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Preserving invariance properties of reaction–diffusion systems on stationary surfaces
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We propose and analyse a lumped surface finite element method for the numerical approximation of
reaction–diffusion systems on stationary compact surfaces in R

3. The proposed method preserves the
invariant regions of the continuous problem under discretization and, in the special case of scalar equations,
it preserves the maximum principle. On the application of a fully discrete scheme using the implicit–explicit
Euler method in time, we prove that invariant regions of the continuous problem are preserved (i) at the
spatially discrete level with no restriction on the meshsize and (ii) at the fully discrete level under a timestep
restriction. We further prove optimal error bounds for the semidiscrete and fully discrete methods, that is,
the convergence rates are quadratic in the meshsize and linear in the timestep. Numerical experiments are
provided to support the theoretical findings. We provide examples in which, in the absence of lumping, the
numerical solution violates the invariant region leading to blow-up.

Keywords: surface finite elements; mass lumping; invariant region; maximum principle; reaction–diffusion;
heat equation; convergence; pattern formation.

1. Introduction

Partial differential equations (PDEs) of the form of reaction–diffusion systems (RDSs) have been exten-
sively employed to model many different processes in a wide range of fields such as biology (Murray,
2001; Ferreira et al., 2002; Nijhout et al., 2003), chemistry (Vanag, 2004), electrochemistry (Bessler,
2005; Lacitignola et al., 2015) and finance (for example, Becherer & Schweizer, 2005). In many applica-
tions, the domain of integration is a stationary or an evolving curved surface, rather than a planar region.
For instance, surface RDSs have been applied to the study of biological patterning (Barreira et al., 2011),
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2 M. FRITTELLI ET AL.

tumour growth (Chaplain et al., 2001), metal dealloying (Eilks & Elliott, 2008), biomembrane modelling
(Elliott & Stinner, 2010), electrochemistry (Lacitignola et al., 2017) and cell motility (Elliott et al.,
2012), just to mention a few examples. In this article, we consider RDSs of arbitrarily many equations
on a stationary surface of the form⎧⎨

⎩
∂uk

∂t
− dkΔΓ uk = fk(u1, . . . , ur), k = 1, . . . , r, in Γ × (0, T ],

uk(x, 0) = u0k(x) ∀ x ∈ Γ ,
(1.1)

where Γ is a smooth stationary orientable surface of codimension 1 in R
3 without boundary, ΔΓ is the

Laplace–Beltrami operator on Γ (which is defined as the tangential divergence of the tangential gradient;
see Dziuk & Elliott, 2013a for the definitions), each dk is a strictly positive diffusion coefficient, while
the regularity of the kinetics and the initial data are such that a unique solution to (1.1) exists (see, for
example, Taylor, 1997, Chapter 15.1). Precise assumptions are given in Section 3.1.

The increasing interest from applications in RDSs on manifolds has stimulated the development
of several numerical methods for such systems. Among the methods for PDEs on stationary sur-
faces we recall finite differences (Varea et al., 1999), the spectral method of lines (Chaplain et al.,
2001), closest point methods (see Macdonald & Ruuth, 2009 and references therein), kernel meth-
ods (see Shankar et al., 2015 and references therein), embedding methods (see Bertalmı́o et al.,
2003), surface finite element methods (SFEM) and their extensions (see Dziuk, 1988; Olshanskii
et al., 2009; Dziuk & Elliott, 2013a; Burman et al., 2015; Tuncer et al., 2015). In this article, we
consider a lumped mass surface finite element method (LSFEM) for the spatial discretization of
Eqs. (1.1). We recall that finite elements with mass lumping have already been applied to RDSs on
planar domains (see, for example, Nie & Thomée, 1985; Elliott & Stuart, 1993; Garvie & Trenchea,
2007; Chatzipantelidis et al., 2015) and to bulk–surface parabolic problems (see Kovács & Lubich,
2016).

