R = 3T ((u) — 9 (0)e SR Ly (p)etSrR@ (4.6)
ue fx"(x) uefA" ()

where E,(u) is the n-cylinder containing u and v € E,(u) satisfies 1(v) = m(E,)~! fEn W dm.

Due to bounded distortion of ¢ given by (P2) and the fact that fg (Epn) = Ag; for some i > 0, the
second term in the above sum is bounded by Cm(Ay ;) f B, wdm and summing over u yields

the bound C’ fAn W dm.

To estimate the first term, we split it into two parts: For T' > 0, let A,, 7 denote the set of points in
A”ﬂf "(Ao) that make at least n/T returns to Ag by time n, and let A7 7 = (A"NfA"(A0))\ An,1
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Then letting ¢(u) denote the level containing wu,

Z ((u) — ¢ (v))eSnea®)

uefX" (@)
= Y @ - v@)SEG 3T () - (o))t

u€fx" () uefy" ()

u€An,T u€Al

on/T ¢ (4.7)

< Y O e + Y Ol m(E(w))

quA (x) UEfA (@)

uedn.z u€AL 1
<Ce Ty [ Lyl [ 1y,

AN A"ﬂf;"(Ao)ﬁAfl’T

This first term above clearly contracts at an exponential rate e=0"/T J An lpdm < Xg Thus it
remains to prove the contraction in the second term is sufficiently fast.

We associate to each x € fA (Ao) N A, 7 a sequence of times r1,...75, such that fZ (x) € Ay
for each ¢; it follows from the definition of AL p that s < n/T — 1. Note also that Y7, =n

since x € f&”(AO). However, each connected component in fx A (Do) N AL 1 on level Ay, can be

uniquely associated with a connected component in Ag such that each y = f ( ) in this interval

is associated with the sequence of return times r1,...,rs such that Zle ri =n + {. Now
S
(-1 f—1
# { s-tuples with Zm =n+/ly = (n + > < <nj ) < C(1+np)"t,
i1 s—1 T 1

where np — 0 as T — oo. Also, at each return, m(7 = r;) < Cpoe”*"i. So conditioning s times, we
have

71
M(Aar N AN R <Y S Gier ™90 < coyT (14 np) e 00 (48)
s=1 relevant s-tuples
Fix 0 < ¢ < min{a— 3, a+1log Ag}. Then choose T sufficiently large that (1 —i—nT)COl/T < ef. Using
(4.8), we have the contraction in the second term at the end of (4.7)) bounded by
/ 1ydm < 3 Ceble=(m+0a=e) ¢ genla=s), (4.9)
ArnfA™ (Ao)NAS 1 >0
Putting this estimate together with (4.7)), we have
£30(a)| < Co™lusp + C [ v am (410)
An

for all z € Ag and some constant o < Xﬂ.

Now for the bound on the Lipschitz norm, we estimate similarly for x,y € Ay,

ER0E) — ERUOI S 3 9(u) — g5t 4 [p(u)]fesnra) — Suests)
vEfN" (y)

< Z ’WHLipe—ds(u,v)eﬁf(u)esns%(u) + C€—5s(x,y)‘w(v)‘esmaA(u)’

u,v
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where we have used bounded distortion in the last line. Notice that once we divide by e 95(@¥)
this is precisely the same expression which had to be estimated in (4.6)) and so is also bounded by

(4.10f). Thus
18] a0l ip < Co™ [l 1ip + C / o dm. (4.11)

Step 3. We complete the proof of the proposition by taking x,y € Ay, £ < n, using Step 1 to
estimate the first ¢ steps from A, to Ag, and then Step 2 to estimate the remaining n — ¢ steps:

LAY A lloo < e PLA Plagllos < Ce™P o™ [9ll5 + Cl| 1.

A similar estimate holds for ||£ Y| Lip, completing the proof of the lemma.

O

Since the unit ball of B is compactly embedded in L!(m), it follows from the by-now classical
results [HH] together with Lemma 4.5| that EA is quaSkcompact as an operator on B: Its essential
spectral radius is bounded by o < )\ and for any o’ > o, its spectrum outside the disk of radius
o’ comprises only finitely many eigenvalues each of finite multiplicity. It follows from Lemma
that the spectral radius of EA is at least A > o so that the peripheral spectrum is nonempty and
lies outside the disk of radius o.

Our next step in the proof is showing that L has a real eigenvalue greater than ¢ and a corre-
sponding eigenvector which is strictly positive. Once this is done, we will use it to prove that LA
has a spectral gap.

L7 13
E" 1s
rate —log A\g with respect to 1gm exists and A\g = Aﬂ = )\5 1s the spectral radius of LA on B.

Lemma 4.6. There exists My > 0 such that ||

HB My for all n = 0. Moreover, the escape

Proof. Let p, |p| > o, be an eigenvalue of maximum modulus of EDA. Since the peripheral spectrum
of L is finite dimensional, we may choose p such that p has maximum defect for eigenvalues
on the circle of radius |p|. Thus there exists d > 1 and ¢g; € B, g; # 0, i« = 1,...,d, such that
(LOA —pl)g; = gi—1 for i > 1 and (EOA —pl)g1 = 0, and d is the maximal such index for eigenvalues
with modulus |p|. Thus for n > d, we have

d—1
o n .
LRga = E (i)pn "Ga—i-
=0

Integrating over A, we use the above identity to obtain the following lower bound,

An — n— n
[ﬁA\gdldm>/n ol d“<d_1)191!—
A A =

d—2 n 4
> (7)o
n =2 n
> n—d+1 n—i »
Jore(,n ) > (7)ot

Since the first term is a polynomial of degree d — 1 while the second term has degree at most d — 2,
there exists C7 > 0 and N > 0 such that for n > N,

/ £X]gal = Con ol

dm

dm
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Thus for n > N,

it < / £ |ga] dm = / gal dm < [lgalloe / 15 4777 = [[galloo / flpdm.  (412)
A Amn AT A

On the other hand, using the spectral decomposition of EOA given by quasi- Compactness we have
||£A1ﬂ”l’>’ < Cynd=1p|™ for some Cy > 0 and all n > 0. Thus the bound on H 1:" - |

this together with (| - for n > N. The bound for n < N is obtained by taklng the maximum

over the ﬁmtely many terms and noting that each term is finite since LA is a bounded operator on
B and m(A™) > 0 for each n.

Now 2)) implies Az > [p|, while Lemma implies A\g < |p|. Thus Ag exists and is the spectral
radius of EA. ]

|lg follows using

From now on, we use the notation A\g rather than Xﬁ since we know the escape rate with respect
to 1gm exists.

Let L
by = 22‘21 )‘E 5121,3 (4.13)
DY EPVLVRE '
Notice that (¢,), is a sequence of probability densities and thatﬂ by Lemma
P AGRILR 1] £k1
lvonlls < 2izity 1Casls - ICRLsls (4.14)

Sy AgFILR 15l rsk<n |£K 103

Then since 1, lies in a ball of radius My in B for all n, and this ball is compact in L'(m), we may
choose a subsequence (n;); such that 1, converges in Ll( ) to a function ¢, € B with [|1).||g < M.
Now

£A¢* . )‘Ek‘éoZJrllﬁ _ . )‘ﬂk 1£k+11
= OOZ A5 IER s P imvoe Z L A ILR

iy ! AP L SR ¥ LA1ﬂ+A—’Zi—1é7g+11ﬁ
oo Sory A5 LK 6] h A5 LR 181

The first fraction converges to 1, by choice of the subsequence (n;);. By the proof of Lemma
the numerator of the second fraction has H || s-norm bounded above by Cnd~!, while by (& ,
the denominator is bounded below by C’ , thus the second fraction converges to 0 in B (and also
in L'(m)) as i — oo. This proves that EAl/J* = Agx, so that Ag is in the spectrum of LA.

Note that ¢, > 0 and [ 4, dm = 1, so that necessarily A\g < 1. This is because
:Ag/w*dm:/igw*dmz A W dim 2225 0.
It follows that A < Ag < 1, which we have not assumed is true a priori.

We use the following lemma to show that in fact ), is strictly positive on all of A. Define

1%]hog = Sup Lip(log 9|3, ),
7]

5 Here we use that for any two series of positive terms, %i Z: < supy, ‘;—:7 whenever ), by < oo.
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where Lip(-) denotes the Lipschitz constant with respect to the metric ds(-, ) = e~ 95() For M > 0,
set Biog(M) ={¢ € B: ¢ = 0,[¢[1 = 1, [¢loc <M, [[¢[li0g < M}

Lemma 4.7. Let 1, be defined by (4.13). There exists M > 0 such that ¢n|a, € Biog(M) for all
n = 0.

