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ABSTRACT

Upon entering a star system, light sails are subject to both gravitational forces and radiation
pressure, and can use both in concert to modify their trajectory. Moreover, stars possess
significant magnetic fields, and if the sail is in any way charged, it will feel the Lorentz
force also. We investigate the dynamics of so-called ‘photogravimagnetic assists’ of sailcraft
around o Centauri A, a potential first destination en route to Proxima Centauri (the goal of the
Breakthrough Starshot programme). We find that a 10-m? sail with a charge-to-mass ratio of
around 10 uC g~' or higher will need to take account of magnetic field effects during orbital
manoeuvres. The magnetic field can provide an extra source of deceleration and deflection,
and allow capture on to closer orbits around a target star. However, flipping the sign of the
sailcraft’s charge can radically change resulting trajectories, resulting in complex loop-de-
loops around magnetic field lines and essentially random ejection from the star system. Even
on well-behaved trajectories, the field can generate off-axis deflections at o Centauri that,
while minor, can result in very poor targeting of the final destination (Proxima) post-assist.
Fortunately for Breakthrough Starshot, nanosails are less prone to charging en route than
their heavier counterparts, but can still accrue relatively high charge at both the origin and
destination, when travelling at low speeds. Photogravimagnetic assists are highly non-trivial,
and require careful course correction to mitigate against unwanted changes in trajectory.
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1 INTRODUCTION

It has been clear since the beginning of the Space Age that effective
interstellar travel is impossible using chemical rocket technology.
Our most distant probes achieve maximum velocities of the order
of tens of kilometres per second — the transit time to the nearest star,
Proxima Centauri, is measured in hundreds of thousands of years
(Wertheimer & Laughlin 2006; Kervella, Thévenin & Lovis 2017).

The recent detection of a close-to Earth mass planet in the radia-
tive liquid water zone around Proxima (Anglada-Escudé et al. 2016)
fires the imagination, and raises the possibility that the star system
next door could play host to a viable biosphere (Barnes et al. 2016;
Meadows et al. 2016; Ribas et al. 2016; Turbet et al. 2016; Dong
et al. 2017). Assays of Proxima b’s habitability from Earth will be
challenging, as the planet does not appear to transit the star (Kipping
et al. 2017). Atmospheric characterization via direct imaging and
phase curve variations (either in reflected starlight or thermal emis-
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sion) remains possible, in principle, with the James Webb Space
Telescope (Kreidberg & Loeb 2016).

Despite our best efforts, it may be the case that the possibility of
life on Proxima b can only be confirmed by in situ measurements
(Crawford 2017). If this is so, an interstellar mission whose travel
time is measured in years, not millenia or megayears, is essential.

Nuclear propulsion designs, such as the external pulse design
(Everett & Ulam 1955) made famous by Project Orion (Mallove &
Matloff 1989) or the internal fusion generator design of Daedalus
(and Icarus) (e.g. Bond 1978), generate significantly higher exhaust
velocities than current rocket technology, and can thus achieve much
greater cruise velocities, ranging from 0.03 to 0.1¢, where c is the
speed of light in vacuo (Matloff 2006). Both designs still require
a significant proportion of fuel to be placed aboard the craft, even
with ramjet technologies (Bussard 1960; Bond 1974), not to mention
the legal barriers to detonating small fission bombs in space, and
the confinement problem in thermonuclear fusion generators. If
antimatter could be synthesized in large quantities, then matter—
antimatter annihilation is an extremely powerful energy source from
which to develop thrust, but the large-scale synthesis of such fuel
currently remains in the realms of science fiction.

© 2017 The Author(s)
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Light sails have long been proposed as an energy efficient al-
ternative to matter-based propulsion systems. Employing the radi-
ation pressure generated by photons, light sails can undergo weak
but continuous acceleration to high velocities (for low-mass space-
craft). The source of photons can either be the host star (solar sails,
Tsander 1961) or powerful, highly collimated lasers (laser sails,
Marx 1966).

Forward (1984) described what we now call a ‘heavy sail’ concept
for the laser sail. A one metric ton lightsail is illuminated by a laser
focused by a 1000-km diameter Fresnel zone lens. The laserlight
provides a constant acceleration of 0.36 ms~2 over a 3-yr period,
attaining a cruise velocity of 0.11c.

