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Abstract

We examine the kinematic morphology of early-type galaxies (ETGs) in eight galaxy clusters in the Sydney-AAO
Multi-object Integral-field spectrograph Galaxy Survey. The clusters cover a mass range of <14.2

<( )M Mlog 15.2200 and we measure spatially resolved stellar kinematics for 315 member galaxies with
stellar masses * < ( )M M10.0 log 11.7 within 1 R200 of the cluster centers. We calculate the spin parameter,
λR, and use this to classify the kinematic morphology of the galaxies as fast or slow rotators (SRs). The total
fraction of SRs in the ETG population is FSR = 0.14 ± 0.02 and does not depend on host cluster mass. Across
the eight clusters, the fraction of SRs increases with increasing local overdensity. We also find that the slow-rotator
fraction increases at small clustercentric radii (Rcl< 0.3 R200), and note that there is also an increase in the
slow-rotator fraction at Rcl ∼ 0.6 R200. The SRs at these larger radii reside in the cluster substructure. We find that
the strongest increase in the slow-rotator fraction occurs with increasing stellar mass. After accounting for the
strong correlation with stellar mass, we find no significant relationship between spin parameter and local
overdensity in the cluster environment. We conclude that the primary driver for the kinematic morphology–density
relationship in galaxy clusters is the changing distribution of galaxy stellar mass with the local environment. The
presence of SRs in the substructure suggests that the cluster kinematic morphology–density relationship is a result
of mass segregation of slow-rotating galaxies forming in groups that later merge with clusters and sink to the
cluster center via dynamical friction.

Key words: galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies:
groups: general – galaxies: kinematics and dynamics

1. Introduction

The relative fraction of different galaxy morphological types
has been shown to vary with environment such that galaxies
visually classified as early-type galaxies (ETGs) are more
prevalent in the high-density environment of galaxy clusters at
the expense of late-type galaxies. This is the morphology–
density relationship (Oemler 1974; Davis & Geller 1976;
Dressler 1980). ETGs can also be classified based on a
kinematic morphology using their spin parameter, probed
through their stellar kinematics. In this classification system,
ETGs with high spin parameter are classified as fast rotators
(FRs) and those with low spin parameter are classified as slow
rotators (SRs; Cappellari et al. 2007; Emsellem et al. 2007; see
Cappellari 2016 for a review).

The ATLAS3D team examined the kinematic morphology–
density relationship for the first time (Cappellari et al. 2011).

They observed that there are fewer slow-rotating ETGs, relative
to the total number of ETGs, in the lowest density local
environments such that the fraction of slow-rotating ETGs is
FSR = NSR/NETG ∼ 0.13. However, the fraction of SRs more
than doubles in the densest region of the Virgo cluster where
FSR ∼ 0.28. Virgo is not a very massive cluster and provides
only a single example of a dense environment. The kinematic
morphology–density relationship has since been studied in
seven additional clusters of differing cluster masses (Abell
1689, D’Eugenio et al. 2013; Coma, Houghton et al. 2013;
Fornax, Scott et al. 2014 and Abell 85, 168 and 2399, Fogarty
et al. 2014). These authors all find a total SR fraction, FSR ∼
0.15 with no dependence on the global environment studied
between the field/group sample of ATLAS3D and the most
massive cluster studied to date, Abell 1689. However, these
studies also find that FSR generally rises with increasing local
environmental density within these global environments. The
Abell 168 and Abell 2399 clusters studied by Fogarty et al. (2014)
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form an exception. In these two clusters the SR fraction peaks at
intermediate densities and then falls. These two clusters are
known to be undergoing mergers (Hallman & Markevitch 2004;
Fogarty et al. 2014), and the SRs in these systems are associated
with cluster substructure. Houghton et al. (2013) argued that the
relationship observed between kinematic morphology and density
is a result of mass segregation by dynamical friction because the
total SR fraction is consistent across a range of global
environments, while the SRs are segregated into the densest local
environments. Cappellari (2016) came to the same conclusion
owing to the presence of SRs near the centers of the Fornax,
Virgo, and Coma clusters or subgroups within those clusters.

There is also a known relationship between galaxy mass and
spin parameter such that more luminous galaxies with the
highest mass show the lowest spin parameters (e.g., Emsellem
et al. 2007; Cappellari 2013; Jimmy et al. 2013; Veale et al.
2016; Oliva-Altamirano et al. 2017). While low-mass dwarf
galaxies have a strong relationship between spin parameter and
environment (Guérou et al. 2015; Toloba et al. 2015), it is not
yet clear whether the driving force in the kinematic morph-
ology–density relationship for the general elliptical galaxy
population is environmental density or galaxy mass. Scott et al.
(2014) examined this question for a sample of 30 ETGs in the
Fornax cluster and found that even in mass-matched samples of
slow and fast rotators, the SRs were found at preferentially
higher projected environmental density than the fast rotators.
They argued that dynamical friction alone could therefore not
be responsible for the differing distributions of slow and fast
rotators.

The Sydney-AAO Multi-object Integral-field spectrograph
(SAMI; Croom et al. 2012) now makes it possible to obtain
spatially resolved optical spectra for large numbers of galaxies
covering a broad range in mass and environment. The SAMI
Galaxy Survey (SGS) (Bryant et al. 2015) will observe ∼3600
galaxies with stellar masses *< <( )M M7 log 12 in a range
of environments including eight galaxy clusters (Owers et al.
2017). We present here the kinematic morphology–density
relationship for the ETGs observed in the eight SAMI clusters.
This is the largest sample of cluster galaxies available to date
and allows a robust analysis of the dependence of kinematic
morphology on stellar mass as well as global and local
environment.

In Section 2 we describe our observations and data
reduction. Derived parameters are described in Section 3, and
our kinematic classification is defined in Section 4. Results are
presented in Section 5 and are discussed in Section 6, before
conclusions are drawn in Section 7. Throughout this paper we
assume a Hubble constant of H0 = 70 km s−1 Mpc−1, ΩM =
0.3, ΩΛ = 0.7 and a Chabrier (2003) initial mass function.