Proof. We show the above property for the normalized transfer operator

N 1= A%

LX)
for any ¢ € B with [[{]eg < 00 and [x, ¥ dm > 0, ¥n. Given such a 1, clearly £ RY = 0 and
\N AY|1 = 1 since the normalization is well defined. So the first two properties of Bios (M) are

obviously satisﬁed by /\0/21/1 for all n > 0.

To estimate the log-Lipschitz constant, let z,y € Ay and denote by u € f;” and v € f;" two
points in in the same n-cylinder in A. We estimate

OZW«’U) - Z w(u)eSmPA(“) < Z e”w‘llogdé(“7”)¢(v)esn¢A(”)(1 + Cyds(z,y))
uefgnm vefX"(y) (4.15)
< elllhoads(@9) (1 4+ Cydy(z, y)) LAY (y)

where we have used bounded distortion (P3) in the second line and ds(u,v) < ds(z,y) in the third.
This yields

Lip(log LX¥|a0) < [¥lliog + Ca,
where we have used the estimate log(1 + z) < z for z > 0. Since || - |10 is scale invariant, we have

N0 lhog < 14 ]l10g + Ca for all n > 0.

Finally, we estimate the L norm of £Z¢| Ao- Let z € Ap, and again using the notation u € f;”(:c),
let v denote a point in the n-cylinder F,(u) containing u such that ¢ (v) < m i) B () ¥ T

Then since eSn#a(®) < (1 + Cy)m(En(u))/m(Ay, ) for some i by (P3), we estimate following ([4.15])
|£Z¢(.’L‘)| < Z 6”¢”10g¢(1})(1 + Cd) %fjﬁé g)

uefy" (@)
< CelVlios 3 / W it < Cel¥lhos [ vam
uefr™( n
where C' = (1 4+ Cy)/ min;{Ag;}. Dividing by |£%¢]1 = JAn ¥ dm completes the estimate on the

|| - [|oo nOrm.

Now since ||13]/10g = 0, the above argument implies || A§ 15|a0llee < C and INE 18| a0 llog < Cq for
each k > 1. Equation implies that the uniform bound on [[NX15]a,llce Passes to [|¥n|a [loo-

Finally, while || - [|jog is not linear, it does satisfy the convex inequality,
LSk ok
EZ)\B Lalg| < max I£415]l10g < Ca-
k=1 log
Finally, the scale invariance of || - ||iog implies that this bound passes to 1, for each n > 1. O

Since [|1n]aglllog < M for all n > 1, we have [|1)4]a, l1og < M, and so for each i, either 1, > 0 on Ag;
or 1, = 0on Ag,;. Since forz € A, by conditional invariance, ¥, (z) = )\Ezﬁfz/)*(x) = /\Eezp*ojze(m),
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the second alternative implies 1, = 0 on the entire column above Ap;. Again using conditional
invariance, this implies that ¥, = 0 on every Ag; that eventually maps to Ag;. By transitivity,
this is the entire base Ag and so ¥, = 0 on A, which is impossible since [t.dm = 1. Thus there
exists dg > 0 such that ¥, > dy on Ay, and again using conditional invariance, we conclude that

1, = g on all of A.

The following lemma gives an equivalent expression for || - ||1og, which will be convenient for the
proof of Proposition

Lemma 4.8. Suppose 1 > 0. For each Ay,

Hw‘ﬂe,jHlog Sllp W < Hq/;”l ell¥lhog
Ay,

Proof. Let x,y € Ay, x # vy, and set z = log(v(z)/¢(y)). Then,
PG = e — 1] < [zl < [ fioge! s ds (),

proving the second inequahty. The first inequality follows similarly using the fact that log(1+w) <
w for w > 0. O

Proposition 4.9. LA has a spectral gap, i.e. Ag is simple and all other eigenvalues have modulus
strictly less than Ag.

Proof. We remark that the stronger assumptions used in [BDM]| (see Remark allow one to
show that Na(Bieg(M)) C Biog(M) and that the semi-norm [|£3%][10g obeys a uniform Lasota-
Yorke inequality for ¢ € Biog(M). We prove neither property here under our weaker assumptions,
and give a substantially different proof of the spectral gap.

We begin by assuming that there exists g € B such that EOAg = Aﬁei“’g for some w € [0,27). We
will show this implies w = 0 and ¢ is a multiple of ..

Using the fact that g is an eigenfunction, we have

—L
9’55 = )‘5 e

—iwl
g‘AOmfZZ(AZ)7 (4.16)

so that g grows like )\Ee times a rotation up the levels of the tower.

Since 1, > dp on Ay, we may choose K > |g|a,|co sufficiently large so that g1 := (Re(g)+K1.)/C >
0 on A, Where Re(g) denotes the real part of g and C' > 0 is chosen so that [z g1 dm = 1. Note
that by and the conditional invariance of vy, by choice of K, there exists d; such that for
each ¢ > 0

0" < agila, <O (4.17)
Define g5 = sg1 + (1 — s)1» and J = {s € R : infz gs > 0}. Note that J contains [0, 1] and by
, J is open. To see that in fact J D RT, we will use the following lemma.

Lemma 4.10. Let ¢ € B with ||1)||10g < 00 and let A, C An ﬂfZ"(AO) be as defined in the proof
of Lemmal{.5 Suppose there exists a function r(n) with r(n) — 0 as n — oo such that

fAc P dm
wr”

(n), forn > 0.
fAnmf

Then
INED] Ay lhog < Cr max{r(n), e 2T} |[1)]l1oge?¥hes + Cy,

for a uniform constant Cy depending only on Cq and the minimum length of an element Ag;.
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Proof of Lemma. The estimate is a refined version of the one derived in the proof of Lemma
For z,y € Ay, let u € f&"(w), v E f&"(y), denote corresponding points in the same n-cylinder.
Note that for each pair of pre-images, v € A,, r if and only if v € A, 7. In light of Lemma it
is equivalent to estimate,

[LRY (@) = LAYW) _ Su((u) = $(0)e5neald 37 g(v)(eneal) — Sneal))

LR (y)e @) e=95(@0) 37 4h(v)eSnealv) R—Te S (v)eneal)

ds(u,v Sn u
< [ gel¥lios 2tV
= —5S(a:y Z w( )eSTL<PA(U)

_sny7 2oved,r P(V)E eSnealv) +Zv€AC W (v)eSneal) Lo (4.18)
>, (v)eSneal®) S (v)eSneal®) 4

ZUGAC w(v)esngm @)
TGN

where we have used (P3), Lemma and the fact that s(u,v) — s(x,y) > n/T for u,v € A, 1.
Again using bounded distortion, we may replace e*»#2(®) by m(E,(v))/m(Ag,;) for some i > 0,
where E,(v) is the n-cylinder containing v; similarly,

w(v) — eiwlog(m(En(v)))lf ( )1/Jdm

by the log-Lipschitz continuity of ©. Thus we estimate (4.18]) by,

< (1+ Ca) [ hoge! s

< (14 Co)|[th]roge¥lhos [ e=om/T + Oy,

n n c dm
|£A1/}(«73) B Aw(y” < ClHT!}”bg@Hw'Og <6—6n/T + 62”172)”10% fAn,Tw

- + Cq,
LRp(y)eds@y) Janaggn(ag) ¥ dm )

which completes the proof of the lemma by assumption on 1. ]

Returning to the proof of the proposition, we will apply Lemma [£.10] to g5 for s € J. Note that
since gs is bounded away from 0, we have ||gs|/iog < 00. While g, is not an eigenfunction for La,
we do have for each n € N,

LAg1 = N§(Re(e“"g) + K /C.

Thus there exists a subsequence (n;);en such that lim;_, )\gnj ,CZJ g1 = g1 and it follows that

lim )\ Jﬁozjgs = gs for each s € R.

]—)OO

By conformality of m, on EOZgS dm = fAnmJg_n(Ao) gsdm each n € N. On the other hand, using the
A

definition of gs,

L% gsdm = )\g/ (gs + sRe((e™™ — 1)g)) dmm.

Ag

We claim that in fact, for s > 0, s € J, the integral on the right must be bounded below by some

ks > 0, independently of n. If not, there is a subsequence (ny) such that [ A, Re((e™™ —1)g) —

—% on gs < 0. Note that for s’ > s, we have

Ao

g
f:91+(%—1)¢*>g1+($—1)¢0=*
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since ¥, > 0. So

N[ Eregy = / (g + s/ Re((e" ~1)g)) = [ (%= %) <0,
N N Ao S S

which implies that gy cannot be positive for any s’ > s, contradicting the fact that J is open.
With the claim proved, we estimate, using and the conformality of 7,
Jae , 95 dm _ HgsHoofAc 15 dm _ llgsllsce™@=)
fAnnf;”(Ao) gsdm = Ja % g5 dm s AGhs

and clearly r(n) — 0 at an exponential rate by choice of ¢ and T

=:r(n),

Invoking Lemma [4.10} since g5 = lim; A 5 i X gs, we have [|gs|a, |log < Cq whenever s € J. Indeed,
more is true, since for each fixed £ > 0 and n; > £,

12X 9515, lhos < I1EX ™ g5l 80 lhog < Callgs loge™1% s masc{r(n; — €), e~ =0/T} 4 €,
so using the scale invariance of | - [|jog to normalize by )fnj and letting n; — oo, we conclude

that [|gs|a,|log < Cq for each ¢ € N. Letting Co = rnax{Cd, (m(Ag))~1} and using (4.16)), we have
gs € Biog(C2) for each s € J, s > 0.