A standard approach for carrying out a fully discrete scheme is the implicit–explicit (IMEX) method
that treats diffusion implicitly and reactions explicitly. IMEX methods have been widely applied in fluid
dynamics, combined with spectral methods on planar domains (Kim & Moin, 1985; Canuto et al., 2012), in
reaction–diffusion problems, in combination with finite differences in space on planar domains (Ruuth,
1995), with finite elements on stationary planar domains (Elliott & Stuart, 1993), on evolving planar
domains (Madzvamuse, 2006) and with the closest point method on stationary surfaces (Macdonald,
2008). An error analysis of finite element approximations with IMEX timestepping for semilinear systems
on evolving domains is carried out in Lakkis et al. (2013). Among IMEX methods, we will consider the
simplest one: the IMEX Euler scheme considered, for example, in Madzvamuse (2006) and Lakkis et al.
(2013).

A key feature of many RDSs is the existence of invariant regions. A region Σ in the phase space R
r

is said to be invariant for (1.1) if, whenever the initial condition has values in Σ , the solution of (1.1)
stays in Σ as long as it is defined. Knowing that a given model possesses an invariant region is useful in
a couple of ways. First, when solving RDSs arising from applications, solutions are usually meaningful
as long as they range within a limited set of values (for example, in some cases they must be between
0 and 1 to remain physically meaningful, as in Lacitignola et al., 2015). Second, an invariant region
provides an a priori bound on the analytical solution that can be helpful, for instance, when studying the
convergence of numerical methods. Sufficient conditions for a region to be invariant for a given RDS were
given in Chueh et al. (1977) and Smoller (1994) on planar domains and in Taylor (1997, pp. 335–353)
on stationary surfaces. In both cases, for distinct dk’s, the only possible invariant regions for (1.1) are
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PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 3

(bounded or unbounded) hyperrectangles in R
r of the form

Σ =
r∏

k=1

[mk , Mk], (1.2)

with mk ∈ R ∪ {−∞} and Mk ∈ R ∪ {+∞} for all k = 1, . . . , r, whereas if some dk coincide, more
general regions are allowed to be invariant. Since we are addressing general diffusion coefficients, we
will consider invariant hyperrectangles (1.2) only. Among the literature on RD models having invariant
hyperrectangles, we recall the Gierer–Meinhardt (Kovács, 2003), Hodgkin–Huxley (Galusinski, 1998),
FitzHugh–Nagumo (Rauch & Smoller, 1978), Oregonator (You, 2012), Rosenzweig–MacArthur (Skalski
& Gilliam, 2001; González-Olivares & Ramos-Jiliberto, 2003) and the spatially extended Lotka–Volterra
models (Alikakos, 1979). For r = 1 in (1.1), i.e., scalar semilinear equations, we remark that the min-max
condition and the maximum principle, given, respectively, by

min
Γ

u0 ≤ u(x, t) ≤ max
Γ

u0 and 0 ≤ u(x, t) ≤ max
Γ

u0 ∀ (x, t) ∈ Γ × [0, T ], (1.3)

can be regarded in terms of invariant regions. In fact, conditions (1.3) correspond to the invariance of the
following families of invariant regions: [m, M] for all m, M ∈ R, m < M and [0, M] for all M > 0.

When numerically approximating RDSs, it is desirable for the considered numerical method to pre-
serve invariant rectangles of the continuous problem. In the case of stationary or evolving surfaces, to the
best of our knowledge, only a time-dependent discrete maximum principle for the heat equation is given
in the recent work by Kovács et al. (2017), in which the evolving surface finite element method (ESFEM)
is applied. In the case of stationary planar domains, RDSs of many equations have been considered in
Hoff (1978), in which the spatial discretization is carried out through finite differences, and the invariant
rectangles are preserved under meshsize restrictions. The more recent work by Garvie & Trenchea (2007)
considers the lumped finite element method (LFEM) for particular RDSs and proves the preservation of
the positive quadrant by using globally positive modified kinetics.

More studied is the scalar case on stationary planar domains. We recall once again that, for scalar
equations, the maximum principle can be regarded in terms of invariant regions. Work in this direction is
that of Faragó et al. (2012), which considers the standard FEM and proves a discrete maximum principle
under a meshsize restriction. Such restrictions can be avoided by applying the LFEM (see Nie & Thomée,
1985; Elliott & Stuart, 1993; Chatzipantelidis et al., 2015 and references therein).