2. Observations and Sample

The observations used in this analysis are selected from the
SGS. The survey is ongoing and will observe ∼3600 galaxies
at redshifts 0.04 < z < 0.095 with regular public data releases
that will be accessible via the survey website, https://sami-
survey.org (A. Green et al. 2017, in preparation). The survey
target selection is described in Bryant et al. (2015). In brief, the
main SAMI sample is selected from the Galaxy And Mass
Assembly survey (GAMA; Driver et al. 2011; Hopkins et al.
2013). The GAMA sample covers broad ranges in stellar mass
and environment, but does not include massive clusters. The

SGS also targets eight additional clusters (Owers et al. 2017) to
probe higher density environments.
Following previous analyses of the kinematic morphology–

density relation, we focus here on the SAMI cluster sample; a
separate paper will analyze the kinematic morphology–density
relation in the main SAMI sample (J. van de Sande et al. 2017,
in preparation). The selection of the eight clusters and their
constituent galaxies is described in detail in Owers et al. (2017).
In brief, cluster members were selected following a dedicated
redshift program using the AAOmega spectrograph (Sharp et al.
2006) on the 3.9 m Anglo-Australian Telescope (AAT) fed
by its multi-object fiber-feed: 2dF. The redshift survey has high
spectroscopic completeness, and 94% of potential cluster
members have redshift measurements. Cluster membership
was defined using a caustic analysis (Owers et al. 2017). The
cluster members were used to estimate R200

15, as well as the
mass within R200, M200. The SAMI clusters range from

< <( )M M14.2 log 15.2200 in mass and 0.02 < z < 0.06
in redshift (Table 1).
SAMI has a stepped stellar mass selection function, so that if

the cluster redshift is less than z = 0.045, the stellar mass limit
is * =M Mlog 9.5 and clusters with redshifts above that have
a stellar mass limit of * =M Mlog 10.0. SAMI targets cluster
members within 1 R200 and s V3.5 gal cl (the clustercentric
recession velocity with respect to the cluster velocity disper-
sion), and there are 848 cluster members meeting these stellar
mass, radius, and recession velocity criteria. The stacked color-
stellar mass distribution of the 848 cluster members is
illustrated in Figure 1.
Previous analyses of the kinematic morphology–density

relation focussed on the ETGs. We do not have visual
morphologies for all of the galaxies in our sample. The
majority of visually classified ETGs are red (although not all,
e.g., Bassett et al. 2017), particularly in the cluster environ-
ment. We therefore make a color cut to select only the red
galaxies (within ±1σ of the fitted red sequence, equivalent to
±0.11 mag) in the g − i color–mass relationship for the stacked
clusters (cf. Houghton et al. 2013). This selection is illustrated
in Figure 1. The precise choice of color cut does not change our
conclusions.
As lower mass galaxies were not observed by SAMI above

z=0.045, we only select galaxies with stellar masses

* >M Mlog 10.0 for the analysis presented here to maximize
sample completeness over the whole redshift range. The mass
and color cuts remove 181 and 108 galaxies, respectively,
leaving a sample of 559 early-type cluster members with

* >M Mlog 10.0 (Table 1). Henceforth, we do not include
cluster members with * <M Mlog 10.0 in our analysis.

2.1. SAMI Observations and Data Reduction

The SAMI instrument (Croom et al. 2012) deploys 13
imaging fiber bundles, “hexabundles” (Bland-Hawthorn et al.
2011; Bryant et al. 2014), over a 1° field at the Prime Focus of
the AAT. Each hexabundle consists of 61 circularly packed
optical fibers. The core size of each fiber is 1.6 arcsec, giving
each hexabundle a field of view of 15 arcsec diameter. All 819
fibers (793 object fibers and 26 sky fibers) feed into the
AAOmega spectrograph. For SAMI observing, AAOmega is
configured to a wavelength coverage of 370–570 nm with

15 The radius at which the mean interior density is 200 times the critical
density of the universe.
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R = 1812 in the blue arm, and 630–740 nm with R = 4263 in
the red arm (van de Sande et al. 2017). A seven-point dither
pattern achieves near-uniform spatial coverage (Sharp et al.
2015), with 1800 s exposure time for each frame, totalling
3.5 hr per field.

As described in Allen et al. (2015), 12 galaxies and a
secondary standard star are observed in every field. The
secondary standard star is used to probe the conditions as
observed by the entire instrument. The flux zero-point is
obtained from SDSS, while the shape of the flux correction is
derived from primary standard stars observed in a single
hexabundle during the same night for any given field of
observation. The raw data from SAMI were reduced using the
AAOmega data reduction pipeline, 2dfDRv5.62 (Croom et al.
2004; Sharp & Birchall 2010) followed by full alignment and
flux calibration through the SAMI Data Reduction pipeline

(see Sharp et al. 2015 for a detailed explanation of this
package). In addition to the reduction pipeline described by
Allen et al. (2015) and Sharp et al. (2015), the individual
frames are now scaled to account for variations in observing
conditions (A. Green et al. 2017, in preparation).
To date, the SGS has observed 320 early-type cluster

member galaxies with * M Mlog 10 (SAMI internal data
release v0.9.1).
The eight clusters include three clusters (Abell 85, 168, and

2399) that have been observed previously as part of the SAMI
Pilot Survey (Fogarty et al. 2014, 2015). Some of these
galaxies have been reobserved and the data reduction
improved. We present a comparison with the analysis here in
Section 4.2.