Now let sg > 1 be the right endpoint of J. Since g, — g5, uniformly on each Ay ; as s — s¢ from
the left, we have gy, € Biog(C2) as well. The following lemma from [BDM] completes the proof of
the proposition.

Lemma 4.11. ([BDM, Lemma 3.2]) g5, is bounded away from 0 on A.

We refer the interested reader to [BDM] for the proof of this lemma since it requires no changes in
the current setting. The proof uses only the mixing property of fa and the fact that g5, € Biog(C2).

The lemma implies s € J and so J D RT. The fact that g; > 0 for all s > 0 implies g; > .. But
since [ g1 dm = [ 1, dm = 1, we conclude that in fact gy = v,. This implies that Re(g) = (C—K),

and using the linearity of £, we conclude that I m(g) is also a multiple of ¢, and so w = 0.

We have proved that Ag has strictly larger modulus than all other eigenvalues of L and that its
multiplicity is one. The last step is to eliminate Jordan blocks for Ag. Suppose there exists g € B

such that (£a — AgI)g = .. Tt follows that L} g = A3g + n\j "4, so that
LA (g — A5'nb) = Njg.
Thus for z € Ay,
9(x) = N3 LA (g = Az ew)(x) = A58 (g = A5H ) o f1 (@),
For ¢ sufficiently large, g — )\Elﬂw* < 0 on Ag, so there exists L > 0 such that g < 0 on U@Lﬁg.

Now choose K > 0 so large that g := g — K, < 0 on UKLAZ- Since g < g, we have g < 0 on A.
Thus for each n,

0>/\Enﬁngdm:)\Ign/Aingm:/Agdm—Fn)\g,

which is a contradiction. OJ

Now that we have proved the existence of a spectral gap for EOA, the following theorem from [BDM]
follows.
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Theorem 4.12. (IBDM]) Assume (fa,A; H) is mizing and satisfies properties (P1)-(P4). Then
LA has a spectral gap. Let A denote the largest eigenvalue of LA and let g denote the corresponding
normalized eigenfunction.

a) The escape rates with respect to m and 1gm exist and equal —log \; in particular A = Ag.
B B

(b) log A = sup {hn(fA) + /Awﬁdn |m€ My, n(—¢R) < OO} :

(c) The following limit defines a probability measure v,

U(p)= lim \™" [ ¢ gdm for all ¢ € By,

n—oo An

where By is the set of all bounded functions in B whose Lipschitz constant is also uniformly
bounded. The measure U attains the supremum in (b), i.e. it is an equilibrium state for gog.
(d) There exist constants D > 0 and o9 < 1 such that for all 1) € B,

A0~ d(v)gls < Dlldllscg, where d(w) = lin A7 [ vdm < .

n—o0 A

Also, for any ¢ € By with v(y)) > 0,

"
= g

- < D[¢y[|sog-
‘EZWLl(m)

L(m)

4.3. Application of abstract results and proof of Theorem In this section, we complete
the proof of Theorem by projecting the results of Theorem to our underlying map f with
neutral fixed point. In order to invoke these results, we fix ¢t € [0, 1) and show that our constructed
tower satisfies assumptions (P1)-(P4) with respect to the measure 72; and potential ¢4 induced by

to™ — p(t).
(P1) follows immediately from Lemma [4.1] with o = p(t) > 0.
(P2) follows from Lemma |4.2] and the assumption that —log A < p(t).

(P4) is satisfied since Df is bounded above and also below by 1 so that S,pa(x) grows at most
linearly in n for x € Ag.

It remains to verify (P3). First choose 0 < § < 7113:57 2 for reasons to be made clear below. Standard

estimates (see for example [DF), Lemma 3.1]) imply that there exists Cy > 0 such that for all n € N:

1

(D1) if f*(x) € Y, then Df"(z) > max{2,C'n""7};
(D2) if fi(z), fi(y) lie in the same element of P; for each 0 < i < n, then

We will need the following lemma.

Lemma 4.13. Suppose 6/log2 < ¢ < 1. Letp € CUI) and define ¢ on A by i = ow. Then
[0 < |¥]oo and Lip(y) < Cl9|ca for some constant C' depending on the minimum length of Ag,;.
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Proof. The bound ]1;]00 < |¥|o is immediate. To prove the bound on the Lipschitz norm of ¥, let
x,y € Ay and estimate

P(@) = D) _ (@) = ¢(r(y)]  |r(z) —w(y))
ds(z,y) |m(x) — m(y)|? e—0s(zy)

The first ratio above is bounded by [¢|[cq(r). To estimate the second ratio, note that if s(x,y) = n,
then by construction of A, f*(m(z)) and fi(7(y)) lie in the same element of P; for all i < 7"(x). By
(D1), Df™" (m(x)) = 2", so that using also (D2), |7 (x)—7(y)| < C27". Thus |7(z)—7(y)|9 < Ce "
as long as ¢ > 0/log 2, as required.

By (D2) above, we see that the potential ¢ = —log D f is Holder continuous with exponent v/(14-).
By Lemma the induced potential o will be Lipschitz in the metric dg if & < ﬁ,

6 < Vllj_i 2, which is what we chose initially. Then (D2) also implies the bounded requirement of

(P3) for ¢ with this choice of d.

ie. if

This extends to the potential ¢S, ¢ — np(t) for ¢t € [0, 1] since

|€tSn¢(x)—np(t) _ etSn¢(y)—np(t)‘ _ et5n¢(y)—np(t)|etSn¢(;z)_tSn¢(y) .Y
< Ct|log 65n¢(r)—5n¢(y)| < C/t|fn(aj) _ f”(y)|ﬁ,

where we have used the fact that ¢ < 0 and p(t) > 0. Thus (P3) is satisfied with this choice of §
for all ¢t € [0,1].

The final point to check is that fA is transitive and aperiodic on the partition {A,;}. This is
implied by the following.

Lemma 4.14. Suppose that H is non-swallowing. Then for each base A ;, there exists N = N(7)
such that f™"(Ao;) 2 Ag for alln > N.

Proof. Transitivity of fA is obvious by the non-swallowing assumption (1) on Q and Ay = Ugeco@.
It remains to verify aperiodicity.

By property (2) of the definition of non-swallowing, there exists ig € N such that Ag;, D (1/2,1/2+
d) for some § > 0. Let Ag; C ﬁ(AO,io)- Since Ag;, is recurrent, there exists ng € N such that
f"o (Ao, 7) 2 Agi,.- Now due to the renewal structure and the fact that Ag;, contains all Y for
k greater than some ko, if f”l(Aoyio) D Ay, then also f"1+1(A07¢0) D Ag,. So we have both
f"0+”1(A0’i0) D Ay, and ]‘2"0+n1+1(A0,¢0) D Ag,i,- Thus fa is aperiodic. g

With properties (P1)-(P4) verified, we conclude by the results of the previous section that £ has
a spectral gap on B and the conclusions of Theorem apply.

The last step in the proof of Theorem[I.7]is to show that we can project the results of Theorem

to our open system (f,my; H). For this we need the following proposition, which is an adaption of
[BDM, Prop. 4.2].

Proposition 4.15. Recall the projection Py, defined by (4.2)) with respect to the measure m;. Let
C(I) be the set of Holder continuous functions with exponent g supported on I. Then Lip(Jim|a,) <
oo for each £ and CU(I) C Py By for all ¢ > 6/log?2.



SLOW AND FAST ESCAPE FOR OPEN INTERMITTENT MAPS 29

Proof. Due to conformality and the definition of iy, for x € Ay, x = fg (y), we have

Jir(z) = dmy(mx) _ dmi(7(fAy)) _ dmq(f4(ry)) — o tSep(my)+Lp(t)
dmy(z) dmy(y) dmy(my)
Now by the proof of Lemma[4.13] J;7 is Lipschitz in the metric ds with Lipschitz constant depending
only on the level ¢ and the distortion constant from (D2).

Now let ¢ € CY(I ) for some q d/log2. Recall from the proof of Lemma [4.2| the index set K
of pairs (¢, ) such that £ < L, (U jyexcQej) = 7(A), and m(Agj) N W(AZIJI> = () for all pairs
(¢,5) # (¢,j") in K.

