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be considered, particularly after inducing hypoxia/ischemia, which occurs in many
oncological surgery procedures through which tissues are harvested for translational
research.
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The Editorial board of Cellular Oncology 

 

 

Ghent, September 1, 2016 

 

 

Dear Dr. Editor, 

 

Please find enclosed our manuscript entitled “Epigenetic sampling effects: nephrectomy 

modifies the clear cell renal cell cancer methylome” for consideration for publication in 

Cellular Oncology as a short communication.  

In a recently accepted paper (Dynamic epigenetic changes to VHL occur with sunitinib in 

metastatic clear cell renal cancer, Stewart et al, Oncotarget), we demonstrated an epigenetic 

change in the VHL gene upon clear cell renal cancer treatment. As pre- and post treatment 

conditions differed in the manner of sampling, we ran an additional study to analyse a 

possible sampling effect (biopsy vs. nephrectomy). Though this was not the case for VHL – 

subject of the previous paper - a clear sampling effect was observed for some loci and also 

appeared to be relevant in the actual treatment study. This implies that sampling procedure 

impacts results in cellular oncology studies. As the most likely underlying cause – hypoxia – 

is relevant in many such studies, and the sampling study is unique in its kind (biopsy 

immediately followed by nephrectomy), we are confident that this paper is of general interest 

to researchers in the field of cellular oncology. 

 

 

Yours sincerely, 

 

Prof. Dr. Tim De Meyer 

Dept. of Mathematical Modelling, Statistics and Bioinformatics 

Ghent University - Belgium 
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Abstract 38 

 39 

Currently, it is unclear to what extent sampling procedures affect the epigenome. Here, this 40 

phenomenon was evaluated by studying the impact of artery ligation on DNA methylation in 41 

clear cell renal cell cancer. To t his end, DNA methylation profiles between vascularised 42 

tumour biopsy samples and devascularized nephrectomy samples from two individuals were 43 

compared. The relevance of significantly altered methylation profiles was validated in an 44 

independent clinical trial cohort. We found that six genes were differentially methylated in 45 

the test samples, of which four were linked to ischaemia or hypoxia (REXO1L1, TLR4, hsa-mir-46 

1299, ANKRD2). Three of these genes were also found to be significantly differentially 47 

methylated in the validation cohort, indicating that the observed effects are genuine. Based 48 

on these results, we conclude that the impact of sampling procedures in clinical epigenetic 49 

studies should be considered, particularly after inducing hypoxia/ischemia, which occurs in 50 

many oncological surgery procedures through which tissues are harvested for translational 51 

research. 52 
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1 Introduction 58 

 59 

The use of clinical samples in epigenetics research has become routine (Ferraro, 2016; Taucher 60 

et al., 2016; Vitiello et al., 2015)[1–3][refs. Cell. Oncol. 39, 295-318, 2016; Cell. Oncol. 39, 195-61 

210, 2016; Cell. Oncol. 38, 17-28, 2015]. However, the nature of the sampling procedures may 62 

significantly compromise the resulting epigenetic profiles, leading to an “epigenetic observer 63 

effect". In renal cell carcinoma (RCC), dynamic molecular changes occur over time and with 64 

therapy, which require serial tissue samples for elucidation [4,5][1, 2]. Despite the 65 

development of standard operating procedures for tissue acquisition and biobanking, less 66 

attention is paid to ensuring constant, robust pre-collection conditions, such as warm 67 

ischaemia time, than to post-collection handling and processing procedures, thus failing to 68 

avoid variation due to pre-analytical factors [6][3]. There are recommended tissue sampling 69 

guidelines from organisations such as the Confederation of Cancer Biobanks, which advise 70 

that warm ischaemia time should be minimised as much as possible prior to freezing of fresh 71 

tissue samples, but this is very difficult to measure and standardise [7][4]. Several studies have 72 

looked at the procurement conditions on RNA biomarker expression and the effect on 73 

previously identified cancer biomarkers [8][5], but so far there have been no such studies on 74 