To the best of our knowledge, numerical methods for surface RDSs that preserve the invariant rect-
angles of the continuous problem have not yet been investigated. This motivates the present study in
which we introduce the LSFEM, which not only preserves the invariant rectangles of surface RDSs at
the discrete level but also requires no restriction on the meshsize and no modification to the kinetics.

The main contributions of this article are the following:

1. For RDSs of the form (1.1), we prove that the LSFEM and the IMEX Euler-LSFEM preserve the
invariant rectangles. A timestep restriction depending on the Lipschitz constants of the kinetics
is needed at the fully discrete level. These preservation results, which require no space meshsize
restriction or modified kinetics, are novel even in the specific case of planar domains.

2. A consequence of invariant region preservation is stability. In the literature, when the preserva-
tion results are not available, more sophisticated techniques are adopted for guaranteeing stability,
for instance, a globally Lipschitz extension of the kinetics outside the invariant region (see
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Lakkis et al., 2013). The drawback of Lipschitz extensions is that they are not always computable.
Therefore, once again the method we propose in this work is fully practical as it does not need
any meshsize restriction nor modified kinetics. The importance of invariant-region preservation in
terms of stability is also shown in two numerical tests: numerical experiment 2 for the scalar case
and numerical experiment 3 for system (1.1). To demonstrate the applicability of our numerical
method, we consider the Rosenzweig–MacArthur kinetics on a Dupin ring cyclide, which possesses
a bounded invariant rectangle, in which the SFEM solution blows up, while the LSFEM solution
remains in the invariant rectangle.

3. By exploiting the stability estimates arising from invariant-region preservation, we prove opti-
mal error bounds for the semidiscrete and fully discrete schemes. These results are novel in that
they account for errors arising from mass lumping and surface approximation, respectively. Two
numerical examples on the unit sphere confirm the result (i) for the linear heat equation (numerical
experiment 1) and (ii) for the Schnakenberg RD model (numerical experiment 4).

The remainder of the present article is structured as follows. In Section 2, we consider a semilinear
scalar parabolic equation on a closed orientable surface in strong and weak formulation. We present its
LSFEM space discretization, its Euler IMEX/L\SFEM full discretization and prove the preservation of the
maximum principle under spatial and full discretization in Theorems 2.3 and 2.4, respectively. In Section
3, we consider a general RDS of arbitrarily many equations on closed orientable surfaces, we derive the
LSFEM space discretization, its Euler IMEX/LSFEM time discretization and prove the preservation of
invariant rectangles under spatial and full discretizations in Theorems 3.3 and 3.5, respectively. In Section
4, optimal error estimates for both the semidiscrete and fully discrete methods introduced in the previous
sections are proved in Theorems 4.8 and 4.9, respectively. Numerical experiments are shown in Section
5.

2. A semilinear scalar parabolic equation

2.1 The continuous problem

We start by considering scalar parabolic PDEs to illustrate the main ideas behind the approach described
in this work and to introduce the analysis in a less technical setting.

Let Γ be a compact, orientable, smooth surface of codimension 1 in R
3 without boundary. We assume

that Γ is represented as the zero level set of a sufficiently smooth signed distance function d, defined in
an open neighbourhood W of Γ such that ∇d(x) 	= 0 for all x ∈ W by

Γ = {x ∈ W | d(x) = 0}.

The normal unit vector on Γ is then defined by ν(x) = ∇d(x)
|∇d(x)| for all x ∈ Γ . We assume that every point

x ∈ W may be uniquely represented as

x = a(x)+ d(x)ν(a(x)), (2.1)

with a(x) ∈ Γ . A sufficient condition on the thickness of W such that this property holds (in this case W
is called a Fermi stripe) is given in Dziuk & Elliott (2013a).

We briefly recall the definitions of Sobolev and Bochner spaces on surfaces. For q ∈ N ∪ {0}, the
Sobolev space Hq(Γ ) is the space of functions u : Γ → R such that, for all i = 0, . . . , q, the ith-order
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tangential derivatives, meant in a distributional sense, are in L2(Γ ), while H−q(Γ ) is the dual space of
Hq(Γ ), that is, the space of linear continuous functionals on Hq(Γ ). For p ∈ [1, +∞], if X is a Banach
space, the Bochner space Lp([0, T ]; X) is the space of functions u : [0, T ] → X such that the function
‖u‖X : [0, T ] → R is Lp([0, T ]). For further details on Sobolev and Bochner spaces on surfaces, we refer
the interested reader to Taylor (1997), Hebey & Robert (2008) and Gilbarg & Trudinger (2015).