For (¢,5) € K and x € Ay, define U(z) = ¢ o w(x)Jym(x). Define ¥ = 0 elsewhere on A. Then it
follows from fact that Jym is Lipschitz on Uy, Ay and Lemma that ¢ € Byp. AISQ7 since the
images m(Ay;) and w(Ayp ;) are disjoint for all pairs (¢,7) # (¢, j') in K, we have Py ) =1. O

We proceed to prove the items of Theorem Fix ¢ > 0 as in the statement of Theorem
and choose 6 > 0, such that § < min{-Z Tog3" 1°g2} so that the conditions of Lemma {4.13 and
Proposition are satisfied as well as (P3).

(1) The characterization of Ay < 1 as the spectral radius and the existence of a spectral gap for LA
follow immediately from Lemma and Theorem

It follows from the definitions of Eot¢H p(t) and E i that given ¢ € C4(n(A)), and 1 as defined
above in the proof of Proposition [£.15] that

ﬁtd)H p(t)¢ P7T tﬁ Hwa Vn > 0 (419)

This relation also holds if ¢ is supported on H U W(A) since the part of ¢ on H is deleted in one
step.

Define g; = Pr:g;. Since g; is bounded away from 0 on A it follows using the index set I from
the proof of Lemma [4.2| that ¢; is bounded away from 0 on I. Moreover, by (4.19 -, we have
Ligi = PryL PGt = )\tgt

(2), (3) and (4). Define vy = m,v;. Now since

/iwdmtz/dz&dmt,

the characterization of v4(¢)) as the limit of A;™ [, ¥g¢ dmy follows from ([4.19) and Theorem 4.12(c).
With this definition, v; satisfies

log A\t = hy, (f) + /tng dvy — p(t),

due to Theorem [4.12(b) and (c¢). To project this relation from A to I, we use Lemma the
definition of ¢ and the fact that 7 : A — I is at most countable-to-one to deduce hy, (f) = hy, (fa).

Indeed, 14 attains the supremum of pressures over all measures 7 that lift to A. However, due to
Proposmon. we conclude that the supremum of measures that lift to A is in fact the supremum
of all ergodic, invariant measures supported on 1°°. Thus log \¢ = p(t) — p(t), completing the
proof of item (2). Moreover, it follows immediately that v; is the equilibrium state for the potential
to™ —pM(t).
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To complete the proof of items (3) and (4), we need only construct the conformal measure m{?. To
this end, define,

mi () = lim \," [ o dmy.
The limit exists again using (4.19) and Theorem M(d) It follows that mi! is supported on 1>,
and indeed that vy = g;m{!, completing item (4).

To see that m/! is conformal, note that for a small interval A C I centered at a m/!-typical point
x, we have

: )\_n_l ffn+1 1admy lim )\;nil fjn Z"thH—p(t)(lA) dmy
mil (F(A))  m=oo A" [ Lpaydme  n=oe AT [ Ly dimy

= hm )
n—00 Jin Ly dmy
where fg = f|a is injective on A. Taking the limit as A — {z}, we have
H
M (T) 1t @)-p(0) e @)-p" ()
m{’(f(z))

using item (2), which proves item (3).

(5) The characterization of uff := g;m; as a conditionally invariant measure and a limiting distribu-
tion follows immediately from Theorem M(d) again using (4 in addition to Proposition m
which allows us to lift any ¢ € C4(1 ) to the function space BO on A The convergence extends also
to 9 supported fully on I since in one iterate, £t¢H p(t)¥ 1s supported on I so the definition of P

on I\ I is irrelevant to the value of the limit.

4.4. Proof of Corollary [1.8] First note that the statement p(¢) > 0 if and only if ¢t < t7 is
simply the definition of ¢/ together with Proposition ( ).

We next prove —log Ay < p(t) if and only if p(¢) > 0. Recall that by Proposition we have

log A > log A, > pf () — p(t).

Assume p(t) > 0. Then by the above inequality, log \; > —p(t) and we are in the setting of
Theorem the associated transfer operator on the tower has a spectral gap and in particular,
the escape rate exists, A\t = \¢ = \; and the variational principle holds,

log Ay = p™ (t) — p(2).

On the other hand, assume log A\; > —p(t). Then again we are in the setting of Theorem and
the same set of results holds, including the variational principle. This implies in particular, that
pH(t) = p(t) +log A\; > 0.

Finally, we show that \; exists and the variational principle holds in all cases. The only case that
remains to be addressed is when p’’(¢) = 0. In this case, Proposition implies

log Ay > log A\, > —p(t).

In fact, all inequalities must be equalities otherwise log \; > —p(t) and again we are in the case of
the spectral gap which forces p () > 0 by Theorem contrary to our assumption.
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4.5. Proof of Theorem Let z € I and let H. D {z}, € € (0,20) be a nested sequence of
intervals that are nonswallowing holes. Our first step is to show that the sequence of conditionally
invariant densities gg{ ¢ given by item (2) of Theorem enjoy some uniform regularity in €. To
this end we define the variation of a function v on an interval J = [c, d] by,

\ @ i=sup Y [o(as) — (i) (4.20)
J =1

where the supremum is taken over all finite collections of points {z;}" ; such that ¢ = 2o < 21 <
- < x, = d. 1 is said to be of bounded variation on J if \/ ;14 < co. We call the set of such
functions BV (J).

. .. .. . H _H
Before we state our estimate on the variation of our densities, observe that since g, = Pr g, °,

the fact that infa gffs > 0 and the existence of the set of partition elements K from Lemma
imply that

f gHe = c. > 0. 4.21
Il\r}{sgt D Ce (4.21)

Lemma 4.16. There exists €1 > 0 and a constant Cy > 0 such that \/; g{fs < Cy for all e € [0,e4].

Proof. In what follows, for brevity, we denote Eot¢HE »(t) by L. Let {L}.}; denote the images

under f'” of the finitely many intervals {K]”a = (a],b;l)}j of monotonicity for f" Let &7 denote

the inverse branch of f" on L7.. Since etSn@=mp(t) L e=P(t) by standard estimates (see also the
proof Lemma, we have for ¢ € BV(I) and n > 0,

\/ﬁ?w < Z \/ ot Snd—np(t o€l + Z [(a? tSn¢ 7)—np(t) W’(bn” tSn@(b])—np(t)
I

ioLT,

< Ze \/ ¢+§;1PW| \/ olSn—np(t np(ﬂZ(\/ ¢+21nf |w|)
j

J,e
p(t)
\/w R / [ wlam,

where Cy is a distortion constant depending only on t and f and I =N f NI\ He). Also, we
used the fact that etSn?="P(t) is monotonic on each interval to bound

\/ etSn¢ np(t) < sup etanS np(t) <e —n ()
Kr, Kje

Now using Corollary and letting A denote the largest eigenvalue of ﬁot, we estimate,

—n pn —npHe (1)
VAL s ON v e [ ol dme

Since ¢ < ¢, we have p(t) > 0 so we may choose n sufficiently large that 3e— () = pe < 1.
Then iterating the above relation, we estimate for all k£ > 0,

—kn pkn . ~d n
\I/Aek Lhnp < \/w mmjmt(m Zpg: (k= /(k (] dimy. (4.22)
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Since )\;knﬁo,’fnl — clgflg as k — oo for some ¢; > 0 by Theorem m we will apply (4.22) toyp =1
to conclude that g/”= € BV(I). First note that by (#.21)),

)\;k/ 1dm; < cE_l)\;k/ gfs dmy = ca_l,
Ik Ik

for all £ > 0 using the conditional invariance of gg{i le. [ i gfls dmy = )\f_f . Using this together

with (4.22)) yields,
Cy 05_1
min; my(K7.) 1 — pe

1

Thus \/, g/ < Cq so that gf'= € BV(I).

c1ce(1—pe) min; mt(K;fa) ’

Once we know gtHE € BV(I), we may apply (4.22)) once more with ¢ = gg{E to obtain,

k
o C .
e __ —kn pkn H. k e d Z
\/gt _\/AE Et gt <p5 vgt +mlnmt(Kn ) ‘ ng
I I I J J€/ j=1

and letting k — 0o, we conclude

Cy
9 ° < - .
Vo™ < G iy )

Finally, we may choose this constant to be independent of € for € sufficiently small. This is because
pe < ps; < 1 by monotonicity of pf<(t) in e. Also, since the sequence of holes is nested by

assumption and f” has finitely many branches, min; mt(Kﬁs) can only increase for ¢ sufficiently

small. 0

Now consider the sequence of measures p”= = gH#em; for € > 0. Define the BV norm, ||¢/||py =
Vg + |g{{€]L1(mt). Since ||gi||py < C; 4 1 for all € < e, and BV is compact in L'(m;), any
limit point of the sequence must be absolutely continuous with respect to m; and in fact, have a
density in BV (I).

Fix a subsequence {e, },en such that {gfg" }nen converges in L(my) to a density hy € BV (I) with
|hel| By < Cy 4 1. Let poo = hymy.