Technological advances, both in the miniaturization of electronics
and in the materials science regarding the sail fabric, permit the con-
struction of extremely light sailcraft with high cruising velocities.
The Breakthrough Starshot programme is considering such a ‘nano-
sail” approach, designing a ground-based laser from a phased array
of transmitters, and a factory producing a number of 1g ‘StarChip’
sailcraft, which can each be accelerated to velocities around 0.1—
0.2¢, reaching Proxima in 20—40 yr. When this speed is achieved,
waiting for further technological innovation will not get us to Prox-
ima at an earlier date (Heller 2017).

Althoughsuch acceleration is extremely beneficial at the begin-
ning of an interstellar mission, it has a corresponding cost at the
destination. Sailcraft travelling at 0.2¢ will traverse an astronomical
unit (au) in around 40 min, and the orbit of the Moon around the
Earth (0.002 57 au) in around 6 s, reducing the mission’s ability to
carry out scientific investigations of the Proxima system.

Ideally, an interstellar mission profile would include a decelera-
tion phase, so that the craft can remain in the Proxima system for
longer and conduct a fuller investigation, and transmit data to Earth.
For propulsion methods, this requires substantially more fuel, and
reduces the maximum cruise velocity as a result. Light sails carry
minimal fuel reserves, so that the sail can be re-oriented, and must
rely on local radiation fields to produce significant Av.!

Heller & Hippke (2017) demonstrated that lightsails could use
the destination star system as a source of photons to decelerate.
Combining this photon deceleration with the gravitational force
exerted by the star, they showed that a sail travelling at 0.046¢ could
achieve a parking orbit around Proxima by using what they dub
‘photogravitational assists’ from « Centauri (Cen) A and B. Further
tuning of the trajectory can reduce the travel time between o Cen A
and Proxima from 95 to 75 yr (Heller, Hippke & Kervella 2017).

Radiation pressure and gravity are not the only forces acting on
a sail as it approaches a star system. If a sail has accumulated a net
charge, then the stellar magnetic field will also exert a force on the
sailcraft. If this charge results in a current, then the craft’s own mag-
netic field may be used as a decelerant (Zubrin & Andrews 1991;
Matloff 2009; Freeland 2015). In this paper, we consider photograv-
imagnetic (PGM) assists, where the dynamical evolution of a sail
depends on the combination and interplay of radiation, gravity and
magnetic forces. Section 2 describes the form of these three forces,
and the simulations used to explore sail trajectories; Section 3 shows

"1t is worth noting Forward’s (1984) ingenious scheme for deceleration of
laser sails using the Earthbound laser. This is achieved by separating the
craft into two sails, to reflect the photons against the direction of travel and
decelerate. This two-sail deceleration requires very careful station keeping
between both parts, and the laser light cannot be adjusted without several
years of time lag.
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some benefits (and costs) from allowing the craft to be charged and
using the magnetic field as an extra force; Section 4.

2 METHODS

We expand on the calculations of Heller & Hippke (2017). The
magnetic force is inherently 3D, and as such we will be required to
generalize their 2D equations, which we describe below. Through-
out, we define the sail as a craft of mass M, and sail area A, with
the sail’s orientation defined by the unit normal vector 7. The sail
is located at position r relative to the star, with velocity v.

2.1 Radiation pressure force

The radiation pressure measured at distance r from a star, lumi-
nosity L, and radius R, is (Mclnnes & Brown 1990; Heller &
Hippke 2017):

3/2
L. R\’
I—(1—-(— , 1
3mcR? ( ( r ) 1
where we have assumed a uniformly bright finite stellar disc. The
radiation pressure force is then

P(r)=

Fra(r,#) = P()AF - )h, @

and achieves its maximum magnitude when 7 is parallel to r.

2.2 Gravitational force

We assume tidal forces on the sail are negligible, and that the sail
can be treated as a single pointmass, hence we can use Newton’s
Law of Gravitation:

—~GM.M |
—F7r.

Fgrav(r) = 2 (3)

r

General relativistic corrections are unlikely to be important, as our
sail trajectories have a sufficiently large closest approach distance
(for a full general relativistic treatment see Kezerashvili & Vazquez-
Poritz 2010).

