Supporting Information

Table of Contents

1.	Experimental	Page 1-6
2.	Details of the X-ray data for compounds 4, 5, 7, 8, 9, 10, 13, 14, 15	Page 6-7
3.	¹ H and ¹³ C NMR spectra of compounds 4-15	Page 8-31
4.	References	Page 31

Experimental

Unless otherwise stated, all reactions were carried out under on oxygen free nitrogen atmosphere using pre-dried solvents and standard Schlenk techniques, subsequent chromatographic and work up procedures were performed in air. ¹H (400.1 MHz), ¹³C (100.6 MHz), ³¹P-{¹H} (162.0 MHz) and ⁷⁷Se-{¹H} (51.4 MHz referenced to external Me₂Se) NMR spectra were recorded at 25 °C (unless stated otherwise) on Bruker Advance II 400s and JEOL GSX 270. IR spectra were recorded as KBr pellets in the range of 4000-250 cm⁻¹ on a Perkin-Elmer 2000 FTIR/Raman spectrometer. Mass spectrometry was performed by the EPSRC National Mass Spectrometry Service Centre, Swansea.

X-ray crystal data for compounds **4**, **5**, **7**, **8**, **9**, **10**, **13**, **14** and **15** were collected using Rigaku SCXMini Mercury CCD system at -100 C. Intensity data were collected using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. All data were corrected for Lorentz polarization effects. Absorption effects were corrected based on multiple equivalent reflections or by semi-empirical methods. Structures were solved by direct methods and refined by full-matrix least-squares against F² by using the program SHELXTL.¹ Hydrogen atoms were assigned riding isotropic displacement parameters and constrained to idealized geometries. CCDC 1509501 (for compound **5**), CCDC 1509502 (for compound **13**), CCDC 1509503 (for compound **4**), CCDC 1509504 (for compound **9**), CCDC 1509505 (for compound **14**), CCDC 1509506 (for compound **15**), CCDC 1509507 (for compound **10**), CCDC 1509508 (for compound **7**) and CCDC 1509509 (for compound **8**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General procedure for the synthesis of compounds 4–6. A mixture of *N*,*N*-dialkylcyanamide (2.0 mmol) and Woollins' reagent (1.07 g, 2.0 mmol) in dry toluene (20 mL) was refluxed for 20 h. Upon cooling to room temperature and removing unreacted insoluble solid and drying in vacuo, the organic residue was purified by silica gel column (1:5 dichloromethane/hexane as eluent) to give the corresponding compounds **4–6**.

4-(**Dicyclohexylamino**)-2,5-diphenyl-1,3,2,5-selenazadiphosphole 2,5-diselenide (4): Brightly yellow solid (1.06 g, 80%). M.p. 150-152°C. Selected IR (KBr, cm⁻¹): 1558, 1553, 1450, 1436, 1388, 1348, 1303, 1258, 1176, 1120, 1087, 992, 915, 870, 787, 745, 731, 687, 633, 548, 520, 500, 462. ¹H NMR (CDCl₃, δ), 8.18-7.98 (m, 4H), 7.53-7.43 (m, 6H), 2.74-2.62 (m, 2H), 2.04-0.76 (m, 20H) ppm. ¹³C NMR (CDCl₃, δ), 133.24, 132.6, 132.4, 131.7, 131.5, 129.6, 129.4, 128.9, 128.7, 61.7, 30.1, 26.5, 25.5 ppm. ³¹P NMR (CDCl₃, δ), 82.3 (d, ²*J*(P, P) = 14.1 Hz, *J*(P-Se) = 465 Hz, *J*(P=Se) = 786 Hz), 59.1 (d, ²*J*(P, P) = 16.4 Hz, *J*(P-Se) = 455 Hz, *J*(P=Se) = 812 Hz) ppm. ⁷⁷Se NMR (CDCl₃, δ), 675.7 (dd, *J*(P-Se) = 455 Hz), 15.0 (d, *J*(P=Se) = 815 Hz), -75.4 (d, *J*(P=Se) = 782 Hz) ppm. HRMS (CI⁺, m/z): found 660.9625 [M+H]⁺, calculated mass for C₂₅H₃₂N₂P₂SeH: 660.9627.