In this section, we consider the following semilinear parabolic equation posed on Γ defined as

u̇ − dΔΓ u = −βuα , x ∈ Γ , t ∈ (0, T ], (2.2)

where the dot denotes the time derivative, d > 0, α ≥ 1, β ≥ 0, endowed with the non-negative C2(Γ )

initial condition

u(x, 0) = u0(x), x ∈ Γ .

The requirement that α ≥ 1 is needed to make sure that the source term uα is Lipschitz in a neighbourhood
of u = 0, which is a necessary condition for the existence and uniqueness of a solution at all positive
times. The conditions β ≥ 0 and u0 ≥ 0 together are needed to guarantee the maximum principle (1.3).
The homogeneous heat equation is obtained as a special case for β = 0. The weak formulation of the
problem seeks to find u ∈ L2([0, T ]; H1(Γ )) ∩ L∞([0, T ] × Γ ) with u̇ ∈ L2([0, T ]; H−1(Γ )) such that∫

Γ

u̇ϕ + d
∫
Γ

∇Γ u · ∇Γ ϕ = −β
∫
Γ

uαϕ, ∀ ϕ ∈ H1(Γ ). (2.3)

2.2 Space discretization

As mentioned previously, in the present work our focus is on finite element discretizations. We now
present the necessary notation and concepts needed to describe the numerical method.

Given h > 0, a triangulated surface Γh ⊂ W is defined by

Γh =
⋃

K∈Kh

K ,

where Kh is a set of finitely many non overlapping, nondegenerate triangles, whose diameters do not
exceed h and whose vertices {xi}N

i=1 lie on Γ , such that, for a(x) as defined in (2.1), a|Γh(x) is a one-to-one
map between Γ and Γh ⊂ W .

Following Dziuk & Elliott (2013a), we define lifts and unlifts in order to compare functions on the
triangulated and smooth surfaces. Let a(·) be as in (2.1), given a function V : Γh → R, its lift V 	 : Γ → R

is defined by

V 	(a(x)) = V(x), ∀x ∈ Γh.

Given a function w : Γ → R, its unlift w−	 : Γh → R is defined by

w−	(x) = w(a(x)), ∀ x ∈ Γh.

Next, let Sh be the space of piecewise linear functions on Γh defined by

Sh = {V ∈ C0(Γh) | V|K is linear affine ∀ K ∈ Kh

}
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6 M. FRITTELLI ET AL.

and S	h be its lifted counterpart S	h = {V 	 | V ∈ Sh

}
. Let {χi}N

i=1 be the nodal basis of Sh defined by

χi(xj) = δij ∀ i, j = 1, . . . , N . (2.4)

For w ∈ C0(Γh), the piecewise linear interpolant Ih(w) of w is the function in Sh given by

Ih(w) =
N∑

i=1

w(xi)χi. (2.5)

We define the following semidiscrete problem: find U ∈ L2([0, T ]; Sh) with U̇ ∈ L2([0, T ]; Sh) such
that ∫

Γh

Ih(U̇φ)+ d
∫
Γh

∇Γh U · ∇Γhφ = −β
∫
Γh

Ih(U
αφ), ∀ φ ∈ Sh, (2.6)

where the initial condition U0(x) is the piecewise linear interpolant Ih(u
−	
0 )(x) of the unlifted exact initial

condition u0(x). We express the semidiscrete solution U in terms of the nodal basis (2.4) as

U(x, t) =
N∑

i=1

ξi(t)χi(x) with ξi(0) = u0(xi), i = 1, . . . , N . (2.7)

We then define the lumped mass matrix M̄ = (m̄ij) and the stiffness matrix A = (aij), respectively, by

m̄ij =
∫
Γh

Ih(χiχj) ∀ i, j = 1, . . . , N , (2.8)

aij =
∫
Γh

∇Γhχi · ∇Γhχj ∀ i, j = 1, . . . , N . (2.9)

We recall that the mass matrix used in the standard SFEM (see Dziuk, 1988; Dziuk & Elliott, 2013a)
is defined by mij = ∫

Γh
χiχj for all i, j = 1, . . . , N . Using the above notation, the semidiscrete problem

(2.6) can be expressed as the following system of ordinary differential equations:

M̄ ξ̇ + dAξ = −βM̄ξα , (2.10)

where ξ := (ξ1, . . . , ξN)
T.

