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1. Abstract 
 
WGS offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) established a sub-committee to review and report on the 
current development status of WGS for bacterial AST.  
 
The available published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately is 
currently either poor or non-existent and the evidence / knowledge base requires significant expansion. The 
primary comparators for assessing genotypic-phenotypic concordance from WGS data should be changed to 
epidemiological cut-off values (ECOFFs) in order to better differentiate wild-type from non-wild-type isolates 
(harbouring an acquired resistance). Clinical breakpoints should be a secondary comparator. This assessment 
will reveal if genetic predictions could also be used to guide clinical decision making. Internationally agreed 
principles and quality control (QC) metrics will facilitate early harmonization of analytical approaches and 
interpretative criteria for WGS-based predictive AST. Only datasets that pass agreed QC metrics should be used 
in AST predictions. Minimum performance standards should exist and comparative accuracies across different 
WGS laboratories and processes measured. To facilitate comparisons a single public database of all known 
resistance loci should be established, regularly updated and strictly curated using minimum standards for the 
inclusion of new resistance loci and control of resistance gene nomenclature. For most bacterial species the 
major limitations to widespread adoption for WGS based AST in clinical labs remain the current high-cost and 
limited speed of inferring antibiotic susceptibility from WGS data as well as the dependency on prior culture 
since analysis directly on specimens remains challenging.  
 
Currently there is insufficient evidence to support the use of WGS-inferred AST to guide clinical decision 
making. WGS-AST should be a funding priority if it is to become a rival to phenotypic AST. We plan to update 
this report as the available evidence increases. 
 
 
 
 
 
 

2. Introduction / Foreword from the subcommittee chairman 
 
During the 2015 ECCMID meeting in Copenhagen, I was approached (separately) by Derek Brown 
and Gunnar Kahlmeter, who were both very keen for me to put together a group to consider how well 
whole genome sequencing (WGS) can predict antibiotic susceptibility patterns and how these game-
changing technologies could impact on clinical microbiology, now and in the future. This coordinated 
and two-pronged attack clearly achieved its goal, and shortly afterwards this EUCAST subcommittee 
came into being.  
 
Over the past year the team has ‘met’ virtually and this report marks its first output. We quickly 
agreed that there are too few data to present a definitive document on the topic, but it would be 
necessary to review the state-of-the–art as a first approach. This document is therefore presented as a 
baseline and as a discussion document, and should be considered as such. It marks where we are now, 
and we present it in the knowledge that it will require updating, probably regularly, as sequencing 
technologies become more affordable and more widely applied, and as the analysis of the WGS data 
becomes more rigorous and standardised, and the quantity and quality of evidence for phenotypic / 
genotypic concordance (or lack thereof) relating to antibiotic susceptibility improves.  
 
Our remit was: (i) to perform a review of the literature describing the role of WGS in antimicrobial 
susceptibility testing (AST) of bacteria; (ii) to assess the sensitivity and specificity of WGS compared 
with standard phenotypic AST; (iii) to consider how WGS for AST may be applied in clinical 
microbiology laboratories and the likely implications for phenotypic and other genotypic methods in 
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use; (iv) to consider the epidemiological implications of using WGS; (v) to consider the clinical 
implications of WGS for the selection of antimicrobial therapy; (vi) to consider the principles of how 
the results of WGS for AST could be presented to clinical users; (vii) to describe the drivers and 
barriers to routine use of WGS; and, finally, (viii) to report at ECCMID 2016. 
 
We chose to tackle this task on a ‘by organism’ basis, with particular focus on the use of technology 
for characterising cultured isolates of bacteria that have been identified as critical AMR threats by the 
World Health Organisation [1]. There are encouraging signs, but our report makes clear that more 
robust data are needed across these diverse bug/drug combinations. Furthermore, work is needed to 
overcome problems currently posed by particular species and/or certain drug classes. We highlight 
these gaps, make recommendations (summarised in Table 1), and encourage others to use these in 
order to generate the analyses that will move this important topic forwards. 
 
I would like to thank all members of the Subcommittee for their efforts over the last year. It has been 
a pleasure working with them all. Special thanks are owed to Matt Ellington and Oskar Ekelund, who 
edited the report. 
 
 
Neil Woodford 
Chair, EUCAST WGS Subcommittee 
 
April 2016 
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Table 1. Summary of the conclusions and recommendations of this report 
  
1. For most bacteria considered in this report, the available evidence for using WGS 

as a tool to infer antibiotic susceptibility (i.e. to rule-in as well as to rule-out 
resistance) accurately is either poor or non-existent. More focussed studies and 
additional funding resources are needed as a priority to improve knowledge. 

2. The primary comparator for WGS-based prediction of antibiotic susceptibility should, 
whenever possible, be the epidemiological cut-off value (ECOFF).  

3. Assessing genotypic data against clinical breakpoints represents a tougher 
challenge, but will be necessary if WGS-based testing is to guide clinical decision 
making. Clinical breakpoints should therefore be used as a secondary comparator, 
ideally using the same data sets as used for ECOFF-based assessments.   

4. Available published evidence does not currently support use of WGS-inferred 
susceptibility to guide clinical decision making (i.e. to replace routine phenotypic AST 
in most or all cases).  

5. There should be international agreement on the most appropriate and effective 
principles and quality control (QC) metrics to facilitate early standardisation and 
harmonization of analytical approaches and interpretative criteria for WGS-based 
predictive AST. Only datasets passing agreed QC metrics should be used in 
antimicrobial susceptibility predictions, since resistance genes or mutations might 
be missed in sequences of poor quality. 

6. Different bioinformatics tools for predicting AST should perform to minimum standards 
and should be calibrated and shown equivalent in terms of the results generated.  

7. A single database of all known resistance genes / mutations should be established to 
ensure that there is parity of analysis and to facilitate measurement of comparative 
accuracies across different systems and bioinformatics tools. This database should 
be updated regularly, and must have strictly curated minimum standards for the 
inclusion of new resistance genes and mutations. An important function of a 
centralised database would be to control resistance gene nomenclature. 

8. Expansion of the evidence base is a critical priority if WGS is to be considered seriously 
as a rival to phenotypic AST. 

9. For most bacterial species and in most countries the current cost and speed of 
inferring antibiotic susceptibility from WGS data remain prohibitive to wide 
adoption in routine clinical laboratories. 

10. This report should be considered as a baseline discussion document, which should be 
revisited and updated at regular intervals (likely every 18-24 months) as sequencing 
technologies become more affordable and more widely applied and the available 
evidence increases. 
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3. Defining Resistance  
3.1 MIC distributions of wild-type bacteria, epidemiological cut-off values (ECOFFs) and their relationship 
to clinical breakpoints 
 
In 2002, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) introduced the 
concept of gathering large numbers of MIC values from many contributors to present on a web site as 
aggregated reference MIC distributions for every important combination of microorganisms and 
antimicrobial agents [2]. The original conditions of acceptance of individual MIC distributions were: 
(i) that each contribution of MIC values must consist of a minimum number of isolates; (ii) that the 
species was well defined; (iii) that MIC determinations were performed using standardized 
methodology (or a method calibrated to a standardized method); and (iv) that the concentrations tested 
were not truncated at the lower end of the concentration series. A EUCAST subcommittee is currently 
reviewing the rules for inclusion and exclusion of data sets and for how ECOFF values are defined.  
 
Contributors of MIC data were not informed about whether or not their contributions were accepted. 
There are currently more than 26,000 MIC distributions in the EUCAST database, which amounts to 
many millions of MIC values. The distributions are from breakpoint committees, individual 
researchers in human and veterinary medicine, programs for the surveillance of antimicrobial 
resistance in humans and animals, EUCAST development projects, pharmaceutical companies as part 
of programs for the development of new agents, and more. The distributions are freely available on 
www.eucast.org.  
 
A typical aggregated MIC distribution, in this case for Escherichia coli and cefotaxime, is shown in 
Figure 1. 
 

 
Figure 1.  Escherichia coli (n=10,397) cefotaxime MIC distributions (n=41). 
 
 
Of the 72 E. coli and cefotaxime distributions available in the database, 41 fulfilled the criteria for 
acceptance, were aggregated and are displayed on the EUCAST web site as Figure 1 above.  
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MIC distributions are uni- or multi-modal. The left-hand, most often dominating and Gaussian-shaped 
part of the distribution represents the isolates devoid of phenotypically detectable acquired resistance 
mechanisms, otherwise known as “the wild-type (WT) MIC distribution”. Furthermore, MIC values 
for bacteria from humans and animals are distributed in the same way. It is not affected by the 
geographical location where the isolates are collected, the specimen source (i.e. humans or animals 
[3], or healthy or sick individuals) or the era of collection (as some of the distributions date from the 
1950s whereas others are very recent). There are numerous ways (biological or statistical) to sample 
the upper end of the distribution to define the MIC-value best representing the end of the WT 
distribution [4-6]. Despite the fact that there is often no absolute and distinguishing threshold to mark 
the end of the WT or beginning of the non-wild-type (NWT), it has been useful to define the ECOFF 
as the “highest MIC of organisms devoid of phenotypically detectable acquired resistance 
mechanisms”. It provides a means to distinguish between resistant and susceptible populations in a 
biological sense.  
 
From a clinical point of view categorizing isolates into WT and NWT informs the clinician of whether 
or not the isolate causing infection is devoid of acquired resistance mechanisms or not, irrespective of 
its clinical susceptibility categorization as S, I or R.  
 
There is no immediate relationship between the categorization of WT and NWT on one side and the 
clinical categorization “S”, “I” and “R” on the other. A WT microorganism can be categorized as S, I 
or R to a particular antibiotic and a non-WT organism may still be categorized as S. This means that if 
one wants to encompass both WT and NWT on one hand and clinical S, I and R on the other, the 
possible susceptibility categories of an isolate to any antibiotic are SWT, SNWT, IWT, INWT, RWT and 
RNWT.  
 
There are many examples of each of these in the breakpoint tables. To give one, an E. coli isolate with 
a ciprofloxacin MIC of 0.25 mg/L exemplifies the SNWT category. Conversely, Pseudomonas 
aeruginosa and tigecycline or Stenotrophomonas maltophilia and carbapenems both exemplify the 
RWT category.  For ampicillin, TEM-1-producing E. coli represent RNWT. 
 
At the outset of reviewing all breakpoints for all antibiotic classes (2002), EUCAST decided that 
clinical breakpoints should not divide MIC WT distributions. If breakpoints are allowed to bisect WT 
MIC (or zone diameter) distributions, the methodological variation, would obviate reproducible S, I 
and R categorization [2]. This is despite the increased standardization of MIC determination [7]. We 
have not had reason to change this view. Following on from this, once it has been established that the 
species is a good clinical target for the antibiotic agent in question, the ECOFF is the lowest possible 
susceptible breakpoint.  
 
The ECOFF is also the relevant ‘cut-off’ to screen for low-level resistance using phenotypic 
susceptibility testing. ECOFFs provide an opportunity to compare antimicrobial resistance and 
resistance development when clinical breakpoints: (i) differ between committees (e.g. EUCAST 
versus Clinical Laboratory Standards Institute - CLSI) or between committees and agencies (e.g. 
CLSI versus Food and Drug Administration - FDA) or between agencies (FDA vs. European 
Medicines Agency - EMA); (ii) change over time; or (iii) are different between humans and animals.  
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There is no principle difference between MIC distributions and ECOFFs in fast-growing non-
fastidious and fastidious bacteria, and those exhibited by slow-growing bacteria such as 
Mycobacterium tuberculosis [8] or fungi such as Candida spp. and Aspergillus spp. [9]. 
 
More information on EUCAST in general and wild-type MIC distributions and ECOFFs in particular 
can be obtained from the EUCAST Website (www.eucast.org) and the recently published review of 
EUCAST activities since 2001 [10]. 
 