4-(Dibenzylamino)-2,5-diphenyl-1,3,2,5-selenazadiphosphole 2,5-diselenide (5): Brightly yellow solid (1.16 g, 86%). M.p. 170-172°C. Selected IR (KBr, cm⁻¹): 1548, 1433, 1349, 1210, 1140, 1087, 905, 857, 741, 697, 589, 538, 494, 380, 352. ¹H NMR (CDCl₃, δ), 8.28-8.22 (m, 2H), 8.12-8.04 (m, 2H), 7.54-7.46 (m, 6H), 7.33-7.28 (m, 4H), 7.23-7.17 (m, 4H), 6.78-6.75 (m, 2H), 5.32 (s, 4H). ¹³C NMR (CDCl₃, δ), 163.7 (d, *J*(P, C) = 29.5 Hz), 137.1 (d, *J*(P, C) = 93.5 Hz), 134.4 (d, *J*(P, C) = 110.2 Hz), 133.1 (d, *J*(P, C) = 3.1 Hz), 132.5, 132.4 (d, *J*(P, C) = 3.1 Hz), 131.4 (d, *J*(P, C) = 13.6 Hz), 128.8 (d, *J*(P, C) = 12.7 Hz), 128.4, 128.3 (d, *J*(P, C) = 12.7 Hz), 128.0, 127.4, 54.7 ppm. ³¹P NMR (CDCl₃, δ), 76.6 (d, ²*J*(P, P) = 9.4 Hz, *J*(P-Se) = 460 Hz, *J*(P=Se) = 791 Hz), 60.5 (d, ²*J*(P, P) = 9.4 Hz, *J*(P-Se) = 310 Hz, *J*(P=Se) = 822 Hz) ppm. ⁷⁷Se NMR (CDCl₃, δ), 497.4 (dd, *J*(P-Se) = 460, 460 Hz), 12.1 (d, *J*(P=Se) = 825 Hz), -70.0 (d, *J*(P=Se) = 794 Hz) ppm. HRMS (CI⁺, m/z): found 678.8986 [M+H]⁺, calculated mass for C₂₈H₂₅N₂P₂Se₃H: 678.8989.

4-(Benzyl(phenethyl)amino)-2,5-diphenyl-1,3,2,5-selenazadiphosphole 2,5-diselenide (6): Brightly yellow solid (1.02 g, 74%). M.p. 68-70°C. Two isomers were found in *ca*. 2:1 intensity ratio in multi-NMR spectra. Selected IR (KBr, cm⁻¹): 1549, 1495, 1452, 1435, 1357, 1304, 1143, 1084, 868, 743, 698,

686, 552, 540, 500. ¹H NMR (CDCl₃, δ), 8.32-8.19 (m, 8H), 8.08-7.96 (m, 2H), 7.63-7.58 (m, 4H), 7.52-7.43 (m, 4H), 7.28-7.18 (m, 16H), 7.09 (d, *J*(H, H) = 7.2 Hz, 2H), 6.83 (d, *J*(H, H) = 7.0 Hz, 2H), 6.75 (d, *J*(H, H) = 7.2 Hz, 2H), 5.16 (s, 2H), 5.12 (s, 2H), 3.83-3.55 (m, 4H), 2.96-2.81 (m, 4H) ppm. ¹³C NMR (CDCl₃, δ), 163.6 (d, *J*(P, C) = 31.2 Hz), 162.0 (d, *J*(P, C) = 29.8 Hz), 137.4 (d, *J*(P, C) = 107.0 Hz), 137.3 (d, *J*(P, C) = 96.7 Hz), 137.2 (d, *J*(P, C) = 100.0 Hz), 133.3 (d, *J*(P, C) = 3.1 Hz), 132.5, 132.4, 132.3, 132.2, 131.5, 131.2, 129.5, 129.4, 129.2, 129.1, 128.9, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.7, 127.6, 126.9, 126.7, 55.9, 55.5, 53.7, 51.4, 33.8, 32.8 ppm. ³¹P NMR (CDCl₃, δ), 77.2 (d, ²*J*(P, P) = 9.4 Hz, *J*(P-Se) = 464 Hz, *J*(P=Se) = 794 Hz), 76.1 (d, ²*J*(P, P) = 11.7 Hz, *J*(P-Se) = 455 Hz, *J*(P=Se) = 789 Hz), 61.8 (d, ²*J*(P, P) = 9.4 Hz, *J*(P-Se) = 315 Hz, *J*(P=Se) = 817 Hz) ppm. ⁷⁷Se NMR (CDCl₃, δ), 507.4 (dd, *J*(P-Se) = 458, 460 Hz), 490.9 (dd, *J*(P-Se) = 455, 460 Hz), 17.7 (d, *J*(P=Se) = 815 Hz), 10.8 (d, *J*(P=Se) = 818 Hz), -64.9 (d, *J*(P=Se) = 806 Hz), -69.6 (d, *J*(P=Se) = 794 Hz) ppm. HRMS (CI⁺, m/z): found 690.9157 [M+H]⁺, calculated mass for C₂₈H₂₆N₂P₂SeH: 690.9158.