3. Derived Parameters

3.1. Photometry

The photometry for the SGS clusters is described in detail in
Owers et al. (2017). We provide a brief overview here.
Four of the clusters (Abell 85, 119, 168, and 2399) lie within

the Sloan Digital Sky Survey (SDSS; York et al. 2000). For
these clusters the ugriz SDSS DR10 photometry has been
remeasured using the IOTA software, which is used to measure
aperture-matched photometry for the GAMA survey (Hill et al.
2011; Driver et al. 2016). Each frame was convolved to a
common point-spread function (PSF) full-width at half-
maxiumum (FWHM)=2″ before using the SExtractor soft-
ware (Bertin & Arnouts 1996) in dual-image mode to extract
the aperture- and seeing-matched photometry. The r-band
image was used for detection.
The four clusters not in the SDSS regions (EDCC 0442,

APMCC0917, Abell 3880, and 4038) are covered by the Very
large telescope Survey Telescope (VST) ATLAS (Shanks et al.
2015) survey. Raw VST/ATLAS data in the gri-bands were
retrieved from the archive and reduced using the Astro-WISE
optical image reduction pipeline (McFarland et al. 2013). The
aperture- and PSF-matched photometry is measured as for the
SDSS data, with one exception: the image quality of the VST/
ATLAS imaging is higher than that of SDSS (Shanks et al.
2015), so each 1°×1° gri-band tile was convolved to a

Table 1
The Properties of the Eight Galaxy Clusters Observed by SAMI

Cluster R.A. Decl. zcl M200 R200 σcl NMem NETG NObs Nλ CompETG,λ NSPS

J2000 J2000 log(Me) Mpc km s−1

EDCC0442 6.38068 −33.04657 0.0498 14.45 1.41 583 50 42 33 31 0.74 0
Abell0085 10.460211 −9.303184 0.0549 15.19 2.42 1002 167 138 65 58 0.42 12
Abell0119 14.06715 −1.25537 0.0442 14.92 2.02 840 253 138 64 55 0.40 0
Abell0168 18.815777 0.213486 0.0449 14.28 1.33 546 112 53 21 21 0.40 8
Abell2399 329.389487 −7.794236 0.0579 14.66 1.63 690 92 73 54 49 0.67 3
Abell3880 336.97705 −30.575371 0.0578 14.64 1.62 660 56 48 28 28 0.58 0
APMCC0917 355.39788 −29.236351 0.0509 14.26 1.19 492 29 23 18 15 0.65 0
Abell4038 356.93781 −28.140661 0.0293 14.36 1.46 597 89 44 37 35 0.80 0

Total: K K K K K K 848 559 320 292 0.52 23

Note. R.A., decl., zcl, M200, R200, and σcl are all from Owers et al. (2017). NMem is the number of members within 1 R200 and s V3.5 gal cl (for clusters with
zcl < 0.045, this includes galaxies with *< <M M9.5 log 10.0). NETG is the number of early-type members with * M Mlog 10.0 (ETGs). NObs is the number of
observed ETGs. Nλ is the number of observed ETGs for which the spin parameter could be measured. CompETG,λ gives the fraction of ETGs with spin parameter
measurements. NSPS gives the number of SAMI pilot survey galaxies added to the analysis (Section 4.2.2).

Figure 1. g − i color as a function of stellar mass, M*, for the 848 SAMI
cluster members (within 1 R200 and s V3.5 gal cl and stellar mass

* >M Mlog 9.5 for zcl < 0.045 and * >M Mlog 10.0 for zcl > 0.045;
black open points) and the galaxies selected for this analysis (red galaxies with

* M Mlog 10.0; red filled points). The solid line indicates a straight-line fit
to the red sequence and the dashed line indicates the ±1σ scatter around this.
The dotted line indicates the stellar mass limit * =M Mlog 10.0.
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common 1 5 FWHM. Owers et al. (2017) use the duplicate
measurements of galaxies in Abell 85, which has full SDSS and
partial VST/ATLAS coverage, to show that any systematic
differences in the photometric and stellar mass measurements
between the two surveys are less than 0.05 dex.

To calculate absolute magnitudes, we K-correct the apparent
magnitudes to z=0 using the IDL calc_kor.pro code
(Chilingarian & Zolotukhin 2012).16

3.2. Stellar Masses

Stellar masses are estimated using the empirical proxy
between i-band absolute magnitude and g − i color given in
Taylor et al. (2011) and also used by Bryant et al. (2015) for the
main SGS. We use the aperture- and PSF-matched photometry
described above, corrected for Galactic extinction using
Schlegel et al. (1998) dust maps.

3.3. Photometric Fits

Galaxy effective radii and ellipticities are measured using the
Multi Gaussian Expansion (Emsellem et al. 1994) technique
implemented in the code from Cappellari (2002). These are
presented in F. d’Eugenio et al. (2017, in preparation). The
code measures circularized effective radii that we convert into
the semimajor axis effective radius used throughout this paper
as = -( )R R 1e e,circ , where the ellipticity, ò, is the
luminosity-weighted ellipticity of the galaxy.

3.4. Galaxy Environment

The local environment of galaxies can be measured using a
nearest-neighbor surface density to probe the underlying
density field. The principle behind the nearest-neighbor
measurement is that galaxies with closer neighbors are in
denser environments (Muldrew et al. 2012). The nearest-
neighbor measurement can be refined to an overdensity that
parametrizes whether galaxies are in an environment that is
more or less dense than the average in a given sample. We
calculate the nearest-neighbor surface density, SN,Vlim,Mlim, for
all galaxies with reliable redshifts in the parent cluster redshift
sample. The surface density is defined using the projected
comoving distance to the Nth nearest neighbor (dN) with a
velocity limit ±Vlim km s−1: pS = N dN N,Vlim,Mlim . The
neighbors are all within a volume-limited density-defining
population that has absolute magnitudes Mr < Mlim − Qz. Q
defines the expected evolution ofMr as a function of redshift, z,
(Q= 1.03; Loveday et al. 2015). The large spatial extent of the
SAMI Cluster Redshift Survey (extending to R2 ;200 Owers
et al. 2017) means that when measuring nearest-neighbor
surface densities within 1 R200, no Nth nearest neighbors are
separated from the galaxy in question by more than the distance
to the 2R200 cluster “edge.” Such large separations would
rapidly increase the uncertainty of such measurements. We also
measured the overdensity, d = S S̄N,Vlim,Mlim , dividing the
density by the mean density of the early-type members with

* >M Mlog 10. In the Appendix we analyze the effect the
choice of limits has on the nearest-neighbor surface density and
overdensity. We find that the nearest-neighbor surface density
is sensitive to the choice of limits applied, while the
overdensity is not. We therefore choose an overdensity of
d -5500, 18.3 in this analysis.