This subcommittee sought to assess whether available data are sufficient to test the hypothesis that the 
closest relationship between sequencing and phenotypic testing will be achieved by using the WT vs. 
NWT categories.  
 
3.2 Molecular mechanisms of antimicrobial resistance (AMR) 
 
For most of the clinically relevant bacterial pathogens, phenotypic analysis of bacterial susceptibility 
to antimicrobial agents is relatively straightforward and relies on well-proven methods, such as agar 
and broth micro-dilution (the latter being the gold standard) or disc diffusion, followed by 
interpretation according to agreed guidelines.  

With the introduction of Sanger sequencing in the mid-1970s and PCR in the 1980s, it became 
possible to study some of the molecular mechanisms responsible for the observed non-susceptibility 
towards the various antimicrobial agents. Common examples of these molecular mechanisms are: 1) 
transferable AMR genes (e.g. extended-spectrum β-lactamases; ESBLs); 2) upregulation of AMR 
gene expression by point mutations (e.g. ampC in E. coli or regulatory mutations effecting efflux in 
many taxa); 3) porin modification or loss (e.g. by deletion events and/or lack of expression); 4) point 
mutations in essential single (e.g. gyrA and/or parC of Enterobacteriaceae) and multi-copy (e.g. 
mutations in one or more loci of the 23S rRNA gene) housekeeping genes.  

To complicate the matter, some bacterial species (or higher taxonomic orders) can be intrinsically 
resistant to a given antimicrobial agent [11]. This intrinsic resistance can be caused by some of the 
mechanisms listed above (e.g. chromosomal AMR genes), but can also be a result of the lack or 
unavailability of targets for the antimicrobial agent.  

Traditional Sanger sequencing and rapid molecular methods e.g. PCR etc, allow screening for a 
limited number of resistance genes, which are often selected because they confer resistance to key 
antibiotics (e.g. ESBLs or carbapenemases). The data offer very limited opportunities to compare 
genotype with phenotype. By contrast, WGS has potential to yield data about any resistance gene or 
mutation present and the data might therefore be analysed to create a genotypically-inferred antibiotic 
resistance profile (or antibiogram) or, perhaps, to infer susceptibility.  
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4. Using next generation sequencing data for in silico (genotypic) detection of AMR  
 
Next generation sequencing data producing WGS information can originate from a variety of different 
sequencing platforms. A review of these technologies is beyond the scope of this report, but can be 
found elsewhere [12]. Short read (e.g. 100 to 500 bp) output with high accuracy may be 
complemented by that produce much longer reads. At the time of writing, these newer platforms come 
at significantly greater cost and higher error rates than the short-read technology. The dominant short-
read technology produces single (raw) reads that are in most cases shorter than the gene(s) responsible 
for the reduced susceptibility to a given antimicrobial agent and either need to undergo de novo 
assembly to obtain larger fragments of the originally contiguous DNA (“contigs”) or by reference 
(“mapping”) to known genetic targets (in this case, AMR genetic determinants). Repeat regions in 
DNA fragments are particularly challenging and correct assembly may be problematic. 

Using WGS data for detection of the many different molecular mechanisms leading to AMR yields far 
more information from a single physical test than other methods (e.g. PCR or microarrays) and, at its 
most fundamental level, does not require prior knowledge of the resistance phenotype of the isolate. 
Nevertheless, there is need to understand the potential‘added value’of WGS with regard to the 
clinical implications of AMR and so the validity of data generated by these novel technologies must 
be challenged against phenotypic methods to differentiate WT isolates from NWT or S isolates from 
R isolates. In this regard WGS is a genetic test that defines a genotype as WT or NWT and compares 
most directly with phenotypic criteria that do the same (ECOFFs).      

Whilst more informative than conventional molecular techniques, WGS is no simple task, especially 
when the data have been generated by short-read (“second generation”) technology. Detection of 
defined resistance genes can be achieved either by BLAST analysis of draft genomes towards a gene-
based database or by mapping individual reads to the same type of database. Such solutions are 
already available as either downloadable tools, such as ARG-ANNOT [13], or web-based tools, such 
as ResFinder for BLAST analysis and MGmapper for mapping of reads [14, 15]. The gene-based 
solutions have the obvious requirement for full-length genes identical to already characterized (and 
preferably published) AMR genes. The bioinformatics solutions mentioned above are able to identify 
less-than-perfect hits (<100% nucleotide identity, truncated genes because of non-perfect de novo 
assembly), but such hits will always need to be subjected to some sort of assessment if they are to be 
translated into a predicted phenotype. 

Accurate prediction of resistance by WGS can be complicated by insufficient knowledge about all 
genetic variation leading to reduced susceptibility for a given antimicrobial agent (such as colistin or 
daptomycin) as well the emergence of new mechanisms and when resistance arises due to altered 
expression of intrinsic genes (e.g. those encoding efflux pumps). Also, shortcomings of second 
generation sequencing technology may hamper accuracy. An example of the latter could be 
Enterococcus faecium, where a point mutation (G2576T) in 2-3 copies of the six 23S rRNA loci 
would lead to phenotypic resistance to linezolid [16]. De novo assembly of second generation 
sequence data from the same isolate would most likely lead to assembly into a wild-type version of 
the 23S gene due to the consensual nature of the assemblers, where only the most abundant base is 
reported in the draft genome data. 
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5. Quality metrics for WGS 
   
Like any other test, the quality of WGS data can vary between individual test runs. Therefore prior to 
any actual bioinformatics analysis, quality control (QC) steps are essential to assess whether the WGS 
data have reached a suitable standard. Only datasets passing these QC metrics should be used in 
antimicrobial susceptibility predictions, since resistance genes or mutations might be missed in 
sequences of poor quality. These QC steps include assessing 1) the quality and quantity of the raw 
reads to ensure sufficient coverage (e.g. >30 times coverage) of the bacterial genome, 2) the quality of 
the de novo assembly (leading to a draft genome sequence) and 3) detecting possible contaminant 
DNA, originating either from upstream handling of the bacterial isolates and DNA purification or 
from the preparation and running of the DNA samples on the sequencer. This last key quality control 
step is predicated on comparison against the (wet-lab) species identification for the sample (isolate) 
that was sequenced.  
 
Some of the different sequence QC parameters that have been used are listed in Table 2. The 
parameters most frequently used are highlighted in bold. There are currently no international 
standards for QC-thresholds to use for assessing quality. This seems to be individually decided by 
researchers and may also depend on the purpose of the study or the methods used for sequencing. A 
sequencing method with a high error rate can be compensated to some extent by greater depth of 
coverage. The necessary QC-threshold also depends on the species analyzed. Thus, before WGS can 
be routinely implemented into accredited clinical practice there is a need to establish necessary 
minimum QC-thresholds (e.g. by multiply sequencing reference isolates) for identification of 
resistance genes and their variants. 
 
The Global Microbial Identifier initiative [15] is currently collaborating with the US-FDA and the 
COMPARE project [16] in proficiency testing of WGS data and isolates have been distributed to 50 
laboratories worldwide. This and similar initiatives are important first steps towards setting objective 
QC-thresholds. There is, however, a need to expand this using more isolates as well as developing 
standard datasets of raw sequences to facilitate the assessment of performances across different 
laboratories. 
 
 
 
 
 
  



 
 
 
 

10 
 

Table 2. Selected quality control (QC) parameters used to evaluate WGS data (most commonly 
used in bold), Ref. = reference, No. = number. 
 

QC-parameter Explanation 
No. of reads No. of reads refers to sequence yield (the amount sequenced)  
Average read length The average length of all reads, measured in bp. 
No. reads mapped to ref. sequence The no. of reads that map to a closed (finished) genome (same strain). 
Proportion of reads mapped to ref. 
sequence (%) 

The proportion of reads that map to a closed genome (same strain). 

No. reads mapped to ref. 
chromosome 

The no. of reads that map to a closed chromosome (same strain). 

Proportion of reads mapped to ref. 
chromosome (%) 

The proportion of reads that map to a closed genome’s chromosome (same 
strain). This cannot exceed more than 100%. 

Reads mapped to ref. plasmids The no. of reads that map to plasmids, if present. 
Proportion of reads mapped to ref. 
plasmids (%) 

The proportion of reads that map to plasmids (if present) of the closed 
genomes. This cannot exceed 100%. 

Depth of coverage, total DNA 
sequence 

Describes the no. of times the sequenced bps cover the reference DNA. No. 
of bps sequenced divided by the total size (both chromosome and plasmids) 
of the closed genome (same strain), often expressed with an “x” (e.g. 30x). 
A minimum depth of 30x is usually preferred. 

Depth of coverage: chromosome  As above, but describes the no. of bps sequenced divided by the total size of 
the closed chromosome (same strain). 

Depth of coverage: plasmid  As above, but describes the no. of bps sequenced divided by the total size of 
the closed plasmid (same strain).  

Size of assembled genome Often used to identify contamination. If the calculated size of all the contigs 
in bp exceeds that expected it could indicate >1 genome. 

Size of assembled genome per total 
size of DNA sequence (%) 

The proportion of contigs that map directly to the closed genome (same 
strain). This cannot exceed 100%. 

Total no. of contigs Generally, the total no. of contigs assembled, <1,000 contigs indicates good 
quality. For organisms with genomes 5-6 Mb in size then <100 contigs is 
(generally) realistic. 

No. of contigs >500 bp The total no. of contigs assembled that have a sequence length >500 bp. 
This should correspond well to the total no. of contigs. 

Longest contig length The length of the longest contig. 
Shortest contig length The length of the shortest contig 
Mean, median and std. deviation Mean, median and std. deviation of the contigs, used to evaluate quality. 
N50 The length for which the collection of all contigs of that length or longer 

contains at least half of the sum of the lengths of all contigs, and for which 
the collection of all contigs of that length or shorter also contains at least 
half of the sum of the lengths of all contigs.  N50 >15,000 normally 
indicates good quality, but minimum size of 30,000 bp is often preferred. 

NG50 Helpful for comparisons between assemblies. As N50, except that 50% of 
the genome size must be of the NG50 length or longer. Where the assembly 
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size ≤ the genome size then NG50 cannot exceed N50. 
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6. The need for a standardised, open-access database  
 

Most of the genomes released now are not closed, so there is a need for better standardisation of 
annotation to facilitate detection of AMR genes because standard BLAST analysis will retrieve plenty 
of hits within annotated or raw sequences available in Genbank, and those hits will be inconsistently 
annotated even where the actual sequences are identical.  
 
Currently several AMR databases exist, and they are either downloadable for use locally (e.g. ARG-
ANNOT) [13] or are web-based solutions (ResFinder for BLAST analysis and MGmapper for 
mapping of reads [14, 15] and a Comprehensive Antibiotic Research Database, CARD [17]). In 
addition to a fully curated database of accurately annotated genes that seeks to avoid the pitfalls posed 
by erroneously annotated genes, there also exists a need for a single, standardised‘challenge 
database’solution that contains all validated AMR genes as well as those point mutations in 
chromosomal target genes that are known to be associated with antibiotic resistance. This can then be 
used as a standard reference dataset for different bioinformatics analysis tools. Any such solution 
should be flexible so that stringency of detection can be changed to allow detection from partial gene 
sequences (length less than 100%) and/or AMR genes with identities less than 100%. Looking at 
conserved sequence motifs in gene families (i.e. β-lactamase) should also help in assessing the 
validity of newly detected genes and in particular those exhibiting low sequence identity matches.    
This single web solution should be iterative and enhanced by regular, validated updates of newly 
identified gene sequences and point mutations at a frequency that remains to be decided. Machine 
learning should be explored to iteratively and automatically improve the detection algorithms for this 
purpose.   
 
However, in order to achieve this goal there must also be clear international consensus on the criteria 
used to define a gene as “new” (i.e. % of identity with existing genes) or as a variant of known genes. 
This is inextricably linked to issues of gene nomenclature. Currently, different criteria are used 
depending on the antibiotic class that a particular gene confers resistance to. For example, a “new” β-
lactamase gene can be defined by as little as one amino acid difference from a known sequence and 
regardless of any impact that this change might have on the conferred resistance phenotype.  
 