DNA methylation. 75 

Prolonged ischaemia leads to higher levels of tissue hypoxia, which has been shown to 76 

induce DNA demethylation in e.g. hepatoma cells [9][6]. This demethylation has been shown 77 

to be induced by methionine adenosyltransferase 2A (MAT2A), of which the expression is 78 

positively regulated by HIF-1a [9][6], which in turn is negatively regulated by VHL [10][7]. VHL 79 

plays a crucial role in RCC development [11][8]. Hypoxia, methylation and RCC form, therefore, 80 

an intricate network of which the components cannot be studied separately. Yet, different 81 

RCC sampling procedures might obfuscate the results by influencing the hypoxic conditions. 82 

More than most tumours, RCC sampling is challenging as the majority of the extirpative 83 

procedures deal with minimally invasive approaches. It is well established that changes occur 84 

in mRNA levels with increasing time after renal artery clamping in RCC [12][9]. Here, we 85 

assessed the effect of renal artery clamping on the RCC methylome. 86 

 87 

Patient samples and methods 88 

 89 
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Patient-matched sample sets were obtained from two patients who, at the time of open 90 

cytoreductive nephrectomy for metastatic clear cell RCC (ccRCC), had fresh ccRCC tumour 91 

biopsies taken prior to ligation of the renal artery after which matched fresh frozen tumour 92 

samples were harvested following ligation and division of the renal artery and removal of the 93 

kidney as per a previously described approach [5][2]. A total of 12 samples was collected, i.e., 94 

3 biopsy and 3 nephrectomy samples from each patient. These samples were obtained as part 95 

of the Scottish Collaboration On Translational Research into Renal Cell Cancer (SCOTRRCC) 96 

study (East of Scotland Research Ethics Service REC 1: 10/S1402/33). For validation purposes, 97 

but also to evaluate the potential impact on clinical epigenetics research, matched tumour 98 

samples taken at the time of diagnostic renal tumour biopsy and subsequent nephrectomy 99 

were obtained from 14 patients with metastatic ccRCC. Following primary tumour biopsy, 100 

these patients were treated with three cycles of sunitinib (18 weeks) followed by 101 

cytoreductive nephrectomy after 2 weeks of sunitinib as part of the Upfront Sunitinib 102 

(SU011248) Therapy Followed by Surgery in Patients with Metastatic Renal Cancer: a Pilot 103 

Phase II Study (SuMR; ClinicalTrials.gov identifier: NCT01024205) [13][10 ]. All samples used 104 

in this study are listed in Supplementary file 1. 105 

Extraction of genomic DNA was performed using a Qiagen DNeasy Blood and Tissue 106 

(Qiagen, UK) kit following the manufacturer's instructions. DNA methylation analyses using 107 

MBD sequencing was carried out as described previously [14][11 ]. A MethylCap kit 108 

(Diagenode, Belgium) was used for capturing methylated fragments from 500 ng starting 109 

material. Massively parallel sequencing of these fragments was subsequently performed on 110 

an Illumina HiSeq 2000 machine (Illumina, San Diego, CA, USA). 111 

Raw data files were mapped using BOWTIE to the human reference genome 112 

Hg19/GRCh37, and summarized using an in-house developed Map of the Human Methylome 113 

[15][12 ] consisting of a putative genome-wide overview of potentially methylated loci 114 

(“methylation cores”). Further data analyses were performed using Python 3.4.3 and R 3.2.1. 115 

The Bioconductor quantro software package (1.2) was used to assess quantile normalization 116 

assumptions [16][13 ], whereas the limma software package (3.24.15) was used to identify 117 

regions featured by differential methylation patterns. Prior to limma analysis, the samples 118 

were quantile normalized and transformed using the voom function [17][14 ]. Only 119 

methylation cores that referred to annotated promoter regions (including exon1), and that 120 

had at least an average coverage of one mapped fragment per sample, were withheld for 121 



analysis. Low coverage loci are featured by a too low power to be detected as differentially 122 

methylated, thereby unnecessarily inflating the amount of hypotheses tested, which justifies 123 