We claim po, must be invariant as well, making it the unique invariant measure y; for f absolutely
continuous with respect to m;. To see this, recall the following characterization of the spectral
radius,

)\tHE = %it(gff)dmt :ﬁ gtHE dmy =1 —[ ) gﬁf dmy. (4.23)
i i Ve

Due to the uniform integrability of gff given by the proof of Lemma it follows that )\flf —1
as e — 0.

Now,
14 H., H., - - s H., H.,
[Lihi—hilt < |Lihi=AZ Lrgy ™ [+1g, " —hely < T=AZMILohal 1400 Lohi—=Logy " 1+, " —haly
The first and third terms above clearly approach 0 as n — co. We split the second term again,
s H., 8 5 H., H.,
(Cal — Logl 1y < [ Lahy — Lahaly + Loy — gl < /\ hedm + he — gfn 1,
I

12

n

and again both terms vanish as n — oo, using the fact that |hl, < Cy + 1.
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5. PROOF OF THEOREM [I.11} THE CASE WHERE THE EXPONENTIAL TAIL EQUALS THE
EXPONENTIAL ESCAPE: t € [t 1)

Although Theorem applies to all ¢ € [0,1), it provides new information only for ¢t € [t¥ 1).
For ease of notation, we will denote £; = L;4n_p ;) in this section. We do not prove that £; has a

spectral gap for t € [tH , 1), yet we will show that all limits points of the sequence {Enf?l}
t 1L (my) neN

are absolutely continuous with respect to m;. We will also use an averaging technique to construct
absolutely continuous conditionally invariant probability measures with eigenvalue A;.

Let g? denote the invariant probability density for the transfer operator before the introduction of
the hole, £;. By Lemma applied to € = 0, ¢Y € BV(I) and (4.21)) implies that

0
o = > 0. (5.1)

Moreover, since each x € I has at least one preimage under f by definition of H being non-
swallowing, we have

inf £;1(z) = e W inf [Df(x)| ™" =t ¢o > 0 (5.2)
zel zel

First we prove the following lemma.

Lemma 5.1. There exists C,n > 0 such that for alln € N, |£"]o < C(1 —n)™.

Proof. Since H is a union of Ny-cylinders by assumption, it follows that #{y € f~™(z)N H} > 1
for each x € I. Thus

£V0g8(@) = £F (@) — £30(1, jy 09)(@) < @)1 — 1L (1 i) @) < @)1 — 1)
No

Iterating this relation, we obtain £FY0g0(z) < (1 — c1cy°)*g)(z), for each k > 0 and = € I.
Using again the upper and lower bounds on ¢Y, we complete the proof of the lemma with 1 —n =

(1 — e16)0)/No, O

Next we address the regularity of j\o/;”l = |£§’?11| to show that all limit points of the sequence are
¢+ 411

absolutely continuous with respect to m;. Here, | - |1 denotes the L!(m;)-norm.

To this end, for ¢ > 0, define the log-Holder constant (which might be 0o) of a function ¢ > 0 by

[¥]lglog = sup sup |z —y|~|logt(x)/1(y)l.
JEPNO z,yeJ

If 9y = 0 on an element of Py,, we simply set its Holder constant on that element equal to 0.

The following lemma is essentially [DF} Prop. 3.7], adapted to the potentials t¢! — p(t). It is also
of note that the constants appearing below are uniform in H and Nj.

Lemma 5.2. Fizt and let H be an element of Pn,. For alln € N,
H'/\/tanq,log S th’

where Cy is from property (D2) and ¢ =~v/(1+ 7).
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Proof. Fix n € N, J € Py, and for z,y € J, denote by z; (resp. y;) the pre-images f_”(x)
(resp. f~™(y)) such that each pair z;,y; lies in the same branch of f~". Now,

Ly tSn(wi)—np(t) n (g
IOgM = log 2 etS’ S —mp S maxtlog Ma
[’?¢H6—p(t)1($) > etonelvi)—np i D f"(y:)

where we have used footnote The last quantity above is bounded by tCy|z — yP/ (147 by the
standard distortion estimate (D2) introduced in the verification of (P3) in the proof of Theorem[L.7]
proving the lemma. U

By Lemma we have a uniform bound on H/\Oftnlﬂq log? " € N. By [DF, Lemma 3.6] any sequence

of functions with a uniform bound on the log-H6lder constant lies in a compact set in the space of
probability measures on I and any (weak) limit point x4 must be of the form,

=560+ (1 —8)pts, for some s € [0, 1], (5.3)
where d¢ is the point mass at 0 and dy, = .dm; for some function 1, with |[1)«/410g < tCq.

Now suppose u is the limit of /\an 1, for some subsequence (n;);cy such that s > 0. It follows that
for each k € N,
,Conj+k1

im —— = LFp = 860+ (1 — 8)LFp..

Thus for each k& € N, we can find n; large enough that

’Z?J‘-&-klh N s
VAT

But choosing & sufficiently large so that C(1 — n)* < %, we have by Lemma for all n; > 0,

Eoanrkl - LE1 dm .
| b ‘1:f11 L t<sup£f1<0(1—n)k<f,
‘[’t]1|1 finj 1dmy i 3

which is a contradiction. Thus for any limit point u, we must have s = 0. This proves the first
part of Theorem [1.11

We next address conditionally invariant measures obtained as averages of Eo?l, suitably renor-
malized. Unfortunately, the naive average % ?:01 £l

—= LN
measure in general since the operation ) — £t%_ i not linear. Thus we adopt the point of view

[Le9]1
taken in [CMM] (see also [DY]).

does not yield a conditionally invariant

Define b; = /7771, 2, = S A77b;[£]1]; and
1 <& L
Un = > ONTbL
" i=1

By Lemma and using the convexity of || - ||410g, ¥n is a sequence of probability densities with
1¥nlg10g < tCq for each n. Thus by [DF, Lemma 3.6], any limit point of this sequence must again

be of the form (j5.3]).
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Suppose p is the limit of {1y, }jen. Then since u gives 0 weight to the discontinuities of Eotl, we
have

EtM_ lim — Z Zx\_’b L""Hl
*)OO
A boLil A, b, L1 (54)
= lim My A—"biﬁ”u )\_Zbﬁ (“—1)— Lad AN B :

n
7 4=1

where bg := b; = 1. The first term on the right hand side clearly converges to A\;u, while the second
term converges to 0 (in L!(m;)) since lim; oo bib‘_l =1

3

Next, consider the normalization factors Z,. By the conformality of m;, we have

/ﬁﬁldmtzﬁ Ldmy > | me(Ji) = ) Ck™ D e=kp®) 5 Gy 4 p) 3L =mp()
m k=n k>n+h

Since \; = e P®) it follows that
A b 1£i1), > foralli > 1

which implies that the sequence Z,, is increasing and unbounded. Thus the third term on the right
hand side of converges to 0 (again in L'(m;)) as j — co. Finally, the fourth term converges
to 0 as well, since the numerator is the final summand of the subexponentially diverging series in
the denominator.

We have shown that /jtu = A\¢pt and iterating this relation yields E?,u = A}, which implies s = 0
so that © = ¥,m; is an absolutely continuous conditionally invariant probability measure with
eigenvalue \;. Indeed, due to the regularity of ¢, which is inherited by 1y, 1, converges pointwise
uniformly to 1. on each element of Py,. Thus the convergence of 1, to 1, holds in L!(my).

6. PROOF OF THEOREM [L.13]

In this section, we will work principally with the domain Y := [1/2,1] and the induced map
F = f7:Y O, where 7 is the first return time to Y defined earlier. Recall that F' has countably
many branches created by the preimages of the intervals J,, n > 0. Let Y,, C [1/2, 1] be the interval
such that f(Y,) = J,. Then F(Y,) =Y for each n > 0 so that F' is a full-branched Gibbs-Markov
map.

Now fix a family of holes (H.).<s, satisfying assumption (H) of Section Unlike in previous
sections, the holes H. are not required to be elements of a Markov partition for f.

Since we are interested in the limit as H. shrinks to a point, and thus ¢/= increases to 1, we will
make a standing assumption throughout this section that
2
tHe > =1 (6.1)
1+~

Our goal is to construct an invariant measure on the survivor set compatible with the punctured
potential t¢fs — pf=(t) and then show that this sequence of singular measures converges weakly to
the absolutely continuous (with respect to my) equilibrium state p; for the closed system as ¢ — 0.

This program will be carried out in several steps. We first derive a uniform bound on the essential
spectral radius of the transfer operator associated with the induced punctured potential t®H —
7pH=(t) (Section 6.1) and then show that for small holes it has a spectral gap (Section [6.2)). In
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Section E 3| we use the spectral gap to construct an invariant measure for F supported on Y. This

measure projects to an invariant measure for f on I° and items (1)-(5) of Theorem are proved
in Sections [6.4] and [6.5

Since we normalize the induced potential t®c by the punctured pressure p’’s(t) rather than p(t),
the measure m; is no longer a conformal measure for this potential. In order to proceed, we first
prove the existence of a conformal measure for this potential.