There should be minimum standards for inclusion of new resistance determinants in the standardised 
database, and these standards would probably differ from those currently required for publication (e.g. 
they may be more demanding). It seems reasonable that new genes should have a full gene sequence, 
which can be translated into a protein sequence, and that they should have been unequivocally linked 
to a predicted resistance phenotype, as was recently exemplified with mcr-1 plasmid-mediated colistin 
resistance [18], before being added to the database. 
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7. Categories of systematic errors in WGS predictions of AMR 
 
When comparing the concordance between phenotypic and genotypic AMR it is essential to consider 
the reasons that errors may occur. Three broad reasons for systematic errors are: 
 

1) An inadequate limit of detection of WGS 
2) Flaws with phenotypic AST 
3) Incomplete understanding of genotypic basis of phenotypic resistance 

 
Of these the limit of detection of WGS (1) applies to the detection of hetero-resistance, which is most 
applicable to TB, as for most other organisms WGS is usually performed from single bacterial 
colonies. 2) Flaws due to phenotypic detection issues become most apparent when the knowledge 
base of the genetic basis of resistance is relatively complete for a given organism and can point to 
such problems. For the purposes of this report will likely only apply to well progressed / characterised 
species (such as Mycobacterium tuberculosis and Staphylococcus aureus). 3) At this relatively early 
stage of development of WGS based genotype-phenotype comparisons it can be anticipated that there 
may be many gaps in the knowledge base and these will be explored and highlighted in the following 
evidence reports of this document. 
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8. Evidence reports for in silico prediction of antimicrobial resistance   

8.1 Enterobacteriaceae (other than Salmonella spp.) 
 
8.1.1 Background 
Multidrug-resistant Enterobacteriaceae are emerging as a serious infectious disease challenge; they 
can accumulate many antibiotic resistance genes through horizontal transfer of genetic elements, those 
coding for β-lactamases (e.g. ESBLs and carbapenemases), fluoroquinolones and aminoglycosides 
being of particular concern.  

8.1.2 Published studies  
A small number of studies have assessed the feasibility of using WGS to infer AMR in E. coli and 
Klebsiella pneumoniae genomes; they are largely based on screening for known acquired AMR genes 
and a small number of known resistance-conferring mutations, such as those associated with 
ciprofloxacin resistance. In one study, Stoesser et al. reported 95% concordance between phenotypic 
and WGS-predicted susceptibility for seven commonly used antibiotics (amoxicillin, 
amoxicillin/clavulanic acid, ciprofloxacin, gentamicin, ceftriaxone, ceftazidime and meropenem) by 
querying 143 assembled genomes from E. coli and K. pneumoniae with a compiled database of 
acquired AMR sequences and mutations in the quinolone resistance determining regions (QRDRs) of 
gyrA and parC [19]. An even higher level of concordance (99.74%) between phenotypic susceptibility 
testing and the WGS-predicted resistance to five classes of antibiotics (β-lactams, chloramphenicol, 
sulphonamides, tetracycline and trimethoprim) in E. coli genomes was reported in an earlier study 
using the same approach with a database of 1,411 different AMR sequences, confirmed using simple 
blotting and PCR approaches to the expected genes [14, 20]. A recent study investigating 76 E. coli 
from farm cattle also showed good phenotype-genotype correlation (97.8%), with the majority of 
discordant results attributed to the prediction of streptomycin resistance [21].  

There are important limitations with identifying the mode of transmission of these acquired genes in 
short-read sequences due to exclusion of repeat regions during the ‘cleaning’ stages while initial 
contigs are assembled. This typically results in inaccuracies in annotation. These are particularly 
marked in highly recombinant plasmids, which unfortunately carry most of the AMR genes that are 
relevant to β-lactam and aminoglycoside resistance in the Enterobacteriaceae. Nevertheless, using 
sequencing technologies with longer reads (and greater cost), such as PacBio and MinION, improved 
their detection [22-25]. These bioinformatics challenges also include the development of tools that 
can detect signature sequences of AMR determinants (e.g. β-lactamase motifs) to identify potentially 
new variants conferring acquired AMR, which can be explored in more detail. 

 
8.1.3 Problems found or anticipated - Gaps in the knowledge base 
Chromosomal mutations that alter the cell membrane permeability due to modification in the structure 
or the levels of expression of outer membrane proteins (OMPs), antibiotic efflux due to efflux pumps 
such as resistance-nodulation-division (RND) and major facilitator superfamily (MDF) pumps, or 
changes in the lipopolysaccharide structure have been linked to decreased susceptibility and resistance 
to β-lactams, quinolones, chloramphenicol, tetracyclines, tigecycline and colistin in 
Enterobacteriaceae, but have yet to be fully elucidated. This makes comprehensive phenotypic-
genotypic comparisons difficult [26-32] by limiting the sensitivity of the WGS-based data. In 
particular, the relationships between chromosomal mutations and the related phenotypic changes 
responsible for resistance are not always well characterised and screening genome sequences for 
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insertion sequences interrupting or modifying the expression of resistance-associated genes, including 
intrinsic β-lactamases, could be problematic due to constraints inherent in using short reads. 
Therefore, and in contrast to horizontally-acquired resistance genes, the ability of WGS to predict 
resistance due to, or modulated by, chromosomal alterations is likely to be restricted by existing 
knowledge, as in the case of carbapenem non-susceptibility resulting from the combination of 
decreased permeability and AmpC or ESBL enzymes and also for antimicrobial agents for which the 
underlying genetic backgrounds of resistance are yet to be fully characterised (e.g. amoxicillin-
clavulanic acid, nitrofurantoin, temocillin, colistin and tigecycline). Screening for the loss-of-function 
mutations via nonsense mutations, frameshifts or insertion elements that are meaningfully less 
complex than substitutions affecting the structure, dynamics and substrate specificity of resistance-
conferring proteins is realistically achievable [33-35]. The effect of amino acid changes in the 
transmembrane β-strand loop 3 that constitutes the porin channel eyelet that was associated with 
diminished carbapenem uptake in the endemic KPC-producing K. pneumoniae ST258 clone illustrates 
the complexity of interpreting amino acid substitutions identified by WGS in the absence of 
experimental evidence [36, 37]. Recent studies have shown that the genetic basis of resistance to 
colistin in K. pneumoniae clinical isolates can be attributed in the majority of cases to alterations in 
the mgrB regulator or the two component systems pmrAB or phoEQ that regulate the expression of the 
biosynthesis pathway of lipid A [29, 38]. However, incorrectly inferring susceptibility remains the 
risk if resistance is mediated by genuinely novel, undiscovered genetic factors, as evidenced by the 
description of mcr-1, the first known transferable colistin resistance determinant [18]. 
 
The gaps in the existing knowledge of genotype-phenotype relationships could be augmented in some 
cases by directly detecting the levels of gene expression by sequencing RNA extracts. This approach 
was successfully used as a proof-of-concept for the detection of ompF down-regulation associated 
with cephalosporin resistance and over-expression of the RND pump component acrB leading to 
decreased susceptibility to quinolones, tetracycline and chloramphenicol in an E. coli laboratory 
selected mutant [39]. Whilst a similar approach should also be feasible for the detection of 
hyperproduction of intrinsic chromosomal β-lactamases (e.g. AmpC in Enterobacter spp.) the use of 
such methods which accuracy is highly dependent on bacterial growth conditions, is likely to occur in 
a sub-set of laboratories in the foreseeable future and will not be considered further for the purposes 
of this document, which seeks to examine widely used techniques only. 

8.1.4 Summary 
The relatively limited number of acquired resistance genes and resistance-associated mutations that 
dominate epidemiologically in the Enterobacteriaceae (compared with the large number of those that 
have been reported in the resistome) could explain the high levels of accuracy of genotype-phenotype 
correlation in published studies and means that well-informed screening approaches can be very 
accurate. However, susceptibility to some drugs will be harder to predict than for others and 
understanding the full range of mechanisms and their interplay will require more study if improved 
levels of accuracy across large genetically diverse datasets are to be achieved. 
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8.2 Salmonella spp. 
 
8.2.1 Background 
Molecular mechanisms conferring reduced susceptibility to antimicrobial agents are relatively well 
characterized in Salmonella spp. The majority of these are encoded by horizontally-transferable 
genes, which potentially makes genotypic detection a reliable alternative to phenotypic testing, as 
these genes generally assemble into full-length genes when using short-read sequencing data, as long 
as the quality and quantity of these are adequate to produce good assemblies. In addition to acquired 
gene-based AMR, mutational acquired AMR also exists in Salmonella. The most clinically important 
examples currently are single or double mutations in the gyrA DNA gyrase and parC topoisomerase 
genes leading to reduced susceptibility to quinolones and fluoroquinolones. Also clinically important 
to consider is resistance to third-generation cephalosporins due to acquired extended-spectrum and 
AmpC β-lactamases. 
 
8.2.2 Published studies  
Very few comprehensive studies have been published where phenotypic susceptibility data have been 
compared with the underlying molecular mechanisms identified in WGS datasets from a collection of 
Salmonella isolates. Zankari et al. used a set of 50 Salmonella enterica serovar Typhimurium 
originating from pigs and previously tested phenotypically towards 17 different antimicrobial agents 
as part of the DANMAP surveillance program [20, 40]. WGS was performed on these 50 isolates of 
which 49 produced sufficient WGS data to create draft genomes for analysis with the ResFinder web-
tool. Here, complete agreement (100% sensitivity and specificity) between tested and predicted 
susceptibility/resistance phenotype (S/R) was observed [20]. However, this perfect correlation 
between phenotypes and genotypes generated by ResFinder was to some extent biased by 1) the fact 
that none of the isolates showed phenotypic resistance to quinolones or fluoroquinolones which 
would, in most cases, have been unnoticed by ResFinder as it currently does not detect 
chromosomally-acquired mutations leading to AMR and 2) there was a relatively low level of 
diversity amongst the resistance phenotypes and hence resistance genes found. 
 
In addition, a few studies exist where only a small number of isolates have been analyzed using both 
phenotypic and genotypic methods. In a study of extremely drug-resistant Salmonella enterica serovar 
Senftenberg, two isolates from Zambia were analyzed both by conventional phenotypic methods and 
by WGS analysis [41]. Here, genes conferring reduced susceptibility to nine drug classes including 
fluoroquinolones and extended-spectrum cephalosporins, were identified, again with the use of the 
ResFinder web-tool. These strains also demonstrated high-level resistance to fluoroquinolones caused 
by mutations in GyrA (S83Y and D87G) and ParC (S80I), which were identified manually. An 
underlying molecular mechanism was identified for all the AMR phenotypes displayed by the two 
isolates. In a similar study, two ESBL-producing Salmonella enterica serovar Typhi isolates were 
tested phenotypically towards 25 different antimicrobial agents belonging to 10 different classes [42]. 
Here, ResFinder found seven different AMR genes, which in combination could explain the observed 
AMR phenotypes of the two isolates. 
 
8.2.3 Problems found or anticipated - Gaps in the knowledge base 
The overall degree of resistance within Salmonella spp. varies depending on the serovar and phage 
type; some may be associated with resistance to particular antimicrobials, whilst others may have an 
increased propensity for multidrug resistance. Diversity within the strain panel tested will therefore 
likely impact on the conclusions drawn regarding the utility of WGS for AMR prediction in 
Salmonella spp.  WGS should therefore be applied to further strain panels reflecting the diversity of 
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Salmonella serovars (and their common resistance phenotypes) associated with clinical and veterinary 
infections.  Included in these panels should be representatives of some of the particularly 
multiresistant clones that are currently circulating in human and animal populations, e.g. serovars 
Kentucky, Infantis and monophasic Typhimurium. Nevertheless, recent data from the European 
Centre for Disease Control ECDC data indicate that nearly 55% of Salmonella spp. from humans are 
susceptible to all antimicrobial classes tested, suggesting that resistance prediction in Salmonella spp. 
may be more straightforward than in other organisms where multidrug resistance is the norm [43].               
 