2.3 Magnetic force

The force on a sheet with uniform surface charge density o, moving
at velocity v in a magnetic field B is given by the Lorentz Force
(we assume the electric field E = 0 throughout):

F:aq/vadA, 4)

where dA is the surface area element, with direction vector given
by f1. We assume no velocity differential along the sail, and that the
magnetic field is uniform across the sail area, and hence we recover
the Lorentz force for a point particle with charge ¢:

Fmag:(va)/oqu:qva. 5)

It should be emphasized that F,, is always a deflective force. Grav-
itational and radiative forces can align/anti-align with the velocity,
whereas the Lorentz force is constrained to operate perpendicular
to it. The sign of the charge is also clearly important, as is the ori-
entation of the magnetic field to the approach vector. These factors
can result in both beneficial and hazardous outcomes to a flyby, as
we will demonstrate.
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2.4 Optimizing sail orientation

If we wish to maximize the deceleration of our craft due to photon

pressure, then we must minimize the component of F,4 along the
velocity vector, i.e.:

A€ R’ Frg(r, i) v. (©6)
minimize

We can discard the P(r)A component from F,4 and hence the

minimization problem becomes

AER (A-r)(-v). (7
minimize

At large distances from the star, the sail will approach the system
along a trajectory essentially parallel to its separation vector —hence,
7 -9 ~ 1, and we can simply demand that (7 - v) be minimized, i.e.

it & —19. As we approach the star and velocity decreases, the (7 - r)

requirement dominates and 71 & —F.

This condition results in a set of linear homogeneous equa-
tions that can, in principle, be solved analytically by Gaus-
sian elimination. The analytic solutions for this system (in 2D
and 3D) are given in Appendix A. In practice, we use the se-
quential least-squares algorithm provided by the pyTHON module
scipy.optimise.minimise to determine the optimal 7.

3 RESULTS

3.1 When will magnetic fields be important?

It is instructive to consider the regimes when the three forces will
dominate, given fixed stellar properties (M, R., L., B,). Through-
out this paper, we will assume a pure dipole magnetic field:

B*:BO (M*"O (8)

r3 r

where 1 is the dipole moment (i.e. the orientation) of the field.
Unless stated otherwise, we tune By such that the magnetic field
strength at 1 au resembles that of the solar field measured by Voyager
~5 nT (Burlaga 2002). The typical force (in Newtons) will scale
as

’Fmag’ =

-3
_ q v BO r
4x107* — N.
x (wc) (10001<me1> (SHT) (SR@)
)

In Fig. 1, we compute Fig/Frag and Frag/Feray at 5 Ry from the
Sun. The magnetic moment of the Sun is fixed at 2 = (0, 0, 1), and
the velocity vector v is parallel with the negative y-axis.

As the charge on the sail craft exceeds 10 pC per gram, the
magnetic force becomes a sizeable fraction of the radiative and
gravitational forces, and dominates at charges above 100 pC per
gram, regardless of the sail velocity.

3.2 Beneficial effects of photogravimagnetic assists
3.2.1 Extra Deceleration

Judiciously adding an extra force can result in charged sailcraft
undergoing increased deceleration compared to the uncharged case.
As an example, we repeat an example trajectory from Heller &
Hippke (2017, their fig. 2a). The sail approaches a star with the
mass, luminosity and radius of « Cen A, with magnetic field defined

by a dipole with unit moment i = (0, 0, 1) and a field strength of
5 nT at 1 au. The sail’s initial velocity vector is

v = (0, —1200kms ", 0), (10)
and its initial position vector
r = (3R,, 10au, 0). 11)

We run a series of flights with increasing positive charge from
10 pC to 1 mC. The Lorentz force in this case is
VXPF vxm

Fma X -
g 7S r3

12)

In this scenario, the first term on the right-hand side is directed
along the positive z-axis, and the second term is directed along the
positive x-axis (with the second term dominating). Fig. 2 shows that
an increasing charge boosts this deflection in the x-axis significantly,
resulting in a deflection of § = —64° for a charge of 1 mC, as
opposed to 6 = 15° for the uncharged case (dotted line in Fig. 2).