their unsupervised removal from the dataset. Regions with a False Discovery Rate (FDR) < 0.05 124 

were selected for further assessment using the sample dataset [13][10 ]. For the validation 125 

dataset, the FDR estimation (Benjamini-Hochberg) was based on the amount of loci to be 126 

validated. 127 

 128 

Results and discussion 129 

 130 

A quantro test was performed to check the suitability of the samples for quantile 131 

normalization, which was used for limma-voom. A p-value of 0.53 was obtained after 1000 132 

permutations, implying that there were no global differences in the distributions between the 133 

non-ischaemic biopsy and ischaemic nephrectomy samples. A limma-voom data analysis was 134 

subsequently performed using quantile normalization. In Table 1 seven regions are listed that 135 

were found to be differentially methylated up to an FDR of 0.05 (Fig 1 ). Only two of these 136 

seven (AC232323.1 and ANKRD2) exhibited a relative hypomethylation in the ischaemic 137 

nephrectomy samples compared to the non-ischaemic samples. In one of these (AC232323.1) 138 

a different region (8325757) exhibited a significant relative hypermethylation. 139 

The differentially methylated regions with a FDR < 0.05 were subsequently subjected 140 

to validation using methylation data obtained from matched biopsy and nephrectomy 141 

samples from the SuMR clinical trial. Three of the seven regions identified in the test set, were 142 

again significantly altered at the same level within the validation cohort (AC232323.1 region 143 

8325757, REXO1L1 and OR6Q1). A binomial test – using the FDR threshold as expected 144 

probability – rejected the null hypothesis that this would have occurred randomly (p = 0.004). 145 

We therefore hypothesise that the shared results between the two studies are caused by 146 

ischaemic conditions. Of the 7 loci identified in the test set, 6 were found to have the same 147 

fold change direction in the validation cohort. However, assuming a 50% random chance of 148 

having the same fold change direction, the number of similar direction of change was not 149 

found to be significant (p = 0.125). A lower FDR cut-off of 10% yielded 36 significant regions, 150 

yet this cut-off was deemed not sufficiently conservative as the fraction that could be 151 

validated in the validation cohort was too low to reject the null hypothesis of significant 152 

overlap (p = 0.085, data not shown). 153 



Methylation meta-analyses have shown that DNA methylation is a critical event in 154 

tumorigenesis [18][15]. It is, therefore, surprising that an analysis of the effect of tissue 155 

procurement on DNA methylation has so far not been performed, as it has in other molecular 156 

analyses. From our test and validation results it is clear that ischaemic conditions, induced as 157 

part of the surgical procedure, may lead to differential methylation. 158 

The results of the study presented here indicate that the RCC methylome may be 159 

modulated following renal artery ligation. Global gene demethylation in samples was not 160 

observed, but consistent demethylation of at least one individual gene (ANKRD2) was found. 161 

These results hold considerable significance for translational methylation research for solid 162 

tumours obtained by extirpative surgery, especially where minimally invasive surgical 163 

approaches are used. The most significantly affected gene, AC232323.1, encodes a long non-164 

coding RNA (lncRNA) product. According to LNCipedia [19][16] this lncRNA is linked to the 165 

second most significantly affected gene, REXO1L1, and has potential direct biological 166 

relevance (http://www.lncipedia.org/db/transcript/lnc-REXO1L2P-1:1). REXO1L1 was found 167 

to be hypermethylated following renal artery clamping. REXO1L1 deletions have been linked 168 

to increased apoptosis under certain conditions [20][17], such as intense hypoxia, which may 169 

underlie the results presented above [21][18]. The third significantly affected gene, TLR4, 170 

plays a crucial role in kidney ischemia/reperfusion injury [22][19], and Hsa-mir-1299 also has 171 

a possible role in apoptosis through interaction with PIM1 [23][20]. The OR6Q1 gene encodes 172 

an olfactory receptor and is, therefore, an unlikely candidate, although it should be noted that 173 

there is evidence for a limited expression in other tissues as well [24][21]. Finally, ANKRD2 174 

belongs to the conserved muscle ankyrin repeat protein (MARP) family. Expression of MARPs 175 