4. Kinematic Classification

4.1. Stellar Kinematics

The stellar kinematic measures made for the SAMI survey
are described in detail in van de Sande et al. (2017). We
summarize the salient points here.
The mean line-of-sight stellar velocity, V, and velocity

dispersion, σ, are measured using the penalized pixel-fitting
code (pPXF; Cappellari & Emsellem 2004). The SGS runs
pPXF in two different modes. All results presented here consist
of fits using a Gaussian line-of-sight velocity dispersion
(LOSVD). To measure the stellar kinematics, the spectra from
the blue and red arms of the spectrograph are combined. Before
this can happen, the red spectra (FWHMred= 1.61 Å) are
convolved to the instrumental resolution of the blue spectra
(FWHMblue= 2.65 Å).
Optimal templates are constructed for 1–5 annular bins per

galaxy (depending on the signal-to-noise ratio; S/N) by
running pPXF over the combined spectra using the full MILES
stellar library (Sánchez-Blázquez et al. 2006). After this, pPXF
is run three times with only the optimal templates for each
galaxy spaxel. The first run is used to estimate the real noise
from the residuals. The second run uses the new noise spectrum
for masking emission lines and bad pixels. The third run
derives the LOSVD parameters. For each spaxel, pPXF is
allowed to use the optimal templates from the annular bin in
which the spaxel lives as well as from neighboring annuli. The
uncertainties on the LOSVD are standard deviations after
fitting pPXF to 150 simulated spectra. To construct the
simulated spectra, the best-fit template is first subtracted from
the spectrum. The residuals, together with the noise spectrum,
are then randomly rearranged in wavelength space within eight
wavelength sectors. The residuals are added to the best-fit
template to construct the simulated spectra, which are then
refitted with pPXF. We compared the measurement uncertain-
ties we obtain from these 150 simulations with the pPXF
uncertainty estimates and find that they agree well (van de
Sande et al. 2017). However, looking at the 2D uncertainty
maps, the simulated spectra provide uncertainty maps that are
less stochastic and are more consistent with the S/N of the
galaxy spectra, so we use these in our analysis.
We apply a quality cut, which ensures that we keep a large

fraction of the low-velocity dispersion spaxels, while keeping
a strict quality cut for the higher velocity dispersions (van de
Sande et al. 2017): only spaxels with velocity dispersions
σ > FWHMinstr/2 ∼ 35 km s−1 and a velocity and velocity
dispersion uncertaintiesΔV < 30 km s−1 andΔσ < (σ ∗ 0.1) +
25 km s−1 are retained in the final analysis. These quality cuts
result in a sample whose median velocity dispersion uncer-
tainty at S/N < 20 Å−1 is 12.6% and 2.6% for S/N > 20 Å−1

(Figure 2, van de Sande et al. 2017).

4.2. Spin Parameter

Emsellem et al. (2007) defined the luminosity-weighted spin
parameter (λR):
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in this analysis Ri is the semimajor radius of the ellipse in
which spaxel i is located and Fi is the flux of the ith spaxel. lR

is summed over all spaxels, N, that meet the quality cut16 http://kcor.sai.msu.ru
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described above within the ellipse of the semimajor axis R. The
λR profiles are illustrated in Figure 2.

The spin parameter is summed within a fiducial radius, Rfid,
that can be either R0.5 e, 1 Re, or 2 Re (following previous
analyses). A particular fiducial radius is only used when Rfid >
RPSF ∼ 1 5, and the percentage of spaxels within that radius
that meet the quality cut is >75%. Our first choice is to
measure lRfid within 1 Re. However, if the effective radius is
smaller than RPSF, we use Rfid = 2 Re, and if the galaxy has Re

> 15″, then we use =R R0.5 efid . Two hundred and twenty-four
galaxies have =R R1 efid , 46 have =R R2 efid , and 19 have

=R R0.5 efid . Three of the exceptionally large brightest cluster
galaxies in these clusters have semimajor effective radii >15″
and so the fiducial radius for their λ measurements are~ R0.3 e.
We cannot measure λ at all for 28 galaxies because nearby
galaxies affect their observation (N= 22) and the observations
have a too low S/N (N= 6). This leaves a sample of 292
galaxies for which we can measure lRfid.

The spin parameter as a function of ellipticity is shown in
Figure 3. This plot has been constructed in the same way as the
equivalent in van de Sande et al. (2017). The figures are not
identical as here we focus on the cluster galaxies and do not
study the higher-order stellar kinematics, so we have a lower
S/N cut and include galaxies with λ measured within fiducial
radii other than 1Re. For each galaxy in Figure 3, we show the
velocity map to highlight the stellar velocities. To avoid
overlap between the galaxy velocity maps, the data are first
placed on a regular grid with a spacing of 0.02 in lRfid and ò.
We position each galaxy on its closest grid point, or its
neighbor if its closest grid point is already filled by another
galaxy. The size of the grid and velocity maps are chosen such
that no galaxy is offset by more than one grid point from its
original position. The stellar mass—Tully–Fisher (Dutton et al.
2011) relation is used for the velocity map color scale: for a
galaxy with stellar mass * >M Mlog 10, the scale of the
velocity map ranges from −95 < V (km s−1) < 95, whereas a
galaxy with stellar mass * >M Mlog 11 is assigned a
velocity range from −169 < V (km s−1) < 169. The kinematic
position angle is used to align the major axis of all galaxies to
45°. The velocity maps are truncated where the S/N is too low

(<3) and the errors do not meet the quality criteria. This
truncation is different for every galaxy.