As with the other Enterobacteriaceae, detection of chromosomal mutations leading to acquired 
antimicrobial resistance is a challenge that still needs to be addressed in order to be able to predict 
resistance phenotypes fully based on WGS data. Priority should be afforded to the detection of 
mutations leading to fluoroquinolone resistance, as this drug class has high clinical relevance and as 
phenotypic resistance is commonly detected in salmonellae. Development of fluoroquinolone 
resistance can be a multifactorial process involving acquisition of mutations leading to amino acid 
substitutions within the topoisomerase genes and altered expression of outer membrane proteins 
and/or multidrug efflux pumps. Fortunately, the most common chromosomal mutations leading to 
acquired fluoroquinolone resistance in salmonellae are well characterized; decision rules to translate 
mutations into a predicted phenotype are therefore available and can, in principle, be incorporated into 
existing tools such as ResFinder. This, however, requires detection of amino acid variation rather than 
nucleotide variation, which is currently used to detect (transferable) resistance genes. Other possible 
candidates for detection of chromosomal mutations are pmrA and pmrB leading to reduced 
susceptibility towards colistin [44].  
 
8.2.4 Summary 
In conclusion, the relatively limited examples that are available on the feasability of using WGS data 
to predict antimicrobial resistance in salmonellae are showing promising results, but the impact of the 
sample sets tested on genetic diversity needs to be explored in detail before further conclusions are 
drawn about the use of WGS data for AMR prediction in Salmonella spp. 
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8.3 Staphylococcus aureus 
 
8.3.1 Background 
Staphylococcus aureus exhibits intrinsic sensitivity to commonly used antibiotics. Resistance is 
associated with mutations in core genes or the acquisition of specific antibiotic resistance genes. 
Generally, the history of antibiotic resistance in this species is associated with the evolution of 
resistance shortly after the first introductions of new antibiotic into clinical practice, for example 
resistance to meticillin was detected in clinical isolates of S. aureus within a year of introduction into 
the UK [45]. The problem of resistance in this species has driven extensive studies identifying the 
genetic basis of resistance, and as such there is a large body of literature documenting resistance 
mechanisms for most of the clinically relevant antibiotics used. This has revealed a well-characterized 
spectrum of mechanisms bestowing resistance in S. aureus, and in the cases of some AMR 
determinants, in other staphylococcal species and other genera too. This has proved to be a valuable 
resource for the in silico prediction of antibiotic resistance and has contributed to the overall efficacy 
of the results.  
 
8.3.2 Published studies  
To date, several studies have been published that demonstrate the ability to predict antibiotic 
resistance from genome sequence data [46-50]. Initial studies examined the concordance between 
phenotype and genotype [46-48], and more latterly blinded studies have made predictions [49]. In 
addition, bioinformatics resources have also been produced, which will generate predictions of 
antibiotic resistance from genome sequence data [51]. 
 
The initial demonstration of the potential of WGS data to predict AMR as a clinical tool came from 
proof-of-concept studies using the benchtop Illumina MiSeq platform to investigate suspected 
meticillin-resistant S. aureus (MRSA) outbreaks. Köser et al. sequenced 14 isolates belonging to four 
different clonal complexes of S. aureus, and demonstrated 100% concordance of the in silico 
resistance prediction with the phenotypic results for 13 different antibiotics (cefoxitin, erythromycin, 
ciprofloxacin, gentamicin, tetracycline, rifampin, fusidic acid, mupirocin, clindamycin, kanamycin, 
tobramycin, trimethoprim, and linezolid) [46]. The authors used an in-house database of resistance 
determinants derived from literature mining, and mapped sequence reads to a resistome pseudo-
molecule (concatenated resistance genes in a single DNA sequence), followed by manual inspection 
to predict the resistance profile of each isolate. Investigating an MRSA cluster in an intensive care 
unit, Eyre et al. sequenced 10 isolates belonging to the same spa-type (t5973) and conducted in silico 
predictions for two antibiotics (penicillin and tetracycline) [47]. The authors took a different 
bioinformatic path to investigate the antibiotic resistance, using the de novo assemblies to look for the 
presence and absence of two gene, tetK and blaZ. In all cases the presence of these genes correlated 
with the phenotypic resistances for respective antibiotics. 
 
Examining 13 isolates belonging to USA300 clone, Lee et al. predicted the antibiotic resistance 
profiles for nine antibiotics (ciprofloxacin, clindamycin, doxycycline, erythromycin, gentamicin, 
oxacillin, tetracycline, trimethoprim-sulfamethoxazole, and vancomycin) in complete concordance 
with the phenotypic results [50]. The authors generated in silico predictions from short read data using 
SRST2, a mapping-based tool for fast and accurate detection of genes and alleles from WGS data 
from a user defined database [52]. In the case of this study details of the antibiotic resistant database 
used were not provided. 
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The effectiveness of in silico prediction for antibiotic resistance in S. aureus has been further 
demonstrated in larger studies, both in terms of the number of isolates and also the antibiotics 
investigated. Using the genome data of 193 isolates belonging to a global collection of ST22, Holden 
et al. used a mapping based approach, coupled with manual inspection, to identify molecular 
determinants that explained 99.8% of the measured phenotypic resistance traits [48]. In total 847 
resistance traits were tested for 18 antibiotics (penicillin, oxacillin gentamicin, linezolid, 
erythromycin, clindamycin, ciprofloxacin, fusidic acid, mupirocin, moxifloxacin, co-trimoxazole, 
tetracyline, vancomycin, teicoplanin, rifampicin, fosfomycin, tigecycline, and daptomycin), utilizing 
an enhanced version of the library used by Köser et al. in their earlier study. 
 
Using the WGS data and phenotype data for 501 S. aureus isolates as a derivation set to optimise 
predictions for 12 antibiotics (penicillin, methicillin, erythromycin, clindamycin, tetracycline, 
ciprofloxacin, vancomycin, trimethoprim, gentamicin, fusidic acid, rifampin, and mupirocin), Gordon 
et al. then conducted a blind validation of their refined method on a query set of 491 isolates and 
demonstrated sensitivity of 0.97 and specificity of 0.99 [49]. As with their previous study, the authors 
used de novo assemblies and BLASTn for their in silico prediction [47]. In their resistance database 
18 acquired genes were included: blaZ, mecA, msr(A), erm(A), erm(B), erm(C), erm(T), tet(K), 
tet(L), tet(M), vanA, fusB, far, dfrA, dfrG, aacA-aphD, mupA, and mupB, and variation in six core 
genes: gyrA (n=6), grlA (n= 13) grlB (n=6),  fusA (n=59), rpoB (n=28) and dfrB (n=8).  
 
In a significant departure from previous studies in S. aureus, Bradley et al. described a stand-alone 
tool, Mykrobe predictor (http://www.mykrobe.com/), for antibiotic resistance prediction directly from 
fastq files and which does not rely on mapping or assembly-based approaches [51]. This tool utilizes a 
de Bruijn graph-based approach to compare sequence reads to a reference graph representation. The 
method has the advantage of being quicker than the mapping and assembly-based methods, and it can 
also identify minority variants in sequencing data and therefore identify potential contamination 
issues. In their study, Bradley et al. used 495 isolates as a training set, and then validated the tool with 
a collection of WGS data from a further 471 isolates. The tool utilizes the Gordon et al. database [49] 
with some additional refinements and makes predictions for the same 12 antibiotics. Using the tool 
Bradley et al. were able to demonstrate sensitivity of 99.1% and specificity of 99.6% for the 
genotypic predictions in comparison to the phenotypes.  
 
8.3.3 Problems found or anticipated 
Genetic instability: The evolution of antibiotic resistance in S. aureus occurs by point mutation in 
core genes, and also by horizontal acquisition of resistance genes via mobile genetic elements 
(MGEs). In the studies conducted thus far, it is apparent that in some cases the relative genetic 
instability of MGEs carrying resistance genes can be a cause of discrepancy in the genotypic and 
phenotypic comparisons. One the most prone antibiotics is erythromycin. In S. aureus genes encoding 
erythromycin resistance are often found on plasmids, such as in the case of erm(C). The instability of 
the erm(C)-carrying plasmid has been well-documented, and it can be lost during passage of strains in 
the laboratory. In the study by Holden et al. discrepancies in erythromycin resistance prediction were 
thought to be due to the loss of the erm(C) during propagation and transfer between testing- and 
genomics- laboratories. Similar observations about the loss of the SCCmec element from the 
chromosome have also been made, which can account for discrepancies in cefoxitin resistance, albeit 
at a far lower frequency. In this case, evidence of the deletion of the whole SCCmec element carrying 
the mecA gene encoding cefoxitin resistance can be observed. Genetic stability of core components 
can also affect the observed resistance levels for some antibiotics in S. aureus. Hetero-resistance has 
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been observed whereby a subpopulation of cells in a cultured population exhibits a higher MIC than 
their ‘siblings’. WGS of sub-populations has uncovered genetic variation associated with hetero-
resistance to vancomycin, daptomycin and oxacillin [53, 54]. 
 
Gaps in the knowledge base: Whilst the studies that have been published thus far have generally 
demonstrated the effectiveness of in silico resistance prediction, there is evidence emerging that the 
performance for some antibiotics will be less accurate than for others. Aanensen et al. [55] recently 
conducted a blinded study of 308 isolates and used a range of antibiotics phenotypically tested by 
EUCAST (16 core antibiotics tested for all isolates: penicillin, cefoxitin, ciprofloxacin, moxifloxacin,
 amikacin, gentamicin, tobramycin, erythromycin, clindamycin, tetracycline, tigecycline, fusidic 
acid, linezolid, mupirocin, rifampicin, trimethoprim; and additionally teicoplanin, vancomycin, 
daptomycin tested for MRSA isolates). Overall the total performance of the in silico prediction was in 
line with previous studies, with 98.6% concordance, although for some antibiotics such as amikacin 
(92.5% concordance) and teicoplanin (97.5% concordance) the in silico prediction proved less 
effective.  
 
For some antibiotics there are clearly gaps in the knowledge base for the genetic basis of resistance 
that require further investigation. For example, in the case of glycopeptides, such as vancomycin, the 
multiplicity and diversity of mutational changes linked with increased MICs confounds accurate 
prediction, where gene acquisition and mutations in an array of core genes have been characterized 
[56-58]. 
 
Laboratory variation: Discrepancies between the genotype and phenotype in some studies have been 
revealed to be laboratory artefacts and errors, where phenotype re-testing led to concordance. 
Technical variation in some of the tests is also a possible contributing factor in mis-matches. For 
example, in the study by Aanensen et al. it was noted that in the case of five isolates that had incorrect 
in silico predictions for mupirocin, the inhibition zones (29 mm) for these isolates were close to the 
breakpoint (S ≥30 mm), suggesting that growth conditions were potentially influencing the results. 
 
8.3.4 Summary 
The in silico prediction of AMR susceptibility for S. aureus is effective for most clinically relevant 
antibiotics. There are, however, some antibiotics that are more challenging to make predictions for, 
and further investigation is required to characterize the genetic and phenotypic basis of resistance. 
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8.4 Streptococcus pneumoniae 
 
8.4.1 Background 
Streptococcus pneumoniae is a highly clinically important community pathogen, in which genetic 
detection of acquired resistance is particularly challenging because most resistance results from 
mosaicism or mutations in chromosomally-encoded genes [59]. The most clinically important groups 
of antimicrobials with activity against pneumococci are the β-lactams, macrolides, tetracyclines and 
newer fluoroquinolones (for example, moxifloxacin). WGS-based approaches have been used for 
characterizing resistance mechanisms for several of these antimicrobial groups. However, no specific 
user-friendly database has been developed thus far, and WGS has mostly been used to study new 
mechanisms, and not in the context of predicting phenotypic resistance from whole genome data. 
 