has been found to be induced in response to physiologic stress, injury, hypoxia and 176 

hypertrophy [25,26][22, 23] and the ANKRD2 mRNA level has indeed been found to be 177 

upregulated under specific hypoxic conditions. Our results indicate that this upregulation may 178 

be brought about by demethylation of a specific methylation core. 179 

Despite the test and validation cohorts used, this study should be considered as proof 180 

of principle with a necessarily low power, as it was deemed unethical to expose subjects to an 181 

extra pre-operative percutaneous biopsy procedure without clinical benefit. Also, in the 182 

validation cohort, patients were treated with sunitinib, the time between biopsy and 183 

nephrectomy was longer (20 weeks) and the sequencing depths were generally more shallow, 184 

implying that additional discrepancies between both datasets may have been caused by 185 

http://www.lncipedia.org/db/transcript/lnc-REXO1L2P-1:1


treatment, temporal or other technical reasons. 186 

Taken together, our data indicate that in both a test and a validation cohort renal 187 

artery ligation modulates gene methylation in a biologically relevant fashion. As with any 188 

research using surgically resected clinical samples, future methylation studies must be 189 

designed to include robust and well-documented sample procurement techniques in order to 190 

take these findings into account. 191 
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Legend tot the Figure 215 
 216 
Figure 1 Sampling procedure differences. For each of the regions with a FDR < 0.05, boxplots 217 
of the methylation counts are shown. The methylation core region is shown under the gene 218 
label. 219 
 220 
 221 
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Table 1 Renal clamping differential results. One gene can have several methylation cores in the 

promotor region. 'AveExp' = average expression count. 'FDR' = Benjamini-Hochberg adjusted 

P-values, smaller than 0.05. 

 

METHYLATION 

CORE ID 

ANNOTATION LOG-FC AVE-EXP P-VALUE FDR 

8325759 AC232323.1 0.731 10.84 1.256e-07 0.0055 

8325735 REXO1L1 -1.184 6.28 1.842e-07 0.0055 

8396394 TLR4 -2.483 3.55 8.634e-07 0.0173 

8371090 hsa-mir-1299 -1.638 4.90  2.028e-06 0.0273 

7046978 OR6Q1 -2.521 3.22 2.269e-06 0.0273 

6996258 ANKRD2 2.249 3.66  3.262e-06 0.0327 

8325757 AC232323.1 -1.242 8.88 4.777e-06 0.0411 
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Supplementary	table	1:	Clinico-pathological	characteristics	of	the	two	test	patients.	
	

Warm	ischemia	time	is	the	time	from	clamping	of	the	renal	artery	to	tumour	sampling	and	
snap	freezing	on	dry	ice.	
	
	
	 	

Clinico-pathological	
Characteristic	 Test	patient	1	 Test	Patient	2	

Age	(years)	 59	 73	
Gender	 Male	 Male	
Fuhrman	grade	 2	 2	
T	stage	 3a	 3a	
M	stage	 1	 1	
Warm	ischemia	time*	(mins)	 55	 60	

Previous	Treatment	
3	cycles	of	Sunitinib	50mg	
once	daily.	Nephrectomy	4	
days	following	cessation.	

None	
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Supplementary	table	2:	Clinico-pathological	characteristics	of	the	14	validation	cohort	
patients	all	with	metastatic	ccRCC	and	having	tumour	biopsy	followed	by	sunitinib	therapy	
and	subsequent	cytoreductive	nephrectomy.		
	

Age,	median	(range)	 67	(52-78)	
Male	gender	(%)	 11	(78.6)	
MSKCC	prognostic	risk	(%)	 	
Intermediate	 11	(78.6)	
Poor	 3	(21.4)	
Metastatic	sites	(%)	 	
1-2	 10	(71.4)	
3+	 4	(28.6)	
Clear	cell	tumour	grade,	identified	at	nephrectomy	(%)*	 	
1-2	 7	(50)	
3-4	 7	(50)	
Median	PFS,	months	(95%	CI)	 17.5	(7-21)	