4.2.1. Choice of Fiducial Radius

Measuring λR within a fiducial radius of 0.5 Re, or smaller
could potentially affect our findings. It might introduce a bias
as we are generally unable to reach a fiducial radius for the
more massive galaxies of 1 Re. We test the effect of this by
taking the 224 galaxies with λ measured at 1 Re and find the
value of λ at 0.5 Re for these galaxies. Because λ increases with
increasing radius (Figure 2), measuring λ at radii smaller than
1 Re is likely to bias the measured λ lower, which artificially
inflates the number of slow-rotating galaxies. Therefore, we
focus on the 26 of the 224 test galaxies that have l 0.1R0.5 e .
The mean change in λR measured at R0.5 e compared to 1 Re,
l R0.5 e/l = 0.58 0.03R1 e , with no correlation with stellar
mass. We test the effect of this offset by applying it to the
19 galaxies for which we can only measure λR within 0.5 Re, or
even smaller radii. Applying the offset does decrease the
fraction of SRs, but it does not change any of the conclusions
we draw in the remainder of this paper. We present the
following results using the uncorrected lRfid values.

4.2.2. Including SAMI Pilot Survey Observations

The SAMI Pilot Survey (Fogarty et al. 2014, 2015) includes
stellar kinematics measured for 106 galaxies in 3 of the clusters
(Abell 85, 168, and 2399) presented here. The Pilot Survey
stellar kinematics were calculated in the same way as described
here (Section 4.1), and their stellar masses and colors have been
measured here. Of the 106 pilot survey galaxies, 78 are within
1 R200 of their cluster center, and 69 of those 78 meet the color
and stellar mass selection criteria we apply here. Of the 69 that
meet our criteria, 46 have been reobserved to date as part of the
SGS. We use slightly different quality criteria here, which
mean that only 37/46 of these galaxies use the same fiducial
radius to measure the spin parameter. In Figure 4 we compare
the Pilot Survey spin parameters with those measured here and
find a mean difference l - = ( )SGS Pilot 0.025 0.007Rfid

for these 37 galaxies. There are some outliers in this
distribution. Our methods for determining the stellar kine-
matics, sizes, and ellipticities have been improved, and when
we compare the kinematic maps for the outliers, we find holes
that are due to the exclusion of low S/N data in the maps of
Fogarty et al. (2015) that are not present in our data. We note
that the FR and SR classifications do not change between the
two surveys. We therefore include the 23 Pilot Survey galaxies
that meet our selection criteria but have not yet been reobserved
as part of the SGS in our analysis from this point. The inclusion
of these galaxies does not affect the conclusions we draw.
Adding the 23 SAMI Pilot Survey galaxies to the 292 SGS

galaxies gives us a final sample of 315 galaxies.

4.3. Sample Completeness

We are interested in fractional quantities, so it is important to
understand the observed completeness of our sample.
The completeness of galaxies with spin parameter measure-

ments as a function of stellar mass is shown in Figure 5. The
observed completeness rises as a function of increasing stellar
mass as a result of early targetting decisions (Owers et al.
2017). We analyze the effect of this further in Section 5.1.

Figure 2. Spin parameter profiles, λR, as a function of normalized galaxy
radius, R/Re. Points within the seeing radius (RPSF ∼ 1 5) are not plotted. The
colors indicate stellar mass, M*.
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The completeness of galaxies with spin parameter measure-
ments as a function of overdensity is shown in Figure 6. We
find that the observed completeness is flat as a function of
environmental overdensity.

4.4. Slow/Fast Rotator Separation

Using a quantitative analysis of stellar velocity maps, the
ATLAS3D team (Krajnović et al. 2008, 2011) found that their
sample of 260 ETGs broke into broad groupings of fast- and slow-
rotating galaxies that could be separated using the following
definitions from Emsellem et al. (2011; Equations (2) and (3)) and
Fogarty et al. (2014; Equation (4)):

l < ( )0.265 2R R0.5 0.5e e

l < ( )0.31 3R Re e

l < ( )0.363 . 4R R2 2e e

The relationship for 1Re is shown as the dotted line in Figure 3.
All kinematic morphology–density relationship analyses have
used these definitions to separate their ETG samples into FRs
and SRs. Figure 3 also shows a new definition for separating
fast- and slow-rotating galaxies from Cappellari (2016; solid
line),

 l < + < ( )0.08 4 with 0.4, 5R e ee

as well as the classification from Emsellem et al. (2007),

l < ( )0.1, 6Re

shown as the dashed line in Figure 3. Similar to the ATLAS3D

team, we see broad groups of fast- and slow-rotating galaxies in

Figure 3. Spin parameter, lRfid, as a function of ellipticity, ò. The lines indicate the Cappellari (2016; solid), Emsellem et al. (2011; dotted) and Emsellem et al. (2007;
dashed) fast/slow-rotator separations. The average measurement uncertainty is shown in the top left-hand corner. For each galaxy we show its stellar velocity map
aligned to 45° using the kinematic position angle, with the scale of the velocity color map set by the stellar mass Tully–Fisher relation. A grid is applied to avoid
overlap of the velocity maps.

Figure 4. Comparing spin parameter measurements for the 37 galaxies in
common between the SAMI Galaxy Survey (SGS) and the SAMI Pilot Survey
(Pilot) with their stellar masses. The mean difference, l -(SGSRfid

= )Pilot 0.025 0.007, is shown by the dashed line. There is no significant
offset in spin parameter between the two surveys.
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Figure 3. When we use the Emsellem et al. (2011) definition,
there are 30 SRs in our sample, in comparison to 42 using the
Cappellari (2016) definition and 38 using the Emsellem et al.
(2007) definition. Figure 3 shows that the Emsellem et al.
(2011) SR definition appears not to select some slow-rotating
galaxies, while both the Emsellem et al. (2007) and Cappellari
(2016) definitions capture all the slow-rotating galaxies. We
therefore use the Cappellari (2016) definition in the remainder
of this paper, but we note that the choice of slow/fast rotator
separation does not affect the conclusions we draw.

5. Results

5.1. Fraction of SRs

We investigate here the fraction of slow-rotating galaxies as
a function of the number of ETGs, FSR. Throughout this
section, we plot FSR in bins of equal numbers of galaxies with
fractional uncertainties calculated using binomial confidence
intervals that have been shown to be accurate for small to
intermediate sample sizes (Cameron 2011).
The total fraction of SRs in our sample is FSR = 0.14 ± 0.02.