Recall the definition of the variation of a function ¢ on an interval J defined by (4.20).
Lemma 6.1. Fort <1, let
P, = P(t® — " (1))
Then P, > 0 and there exists a (t® — 7p™e(t) — P, .)-conformal measure my . for F on'Y, which
has no atoms.

Proof. First note that P(t® — 7p(t)) = 0. So using the fact that 7 > 1, we have
0= P(t® — 7p(t) + 7p""=(t) — 7p= H(t)) < p"=(t) — p(t) + P(t® — mp"=(t)).

If H. is a Markov hole, then since ps(t) — p(t) = log A\s < 0 by Corollary we conclude that
P, . > 0 as required. On the other hand, if H, is not a Markov hole, we can always find H,, C H.
such that H,/ is a Markov hole. Then the above argument implies P .» > 0 so that by monotonicity,
P >0 as well.

In order to prove the existence of 7y g, we will check that the potential ¢® — TpHe (t) is contracting
in the sense of [LSVI].

(i) e!®*=7P" (1) s of bounded variation. Note that for each n, T is constant on Y, while e!® ly, = etSn®
is monotonically decreasing. Thus the variation of e!®*="<() is bounded by

\/ td—rpHe (1) < Zsupetq:' e (t) < ZC +1)t(1+ ) He (£)(n+1)
n=0 Yn n=0

and the series converges for all ¢ € [0, 1] since for t < t7, we have p =(t) > 0, while for t >t/ we

have t(1 + %) > 1 by our standing assumption (6.1 that ¢t"= > 1 . Thus e 1@rpie (1) has bounded
variation.

(1) Y=o SUDy, e!®=mP"*(t) < oo, This is the same calculation as above.

(iii) There exists ng € N such that

tSp, ®—7"0pte(t) _ . no
sup e"’no <inf L
Yp y Tto—rpHe(t)

This is trivial since the left hand side decreases exponentially in ng, while the right hand side is
greater than infy th) - ()1. Since F' is full-branched Gibbs Markov and the spectral radius of

Lio—_rp(t) ON ClY)is 1, E?&;_Tp( t)l converges uniformly on Y to a smooth invariant density for F

1.

which is bounded below away from 0.

Now that we have verified that the potential t® — 7pf<(t) is contracting, we may apply [LSVI]
Theorem 3.1] to conclude the existence of the (t® — 7p's(t) — P, .)-conformal measure 1 pr.. O

The importance of 7 g, is that it enables us to compute the escape of mass from Y under F via a
change of variables. Define ¥y, = t® — TpHe (t) — P:. and the corresponding punctured potential by
Uil =@M —rpH=(t)— P, .. Let H. be the hole in Y induced by H. and let Y* = Nj_F~*(Y \ H.)
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denote the set of points in Y which do not escape in the first n iterates of the induced map F'. The
corresponding transfer operators are denoted

ﬁ\y{{ﬂJ = £W1,5(1?51¢)-
Thus,
/ Loy W difve i, :ﬂ W ding ..
Y e n
so that the rate of escape with respect to 7y g, is governed by the spectral radius of 5\1/{1 . We

note that for ¢ = 1, the existence of such a conformal measure is trivial since p"<(1) = p(1) = 0
and m; remains the conformal measure for Lg.

6.1. Lasota-Yorke Inequalities for the Induced Potentials. In the next two sections, we
will establish strong spectral properties for the induced open system F. : Y — Y and transfer
operators with respect to several potentials. Recall ¥q . and \I'fs defined above. Similarly, define

Uy = t® — 7p(t) and its punctured counterpart ‘11515 = t®Hs — 7p(t). We will study the spectral
properties of the corresponding transfer operators on spaces of functions of bounded variation.

For ¢ € BV(Y), define ||¢|| v = \/y ¥ + [¥|11(m,)- In this section, we prove the following propo-
sition.

Proposition 6.2. Let {H.}.<., be a nested family of intervals satisfying assumption (H). There
exist constants C > 0 and o1 < 1 such that for all ¢p € BV (Y), € € [0,&0] and n > 0,

HﬁoggsleBv < Co |9l v + Clbl L1 (me)-

As a consequence, the essential spectral radius of EO\I,HS as an operator on BV (Y') is uniformly
2
bounded by o1 for all € € [0, &].

Remark 6.3. Similarly, if we define the norm ||| pv,a. = Vy ¥+ |03, ), one can also prove
the inequality )
1£yn YliBv.n. < Cotll¥lpva. + ClYlL g,

following closely the proof of Proposition|[6.3, and showing directly that the essential spectral radius
of E\I,{{ s again bounded by 1. We will not need this estimate, however, so we do not prove it.

Proposition together with Lemma suffice to prove quasi-compactness of EO\I,HE foralle >0
2
sufficiently small.

Before proceeding to the proof of Proposition [6.2] we make some observations about our holes
H,.. Let ﬁs be the hole in Y induced by H. and recall the sets {Y; ;}; j>0 defined in Section
which denote the maximal intervals on which 72 is constant, V;; = Y; N F71(Y;). Since F is
full branched and H. has finitely many components, it follows that F2.=F 2\1;52 enjoys the finite

images condition: The set {F2(Y; ) }i 0 comprises a finite union of intervals. The number of these
intervals varies depending on the placement of H., but is uniformly bounded above.

For example, suppose z = Hy C [0,1/2] lies in the interior of one of the intervals J;, j, = Ji; N
I "(Y},), for some iy > 1, jo > 0, where fz, is the left branch of L. It follows from condition (H)
that H, C J;, j, for € < gp since otherwise, as ¢ — 0, image intervals of arbitrarily short length
would be created. For ¢ € N and j < ig, j # jo, we have FE(YH) =Y, while for j > ig, 7 # o,
we have FEQ(Y”) =Y \ f(H.), which is a union of two intervals, A; = [1/2,a1] and Az = [asg, 1].
Note that f(H) C Yj,. It remains to consider the intervals Y; ; with j = jo. If i < o and jo < io,
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then again, ﬁ'g(YQJO) =Y, while if jo > ig then FEQ()QJO) =Y\ fio(H.). If i > ig and j < i,
then FEQ(Y;JO) =Y \ F(f°H.), again the union of two intervals, A3 = [1/2,a3] and A4 = [a4, 1].
Finally, if ¢ > ip and jo > ip, then ﬁ’g(Ymo) Y\ (f°(H.) U F(f"H.)), which can be at most
3 intervals, A5 = [1/2,a5], A¢ = [ag, 1] and A7 = [a7,ag]. Other cases for z on the boundary of
two consecutive J; ; or in [1/2,1] are similar. In all cases, our assumption (H) guarantees that the
minimum length of these image intervals is uniformly bounded away from 0 in €, making it possible
to obtain uniform Lasota-Yorke inequalities.

Finally, although 1, 5 has infinite variation when He C [0,1/2], 'C‘I&,E(ly\ 7.) has finite variation
since [,\pl’g(ly\ ﬁs) is smooth on each of the finitely many images of ¥ under F'. The same holds
true for IY\(HEUF*(HS)) and E?I/l,g(lY\(HsuFfl(He))) as well as E ( YA (H.UF— 1(Hs)))

Lemma 6.4. Let (H:):<c, be a family of holes satisfying assumption (H). Then there exist constants
C3 >0 and o < 1, independent of € < &g, such that for all b € BV (Y),

Hﬁq,HawHBv all¥llsv + Csl¥lLi(m,)-

Proof. Despite the countably many components of H,, the proof follows the standard line. We
include it to show that there is sufficient contraction uniformly for ¢ € [0, 1] and that the constants
are independent of ¢ under assumption (H).

For convenience, let us reindex the countably many intervals on which F? is smooth and injective

by Z, = [an,by], n € N. Note that each Z, C Y;; for some pair (4, ), although some Y;; will

contain two or at most three Z,, as described earlier. We denote by &, the inverse of F?2 restricted

to Z,. For brevity, we will denote the potential for LD',?I/HE by G = Z%ZO(#PHE — 7p(t)) o FI. Then
2

for ¢» € BV (Y), we write,

\/ﬁq,HEw \/(Zw & - eG°fn><Z \ (Wog& e

" EHZ) (6.2)
+ 37 10 0 &nlan) - €96 m) 4 J4p] o &y (by) - T8 ),

Note that the sum over the endpoints a,, = 1/2 or b, = 1 may be omitted so that most intervals
(excepting those of type A; described above) will have at most one endpoint to consider, and the
full branched ones none at all. Since we must estimate the worst case, however, we will not keep
track of these differences in our estimates.