3.2.2 Closer Close Approaches

Fig. 3 shows a similar approach to the previous section, but we
now decrease the initial x from 3R, to 2R,. In the absence of mag-
netic forces, the sail would experience a catastrophic deceleration,
resulting in its impacting the star. Adding a positive charge of
0.1 mC allows the craft to be injected into a highly elliptic, pre-
cessing orbit (Fig. 3).

This precession could be corrected with judicious angling of the
sail, which we have not attempted here. Ejection from the system on
adesired trajectory could also be triggered with appropriate tacking
of the sail (in principle).

3.3 Detrimental effects of photogravimagnetic assists

3.3.1 Growing z offsets in trajectories

We are unlikely to achieve precisely 2D trajectories on approach to
o Cen (i.e. z= 0, v, = 0). Even if small offsets in either parameter
are present as we enter the star system, we find that it can be
significantly amplified on approach. In Fig. 4, we plot the evolution
of the z-coordinate for the runs displayed in Section 3.2.1, with
z=lcm, and v, = 1cms™!. As positive charge is increased, the
z offset can reach a few stellar radii at distances of 1-5au from
the target (i.e. an angular offset of up to 3 arcmin). This z offset
will continue to grow as the sail moves towards its intended target
of Proxima, most likely resulting in missing its target by tens to
hundreds of au depending on the charge.

3.3.2 Photogravimagnetic loop-de-loops

The awkward nature of PGM assists becomes clear when we repeat
the set of flights in Section 3.2.1, but instead allow the charge to be
negative as opposed to positive. The x-component of Fy,,, becomes
negative, allowing for some complicated loop-de-loop trajectories
as the sail begins to orbit the field lines (Fig. 5). The sail experiences
large accelerations, which grow as the sail’s speed increases. The
final trajectory of the sail is extremely difficult to predict, and indeed
may be ejected at a higher velocity than which it entered the system.

Depending on the mission profile, this extra acceleration might
be a benefit, especially if the target is a more distant star, or Galactic
exploration is the goal (cf. Nicholson & Forgan 2013). However,
achieving an ejection from the system on a desired trajectory is
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Figure 1. The relative strengths of the gravitational, radiation and magnetic forces on a sail, area 10 m2, at a distance of 5 solar radii from the Sun, as a
function of its charge per unit mass and speed. In both cases, it is clear that craft with more than 10 uC g~! of charge per unit mass will experience strong

magnetic forces.
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highly non-trivial. In our case, we wish to decelerate the craft, so
it is immediately clear that for this injection geometry, a negative
charge is best avoided. If the craft’s initial trajectory was flipped in
the y-axis (i.e. x — —x), or the magnetic field’s dipole moment was
reversed, we would reproduce the better behaved trajectories seen
in Section 3.2.1.

3.3.3 Large variances in possible trajectories on approach

Given that we are limited in our ability to specify the approach
vector of the sailcraft at parsec distances from Earth, how does
this affect our ability to place the sailcraft on a desired trajectory
after a PGM assist? The properties of our target star are likely to
fluctuate with time, particularly the luminosity, and magnetic field
strength/orientation.

To answer this question, we execute a series of flights where we
randomly sample sail and star properties from uniform distributions.
We allow the magnetic field strength to vary between By = [2.5,
7.5] nT to reflect the evolution of field strength over the 12—-15 yr
magnetic cycle of o Cen A (Robrade, Schmitt & Favata 2012). We
also allow the field orientation to vary via rotations in the x- and
z-axis by angles between [—5,5]°. The Sun’s luminosity only varies
by around 0.1 per cent over these cycles (Krivova, Balmaceda &
Solanki 2007), which we will also assume for @ Cen A. Hence, we
randomly sample luminosities in the range [0.999,1.001]L..

We allow the sail’s charge to vary between 0 and 1 mC, and the
initial position vector is

r = (xR, 10au, 0.0), (13)

with x = [2.5 — 3.5]. Fig. 6 shows the results of 15 flights, with
either positive charge (left-hand panel) or negative charge (right-
hand panel). In both cases, we can see that the final outcome of the
close approach to o Cen A can vary widely between capture into
an elliptical orbit, a deceleration and deflection (the intended aim),
and highly erratic trajectories with almost random ejection vectors
(in the negatively charged case).