8.4.2 Published studies  
For β-lactams, resistance is mostly mediated through the development of mosaic genes encoding 
altered penicillin-binding proteins (PBPs), as a result of intra- and interspecies DNA transfer by 
natural transformation [60]. Variants of PBP2x, PBP2b and PBP1a are considered most relevant to 
penicillin resistance in pneumococci. Still, there have also been reports of non-PBP-mediated 
resistance, such as enrichment in branched-chain muropeptides and mutations in genes encoding other 
enzymes involved in the peptidoglycan synthesis [61]. Fani et al used WGS to study mutants selected 
for penicillin resistance by step-wise penicillin increments until reaching a final MIC of 2 mg/L [61]. 
Sequencing was done by the 454 platform, generating a genome assembly of 28x coverage, with 97% 
of the reads assembled into 78 large contigs. Comparative sequence analysis identified mutations that 
were confirmed by Sanger sequencing. PBP2x mutations were shown to be important, but the 
relationship between genotypic and phenotypic resistance was complex, with a mutated iron transport 
system found in several of the resistant mutants.  
 
Later work by the same research group proposed phenotypic reconstruction by whole genome 
transformation of penicillin-susceptible S. pneumoniae of known genetic backgrounds with genomic 
DNA from resistant clinical isolates [62]. This procedure would then be followed by WGS of the 
antimicrobial-resistant transformants. Selection of transformants was done by gradual increments of 
penicillin concentrations. The genome sequences of the fully-resistant and intermediate-step 
transformants were compared with the reference genome of the wild-type S. pneumoniae strains used 
in the experiments. The study confirmed the importance of mosaic PBP2x, -2b and -1a, but also 
suggested a role of PBP2a in some isolates. In another study, analysis of cefotaxime-resistant mutants 
revealed mosaic PBPs as well as mutations in other genes important for peptidoglycan synthesis [63]. 
Although these data suggest that predicting phenotypic β-lactam resistance based on WGS could be 
feasible in S. pneumoniae, there are so far no studies with clinical isolates to confirm this. 
 
Macrolides also have clinically important activity against S. pneumoniae. Resistance is often mediated 
through RNA methylase (erm) or macrolide efflux (mef) genes, both of which are coupled to mobile 
genetic elements. One study was conducted in the USA with 147 pneumococcal isolates collected 
over an 18-year period both before and after the introduction of conjugate vaccines [64]. Genomes 
were then compared and mapping of macrolide resistance genes and their genetic environment was 
carried out. Resistance genes were detected in all strains, but the study was in no way investigator-
blinded, as all included isolates were macrolide-resistant with phenotypic methodology. 
 
For tetracyclines, Lupien et al. investigated mutants selected for resistance to tetracyclines [65]. 
Resistance to tetracycline in bacteria occurs through enzymatic inactivation or, more often, by active 
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efflux (via intrinsic or acquired pumps) or by ribosome protection. Resistance to tetracyclines in 
pneumococci is very common, and most often mediated by tet genes, which are found on mobile 
genetic elements. Lupien et al. used WGS to investigate not only genomic DNA, but also RNA 
sequencing libraries depleted of rRNA. RNA expression was compared in parent strains and mutants, 
identifying differentially expressed genes. Quantitative RT-PCR was used to confirm overexpression 
of some of the genes identified by comparison of sequenced mRNA in mutants and wild-type strains. 
Gene ontology classification of genes whose expression is significantly altered in S. pneumoniae thus 
seems like a feasible way of studying new chromosomal resistance mechanisms, although this 
approach has not been used in clinical isolates. Finally, whole genomic DNA transformation 
combined with WGS has also been used to study isolates with resistance to ciprofloxacin [66]. In 
addition to identifying efflux (using qRT-PCR) and QRDR-mutations, the methodology could also 
point to the potential role of mutations in drug transporters and redox enzymes in ciprofloxacin 
resistance. 
 
8.4.3 Summary 
A number of mechanistic studies have been carried out with laboratory mutants including whole 
genome transformation. These studies have shed light on a number of putative new mechanisms, but 
there is at present a lack of studies of the utility of WGS for predicting phenotypic resistance to 
antimicrobials used in the treatment of S. pneumoniae. 
 
  



 
 
 
 

23 
 

8.5 Neisseria gonorrhoeae   
 
8.5.1 Background 
Gonorrhoea is a global public health concern with the World Health Organization estimating 106 
million cases every year [67]. Neisseria gonorrhoeae has developed resistance to every class of 
antimicrobial used to treat infections caused by the organism [68]. The emergence of multidrug 
resistant N. gonorrhoeae has led the Centers for Disease Control and Prevention (CDC) to classify it 
at an urgent threat level requiring serious public health attention [69]. Empiric combination therapy 
with intramuscular ceftriaxone and oral azithromycin (AZI) is recommended for first-line treatment in 
North America and Europe [70, 71]. Hence, this report focuses on the mechanisms of resistance to 
these antibiotics and the use of WGS to predict cephalosporin and AZI resistance.  
 
CLSI has set the clinical breakpoint for susceptible isolates for both ceftriaxone and cefixime at ≤0.25 
mg/L, although no breakpoint for resistance has been established [72]. EUCAST established a clinical 
resistance breakpoint for ceftriaxone and cefixime at >0.125 mg/L [73]. However, treatment failures 
with cephalosporin monotherapy have recently been observed in a number of countries in cases where 
the cefixime MICs of the infecting gonococci were as low as 0.032 mg/L [74-78]. Although there are 
no AZI breakpoints established by the CLSI, susceptibility and resistance breakpoints have been set 
by EUCAST at ≤0.25 mg/L and >0.5 mg/L, respectively [73]. In addition, the CDC has used a 
resistance breakpoint to AZI of ≥2 mg/L [79]. 
 
Numerous genetic mechanisms exist in N. gonorrhoeae for the development of elevated MICs to the 
extended-spectrum cephalosporins (ESCs; ceftriaxone and cefixime). Alterations in penA, which 
encodes penicillin-binding protein 2 (PBP2), have been described either through amino acid 
alterations (A501, G542, P551) or via the acquisition of a penA mosaic allele, which contains 
segments of penA from non-gonococcal Neisseria species [80-82]. These alterations confer reduced 
susceptibility to ESCs mediated by reduced binding to PBP2 [83]. Up-regulation of the MtrCDE 
efflux pump via a deletion in the promoter at -35 (A-del) or alterations of the MtrR repressor protein 
at positions G45D and A39T have also been associated with decreased susceptibility to the ESCs [80, 
84]. A third mechanism for increased MICs to ESCs involves alterations in the PorB1b porin at amino 
acid positions G120 and A121. These permeability changes may reduce entry of ESCs into the cell 
leading to reduced susceptibility [80, 84]. 

 
8.5.2 Published studies  
Only a few published studies have used WGS to examine the phenotypic and genotypic antimicrobial 
resistance patterns observed in N. gonorrhoeae. The first such study examined the genomes of 236 
isolates of N. gonorrhoeae collected in the USA from 2009-10, and included 118 isolates with 
decreased susceptibility to cefixime (MIC ≥0.25 mg/L) [85]. The mosaic penA XXXIV allele was 
present in 115 of 118 isolates with decreased cefixime susceptibility and one other isolate carried a 
novel mosaic allele termed XLI [86]. No other alleles were clearly associated with reduced 
susceptibility to cefixime. A second study examined the genomes of 76 N. gonorrhoeae from 
numerous countries [87]. The mosaic penA XXXIV allele once again had the best positive predictive 
value, with this locus detected in six of seven cefixime-resistant isolates. Mutations in the 
mtrR/mtrCDE operon promoter region, and penB gene did not have such a strong predictive value, 
being found in only 2 of 7 and 3 of 7 cefixime-resistant isolates, respectively. A third study applied 
WGS to 169 Canadian isolates of N. gonorrhoeae with various antimicrobial resistance patterns [88]. 
There were 67 isolates with ceftriaxone MICs ranging from 0.125 to 2 mg/L. Of these, 40 (59.7%) 
harboured the penA mosaic, and all but one isolate had either porB mutations or the mtrR promoter 
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mutations. Of the remaining 27 isolates without the penA mosaic, all had porB mutations and only a 
single isolate did not contain a mutation in the mtrR promoter. However, when isolates with low 
MICs to ceftriaxone (<0.032 mg/L; n=65) were examined, one isolate (1.5%) was found to have the 
penA mosaic, 33 (50.7%) isolates contained mtrR promoter mutations, and 5 isolates also contained 
mutations in porB.   
 
A second highly clinically significant phenotype that has been examined for N. gonorrhoeae is 
azithromycin resistance. The rates of AZI resistance in N. gonorrhoeae have been increasing in recent 
years in many countries, and the emergence of high-level resistance (MIC ≥256 mg/L) has been 
reported from Scotland, the United Kingdom, Argentina, Canada, and the USA [89-93]. The genetic 
mechanisms of resistance to AZI in N. gonorrhoeae include: accumulated changes in the four 
different alleles of the 23S rRNA genes; the presence of an 23S rRNA methylase encoded by erm(A), 
erm(B), erm(C) or erm(F); mutations in rplD and rplV; as well as the penB and mtr operon genes 
described above for cephalosporin resistance [94-96].  
 
Although reports using WGS-based detection of these mechanisms are limited, there have been 
attempts to compare the AZI resistance phenotype with the WGS genotype and these are discussed 
below. 
 
8.5.3 Problems found or anticipated - Gaps in the knowledge base  
Ezewudo et al. examined two isolates that were resistant to AZI and found that one isolate contained 
the 23S rRNA mutation whereas the other did not contain any of the known mutations examined [87]. 
In a second study, involving the WGS analysis of 213 Canadian AZI-resistant isolates, 23S rRNA 
mutations A2045G and/or C2597T, disruptions in the mtrR promoter, or the presence of erm(C) were 
strongly associated with phenotypic resistance [88].  Seventy N. gonorrhoeae only contained the mtrR 
-35 deletion, and of these 21 were susceptible to AZI suggesting other potential unknown mechanisms 
conferring resistance may exist. 
 
Although there is strong association with penA mosaic alleles and reduced susceptibility to ESCs, 
caution should be taken with this dataset as it relates to predicting the ESC MIC phenotype. The study 
by Demczuk suggested reduced susceptibility to ceftriaxone remains complex, involving additional 
genetic markers [88]. In addition, there has been a report of the mosaic penA allele XXXVIII 
displaying a susceptible phenotype to ESCs [97].   
 
8.5.4 Summary 
In summary, inferring ESC and AZI resistance in N. gonorrhoeae is possible with a high probability if 
certain genetic markers are detected in WGS data. However, the elevated MICs for some isolates 
result from combinations of multiple genetic changes, and further mechanisms for resistance have yet 
to be elucidated. Hence, predicting resistance to these antimicrobial agents can be problematic.  
Additional studies are required before the use of WGS can be advocated for use on a routine basis to 
predict resistance for these antimicrobial agents.  
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8.6 Mycobacterium tuberculosis complex 
 
8.6.1 Background 
Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC) and, 
more rarely, by Mycobacterium canettii [98]. MTBC is monomorphic and strictly clonal and 
antibiotic resistance is therefore only caused by chromosomal changes. These are single nucleotide 
polymorphisms (SNPs) in the vast majority of cases, but small in-frame insertions/deletions (indels) 
in essential resistance genes and large indels in non-essential genes are also possible [99, 100]. By 
contrast, M. canettii is genetically diverse and displays evidence of recombination and lateral gene 
transfer [98]. The resistance mechanisms in this species are unclear [101-103]. 
 