We examine the total fraction of SRs per cluster as a function
of host cluster mass in Figure 7 and find no significant
relationship over the mass range examined here.
In the left-hand panel of Figure 8 we examine the fraction

of slow-rotating galaxies, FSR, as a function of local
environmental overdensity. We calculate the significance of
our results by comparing the fraction of SRs in the four lowest
overdensity bins (which are statistically equal) to the fraction in
the highest overdensity bin, taking into account the uncertain-
ties in this measurement: significance = -d d( )F FSR,high SR,low

s s+
d d

( F F
2 2

SR,high SR,low
). We find an increasing fraction of SRs

with increasing overdensity with a significance of 3.4σ.
We note that there is a higher SAMI observing completeness

at higher stellar masses as a result of the early targetting
decisions (Figure 5). This bias could affect the FSR–δ
relationship. We test this by Monte Carlo resampling the
observed data. We determine the lowest completeness in stellar
mass (40% at * ~M Mlog 10), and random resampling
galaxies with stellar masses above * ~M Mlog 10.5 down to
that lowest observed completeness. We recalculate the SR
fraction as a function of overdensity for each of 100 random
resamplings. The mean FSR,corrected is shown by the dashed line
in the left-hand panel of Figure 8 and is indistinguishable from
the observed relationship within the uncertainties.
In Figure 9 we examine FSR as a function of the environment

overdensity for each of the eight clusters in the SAMI survey.
These fractions are noisier than the stacked relationship shown
in Figure 8 and do not all rise with increasing overdensity. Like

Figure 6. Completeness of galaxies with spin parameter measurements as a
function of overdensity. The lower panel shows the overdensity distribution of
early-type members with * >M Mlog 10 (Member ETGs) and those with
spin parameter measurements (observed), while the upper panel shows the
fraction of them (Completeness) as a function of overdensity. The error bars
show the 1σ binomial confidence limits on these measurements. The observed
completeness is flat as a function of overdensity.

Figure 7. Total fraction of slow rotators, FSR, as a function of host cluster
mass, M200. The dashed line shows the total fraction of slow rotators across our
whole sample. The uncertainties are the fractional uncertainties. We find no
relationship of total FSR with host cluster mass over this mass range.

Figure 5. Completeness of galaxies with spin parameter measurements as a
function of stellar mass. The lower panel shows the stellar mass distribution of
early-type members with * >M Mlog 10 (Member ETGs) and those with
spin parameter measurements (Observed), while the upper panel shows the
fraction of them (Completeness) as a function of stellar mass. The error bars
show the 1σ binomial confidence limits on these measurements. The observed
completeness rises as a function of increasing stellar mass.
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Fogarty et al. (2014), we find that the SR fraction within Abell
2399 peaks at intermediate overdensities and then drops,
although we note that the uncertainties are large, so that the
radial change is not statistically significant.

Galaxy density increases at the centers of galaxy clusters.
We test how the fraction of slow-rotating galaxies changes as a
function of stacked clustercentric radius (Rcl/R200) in the
central panel of Figure 8. We see that FSR increases as a
function of decreasing clustercentric radius with a significance
of 2.9σ. Projection effects are significant in clusters, and these
effects act to dilute correlations with clustercentric radius.
There is also an increase in FSR at ∼0.6 R200. Although this
bump is not statistically significant, we also examine the spatial

distribution of the SRs in each cluster in Figure 10. While this
plot suffers from the effects of sample incompleteness as well
as uncertainties in our spin parameter measurements, these
effects are mitigated by the higher completeness for higher
stellar mass galaxies (which are more likely to be slow-rotating
galaxies from the right-hand panel of Figure 8) and by showing
the galaxies’ lRfid values rather than simply whether they are
FRs or SRs. The slow-rotating (redder) galaxies are generally
located in the cluster centers (Rcl< 0.3 R200; as indicated by the
central panel of Figure 8), and those few that are located
outside the cluster centers are generally associated with
substructure in the galaxy distribution (Abell 85, 119, and
2399). Abell 168 has a massive SR at Rcl > 0.3 R200 but does
not show deviations in the galaxy distribution in Figure 10,
however, it is a well-known merging cluster (e.g., Ulmer et al.
1992) with substructure visible in the X-rays at the position of
the SR (Fogarty et al. 2014). The EDCC 0442 cluster is an
outlier to this picture, with three slow-rotating galaxies located
away from the cluster center (Rcl∼ 0.5 R200). While this cluster
does not have substructure visible in the smoothed galaxy
distribution, in the X-ray it is a warm-core cluster and is likely
to have relaxed only recently (Burns et al. 2008), which could
be responsible for the broader distribution of slow-rotating
galaxies.
After examining the relationship between SR fraction and

different measures of environment, we now examine the
relationship between SR fraction and stellar mass. The right-
hand panel of Figure 8 shows that the fraction of slow-rotating
galaxies increases with increasing stellar mass with a
significance of 5.0σ.
We test again whether the higher SAMI observing

completeness at higher stellar masses affects the FSR–M*
relationship. The mean FSR,corrected is shown by the dashed line
in the right-hand panel of Figure 8 and is indistinguishable
from the observed relationship.
The relationship of FSR with mass is a more significant

relationship than that seen with overdensity, suggesting that

Figure 8. Fraction of slow rotators, FSR. The left-hand panel shows FSR as a function of environmental overdensity, d -5500, 18.3. The solid line gives the observed data,
with the heavy error bars showing the fractional uncertainties. The dashed line indicates the results of testing the effect of higher SAMI observing completeness at
higher stellar masses. The light error bars are the standard deviation on the Monte Carlo analysis, offset in overdensity for visibility. Stellar mass completeness does
not have a significant effect on the FSR–δ5500,−18.3 relation. We observe an increasing fraction of slow rotators with increasing overdensity. The middle panel shows
FSR as a function of stacked clustercentric distance, Rcl/R200. The fraction of slow rotators increases with decreasing clustercentric radius. Interestingly, there is a
bump at Rcl/R200 ∼ 0.6 that is due to substructure in four of the clusters. The right-hand panel shows FSR as a function of stellar mass, M*. The solid line gives the
observed data, with the heavy error bars showing the fractional uncertainties. The dashed line indicates the results of testing the effect of higher SAMI observing
completeness at higher stellar masses. The light error bars are the standard deviation on the Monte Carlo analysis, offset in stellar mass for visibility. Stellar mass
completeness does not have a significant effect on the FSR–M* relation. We observe that the fraction of slow rotators increases with increasing stellar mass.