For an interval J on which &, is smooth, we estimate

\/q/)ogn-eGOf”: \/ Y- e“ < sup e \/ 1!}+sup Y] \/ ¢
J

(6.3)

1

G

< sup e” |2 w—i-/ [l dmy |,
n () gn\(/t,) t(&n(J)) Jeu()

where we have estimated \/gn ) e < SUDg,, (1) e since G is monotonic on each &,(J).

Let 0, < 1 denote the maximum of e restricted to Z,,. Using bounded distortion and the confor-
mality of my, we have

1 C
sup ¢ d

en(s)  (En(])) S my(J)’ (6.4)
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Combining this with our previous estimates, we bound the variation of 1 o &, - €“°¢ using (6.3)),

Cq
Yok, e < 20, v+ / [0 dmy. (6.5)
\J/ sn\(/J) () e

It remains to estimate the sum over endpoints in (6.2). Now
910 €nlon) € 0) +[g] 0 u(bn) - € < (1] 0 nlam) + 18] 0 6 (b))

<an<i§nfw+\/w) <0”<mt(12n)/z wdmt+>{w)

Cdmt / Y dmy + oy \/ P,

where we have used the bounded distortion estimate in the last step.
Using these estimates together with (6.5)) in (6.2]) yields,

\/L:WHE Z3an\/¢+20dsup {m(F( / (| dm.

Sublemma 6.5. There exists o < 1 such that for all t € [0,1] and all v € (0,1), max,, 30, < 0.

Sublemmacompletes the proof of Lemma using the estimate above, the fact that ), \/, ¢ <
Vy ¥ and assumption (H) that the lengths (and therefore the m;-measures) of the image intervals
are bounded below away from 0 by a constant independent of € and ¢. (]

Proof of Sublemmal[6.5. We want to maximize e“ on Y and show that this maximum is less than

1/3. For t = 1, this maximum is 1/4 since p (1) = p(1) = 0. From now on, we assume ¢ < 1.

We begin by estimating the weakest contraction due to
t<I>HE —71p(t) _ (DF) —t —Tp(t)

Clearly, this is maximized when 7 = 1 and DF = 2, i.e. at a point in YN f~1(Y). We will maximize
this by minimizing its reciprocalﬁ ie. esr®

where

g4(t) = tlog 2 + p, (1)
We have added the subscript 7 to the expression for the pressure p(t) to emphasize its dependence
on 7. We proceed to minimize g, (t) over v € (0,1) and ¢ € [0, 1].

Note that g (t) is strictly convex with g,(0) =log2 = g,(1), for all v € (0,1), so that its minimum
occurs at an interior point of [0,1]. We will find the minimum of g, by finding the point of
intersection of two lines that lie below it: lower bounds on the tangent lines to g, at ¢ = 0 and
t=1.

At t =1, giy(l) =log 2 — x(11) > 0 where x- (1) is the positive Lyapunov exponent with respect
to the SRB measure p; for f = f,. Note that x, (1) 4 0 as v T 1 so we take as a lower bound for

He
676 prove Sublemma for the potential \If{{g, one must instead minimize, 2°e? (+Pre But observe that

0= P(t® — 7p(t)) = Pt — mp""* (t) + 7(p" (t) — p(t))) < p"* () = p(t) + P(t® — 7p""* (¢))

since 7 > 1. Thus P;c > p(t) —p™=(t) and so oter”* (O+Pre > e97® and the estimate reduces to the current estimate
for Wl
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this tangent line, the line u = tlog2. This line lies below g, and u(1) = log2 = g,(1). Although
u(t) is not tangent to g(t), it is the limit of tangent lines at ¢t =1 as v — 1.

At t =0, g7(0) = log2 — x4(po) < 0, where pg is the measure of maximal entropy for f. We
proceed to derive an upper bound for x(uo) that is independent of v € (0, 1).

Let ay := f; 1(1/2), where f, denotes the left branch of f = f.,. We will use the fact that o gives
equal weight to all two-cylinders of the partition {[0,1/2),[1/2,1]}, i.e.,

10([0, a5]) = po([ay, 1/2]) = po([1/2,3/4]) = no([3/4,1]) = 1/4.
We want to maximize

Gl = [ logIDflduo+ [ tog|Dfldu+ [ log Dfldim. (66)

0,0+ 1/2 1/2,

The last integral above simply equals %log 2. For the first two integrals, notice that Df,(z) is
strictly increasing for z € [0,1/2], so that for all = € [ay,1/2] and all v € (0,1),

Df,(x) < Df(1/2) =2+ < 3 = D (1/2).
On the other hand, for z € [0, a,],
Df(2) < Dfy(a,) = 1+ (1+7)(2a,)".

We claim that this expression is increasing in v and so is maximized when v = 1.

Claim. sup,c (o) Df,(a,) = Dfi(ar) = V5.

Postponing the proof of the claim and applying these observations to , we have the following
upper bound for x, (1),

o log /5 n log 3 n log 2 _ log(12\/5).

sup X (to) (6.7)
ven) T4 4 2 4
Thus the slope g7 (0) > log2 — M independently of . This implies that the minimum of

g(t) will be at least as large as the point of intersection between u(t) and this lower bound for the
tangent line to g,(t) at t = 0. This occurs when

tlog2 =log2 + t(log2 — ilog(12\/5))

4log2
= log2=tlog(12V5) = t=——"°>"_|
g2 = ;log(12v5) log(12/5)
Thus
. ) 4(log 2)?
in > =7
te[0,1] 9y log(12\/5)
and so
a 9 _ 8(10g2)2
e” <e” 9~ <e log(12v5) <« m’
for all v € (0,1), completing the proof of the sublemma. O

Proof of the Claim. Note that a, by definition satisfies the following relation,

Hlay) =ay+27a)™ =4 = (20,)7 = 5 — 1. (6.8)

T 2ay
For v € (0,1), we want to maximize

M(y) = Dfy(ay) = 1+ (1+7)(2a,) =1+ (1 +7) (g — 1) = T =,
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where we have used to simplify the expression. Differentiating with respect to v we obtain,

2a~, — (1 + v)2d. 1 (14 ~)d!
M(7) = "2 toa= (1 ), (6.9)
da?2 2a., ay K
where a’v = (%” > (0. In order to eliminate a’v, we differentiate with respect to v to obtain,
! al —log(2a
al (1+ (2ay)7) + a,(2a,) " [log(2a,) + 72—1] =0 = L= 1g—(”) (6.10)

Qry W + 1+ Y ‘
Substituting this expression into yields,

M(7) = 1 (1 N (1+7)log(2ay) 2%) - L(l N (1+~)log(2ay)

2a, 1"'74‘% 2a 2+

— 2a7),

where we have used the fact that (2a,)” < 1 and log(2a,) < 0 to obtain the lower bound for M’ (7).
To show that M’(y) > 0, it suffices to show that the expression

(1 + ) log(2a,)
2+7y
remains positive for v € (0, 1). Differentiating again, we obtain

(2 + 7)llog(2a,) + (1 +7) 2] — (1 +7) log(2a,)

h(y):=1+

- 2a,

h(y) = CESE — 2a£/
log(2a,) + (1 +7)(2+7) 2 — 2a5(2 +7)* 2
(2+7)?
_ —log(2ay) | (142 +7) —2a4(2+17)°
(2+7)? 1+9+ oy ’

where we have used (6.10) in the last line. Since —log(2a~) > 0, it suffices to determine the sign of
the expression in square brackets above. Now we use the fact that a, > 1/4 (attained when v = 0)
and (2a,)Y <1 to write,

~1-7- + (L4 7)(2+79) = 2a,(2 +7)°

1
(2a,)7
<2y 42+37+72-2-2y- L =242 < - <0

We conclude that h/'(y) < 0 so that the minimum of h occurs at h(1). Since a; = @, we have

h(l) =14+ %log(Qal) —2a1 = 3_27\/5 + %log(@) > 0.

Since h(7) is strictly positive, we conclude that M’ () is strictly positive and thus that M () attains
its maximum at v = 1. Now M (1) = Dfi(a1) = v/5, completing the proof of the claim. 0

Proof of Proposition[6.9. Even without strict contraction, the estimates of Lemma [6.4] show that
||£\II£IE'¢HBV < Cll¢||py for any ¢ € BV (Y). This, together with the fact that |£\P55¢‘L1(mt) <

19| L1 (m,) implies that for any n € N and ¢ € BV (Y),
”»CO$H5¢||BV < C(@™?|[¢||pv + %|¢|L1(mt))v
2

for a uniform constant C, independent of H.. This is the standard Lasota-Yorke inequality. This
inequality, together with the compactness of the unit ball of BV (Y) in L!(m;), implies that the
essential spectral radius of £ on BV (Y) is bounded by o'/2. O

He
\II2
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6.2. Perturbation Results. In this section, we will prove the following result.