Phenotypic susceptibility testing for TB is expensive, technically challenging, and time-consuming 
owing to the slow growth rate of MTBC [104]. Current molecular AST assays only interrogate the 
most frequent mutations conferring resistance to a limited number of drugs. In theory, this limitation 
can be overcome by WGS. In practice, however, routine WGS of all TB cases is unlikely to be cost-
effective if performed to predict antimicrobial susceptibility alone, despite the decreasing cost of 
WGS [105, 106]. This is primarily because rates of drug resistance are low (typically below 5%) in 
countries that can afford WGS [107]. Instead, the main driver for the introduction of WGS for all TB 
cases will be the desire to replace traditional typing techniques by the ultimate resolution provided by 
WGS to improve outbreak investigations [108-110]. Moreover, WGS from the initial liquid culture 
can replace current techniques for pathogen identification (WGS directly from a clinical sample is 
technically possible, but less reliable and prohibitively expensive for clinical practice at the moment 
[111, 112]). In this scenario, the sequence data can also be used to rule-in resistance at no additional 
cost [106]. 
 
8.6.2 Published studies 
Several large-scale studies reporting WGS of MTBC have focused on elucidating the genetic basis of 
drug resistance, which complement more focused efforts [106, 113-122]. Nevertheless, major gaps in 
this area remain, as discussed below. Several tools have been developed to automate WGS data 
analysis, although most do not meet clinical standards as they do not provide the necessary record 
keeping capabilities, have not been evaluated extensively, and often there are no plans to accredit 
them [51, 106, 123-127]. One exception is the analysis infrastructure that is currently being evaluated 
by Public Health England for clinical accreditation and routine use of WGS for TB in the UK [106]. 
 
8.6.3 Problems found/anticipated – Gaps in the knowledge base 
As discussed briefly in section 9 above, three main challenges limit the utility of genotypic AST 
compared with phenotypic alternatives. 
 
1) Systematic errors due to inadequate limit of detection of WGS: AST for TB is usually done on a 
significant fraction of the primary culture, as opposed to just 1-3 colonies from a primary agar plate, 
which is the approach taken for the vast majority of other clinically relevant bacterial pathogens. 
Resistance is deemed clinically significant if resistant organisms are present at or above a critical 
proportion, which is set at 10% for pyrazinamide and at 1% for the remaining drugs, and gold 
standard phenotypic AST (i.e. the proportion method) is calibrated to detect resistance at this limit 
[128, 129]. The limit of detection of traditional genotypic AST methods is poorer and depends on the 
assay and specific mutation, which can result in systematic false-negative results for strains with low-
level hetero-resistance [130-132]. The magnitude of this source of error depends on a several factors, 
including the level of mixed infections with unrelated strains that have different susceptibilities, and 
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the proportion of resistance that is transmitted vs. resistance that evolves during treatment [133]. In 
practice, these factors vary between patient groups, geographic settings, and antibiotics. Moreover, the 
precise mechanism of resistance is relevant in this context. Low-level hetero-resistance SNPs can be 
identified by increasing the sequencing coverage, although this makes WGS prohibitively expensive 
in a clinical context at the moment [106, 134]. This strategy is not an option for hetero-resistance 
indels, particularly large ones, because of the limited read lengths of the most commonly used 
platforms for clinical sequencing, coupled with the fact that most analysis algorithms are not 
optimised to identify indels [135]. 
 
2) Systematic errors due to poorly defined breakpoints for phenotypic AST used as the gold standard 
for the validation of WGS-based AST: The clinical breakpoints (known as critical concentrations 
(CCs) in the tuberculosis field) are currently defined by the CLSI and the WHO [136, 137]. Clinical 
breakpoints should be defined by committees based on representative MIC distributions, 
pharmacokinetic/pharmacodynamic (PK/PD) data and, ideally, clinical outcome data, which, for a 
variety of reasons, are difficult to obtain for TB drugs [10, 138]. In practice, however, the evidence 
used to set the current CCs is not clear and emerging data from systematic MIC testing and PK/PD 
studies indicate that the CCs for some agents need to be revised [137-142]. In addition, no CCs exist 
for some second-line drugs, such as clofazimine [137]. Finally, the reproducibility of some 
phenotypic AST assays is poor, particularly for second-line drugs [137]. A new EUCAST sub-group 
has been launched to set breakpoints for TB using the same rigorous and transparent methodologies 
used for other pathogens [10, 143]. 
 
3) Incomplete understanding of the genotypic basis of phenotypic resistance: The Bill & Melinda 
Gates Foundation has funded the Foundation for Innovative New Diagnostics (FIND) and the Critical 
Path to TB Drug Regimens (CPTR) to create a clinical grade database, akin to the HIV Stanford 
resistance database, to enable the interpretation of TB WGS data for AST [144]. As part of this effort, 
FIND and CPTR will together with the World Health Organization, New Diagnostic Working Group 
of the Stop TB Partnership, the US Centres for Disease Control and Prevention and the National 
Institute of Allergy and Infectious Diseases collect and analyse WGS with associated phenotypic AST 
results for tens of thousands of strains to gain sufficient confidence in the association between 
particular mutations and resistance, as even the largest WGS studies published to date have been 
underpowered and were not designed to achieve this goal [118, 122]. 
  
The complexity of this task depends on whether a resistance gene is essential or non-essential. In the 
former case, only a limited spectrum of resistance mutations is possible. Consequently, the correlation 
between genotype and phenotype should be relatively easy to resolve, provided that methodological 
problems such as poorly defined CCs are addressed (e.g. there is a near perfect correlation between 
genotype and phenotype for rifampicin resistance and rpoB mutations, although this can depend on 
the medium used for phenotypic AST) [145-147]. The situation with non-essential genes is more 
complicated. For genes that are non-essential in vitro as well as in vivo, it is impossible to study the 
genetic basis of resistance comprehensively given that there are too many possible resistance 
mutations. The best example of this type of resistance gene is pncA, which is responsible for the 
activation of the pro-drug pyrazinamide [148]. Any loss-of-function mutation in this gene can confer 
resistance and a wide variety of mutations are found clinically (e.g. more than 4,000 single codon 
changes are possible in pncA (excluding start codon changes and nonsense mutations), not all of 
which will cause resistance). By combining large datasets it is possible to distinguish resistance 
mutations from neutral polymorphisms, but novel mutations will continue to be discovered, albeit at a 
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lower rate over time [122, 149]. Similar considerations apply to the catalase-peroxidase KatG, which 
is required for the activation of the pro-drug isoniazid [150]. The gene encoding KatG has been found 
to be non-essential in vitro, but clinically most resistance mutations are selected against [151]. By 
contrast, the KatG S315T change only confers a low fitness cost [152]. Consequently, this mutation 
accounts for the majority of isoniazid resistance clinically [122]. The remaining isoniazid resistance is 
due to a large number of rare mutations that are impossible to study in their entirety. 
 
8.6.4 Summary 
Some of the aforementioned challenges to introducing and validating WGS for AST of TB can be 
overcome over time. For example, the ability of WGS to detect hetero-resistance will improve as the 
cost of sequencing decreases and read lengths improve. Similarly, the ongoing re-evaluation of CCs 
will likely resolve some of the current systematic differences between genotype and phenotype. 
Moreover, the pooling of large datasets will clarify the role of rare resistance mechanisms and the 
level of resistance conferred by different resistance mutations or mechanisms. For example, some 
low-level isoniazid-resistant strains due to inhA mutations remain treatable with higher doses of the 
drug and the same may apply for some strains with low-level resistance to new-generation 
fluoroquinolones (codon 90 mutations of gyrA) [136, 153, 154]. Yet, it is impossible to study the 
genetic basis of antibiotic resistance to all clinically relevant drugs comprehensively because of the 
large number of possible resistance mutations for some drugs. This means that WGS can mainly be 
used to rule-in resistance, as opposed to rule-out resistance. Nevertheless, this constitutes a significant 
improvement to current clinical practice, since WGS directly from the first positive culture would 
allow for established resistance mutations in key drugs to be identified rapidly, thereby allowing for 
regimens to be adjusted within days as opposed to weeks or even months for phenotypic AST [155]. 
Based on these results, reference laboratories could also immediately commence phenotypic AST for 
all remaining relevant drugs, including second-line drugs (which are usually only tested if resistance 
to first-line drugs is found, which introduces long delays). Consequently, WGS is unlikely to 
completely replace phenotypic AST for TB in the near future, but will result in less phenotypic testing 
over time and in more rapid identification of resistant isolates in many cases. However, it is likely that 
different countries will adopt their own policies in terms of how much phenotypic confirmation of 
genotypic results is required based on the resources available and the local rates of resistance. 
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8.7 Clostridium difficile 
8.7.1 Background 
Clostridium difficile is the leading cause of health-care associated diarrhoea, the severity of which 
may vary from mild and self-limiting symptoms to fulminant disease, including pseudomembranous 
colitis. Hospital outbreaks are occurring with an increasing frequency, and the most severe ones have 
been caused by hypervirulent C. difficile strains 027/NAP1, although other ribotypes (such as 
078/NAP7&8) also seem to have the ability both to cause outbreaks and severe disease in affected 
individuals.  
 
Acquired phenotypic resistance to tetracyclines, clindamycin, fluoroquinolones and rifampicin and 
corresponding resistance genes have frequently been reported in C. difficile, and moxifloxacin 
resistance is used as an epidemiological marker for hypervirulent strains, and for ribotype 027 (NAP1) 
in particular. However, resistance to the compounds that are used as primary therapeutics for C. 
difficile infection (i.e. vancomycin, metronidazole and fidaxomicin) is less common. 
 
Phenotypic AST of C. difficile suffers from some drawbacks. Since anaerobic conditions are required, 
it is costly and time-consuming and therefore often not routinely performed in the clinical laboratory 
and the correlation between in vitro susceptibility and clinical outcome in the individual patient has 
not been thoroughly studied. In light of this, genotypic AST using WGS appears an attractive 
alternative. While resistance towards fidaxomicin has been associated with mutations in genes 
encoding RNA polymerase (rpoB and rpoC) or in the marR homologue CD22120, the mechanisms 
underlying resistance to vancomycin and metronizadole are less well defined.  
 
Some of the main lineages of C. difficile contain a vanG locus which is expressed; however, this does 
not appear to play a role in resistance to vancomycin in C. difficile [156]. To date, no clinical isolates 
have been identified that are resistant to vancomycin. Two laboratory-derived vancomycin-resistant 
isolates have been described, one had a substitution mutation in the rpoC gene and the second had two 
mutations, one in murG (CD2725) and the second in a locus named CD3659 [157]. 
 
Nitroimidazole genes (nimA-E) associated with metronidazole resistance in other anaerobic species, 
including several species of the Clostridium genus, have not been described in C. difficile. The exact 
mechanism(s) behind reduced susceptibility to metronidazole in C. difficile still remains to be 
determined, although there have been several reports of strains exhibiting elevated MICs. Such reports 
of metronidazole resistance have all observed loss of the resistant phenotype after passaging or low 
temperature storage [158-160]. There has been one reported clinical isolate 027/NAP1 from Canada 
that initially had an unstable resistance phenotype, but after serial passage in the presence of 
metronidazole, the phenotype became stable [161].  Whole genome sequence comparisons between 
the resistant and reverted susceptible isolate revealed many SNPs between the two isolates [161].  
Proteomic analysis of these isolates suggested a multifactorial response maybe associated with the 
high-level metronidazole resistance observed [162]. Thus, the genetic mechanism for metronidazole 
in C. difficile remains elusive.  
 
8.7.2 Gaps in the knowledge base 
To date there have not been any publications comparing large scale phenotypic to WGS-based AST 
for C. difficile.  
 