General procedure for the synthesis of compounds 7–11. A suspension of 4-(dialkylamino)-2,5-diphenyl-1,3,2,5-selenazadiphosphole 2,5-diselenide (1.0 mmol) and water (1 mL) in dry toluene (20 mL) was refluxed for 1 h. After cooling to room temperature and removing the solvent, the residue was extracted with dichloromethane (3 x 20 mL), combined the organic layers and washed with water and brine and dried over MgSO₄. Upon removing the solvent the organic residue was purified by silica gel column to give 1,1-dialkylselenoureas **7–9** (dichloromethane as eluent) and ((dialkylamino)(iminio)methyl)(phenyl)phosphinodiselenoates **10** and **11** (dichloromethane as eluent).

1,1-Dicyclohexylselenourea (**7**): Red solid (0.205 g, 71%). M.p. 146-148°C. Selected IR (KBr, cm⁻¹): 2927, 2851, 1624, 1591, 1548, 1506, 1455, 1346, 1320, 1174, 1115, 1086, 984, 896, 704, 576. ¹H NMR (CDCl₃, δ), 6.22 (s, 2H), 5.33-5.24 (m, 2H), 1.80-0.97 (m, 20H) ppm. ¹³C NMR (CDCl₃, δ), 178.7, 67.8, 31.1, 26.7, 25.8 ppm. ⁷⁷Se NMR (CDCl₃, δ), 251.7 ppm. HRMS (CI⁺, m/z): found 289.1180 [M+H]⁺, calculated mass for C₁₃H₂₄N₂SeH: 289.1177.

1,1-Dibenzylselenourea (**8**): Greyish white solid (0.160 g, 53%). M.p. 168-170°C. Selected IR (KBr, cm⁻¹): 1622, 1543, 1452, 1349, 1243, 1150, 964, 732, 693, 585, 552, 507, 443. ¹H NMR (CDCl₃, δ), 7.41-7.31 (m, 10H), 6.23 (s, 2H), 5.10 (s, 4H) ppm. ¹³C NMR (CDCl₃, δ), 209.1, 131.5, 129.6, 129.1,

129.1, 53.2 ppm. ⁷⁷Se NMR (CDCl₃, δ), 238.9 ppm. HRMS (CI⁺, m/z): found 305.0545 [M+H]⁺, calculated mass for C₁₅H₁₆N₂SeH: 305.0552.

1-Benzyl-1-phenethylselenourea (9): Greenish yellow paste (0.175 g, 28%). Selected IR (KBr, cm⁻¹): 1550, 1495, 1453, 1435, 1359, 1094, 1021, 906, 872, 744, 697, 553, 495. ¹H NMR (CD₂Cl₂, δ), 7.54-7.21 (m, 10H), 6.41 (s, 2H), 4.90 (s, 2H), 3.61 (t, *J*(H, H) = 7.0 Hz, 2H), 2.87 (t, *J*(H, H) = 7.0 Hz, 2H) ppm. ¹³C NMR (CD₂Cl₂, δ), 180.2, 137.0, 136.7, 131.2, 130.8, 129.4, 129.2, 128.9, 128.0, 55.8, 54.9, 31.4 ppm. ⁷⁷Se NMR (CDCl₃, δ), 236.7 ppm. HRMS (CI⁺, m/z): found 319.0705 [M+H]⁺, calculated mass for C₁₆H₁₈N₂SeH: 319.0708.