Figure 9. Fraction of slow rotators, FSR, as a function of environmental
overdensity, d -5500, 18.3, for each individual cluster. The individual cluster
fractions are noisier than the stacked distribution, but show a general increase
of FSR with overdensity.
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higher stellar masses could be the dominant cause of the
increase in slow-rotating galaxies observed with increasing
environmental density and decreasing clustercentric radius. We
explore this idea further in the next section.

5.2. Distribution of Spin Parameter

To explore the relationship between spin parameter, environ-
mental density, and stellar mass further, we now examine the
distribution of these parameters, rather than simply separating
the sample into slow and fast rotators. In order to do this, we
need to take into account the fact that lRfid is a projected
quantity.

We examine the distribution of spin parameter, lRfid, applying
an approximate correction for the effects of projection by
dividing by ellipticity,  (Emsellem et al. 2011). The upper
panel of Figure 11 shows lRfid as a function of stellar mass.
The points are colored by their environmental densities. We also
show the mean lRfid as a function of stellar mass for two
overdensity bins (the lowest and highest quartiles; mean
overdensities d d= - =log 0.80, log 0.35low high ). Both density
bins show a relationship of decreasing lRfid with increasing
stellar mass, but no significant difference in that relationship as
overdensity increases. We note that the most massive galaxies,
with * >M Mlog 11.3, have the lowest lRfid and are
generally in the most overdense regions (d >- 0.55500, 18.3 ).

The lower panel of Figure 11 shows lRfid as a function of
overdensity, d -5500, 18.3 with points colored by stellar mass. We
also show the mean lRfid as a function of overdensity for two
stellar mass bins (the lowest and highest quartiles; mean mass

* *= = M M M Mlog 10.14, log 11.08,low ,high . Neither mass
bin shows a strong relationship of lRfid with overdensity.
However, there is a systematic offset to lower lRfid for the
higher stellar mass sample. We also note that the most overdense
regions (d >- 0.55500, 18.3 ) are dominated by the group of

massive, * >M Mlog 11.3, low lRfid galaxies that are
also visible in the upper panel.
A partial correlation analysis shows that the strongest

relationship is between stellar mass and lRfid (R=−0.30,
p= 4× 10−8), with a correlation between stellar mass and
environment (R= 0.18, p= 0.001), while the relationship
between lRfid and surface density is not significant
(R=−0.11, p= 0.04). We conclude that the kinematic morph-
ology–density relationship is due to the changing distribution of
stellar mass with environment.

6. Discussion

We find a total SR fraction FSR = 0.14 ± 0.02 and that this
fraction does not depend significantly on host cluster mass. The
lack of dependence of SR fraction on global environment is
consistent with previous measurements from the ATLAS3D

field/group sample (Cappellari et al. 2011) to the massive
dense cluster Abell 1689 (D’Eugenio et al. 2013), who find a
total FSR ∼ 0.15.
We find that FSR does depend on local environment,

measured by overdensity, such that the fraction of slow-
rotating galaxies increases as the local environment overdensity
increases. The dependence of SR fraction on local environment
is also consistent with previous analyses (Cappellari et al.
2011; D’Eugenio et al. 2013; Houghton et al. 2013; Fogarty
et al. 2014; Scott et al. 2014).
We also find a strong relationship of FSR with galaxy stellar

mass. This relationship has been observed before (e.g.,
Emsellem et al. 2007; Cappellari 2013; Jimmy et al. 2013;
Veale et al. 2016; Oliva-Altamirano et al. 2017) and is not
surprising given the analytic relationship between spin
parameter λ, angular momentum J and total mass M:
l = ( ∣ ∣ ) ( )J E GM1 2 5 2 (where E is the total energy of the
system and G is the gravitational constant; e.g., Fall &

Figure 10. Spatial distribution of the observed early-type member galaxies in the eight clusters. The point sizes indicate stellar mass, and the colors indicate l( )log Rfid .
The black contours show galaxy isopleths that are adaptively smoothed using a Gaussian kernel with varying bandwidth, as described in Owers et al. (2017). The X-
and Y-axes are in units of R200. The slow-rotating galaxies (redder) are generally associated with the cluster centers and substructure.

9

The Astrophysical Journal, 844:59 (12pp), 2017 July 20 Brough et al.



Efstathiou 1980; Romanowsky & Fall 2012). A strong
relationship between specific angular momentum, je, and stellar
mass has also been observed in the main SGS by Cortese et al.
(2016).

Simulations are also observing relationships between
specific angular momentum, spin parameter, and mass. The
analysis of specific angular momentum in the EAGLE
simulation (Schaye et al. 2015) by Lagos et al. (2017) also
finds that it depends on stellar mass and concludes that galaxies
with low je at z ∼ 0 are a product of two pathways: galaxy
mergers, and early star formation quenching. Similarly, the
analysis of the Illustris simulation (Genel et al. 2014) galaxies

by Penoyre et al. (2017) finds that the slow-rotating elliptical
galaxies are more massive than the fast-rotating galaxies. They
also find that the slow-rotating galaxies have evolved from fast
rotators since z = 1 as a result of mergers that caused them to
spin down. However, neither of these simulations include the
massive cluster environments studied here. Choi & Yi (2017)
examine the evolution of the spin parameter of galaxies in
cluster environments in a cosmological hydrodynamic simula-
tion. They find that the spin evolution is mass dependent, with
more massive galaxies ( * >( )M Mlog 10.5) experiencing
more spin-down, mainly as a result of major and minor
mergers. In contrast, while the spin parameter of the lowest
mass galaxies ( * <( )M Mlog 10.5) also falls with time, this
decrease is more driven by environment than by mergers.
Because this mass range is at the very lowest end of our
sample, we cannot rule this prediction out. We also note that
observations of low-mass dwarf galaxies see a strong relation-
ship between spin parameter and environment (Toloba et al.
2015).
In this analysis, we have a large enough sample to separate