4 DISCUSSION

4.1 What is the expected charge on a sail?

There are various natural surface charging mechanisms that our sail
will encounter on its route to Proxima (see for example Garrett &
Whittlesey 2012). We identify two classes of environment in which
charging should be considered — the first is in the vicinity of the Sun
(or Proxima) and the second is in the interstellar medium between
both stars.

4.1.1 Charging in the Solar system/at Proxima

In geosynchronous Earth orbit (GEO), surface charging may oc-
cur where GEO exits the Earth’s plasmasphere (Mikaelian &
Tsoline 2009). This depends on the Sun’s activity and the geo-
magnetic response, but in the worst case scenario, a spacecraft can
be bombarded with high energy electrons with no protection from
the plasmasphere, and undergo strong charging. If the craft is illumi-
nated by the Sun, these effects can be ameliorated by photoelectron
emission.

On the other hand, photoelectron emission can also generate
strong positive charges. As most of our flight plan relies on the
collection of large quantities of photons, we must be certain that
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Figure 2. The effect of increasing positive charge on the PGM assist [from
10 pC (red) to 1 mC (blue)] for all other sail and star parameters held
fixed. The dotted line indicates a zero charge trajectory. The numbers I—
IV indicate the types of possible trajectory described in Heller & Hippke
(2017): catastrophic loss of the sail (I), full stop (II), bound elliptical orbits
(1II) and flyby (IV).

20 T T T T T T T
5=80° ~1.29
15f 0=0.1 g/ml —1.6g |
v, =1270 km/s 2.9
10} ‘ ]
-
._g —6.2¢
-5 5h 04
F —0.1g
]
E of —0.2g
g
—0.1g
5 s
S
A
[=]
=10t .
=151 .
-20 . . . . . n n
-20 -15 -10 -5 0 5 10 15 20

Distance [Stellar Radii]

Figure 3. Orbit injection at closer approaches, thanks to the Lorentz force.
A trajectory that would result in collision with the star for chargeless sails
becomes an elliptical orbit for ¢ = 0.1 mC.

our sail is not being overly charged by photoelectron production.
This essentially relies on low absorption levels, which is already
a stringent technical requirement of any viable Starshot mission.
Nanosail designs hope to achieve absorption levels of 10 parts per
million or less (Lubin 2016).

Most studies of spacecraft charging quote the electric potential
generated. An object immersed in a plasma will achieve a floating
potential given by

kgT. i
Vp=——2 m(m >, (14)

2e 21tm,

where T, is the electron temperature, kg is the Boltzmann constant,
m; and m. are the ion and electron mass, respectively, and e is the
electron charge. The potential can be as large as v, = 20 kV for
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12 - : : ‘ - . spacecraft in orbit around the Earth depending on which process is
doing the charging (Mikaelian & Tsoline 2009).

10} j A simple estimate for a spherical object of radius L suggests that
the typical charge in this case would be

08| |
g =4megVL =22 x 107° (L) (i> C. 15)

20kV Il m
0.6 1

We can therefore expect charges of the order of a few pC for a sail
of length/width L = 1 m (at least near to the Earth). V; increases lin-

Z Offset [Stellar Radii]

%4y | early with electron temperature. In the solar wind, this temperature
is around 10*~10° K, but increases by an order of magnitude beyond

021 the solar termination shock, accompanied by strong fluctuations in
T. across the heliosheath (Richardson 2008; Chashei & Fahr 2013).

e I These estimates suggest that our sail may already achieve sufficient
charge for Lorentz forces to be important before exiting the Solar

=0.27 = ) . =0 e =0 == system, although it is important to note that the above equation is

Time [days] only valid for when the craft is moving at velocities much lower
than the electron thermal velocity given by 7.

We can therefore expect that during the pre-launch phase, a 10-m?
sail may be charged up to an order of 10uC if it is initially released
outside the Earth’s plasmasphere. Once the sail is accelerated to

Figure 4. Growing z offsets in trajectories as (positive) charge is increased
from 10pC (red) to 1 mC (blue). The sailcrafts’ distance from the star ap-
proximately 3 d post-assist ranges between 1 and 5 au depending on charge.

20 ' : relativistic speeds, the charging time-scale becomes long compared
to the interaction time of the sail with the plasma, so subsequent

15f ] charging as the sail leaves the Solar system is reduced. Equally, as
— the craft decelerates on entry to the Proxima system, the interaction
10} 1 time increases until it is (likely) comparable to the charging time.