 
8.7.3 Summary 
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AST of C. difficile using WGS could be a useful tool, both for guiding the choice of treatment of the 
individual patient and for epidemiological purposes. However, the knowledge gaps regarding the 
mechanisms underlying resistance to several of the first-line treatment options pose a great challenge. 
Studies comparing WGS-based approaches with phenotypic testing are needed and future work on 
resistance mechanisms to frontline antimicrobials are required.  
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8.8 Acinetobacter baumannii and Pseudomonas aeruginosa 
 
8.8.1 Background 
Among non-fermentative Gram-negative bacteria Pseudomonas aeruginosa and Acinetobacter 
baumannii are important pathogens due to their ability to cause a variety of opportunistic infections, 
persist in the hospital environment and acquire antimicrobial resistance [163-165]. Genomic studies 
have shown that both P. aeruginosa and A. baumannii are associated with high genomic diversity and 
gene content due to frequent transfer/acquisition of mobile genetic elements, mobilization of IS-
elements, IS-mediated deletions and genome-wide homologous recombination [166-172]. In addition 
to being intrinsically resistant to many antimicrobials [11], the increase in multidrug-resistant and in 
particular carbapenem-resistant P. aeruginosa and A. baumannii has resulted in infections caused by 
extensively drug-resistant (XDR) and even pandrug resistant (PDR) isolates with limited or no 
validated therapeutic options [166, 173-175]. High-risk clones of both species have been identified to 
be responsible for the spread of relevant resistance genes, such as carbapenemases [175, 176].  
 
In both P. aeruginosa and A. baumannii acquired resistance genes are associated with various 
horizontally-acquired resistance elements, although the majority of acquired resistance genes exist as 
gene cassettes in integron structures [175, 177]. In A. baumannii these resistance elements are 
frequently clustered in antibiotic resistance islands (AbRs), which vary in structure, size and genomic 
location [167]and plasmid-borne resistance genes also contribute to the evolution of antibiotic 
resistance in both species [175, 178]. In addition, both species and in particular P. aeruginosa have an 
extraordinary capacity for modification of endogenous genes affecting functions such as membrane 
permeability, efflux, expression of intrinsic β-lactamases, antibiotic targets, and regulatory genes 
contributing to multidrug resistance [164, 175, 179]. 
 
8.8.2 Published studies 
To date, few comprehensive studies have investigated the concordance between phenotypic AST and 
WGS-based resistance prediction for P. aeruginosa or A. baumannii. Kos et al. related phenotypic 
susceptibility data for meropenem, levofloxacin and amikacin to the genome sequences of ~390 
clinical P. aeruginosa isolates [180]. The results showed that the sensitivity and specificity for 
genotypic inference of meropenem and levofloxacin resistance was 91% and 94%, respectively. In 
contrast, a genotypic marker for amikacin resistance was only identified for 60% of the amikacin non-
susceptible isolates. In addition, 30 of 283 amikacin-susceptible isolates were found to harbor genes 
associated with amikacin resistance. This is in contrast to a study by Wright et al., where a strong 
association between amikacin resistance and the presence of aphA6 and armA genes was observed in 
a collection of 75 clinical A. baumannii isolates [181].  
 
Although there is a lack of phenotypic/genotypic comparison studies with respect to prediction of 
clinical resistance, several genomic studies have been performed for epidemiological purposes and to 
decipher mechanisms of resistance to various antibiotics in selected resistant isolates [167, 182, 183]. 
These studies are important to identify both intrinsic and acquired genotypic resistance determinants 
associated with resistance to various antibiotics. For instance, recent investigation of isogenic colistin-
susceptible and -resistant isolates of both P. aeruginosa and A. baumannii from single patients 
revealed novel determinants associated with colistin resistance [184, 185]. Further, the use of WGS as 
a tool to predict antibiotic resistance has been recently studied using 178 A. baumannii bacterial 
genomes to evaluate the antibiotic resistance gene database ARG-ANNOT showing that such 
approach could be used as a routine test [13]. 
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8.8.3 Problems found or anticipated - Gaps in the knowledge base  
Although prediction of antimicrobial susceptibility/resistance based on the presence of a relatively 
limited number of acquired resistance genes and chromosomal resistance-associated mutations might 
give high sensitivity and specificity, the major challenge with respect to both P. aeruginosa and A. 
baumannii lies in the identification or prediction of resistance due to chromosomal alterations caused 
by modification of expression levels, particularly with respect to efflux pumps, outer membrane 
proteins or intrinsic β-lactamases.  
 
For instance, resistance to β-lactams in A. baumannii can occur due to the insertion of elements such 
as ISAba1 and ISAba125 upstream of the intrinsic β-lactamase genes blaADC and blaOXA-51, increasing 
the expression of these genes and consequently resistance to cephalosporins and carbapenems, 
respectively [186, 187]. Further, IS elements have been implicated in disruption of genes encoding 
outer membrane proteins that contribute to resistance and in particular to β-lactams [164]. Screening 
of genomes for IS elements in close association with resistance-associated genes as well as for gene 
loss will pose a significant challenge.  
 
For P. aeruginosa the challenge is expected to be even greater due to the plethora of genes associated 
with the species’ intrinsic resistome that when altered or alterations of regulatory genes can confer 
resistance to several antibiotics, even from different antibiotic classes [179]. Further, alterations to 
one or mostly several of these mechanisms might be required to achieve clinical resistance (e.g. 
combination of decreased porin expression, increased efflux and/or increased β-lactamase expression) 
[188]. Altered expression of genes could be overcome by investigation of gene-expression analysis by 
RNA sequencing, however specific studies on P. aeruginosa indicate that the correlation between 
expression of genes due to exposure of sub-MIC concentration of antibiotics and genes implicated in 
intrinsic resistance is not always clearly observed [189].  
 
8.8.4 Summary 
In general these studies showed that prediction of resistance based on the detection of known acquired 
resistance genes and resistance-conferring mutations in drug targets can be used to investigate the 
phenotype-genotype relationship. However, additional comparative studies between phenotypic and 
genotypic methods using representative strain collections of P. aeruginosa and A. baumannii are 
required to evaluate the possibility of confidently predicting antimicrobial susceptibility/resistance by 
WGS. Further, for both species a greater understanding of the contribution with respect to alterations 
of the intrinsic resistome in terms of clinical resistance is required. This will require not only WGS 
but also knock-out and complementation studies of deleted/mutated determinants in a comprehensive 
framework. 
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9. The epidemiological implications of using WGS 
 

The epidemiology of AMR is determined by the spread of the host organisms harbouring resistance 
genes, and the spread of the resistance genes by different routes of horizontal gene transfer. 
 
Classical methodologies to study the epidemiology include strain genotyping with a variety of 
methods with a large variation in reproducibility and discriminatory power. This includes techniques 
such as MLST, PFGE, VNTR, MLVA, AFLP, Eric-PCR etc. [12]. Resistance genes can be identified 
by micro-array approaches, PCR and sequence analysis. A variety of molecular techniques are needed 
to identify and characterize epidemiologically-relevant mobile genetic elements involved in the 
horizontal gene transfer of AMR genes, such as plasmids, conjugative transposons or genomic 
islands. Dedicated PCRs and sequencing are needed to identify the genetic environment of the AMR 
genes such as integrons and/or transposons and insertion sequences, which is crucial to understand the 
epidemiological behaviour of specific AMR genes [190]. 
 
PCR-based replicon typing is most commonly applied for plasmid characterization in 
Enterobacteriaceae. Relaxase typing is more comprehensive and phylogenetically more informative, 
but is less discriminatory within the Enterobacteriaceae, where the major concerns are at present. 
Plasmid MLST and similar techniques such as Double Locus Sequence Typing or RFLP are used to 
subtype plasmids. In addition toxin/anti-toxin systems present in plasmids in Enterobacteriaceae may 
be key epidemiological determinants. Because of its complexity, plasmid epidemiology is currently 
beyond the capabilities of standard microbiology laboratories and is labour-intensive even for the 
reference laboratory. 
 
WGS opens a world of opportunities for enhanced (molecular) epidemiology of AMR because, in 
principle, all essential information needed to study the epidemiology of AMR will be available in the 
sequences obtained. WGS is particularly effective for identifying and characterizing clonal 
distribution of monomorphic species such as S. aureus [55] and M. tuberculosis [191] and high-risk 
clones such as CTX-M-15-producing E. coli O25:H4-ST131 [192] or KPC-producing Klebsiella 
pneumoniae (e.g. ST11, 258 and 512) [193]. Importantly, WGS provides high-resolution typing 
information making most if not all of the traditional molecular typing approaches redundant. With its 
potential for an objective assessment of the gene content such as presence of absence of resistance 
genes of particular public health importance, multicentre surveillance approaches would greatly 
benefit from the reporting of genomic resistance markers obviating the need to rely on phenotypic 
AST profiles of doubtful inter-laboratory reproducibility.      
 
However, WGS also has its weaknesses. As an example, WGS is weak in managing direct repeats and 
insertions in plasmids and current bioinformatic cleaning often omits those from contigs. As a result, 
short-read WGS data can be misleading if studying plasmid-mediated outbreaks in which a broad 
host-range plasmid is moving freely between different species, in all of which it has a different 
phenotype.  
To be able to analyse sequence output rapidly and identify all information needed for epidemiology as 
listed above, the AMR genes and plasmid types need to be determined in these sequences using 
genomic databases such as ResFinder or PlasmidFinder [194]. For pMLST-typing, identification of 
genomic islands, insertion sequences and transposons the genomic database PLACnet is available 
[195]. In silico arrays or PCRs are also commonly applied but short-read sequencing (e.g. as obtained 
with Illumina) is generally not sufficient to study the genetic environment of AMR genes.  
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Transfer (by transformation or conjugation) of a plasmid of interest into a ‘workhorse’ bacterium with 
a known genetic background, with or without subsequent plasmid enrichment during DNA extraction, 
will facilitate complete and correct plasmid sequence assembly. Long-read or single cell sequencing 
(e.g. by PacBio or Oxford Nanopore) may be necessary [196, 197], either alone or as a ‘scaffold’ for 
high-coverage short-read data (e.g. Illumina). However, both are beyond the capabilities of most 
standard microbiology laboratories, and plasmid handling is relatively labour intensive. This may still 
leave specialised annotation problems, although direct annotation grammars can be helpful with these 
[198, 199]. 
 
Since different users may have different demands for WGS data, a tiered approach can be applied: 
 
Diagnostic information 
• Rapid identification of a targeted set of AMR genes may provide important information at clinical 

level. The output could vary from answering a specific dichotomous question (e.g. does a sample 
contain an ESBL-producer or an MRSA) or a more complete resistance/susceptibility profile [20, 
200, 201]. The output should be based on the bacterial species and the information required for 
the clinicians. 

• The question of the positive and negative predictive value of WGS will be important, although 
their usefulness will depend on the targets to be identified, their diversity and prevalence in the 
gene pools [202, 203].  

 
Epidemiological information 
• Identification of genes and subtypes (e.g. blaCTX-M-15 versus blaCTX-M-1, or –blaCTX-M-3, or mecA 

versus mecC) may be important for outbreak management and infection control.  
• In silico strain typing in cultured organisms based on: 

a. MLST (7 or more gene targets) for evolutionary relatedness 
b. Genomic Islands such as SCCmec, SGI1, SXT  
c. Single nucleotide polymorphisms (SNPs), insertions/deletions (INDELS), and large 

structural DNA rearrangements (e.g. for tracking outbreaks/ mapping transmission 
chains) 

• In silico plasmid typing by mapping to a reference database (in silico microarray) 
a. Subtyping of plasmids by in silico PCR (pMLST, DLST, RST) 

• Phylogenetic analysis of the total sequence output  
 

WGS approaches can be used to track markers from the chromosome (e.g. MLST), from plasmids 
(e.g. incompatibility markers, or post-segregational killing / toxin/antitoxin markers) and individual 
genes – barcoding to tie them together in individual isolates by WGS using third generation 
approaches such as PacBio or Nanopore. 
 