Proposition 6.6. Let (H.)-<c, be a family of nested intervals satisfying (H). Then for each t €

[0, 1] and € sufficiently small, Ly = Ligre rpte(1)—p,. has a spectral gap on BV(Y') equipped with

P,
the || - ||[By norm.

Indeed, the spectrum of qu,{{ outside the disk of radius o/? is Hélder continuous in € and the

spectral projectors vary Holder continuously in the | - ‘Ll(mt) norm.

Proof. Since on the one hand, m; is not conformal with respect to the potential \I'{{e while on
the other, the conformal measures 7 . depend on H., we will prove this proposition in two
steps. First, notice that since F' is a full-branched Gibbs-Markov map, the unpunctured operator
Ly, = Lig_rp(t) €njoys a spectral gap on BV (Y') equipped with the ||- || gy norm since the potential

Uy is contracting in the sense of [LSV1]. We will show that the punctured transfer operator EO\I/HE =
2

itq)HE _rp(t) 18 @ perturbation of Ly, using the framework of [KLI] to conclude that this spectral
gap persists for the punctured transfer operator for sufficiently small holes under assumption (H).
Indeed, it will follow that the spectral gap enjoyed by L;gn. () has a lower bound that is uniform

in €. Second, we will show that the punctured transfer operator ,C\I,{-IE = EQ@He —rpHe(t)—Py. 1S A
perturbation of L,gn. ., in a strong sense in BV (Y'). This will imply that for sufficiently small

g, E\I,{z enjoys a spectral gap as well.

Step 1. In this step, we will prove that the spectra of EQ\IIHE = ﬁotq)Hs —rpt) a0d L, = Lig_rp(r) are
2

close in the sense of [KL1]. To this end, for two operators P;, P, from BV (Y) to L!(m;), define
the following norm.

[[Prep — Porpl|| = sup{| P — Potd|1(my) ¢ 19l < 1}
We begin with the following lemma.

Lemma 6.7. Let H be a hole in I and let H be the induced hole for the map F inY. Then
120, — Loglll < me( U F~L(D)).

Proof. Let ¢ € BV (Y), ||¢||pv < 1. Then in particular, 1| < 1. So,

Loyt = Lymd|aim,) = / 1Lws (Lgup-r(my¥) ] dme < /  [¢ldmy < my(HUF7Y(H)).
HUF-1(iT)

0

For a family of holes satisfying (H), since m;(H.UF~'(H.)) — 0 as e — 0 and using Proposition
and Lemma it follows from [KLIL Corollary 1] that the spectrum and spectral projectors
corresponding to eigenvalues outside the disk of radius o'/2 vary Holder continuously in the size of
the perturbation.

Since Ly, has spectral radius 1 and enjoys a spectral gap, let Bt,O < 1 denote the magnitude of its

second largest eigenvalue. Letting A;. and ;. denote the largest and second largest eigenvalues

of L., respectively, we conclude that both vary continuously in ¢ for ¢ sufficiently small. In
2

particular, we may choose € sufficiently small that J_XM — Bta > (1— Bt70)/2 for all € < &9, i.e. Loi‘leE
2

has a spectral gap.
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Step 2. In this step, we will show that the transfer operators £\I,{1 = EO@HE,TpHs(t), p,. and
/j\pgzg = Lpn. _rp(t) are close in the || - [|py norm.

Lemma 6.8. Suppose H = H. belongs to a family of holes satisfying assumption (H). Then there
exists C' > 0, independent of €, such that

1Lqgs — Lyne sy < Clp(t) —p™(8) + Pro),

where [[¢|[Bv = Vy ¥ + [¥|11(my)-

Proof. Let Z! = (a%,b.), i = 1,2, denote the at most two maximal intervals in Y on which Fis

monotonic and continuous with 7|z = n. Letting ¢! denote the inverse of F| zi, for ¢ € BV(Y)

we follow (6.3)),
\/ (ﬁllffsw - ﬁqjgs ¢) g Z \/ w 9] f;(e‘ljl’sog;b — 6‘1}2052)

Y nt Y

+2_ e e — )] [y o) [ e ) — 203
< Zsup e — 2| (\/ g +supw) + > suple?e — 2| (\/ v+ inf )
ni Zn Zi Z, mi Zh zi O
<Allyllpy Y _suplets —e"2|,
n,t Z5

where we have used the fact that e¥1= — e¥2 is monotonic and does not change sign on each Z! to
bound the variation by the supremum of the function. Fixing Z!, we estimate,

|€‘I’1,€ _ e\Ij2| — et<b—7‘p(t)|1 _ e(p(t)_pHa (t))T_Pt,5|

< C'n’t(”%)e*np(t)(n(p(t) _ ple () + P s)e(p(t)*pHs (t))n+Pre
< Cn*t(H%)He*"pHg (*) (p(t) — pHe(t) + Pie),

where in the second line we have used the estimate |1 — e®| < ze” for > 0 and |1 — €*| < |z| for
z <0.

Summing over n, we see that the sum is bounded uniformly in e since pfs(t) > 0 for ¢t < tHc and

since tHe > 2v/(1 4 7) by assumption of ., we have ) pl—t+3) < oo for t > tH=. We have
also used the fact that there are at most two Z¢ per n € N.

To bound the difference in L'(m;) norm for ¢ € BV (Y'), we use the fact that m; is conformal with
respect to Wa to write

/ L w_ﬁxl/f”/”dmt:/ || |1 — e@O—P e (O)T=Prc
Y €

< Clllpy Y mi(ZE)1 — enPO-P O)=Fe|

n,i

and note that this is the same estimate as above since due to conformality and the large images
assumption (H), m4(Z%) is proportional to e!®=7P(*), O

Our next lemma shows that in fact the bound obtained in the previous lemma is continuous in &.
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Lemma 6.9. Let (H.):<c, be a collection of holes centered at z € I with H. — {z} ase — 0. Then
fort €[0,1],
tHe

pHe(t) = p(t), —1 and P, -0 as € — 0.

Proof. Note that for ¢t = 1, the statement of the lemma is trivial since pf=(1) = p(1) = 0 and so
P . = —logA;. is continuous in € by Step 1. We now focus on ¢ < 1. Since the quantities of
interest are clearly monotone in the size of the hole, we need only prove the lemma for Markov
holes.

By Corollary we have log A= = pf=(t) — p(t). By (#.23) and the comment following it, we
have A¥e — 1 as € — 0. Thus p/=(t) — p(t) as e — 0.

Now fix ¢ < 1. Since p(t) > 0, by the previous paragraph we may choose ¢ > 0 sufficiently small
such that p=(t) > 0. By Proposition this implies t¢ > t and by monotonicity, tf< > ¢ for all
¢/ < e. Since this is true for each t < 1, we have t= — 1 as ¢ — 0.

Finally, consider the rescaled transfer operator e’ b Ly, . = Lyg_rpH-(y) Whose spectral radius on
BV (Y) is ef*<. Replacing Ly, . by this rescaled operator in the statement and proof of Lemma
yields,

ILso—rpte 1y — Lia—rpllBv < C(p(t) — p™e(t)).
Using now that pf(t) — p(t) as ¢ — 0 and the fact that Lio_rpt) has a spectral gap with
leading eigenvalue 1, we conclude using standard perturbation theory that the leading eigenvalue
of Lygp_rpHe(y) tends to 1 as € — 0. This implies P . — 0 as required. u

Since P, — 0 and p=(t) — p(t) as ¢ — 0, Lemmas and imply that as operators on
BV (Y), E\I,{q and L n. are close so that their spectra and spectral projectors vary continuously

by standard perturbation theory (see [K]).

Thus for € sufficiently small, the largest eigenvalue of Eq,{z , At e, is close to /_\t@ while the second

largest eigenvalue, f; . is as close as we like to Bt (if it lies outside the disk of radius o1/2). Since
by Step 1, A;. and B; . are uniformly bounded away from one another for all € < gg, we may further
shrink eq if necessary so that A;. and 3;. are uniformly bounded away from one another for all

€ < g9. Thus £\I,{1 has a spectral gap on BV (Y') for all € < ¢.

This completes the proof of Proposition O

6.3. An invariant measure for F. on f/soo. In this section, we fix ¢ € [0, 1] and assume that £
is small enough that for each H. with ¢ < g, E\ijl =: L. has a spectral gap by Proposition

Thus for € € (0,ep] there exists a maximal eigenvalue A, < 1 for L. and unique g. € BV(Y)
on Y. =Y \ H, such that L.g. = A.g. and g.7 g, defines a conditionally invariant probability

measure for F' with escape rate —log A.. Moreover, there exists C' > 0 and p < 1 such that for
each ¢ € BV (Y') and n > 0, we have

[AZ" L2 — ec()gel By < Cl¥llBv ",
where e-(1) is determined by the spectral projector Il. of L. onto the subspace spanned by g.:
e<(v) = || L1 (e zr)» due to the normalization of g. we have chosen. If v is a probabili