the effects of local environment and stellar mass on spin
parameter. When the distribution of lRfid with stellar mass is
analyzed together with the galaxies’ local environment, we find
no significant residual dependence on environment. The lack of
dependence of spin parameter on environment, once the effects
of mass are removed, is in contrast to the analysis of the Fornax
and Virgo clusters by Scott et al. (2014). They found that even
in mass-matched samples of slow and fast rotators, the SRs
were found at higher projected environmental densities than the
FRs. However, we note that that study was of N ∼ 70 galaxies
in two low-mass clusters, and our analysis of the kinematic
morphology–density relationship shows that the picture in
individual clusters may differ from the distribution as a whole.
Our observations are consistent with more recent analyses of
the classical morphology–density relationship, which show that
at fixed stellar mass, morphology is only weakly dependent on
environment (Bamford et al. 2009).
Figure 10 shows the spatial distribution of the slower and

faster rotators in each of the clusters. The slow-rotating
galaxies that are not within the cluster cores are generally
observed to reside within substructure in those clusters. These
substructures are likely to be made up of groups that have
fallen into these clusters (Yi et al. 2013). We postulate that this
is evidence that the kinematic morphology–density relationship
is a result of mass segregation due to dynamical friction. This
evidence would suggest that slow-rotating ETGs form in a
group environment that either accretes other groups over time
to become a cluster, or is itself consumed to become
substructure in a larger system. This hypothesis is consistent
with the conclusions from Cappellari (2016). It will be possible
to test this hypothesis with the main SGS sample (J. van de
Sande et al. 2017, in preparation), which is based on the
GAMA survey of galaxies and includes a robustly selected
sample of galaxy groups (Robotham et al. 2011). Examining
the kinematic morphology–density relationship in the GAMA
group sample will verify whether slow-rotating galaxies form
in the group environment.

7. Conclusions

We have presented here the kinematic morphology–density
relationship for a sample of 315 ETGs in eight galaxy clusters

Figure 11. Upper panel: distribution of corrected spin parameter, lRfid , as a
function of stellar mass, M*, with colors showing environment overdensity,
d -5500, 18.3. The lines show the mean lRfid as a function of stellar mass for
the lower and upper quartiles of overdensity. lRfid does depend on stellar
mass, but this relationship is not significantly different between the most and
least overdensities. The lower panel shows the distribution of corrected spin
parameter, lRfid , as a function of overdensity, d -5500, 18.3, with colors
showing stellar mass, M*. The lines show the mean lRfid as a function of
overdensity for the lower and upper quartiles of stellar mass. The error bars
show the error on the mean calculated in bins of equal stellar mass (upper
panel) and overdensity (lower panel). There is no significant relationship
between lRfid and overdensity, but the lower stellar mass quartile has
systematically higher lRfid . The spin parameter depends more strongly on
stellar mass than on local overdensity in clusters.
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from the SGS. The eight clusters span a halo mass range of
< <( )M M14.2 log 15.2200 . Cluster members were observed

within 1 R200 and s V3.5 gal cl, which covers local galaxy
environments (measured by overdensity) between - <1.5 log

d( ) 1.0. The stellar masses observed range from <10.0

* ( )M Mlog 11.7. We classify these galaxies as fast or SRs
depending on their spin parameter,lRfid, measured from spatially
resolved stellar kinematics. We analyze the fraction of SRs, FSR,
as a function of local galaxy environment and stellar mass. We
also examine the distribution of lRfid as a function of both
environment and stellar mass. We draw the following conclu-
sions that are not qualitatively dependent on fiducial radius or
choice of fast/slow galaxy classification:

1. We find a total SR fraction of FSR = 0.14 ± 0.02.
2. The SR fraction per cluster shows no dependence on host

cluster mass in the range studied.
3. We find FSR to depend on local cluster environment such

that it increases with increasing environmental over-
density, from = -

+F 0.14SR 0.03
0.05 at d ~ -( )log 0.9 to

= -F 0.20SR 0.05
0.06 at d ~( )log 0.4, a significance of 3.4σ.

4. FSR depends more strongly on stellar mass than on
local cluster environment. The fraction of SRs increases
with increasing stellar mass from = -

+F 0.13SR 0.03
0.06 at

* ~( )M Mlog 10.1 to = -F 0.41SR 0.06
0.07 at * ~( )M Mlog

11.2, which is a significance of 5.0σ.
5. Once any dependence on stellar mass is removed from

the distribution of spin parameter, lRfid , no significant
relationship with local cluster environment remains.

We conclude that the cluster kinematic morphology–density
relationship is a result of mass segregation. We will test this
hypothesis further with the broader SGS sample (J. van de
Sande et al. 2017, in preparation).
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Appendix
Environmental Densities

We investigated Nth nearest-neighbor surface density mea-
surements, testing the effect the choice of limits has on the
environmental density we measure. We measured a suite of
environmental densities, varying the Nth nearest neighbor
(N= 3, 5, 10), velocity (Vlim= 300, 500, 1000 km s−1), and
absolute magnitude (Mlim=−18.3,−19 mag) limits. We also
measured the overdensity, d = S S̄N,Vlim,Mlim , dividing the
density by the mean density of the ETGs with * >M Mlog 10
within 1 R200 of their cluster centroid.
The choice of limits affects the specific value of the

environment density calculated (Figure 12). This emphasizes
the need for caution when directly comparing the densities
measured from non-homogeneous data sets that have different
velocity or magnitude limits or background corrections.
However, we find the overdensities, the density divided by
the mean density, to be independent of the applied limits
(Figure 13). We therefore use the overdensity d -5500 18.3 in
this work.
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