The ideal method will provide sufficient depth and coverage to answer all these questions, but will 
vary with the starting material: metagenomic approaches to DNA extracted directly from clinical 
samples will require a considerably higher number of sequencing reads than for analysis of a 
microorganism in pure culture. 
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At the time of writing the availability of reference databases for epidemiological questions remains 
limited both in the number of species and typing methods that are represented. Further development in 
this area will be crucial. 
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10. Clinical & wider impacts 
  
Routine use of WGS in diagnostic and public health laboratories holds the promise of a revolution in 
the identification, typing, susceptibility testing and determination of pathogenicity of potential 
pathogens [104].  

At present, at the initiation of antimicrobial chemotherapy or thereafter when definitive therapy is 
selected based on phenotypic AST, clinicians have no routine data provided on the likely pathogenic 
potential of any strains of pathogens isolated. Future data from WGS linking pathogenicity 
determinants to adverse clinical outcomes for certain highly pathogenic strains may have significant 
impacts on chemotherapy - perhaps by identifying those at higher risk of infection-related 
complications, those who may require more aggressive or combination chemotherapy or prolonged 
intravenous courses of antibiotics. Conversely reassurance that some potential pathogens are of low 
pathogenicity may allow for shorter duration therapy, oral therapy, less intensive patient monitoring, 
fewer investigations and perhaps earlier discharge. Such approaches are, at present, almost entirely 
speculative but may have a greater clinical impact than the work done so far on the value of WGS in 
predicting phenotypic susceptibility or resistance when tested by conventional methodologies. 

At present, proof-of-principle studies have been completed for WGS on common pathogens already 
isolated in pure cultures and hence most data related to WGS for predicting antibiotic susceptibility 
assume an initial culture step. This is an obvious limitation in terms of speed of diagnosis, compared 
with direct testing of specimen material. To date common pathogens such as E. coli and K. 
pneumoniae [14, 19, 21], S. aureus [46-49]; S. pneumoniae [64, 65] and P. aeruginosa [180] have had 
WGS related to conventional susceptibility with some success.  In addition, there is also work to show 
potential in Salmonella spp. [20], Acinetobacter spp. [13, 181], N. gonorrhoeae [88] and M. 
tuberculosis [122, 155]. Whilst for other organisms including C. difficile little has been demonstrated 
to date. The most work remains where there are significant gaps in the resistance mechanisms 
knowledge base.  

However, at present, we lack a clear understanding of how antimicrobial susceptibility data can be 
generated from WGS in a timely way for incorporation into clinical care pathways and what the likely 
clinical impacts will be. In particular, we do not fully understand the barriers or facilitators to 
increased clinical use assuming technical problems can be overcome. The costs of routine delivery of 
WGS data to predict AST have not been balanced against potential financial savings across the patient 
care pathway or the clinical impacts. At present, even feasibility studies to start answering these 
questions have not been reported. 

One obvious potential advantage of WGS in AST is the increased speed of information flow even if at 
present WGS would depend on an initial culture step. Increased speed of diagnosis has been identified 
as a way of improving antimicrobial stewardship and patient outcomes. If WGS could be made to 
deliver pathogen identification and predict susceptibility for common pathogens within 8 hours of 
initial culture it may offer enough to impact on measures of patient outcome and antibiotic drug use to 
justify higher costs within the laboratory. However, the longer it takes for data to become available 
then the poorer the potential clinical impacts. 

Thought needs to be given as to how WGS data will be presented to end-users. It is possible we will 
move from dichotomous reporting of susceptible or resistant, to reporting the probability of an isolate 
being susceptible or resistant based on pre-test probabilities (perhaps different in different hospitals or 
areas within a hospital), the completeness of our genetic database for a particular pathogen and the 
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presence or absence of resistance determination as determined by WGS.  We may even be able to give 
measures of confidence to these predictions. Such approaches will require significant staff education 
and evaluation as it is not clear how prescribers would respond to such data. 

As >95% of pathogen identification and susceptibility testing in present clinical microbiology 
laboratories is based on 20 bacterial species and a limited number of antibiotics it may not be 
necessary to cover all possibilities to provide useful data rapidly, but rather we might focus on a 
limited number of antimicrobials for each pathogen initially and let more detailed data become 
available later. 

At present the use of WGS outside reference or research laboratories to determine antimicrobial 
susceptibility has not been tested. Preliminary data are promising and feasibility studies need to be 
conducted in a more clinical environment. It is likely that WGS will first be used as a tool to predict 
antimicrobial susceptibility in public health microbiology laboratories in the coming years with 
subsequent use closer to the patient in order to predict susceptibility in pathogens such as M. 
tuberculosis before its wider application in diagnostic laboratories. 
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11. Conclusions & Recommendations 
 
This EUCAST Subcommittee report on the role of WGS in AST of bacteria has reviewed the state-of-
the–art as a first approach, it refers to almost 200 published works and describes where we are at the 
time of writing (late 2015 to early 2016). Despite the volume of published literature already available 
we concluded that, at present, there are still insufficient data to present a definitive document on the 
topic. Instead, this report is intended to form a baseline discussion document, which can be 
revisited and updated at regular intervals (likely every 18-24 months). This will be important as 
sequencing technologies become more affordable and more widely applied. This first version will 
provide the first point against which to compare and assess future progress in the area.  
 
Our Subcommittee is aware of many ongoing, as yet unpublished studies of phenotypic/genotypic 
AST concordance and it is certain that the amount of available data will increase in the near future. 
However, the quality of those data needs to improve and to be assured via more rigorous and 
‘standardised’ approaches to data analysis. Bacterial AST is a fundamental activity undertaken in any 
microbiology laboratory, but it is important to appreciate that the MIC or zone size diameter measured 
reflects more than gene presence / absence; these values reflect multiple and complex interplays 
between different systems including cellular permeability, influx/efflux, target availability and 
binding as well as enzymatic expression levels and activities. So there are many challenges in 
gathering and assessing evidence to consider whether AST can be replaced by a genotypic 
method such as WGS, which does not assess bacterial growth in the presence of antibiotics.  
 
At the present time, WGS-based analyses cannot yield an inferred MIC or zone diameter. Hence 
the potential utility of WGS-based approaches for AST must be considered at the level of detecting 
gene presence or absence. We will need more powerful bioinformatics tools in future if we seek to 
make inferences about antibiotic susceptibility based on combinations of multiple different genes or 
contributory mutations. Furthermore, WGS does not directly inform gene expression levels. Although 
other technologies can do so, e.g. RNASeq, it seems unlikely that these will find a place in a clinical 
laboratory before WGS.  
 
It is our recommendation that the primary AST comparator for WGS-based prediction should be 
the ECOFF, wherever possible, in order to assess WGS-inferred ‘antibiograms’ (based on gene 
positivity) against phenotypically-defined categories of wild-type or non-wild-type. Adoption of 
ECOFFs as the primary comparator would make meta-analysis across different publications simpler, 
since comparison of data would not be subject to confounders such as differences in breakpoints 
adopted. Nevertheless, demonstrating concordance with interpretation against clinical breakpoints 
will ultimately be necessary for the use of WGS-based testing to guide clinical decision making, 
but this will likely be more difficult to demonstrate for all bugs and drugs. For this reason, assessing 
WGS-derived data against clinical breakpoints represents a tougher challenge, but should be 
encouraged as a secondary comparator and should ideally be done using the same data sets as are used 
for ECOFF-based assessments.   
 
The challenges of harmonising antimicrobial susceptibility/resistance breakpoints across multiple 
parallel and independent national and international systems have been ongoing for >50 years, and we 
still lack a globally harmonised system. When considering the introduction of WGS-based 
approaches, we need to balance the needs of clinical laboratories, where standardised and validated 
procedures are needed in order to meet accreditation standards, with the need for intellectual and 
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innovative academic challenge, which drives many of those who generate bioinformatics tools. We 
recommend that there should be international agreement on the most appropriate and effective 
principles to facilitate early standardisation and harmonization of analytical approaches and 
interpretative criteria for WGS-based predictive AST. However we also recommend at the present 
time that we need to be pragmatic and must accept that bioinformatics algorithms will vary, it is 
unrealistic to suggest a single analytical approach. We recommend that different bioinformatics 
tools should perform to minimum standards and should be calibrated and equivalent in terms 
of the results generated.  
 
In order to facilitate such comparisons, we recommend that performance of different bioinformatics 
tools should be calibrated against a single database of all known resistance genes / mutations. 
There have been efforts and investments in this direction, but multiple solutions exist and are used, 
thereby confounding comparisons. Establishing a single database will ensure that there is parity of 
analysis and will facilitate measurement of comparative accuracies across different systems. Such a 
global reference database would need to be updated regularly, and must have strictly curated 
minimum standards for the inclusion of new resistance genes and mutations. An important function of 
a centralised database would be to control resistance gene nomenclature (since poor annotation can 
confound current analyses, where multiple ‘hits’ from searches may reflect inconsistent annotation of 
the same gene). The inclusion criteria for any new determinant would probably need to be set higher 
than those accepted for publication because strong evidence of causal association would maximize the 
predictive values of inferring AST phenotype from genotype.  
 
The organisms considered in this report can be divided into three main groups in terms of the 
available evidence for predicting AMR using WGS. Firstly, at present most is known for S. aureus 
and M. tuberculosis and it is apparent that there is now momentum behind their deeper investigation. 
For a second group of organisms, including the Enterobacteriaceae (including Salmonella), initial 
studies have shown promise, but serve to highlight through poor concordance where gaps exist in the 
knowledge base about resistance mechanisms either in some genera or species or for some antibiotics. 
For a third group of organisms, including S. pneumoniae, N. gonorrhoeae, P. aeruginosa, A. 
baumannii and C. difficile it is apparent that more studies are required before we can even define the 
extent of the gaps in the knowledge base accurately. More focussed study and additional funding 
resources are needed as a priority to improve knowledge for the second and third of these groups. 
 
Expansion of the knowledge base is a critical priority if WGS is to be considered seriously as a 
rival to phenotypic AST, better defining resistance determinants across all organisms. It seems likely 
that WGS may replace phenotypic testing ‘soon’ for surveillance purposes, where the low error rate 
has low impact. This would need to be phased to reflect the evidence base for the bug/drug being 
reported, and would require surveillance schemes to expand their inclusion criteria to accept WGS-
inferred data. In reference laboratories, WGS-based AST may also be adopted ‘soon’, unless the 
reason for investigation relates to individual patient management, is for antibiotics or species shown 
to have poor genotypic/phenotypic concordance, or is to assess the activity of novel antibiotics.  
 
Available published evidence does not currently support use of WGS-inferred susceptibility to guide 
clinical decision making. Such a paradigm shift would require large-scale education and behavioural 
change amongst microbiologists and prescribers. Since gene (or mutation) absence cannot always 
reliably predict susceptibility, robust evidence will be needed to show that the potential of genotypic 
tests for very major errors does not adversely impact on treatment outcomes. It seems likely that this 
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may first be considered for M. tuberculosis, where the speed of WGS-generated results offers 
advantage over traditional AST methods. However, even if the evidence can be generated and 
expectations changed, for most bacteria and in most countries the current cost and speed of 
inferring antibiotic susceptibility from WGS data remain prohibitive to wide adoption in 
routine clinical laboratories (in comparison with AST using antibiotic discs, for example). 
Nevertheless, as advances in the knowledge of polymorphisms associated with drug resistance, 
technology, data sharing and training become more widely available in high burden countries, 
sequencing technologies will be more attractive and cost effective as the cost of goods come down. 
 
 
Finally, there may even be scope for WGS-based approaches to be used to better understand and 
improve some areas of phenotypic AST. For some antibiotics, there are technical challenges in 
measuring susceptibility in any way that meaningfully correlates with outcome. If WGS data could be 
correlated directly with outcome, then this revolutionary tool might aid development of improved 
criteria for interpreting phenotypic data.    
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