((**Dicyclohexylamino**)(**iminio**)**methyl**)(**phenyl**)**phosphinodiselenoate** (**10**): White paste (0.075 g, 16%). Selected IR (KBr, cm⁻¹): 2930, 2855, 2197, 1552, 1451, 1372, 1346, 1264, 1213, 1102, 894, 531. ¹H NMR (CDCl₃, δ), 9.88 (s, 2H), 7.47-7.32 (m, 5H), 2.75-2.65 (m, 2H), 1.88-1.05 (m, 20H) ppm. ¹³C NMR (CDCl₃, δ), 142.6, 131.3, 131.1, 128.7, 116.1, 55.6, 32.3, 25.7, 25.5 ppm. ³¹P NMR (CDCl₃, δ), 32.5 (s, *J*(P, Se) = 695 Hz) ppm. ⁷⁷Se NMR (CDCl₃, δ), 165.7 (d, *J*(P, Se) = 695 Hz) ppm. HRMS (CI⁺, m/z): found 477.0472 [M+H]⁺, calculated mass for C₁₉H₂₉N₂PSe₂H: 477.0475.

((Benzyl(phenethyl)amino)(iminio)methyl)(phenyl)phosphinodiselenoate (11): Greenish yellow paste (0.255 g, 25%). Selected IR (KBr, cm⁻¹): 1613, 1603, 1516, 1452, 1352, 1135, 1076, 1028, 1007, 953, 747, 699, 556, 497, 476. Two isomers were found in *ca*. 2:1 intensity ratio in multi-NMR spectra. ¹H NMR (CDCl₃, δ), 9.91 (d, *J*(P, H) = 5.1 Hz, 4H), 9.69 (d, *J*(P, H) = 4.8 Hz, 4H), 7.51-6.77 (m, 22H), 4.95 (s, 2H), 4.64 (s, 2H), 4.01 (t, *J*(H, H) = 7.0 Hz, 2H), 3.69 (t, *J*(H, H) = 7.0 Hz, 2H), 2.89 (t, *J*(H, H) = 7.0 Hz, 2H) ppm. ¹³C NMR (CDCl₃, δ), 164.0 (d, *J*(H, H) = 21.5 Hz), 136.8, 136.6, 135.9, 132.8), 131.6, 131.2, 131.1, 130.9, 129.5, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.2, 126.9, 126.4, 56.0, 55.5, 54.6, 51.9, 32.9, 31.5 ppm. ³¹P NMR (CDCl₃, δ), 29.0 (s, *J*(P=Se) = 685 Hz), 28.2 (s, *J*(P=Se) = 685 Hz) ppm. ⁷⁷Se NMR (CDCl₃, δ), 27.8 (d, *J*(P=Se) = 685 Hz), 27.5 (d, *J*(P=Se) = 685 Hz) ppm. HRMS (CI⁺, m/z): found 507.0005 [M+H]⁺, calculated mass for C₂₂H₂₃N₂PSe₂H: 507.0008.

General procedure for the synthesis of 4-substituted-1,3-selenazol-2-amines 12–15. A mixture of α -haloketone (0.3 mmol) in 20 mL of ethanol was added dropwise to a refluxing solution of 1,1-

dicyclohexylselenourea (0.087 g, 0.3 mmol) in 20 mL of ethanol in course of 1 h. The reaction mixture was then refluxed for another 2 h. Upon cooling to room temperature; a rotary evaporator concentrated the mixture. The residue was neutralized with 5% aqueous ammonia (30 mL) and extracted with dichloromethane (30 mL x 3), combined organic layers and washed with water (20 mL x 3) and dried over MgSO₄. After filtering and drying to remove solvent the organic residue was purified by a silica gel column (1 : 5 dichloromethane/hexane to dichloromethane as eluent) to give the expected products 12-15.

N,*N*-Dicyclohexyl-4-(4-methoxyphenyl)-1,3-selenazol-2-amine (12): Yellow solid (0.120 g, 96%). M.p. 162-164°C. Selected IR (KBr, cm⁻¹): 1608, 1540, 1490, 1452, 1380, 1300, 1281, 1246, 1229, 1169, 1106, 1033, 941, 893, 833, 710, 662, 617. ¹H NMR (CD₂Cl₂, δ), 7.82 (d, *J*(H, H) = 8.8 Hz, 2H), 7.13 (s, 1H), 6.93 (d, *J*(H, H) = 8.8 Hz, 2H), 3.86 (s, 3H), 3.27-3.18 (m, 2H), 2.30-2.16 (m, 8H), 1.92-1.70 (m, 8H), 1.45-1.34 (m, 4H) ppm. ¹³C NMR (CD₂Cl₂, δ), 167.3, 158.9, 158.7, 130.0, 127.4, 113.7, 100.6, 62.5, 55.2, 30.3, 26.4, 25.6 ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 582.1 ppm. HRMS (CI⁺, m/z): found 419.1594 [M+H]⁺, calculated mass for C₂₂H₃₀N₂OSeH: 419.1596.