It is therefore at the very beginning and end of the mission that
] charging becomes important.

4.1.2 Charging in the ISM

Distance [Stellar Radii]
o

As the sail traverses the interstellar medium, it will encounter a

—10[ ™ range of different charged particles, from electrons to highly porous

dust grains. The dominant charging process for the sail is electron

—15[ ] bombardment (Hoang & Loeb 2017), as the energy density of ul-
traviolet photons in the ISM is too low for photoelectron emission.

20 Il . ‘ \ One could imagine the sail collecting a layer of charged dust

R =0 _mmst;rsme [Stellar Radii] = grains in transit to Proxima. This would not only increase the

Lorentz force on the craft, but also its absorption coefficient, with

Figure 5. The effect of increasing negative charge on the PGM assist [from potentially fatal results. Lubin (2016) estimate the total dust column

10puC (red) to 1 mC (blue)] for all other sail and star parameters held fixed. along the sail trajectory to be approximately 4 x 10" m—2 (for grain

sizes greater than a micron). An edge-on sailcraft can expect of the
order of a thousand grain collisions (depending on its thickness),
suggesting a relatively weak charge. At relativistic speeds, grain
collisions are unlikely to result in sticking, but instead piercing the
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Figure 6. Variance in sail trajectories due to uncertainties in stellar and sail parameters. Left-hand panel: possible trajectories for positively charged sailcraft.
Right-hand panel: possible trajectories for negatively charged sailcraft.
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3218  D. H. Forgan, R. Heller and M. Hippke

sail. This results in little to no charging, and fortunately a little effect
on the sail velocity, but can introduce inhomogeneities in the sail,
reducing the sail’s ability to produce stable flight (Hoang 2017), or
in the case of dust grains larger than 15 wm, complete destruction
of the spacecraft (Hoang et al. 2017).

At relativistic speeds, the maximum potential achieved by the
spacecraft depends on its speed, not the plasma’s properties. Con-
sequently, the spacecraft will not achieve the floating potential of
the plasma, and assume a much lower value, typically less than a
wV per gram (Hoang 2017).

4.1.3 So what is the charge?

In the Solar system, simple energy arguments would indicate that
due to their lower mass, electron charging is more likely than ionic
charging, suggesting a typically negative charge. However, en route
to Proxima, collisional emission of electrons is likely to generate a
positive charge.

Throughout, we have discussed charge in absolute terms, and
assumed that the spacecraft charge density was uniform. Differential
or relative charging is likely to occur, especially when the craft is
composed of materials of varying dielectric properties. If the surface
charge density of our sail is non-uniform, the Lorentz force will
introduce a stress across the sail surface. Weak stresses can result in
tumbling motions as regions of the sail are accelerated at different
rates, which can result in rotation periods as short as ~30min
(Hoang & Loeb 2017). If the stress exceeds the strength of the sail
material, this can result in irreparable damage.

The initial total charge of our sail (generated before the craft is ac-
celerated) seems to depend most strongly on the space environment
in the immediate region of the Sun, and similarly at its destination
as the craft decelerates to non-relativistic velocities. It seems to be
the case that the sail may achieve a sufficiently large charge for
PGM assists to be important at the beginning of the mission, but
that the net charge will be reduced as it traverses the ISM.

However, we still lack detailed knowledge of the charge content
of the intervening ISM along our proposed flight plan. Also, it is
clear that the ambient magnetic field plays a role in trapping surface
charge via the Lorentz force, or allowing it to stream away from
the craft along field lines. Most importantly, all this implies that the
surface charge is likely to be a function of not only distance from
Proxima, but also the sail normal on approach!

4.2 What is the preferred charge on a sail?

We have seen that the sign of the charge affects its resulting trajec-
tory profoundly. This change is entirely grounded in the sign of the
magnetic force. If the magnetic force acts away from the star, then
a stable trajectory is obtained (like those seen in the left-hand panel
of Fig. 6). If the magnetic force is attractive, then we recover erratic
trajectories such as those seen in the right-hand panel of Fig. 6.