N,*N*-Dicyclohexyl-4-(4-nitrophenyl)-1,3-selenazol-2-amine (13): Dark yellow solid (0.120 g, 92%). M.p. 150-152°C. Selected IR (KBr, cm⁻¹): 1604, 1595, 1545, 1516, 1450, 1379, 1338, 1280, 1265, 1108, 1038, 853, 848, 757, 696, 647, 565. ¹H NMR (CD₂Cl₂, δ), 8.23 (d, *J*(H, H) = 8.8 Hz, 2H), 8.04 (d, *J*(H, H) = 8.8 Hz, 2H), 7.56 (s, 1H), 3.29-3.21 (m, 2H), 2.29-2.16 (m, 8H), 1.93-1.72 (m, 8H), 1.46-1.24 (m, 4H) ppm. ¹³C NMR (CD₂Cl₂, δ), 169.3, 150.7, 146.4, 142.3, 126.6, 123.9, 107.5, 62.7, 30.2, 26.4, 25.6 ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 582.1 ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 604.4 ppm. HRMS (CI⁺, m/z): found 434.1339 [M+H]⁺, calculated mass for C₂₁H₂₇N₃O₂SeH: 434.1342.

4-(4-Bromophenyl)-*N*,*N*-dicyclohexyl-1,3-selenazol-2-amine (14): Yellow solid (0.133 g, 95%). M.p. 168-170°C. Selected IR (KBr, cm⁻¹): 1613, 1589, 1544, 1471, 1451, 1379, 1341, 1264, 1230, 1039, 1008, 938, 891, 831, 746, 717, 707, 658, 626, 588, 497. ¹H NMR (CD₂Cl₂, δ), 7.78 (d, *J*(H, H) = 8.5 Hz, 2H), 7.52 (d, *J*(H, H) = 8.5 Hz, 2H), 7.30 (s, 1H), 3.27-3.20 (m, 2H), 2.28-2.16 (m, 8H), 1.92-1.71 (m, 8H), 1.45-1.21 (m, 4H) ppm. ¹³C NMR (CD₂Cl₂, δ), 169.2, 151.5, 135.4, 131.9, 127.8, 120.8, 103.6, 62.6, 30.3, 26.4, 25.6 ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 591.5 ppm. HRMS (CI⁺, m/z): found 467.0595 [M+H]⁺, calculated mass for C₂₁H₂₇BrN₂SeH: 467.0594.

N,N-dicyclohexyl-4-(2,5-dimethoxyphenyl)-1,3-selenazol-2-amine (15): Greyish white solid (0.123 g, 92%). M.p. 141-142°C. Selected IR (KBr, cm⁻¹): 1602, 1602, 1540, 1505, 1499, 1452, 1447, 1438, 1379, 1282, 1217, 1176, 1049, 892, 869, 815, 654, 584. ¹H NMR (CD₂Cl₂, δ), 7.82 (s, 1H), 6.93 (s, 1H), 6.82 (d, *J*(H, H) = 8.8 Hz, 1H), 6.81 (d, *J*(H, H) = 8.8 Hz, 1H), 3.91 (s, 3H), 3.85 (s, 3H), 3.26-3.19 (m, 2H), 2.31-2.16 (m, 8H), 1.91-1.71 (m, 8H), 1.46-1.21 (m, 4H) ppm. ¹³C NMR (CD₂Cl₂, δ), 167.0, 153.5, 151.5, 148.3, 125.5, 115.2, 113.3, 112.5, 108.7, 62.5, 55.9, 55.4, 30.3, 26.4, 25.7 ppm. ⁷⁷Se NMR (CD₂Cl₂, δ), 585.1 ppm. HRMS (CI⁺, m/z): found 449.1699 [M+H]⁺, calculated mass for C₂₃H₃₂N₂O₂SeH: 449.1703.

Details of the X-ray data collections and refinements for compounds 4, 5, 7, 8, 9, 10, 13, 14, 15

Compound	4	5	7	8
Formula	$C_{25}H_{32}N_2P_2Se_3$	$C_{27}H_{24}N_2P_2Se_3$	$C_{40}H_{74}Cl_2N_6Se_3$	$C_{15}H_{16}N_2Se$
М	659.37	675.33	946.85	303.26
Crystal system	monoclinic	monoclinic	orthorhombic	monoclinic
Space group	$P2_{1}/n$	$P2_{1}/c$	Pccn	<i>I2/a</i>
a/Å	10.2241(7)	15.5514(11)	14.3690(15)	10.498(4)
b/Å	17.6148(11)	10.0461(7)	25.292(2)	8.968(4)
c/Å	30.321(2)	16.8283(11)	26.421(3)	57.17(2)
α	90	90	90	90
β	99.70620	93.574(3)	90	94.212(12)
γ	90	90	90	90
U/A^3	5382.5(6)	2624.0(3)	9601.9(17)	5368(4)
Ζ	8	4	8	16
μ/cm^{-1}	42.362	43.476	24.423	27.822
Reflections collected	41165	20135	106606	31599
Independent reflections	9429	4585	8807	4928
$R_{\rm int}$	0.1264	0.1204	0.1187	0.1489
<i>R1</i>	0.0568	0.0477	0.0788	0.0549
$wR2 [I > 2\sigma(I)]$	0.1199	0.1006	0.2847	0.1245

Table S1. Details of the X-ray Data Collections and Refinements for Compounds 4, 5, 7 and 8

Compound	9	10	13	14	15
Formula	$C_{16}H_{18}N_2Se$	$C_{20}H_{31}Cl_2N_2PSe_2$	$C_{21}H_{27}N_3O_2Se$	$C_{21}H_{27}BrN_2Se$	$C_{23}H_{32}N_2O_2Se$
Μ	317.29	559.28	432.42	466.32	447.48
Crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$
a/Å	11.2150(8)	10.0785(9)	13.8234(10)	10.6605(8)	12.5190(9)
b/Å	9.7290(7)	13.1462(11)	10.6102(8)	15.2625(11)	10.0014(7)
c/Å	27.626(2)	17.9286(15)	15.1033(11)	12.8472(9)	33.985(2)
α	90	90	90	90	90
β	98.580(3)	90	116.047(2)	111.4590(17)	98.028(2)
γ	90	90	90	90	90
U/A^3	2980.6(4)	2375.4(4)	1990.2(3)	1945.4(2)	4213.5(5)
Ζ	8	4	4	4	2
μ/cm^{-1}	25.086	34.143	19.081	39.970	18.038
Reflections	22837	18339	15003	14432	31178
collected					
Independent reflections	5416	4170	3485	3410	7367
R _{int}	0.1317	0.1619	0.0775	0.0744	0.0926
R1	0.0619	0.0589	0.0572	0.0418	0.0444
$wR2 [I > 2\sigma(I)]$	0.1741	0.0991	0.1595	0.0871	0.0998

Table S2. Details of the X-ray Data Collections and Refinements for Compounds 9, 10, 13, 14 and 15

¹H and ¹³C NMR spectra of compounds 4-15

08112014-38-jdw-gh15-M.11.fid 13C Observe with multiplicity editing - DEPTQ 86888	-
HW438-1 +++C22 ++++C22 +++++++++++++++++++++++	-5000
	-4500
13C NMR spectrum of compound 12	-4000
	-3500
	-3000
	-2500
	-2000
	-1500
	-1000
	-500
┿┅╍┅┉┿╍╍┉┉╡╽╘┉┉┉╪ <mark>┟┉┉┉┉╡┉╼╼┈┊</mark> ╽╞┅┉┉┿┉╍ _╋ ┉┉┉┉╋┉┉┉┉┝┉┉┉┙┼┉┉┉ _╋ ╌┉┉┉╎╼┉┉ _╋ ╝╵┉	-0
	500
	1000
	1500
	2000
	- 3500
	2500

C NMR spectrum o	of compound 13	0		N02				-19000 -18000 -17000 -16000 -15000
			- Se J	NO2				-18000 -17000 -16000 -15000
		8	- C	NO2				-16000
		<i>d</i>	₹ ^N Se					-15000
		$\neg \bigcirc$	Se J V					-
		\bigvee						-14000
								-13000
								-12000
								-11000
								-10000
								-9000
								-7000
								-6000
								-5000
								-4000
								-3000
					1			-2000
	11					1		-1000
tttttttt		 						
	150 140						150 140 130 120 110 100 90 80 70 60 50 40	

References

1. G. M. Sheldrick, Acta Crystallogr. Sect. C. 2015, 71, 3-8.