The preferred charge depends on how the sail approaches the
star. We have seen negative charges providing hazardous trajectories
because the sail approaches the star in the positive x-axis, positive
y-axis quadrant. If the flight is carried out in the negative x, positive y
quadrant, then a positive charge produces loop-de-loop trajectories.

If we want to avoid erratic flights, we should therefore be aiming
to either (a) approach the star in such a way that the magnetic force
is repulsive or (b) charge the sail in such a way that the magnetic
force is repulsive. If we know what the charge is expected to be
(and its sign) from natural processes, we can adjust our ingress
trajectory to ensure that the egress trajectory is well-behaved, or we
can deliberately charge the sail to achieve the same effect.

What methods are there for charging sails? Given that the most
likely source of charging en route is emission of electrons as a
result of particle bombardment (Hoang & Loeb 2017), we should
expect that our craft will typically be positively charged. If the craft
is negatively charged, orienting the sail to stimulate photoelectron
emission (if we are near a strong UV source) can reduce an accrued
negative charge. Reducing a positive charge would most likely re-
quire a collection of electrons in transit to Proxima, and is unlikely
to be achievable. Electrons will pass through the sail as their pene-
tration length is long compared to the sail thickness. The sail would
require some kind of charge capture system that could decelerate the
electrons sufficiently for capture (such as a magnetic field generator
of its own).

4.3 Limitations of the analysis

We have focused entirely on one optimization scheme for sail ori-
entation (which maximizes the component of force antiparallel to
velocity). It is quite possible to implement other schemes, such as
using the sail to attempt to cancel the magnetic force contribution,
ie.

NS R% Fraa(r, ). F g, (16)
minimize

which would mitigate against more erratic trajectories, but does not
guarantee maximal deceleration during the encounter.

We have also focused largely on pure dipole magnetic fields,
where all field lines are entirely closed. This is a heavy oversimpli-
fication of realistic stellar magnetic fields, which typically contain
higher order spherical harmonics than the pure dipole, and also
contain open field lines at large distance from the star. A probe
traversing one of these ‘real’ magnetic fields might feel very little
Lorentz force until it reaches the region where field lines begin to
close.

The configuration of stellar magnetic fields also evolves with
time. Magnetic reconnection and coronal mass ejections are com-
mon around G stars like o Cen A, and flaring is a key characteristic
of low-mass stars such as Proxima. These eruptive events will add
extra time dependence to the magnetic field, and hence the Lorentz
force experienced by the sail. Of course, a sail that directly encoun-
ters a coronal mass ejection during close approach will most likely
be damaged beyond repair.

We have also ignored magnetic fields in the ISM en route. If
the level of ionization is sufficiently high, magnetic fields tend to
‘freeze in’ to the turbulent density structures in the diffuse gas. At
large scales, this turbulent structure is a complex mix of filaments,
sheets and knots, with the field tending to align with these structures
except in regions of poor ionization (McClure-Griffiths 2006; Be-
gum et al. 2010; Clark, Peek & Putman 2014). We should therefore
expect that our sailcraft will be experiencing Lorentz forces along
its entire flight path. The direction of this force will be extremely
sensitive to the density structure of the ISM it passes through. Fur-
ther work is needed to determine the level of deflection a craft might
experience as it traverses a turbulent magnetic field environment,
and what level of charge mitigation is required to avoid substantial
changes in trajectory (cf. Gros 2017; Hoang & Loeb 2017).

Finally, we have ignored the more ‘standard’ uses of electro-
magnetic fields in sail navigation. Indeed, the literature is replete
with works on ‘magsails’ that generate their own fields to deflect
either interstellar ions (Zubrin & Andrews 1991; Freeland 2015) or
charged particles entrained in the stellar wind (Matloff 2009). This
produces a drag force on the craft, providing an effective means
of deceleration. The magnitude of the deceleration depends on the
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effective field geometry, in particular its cross-section to the wind-
flow, as well as the sail’s velocity relative to the stellar wind. Electric
sails are composed of tethers deliberately charged to maintain a high
positive voltage, deflecting high energy protons (Janhunen 2004).
A two stage magsail /electric sail combination has been shown to
be an effective deceleration strategy for high mass spacecraft (Per-
akis & Hein 2016). Electric sails require high voltage (and possibly
significant charging), and it is unclear how this would interact with
Lorentz forces. On the other hand, generating a magnetic field may
be useful for mitigating excess charging and permitting charge es-
cape. Combining PGM assists with stellar wind deceleration may
provide a highly effective means of generating Av, and should be
explored further.

5 CONCLUSIONS

We have simulated the trajectories of light sails under the com-
bined forces of gravity, radiation pressure and magnetic fields. If
wafer sails, such as those proposed by the Breakthrough Starshot
programme, obtain a greater charge than around 10 uC (per gram
of mass) during flight, magnetic fields begin to significantly affect
their final trajectory.

The Lorentz force generated by the magnetic field can be either
beneficial or hazardous depending on the inbound trajectory. In the
best case, the sail can use PGM assists to generate even greater
Av than achievable with only gravity and radiation. This allows
for craft to perform stellar flybys at even closer approaches, and to
attain a higher cruise velocity on leaving Earth and still be able to
achieve a successful flyby of Proxima.

On the other hand, the worst case scenario can result in highly
erratic loop-de-loop trajectories, which either result in impact on to
the star or ejection at high speed on highly unpredictable outbound
trajectories. Even if these trajectories can be avoided, small changes
in trajectory at ingress can be multiplied into large offsets at egress,
requiring large course corrections if our sail is to reach its intended
target. Deflections can even be generated on departure by the Sun’s
magnetic field, if the craft is charged during launch.

The contingent nature of these PGM trajectories suggests that
sail missions should be prepared to send multiple craft to boost
their probability of executing a PGM assist that delivers a preferred
trajectory — that is, a trajectory towards Proxima at relatively low
velocity.

PGM assists are something of a mixed blessing, and their effects
on navigation must be considered carefully. We recommend that
planning for Breakthrough Starshot commits resources to (a) mon-
itoring sailcraft charging and Lorentz force strengths during Solar
system tests, (b) mapping sources of sailcraft charging between the
Solar system and o Cen, and (c) mapping the magnetic field of «
Cen A, B and C, as well as the interstellar environment along the
route.
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APPENDIX A: ANALYTIC SOLUTIONS FOR
OPTIMAL SAIL ORIENTATION

A1l Sail optimization in 2D

We wish to solve

AeR> (A-#)(-D). (A1)

minimize
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Let

L cos ¢ ~ [ cos B
r_<sin¢)andv_<sin,3)' (A2)
The corresponding equation for the sail normal vector is

. [ cos( + ¢)

"= ( sin(a + ¢) ) ’ (A3)

where « is the angle between the sail normal and 7:
7 -l = cos ¢ cos(a + ¢) + sin ¢ sin(o + ¢) = cos a. (A4)

Our minimization condition is equivalent to minimizing

f(a) = cosa (cos B cos(a + ¢) + sin S sin(x + ¢)) (AS)
with fixed ¢, 8. Appropriate use of double angle formulae gives
f(a) =cosa(cos(e + ¢ — B)). (A6)

Taking the first derivative gives

f(@) = —sina (cos(a + ¢ — B)) — cosa (sin(e + ¢ — B))
=—sinQa+¢—p). (A7)

And, the extrema of f{«) are to be found at

p—0¢ ntB-0

=2 2 (A9
Taking the second derivative
f"(e) = —=2cos Qo + ¢ — B) (A9)
shows that the minimum exists at
a:“ﬂ;—‘f{ (A10)

A2 Sail optimization in 3D

To extend the above calculation to 3D, we must consider the vector
field

f@)y=@-F)@-v). (AID)
And compute the gradient
of of of

Vf=|—/7,—/7—,—/— 1, Al2
where n; are the Cartesian components of the sail vector, and
0
afzri(ﬁ~ﬁ)+v,~(ﬁ-i‘). (A13)

n;

Our minimum occurs where V f = 0. This is equivalent to the
homogeneous system of equations

Tn =0, (Al14)
where
2rivy rvy, + v rivy 4 r3v;
T = v +r1v2 2}’21)2 r2v3+r3v2 . (AIS)
Flv3 + 13V 13 + 130 2r3v3

Using this system in practice is challenging (especially in purely
2D trajectories), as T can easily be singular and hence not be in-
vertible. To avoid these problems we use sequential least-squares
optimization on this system as described in the main text.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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