2.2.1 Mesh regularity. In the following we will show that, under suitable assumptions on the triangu-
lation Kh, the LSFEM fulfils a discrete maximum principle, that is, the discrete version of (1.3). To this
end, we introduce a regularity assumption for the triangulation on the mesh Kh that mimicks the standard
Delaunay condition on planar domains and then we show how it affects the properties of the stiffness
matrix A in (2.9).

Let e be an edge of the triangulation Kh and let K1 and K2 be the triangles sharing the edge e. Let α1

and α2 be the angles in K1 and K2 , respectively. that are opposite to e. For every edge e in Kh, we require
that

α1 + α2 ≤ π . (2.11)
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Fig. 1. Schematic representation of condition (2.11) for triangles K1 and K2.

This condition is represented in Fig. 1.

Remark 2.1 We remark that the construction of good quality meshes on arbitrary surfaces is well studied
in the literature and some theoretical works in this area are available (see, for instance, Persson, 2004;
Dyer, 2010; Dassi, 2014 and references therein). However, to the best of our knowledge, the work in these
references does not explicitly discuss the construction of surface meshes fulfilling the Delaunay property
(2.11). As far as we know, algorithms for the construction of Delaunay triangulations on arbitrary smooth
surfaces remain an open area of research.

The following result extends to triangulated surfaces a characterization of (2.11) given in Thomée
(1984) for the planar case.

Lemma 2.2 The triangulation Kh fulfils (2.11) if and only if

(∇Γhχi, ∇Γhχj

) ≤ 0 ∀ i 	= j. (2.12)

Proof. Let xi and xj be two distinct nodes of Kh. If xi and xj are not neighbours then (∇Γhχi, ∇Γhχj) = 0.
Otherwise, let e be the edge connecting xi and xj. Since the intersection of the support of the pyramidal
functions χi and χj is K1 ∪ K2 (see Fig. 1) then we can write

(∇Γhχi, ∇Γhχj) = (∇K1χi, ∇K1χj)+ (∇K2χi, ∇K2χj). (2.13)

Let T1 and T2 be two linear transformations that map K1 and K2, respectively, into two triangles K0
1 and

K0
2 contained in the x − y plane, and let J1 and J2 be the Jacobians of T1 and T2, respectively. Then,

expression (2.13) can be written equivalently as

∫
K0

1

(
J1∇K0

1

(
χi ◦ T−1

1

)) ·
(

J1∇K0
1

(
χj ◦ T−1

1

))
det(J1)+

∫
K0

2

(
J2∇K0

2

(
χi ◦ T−1

2

)) ·
(

J2∇K0
2

(
χj ◦ T−1

2

))
det(J2).

We choose T1 and T2 as direct isometries, that is, det(J1) = det(J2) = 1. Since ∇K0
1

and ∇K0
2

both collapse

to the standard gradient ∇ in R
2, the expression above becomes

∫
K0

1

∇ (χi ◦ T−1
1

) · ∇ (χj ◦ T−1
1

)+
∫

K0
2

∇ (χi ◦ T−1
2

) · ∇ (χj ◦ T−1
2

)
.
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8 M. FRITTELLI ET AL.

It is known that (see Thomée, 1984) this expression depends only on the transformed angles α0
1 = α1,

α0
2 = α2 and is given by − sin(α1+α2)

4 sin(α1) sin(α2)
, which is nonpositive if and only if α1 + α2 ≤ π . This completes

the proof. �

Next, we proceed to state two key properties associated with the lumped mass and stiffness matrices
to be used throughout the analysis. Let 1 and 0 be the vector of 1s and the null vector in R

N , respectively.
As shown in Thomée (1984, pp. 272–273), the structure (2.12) of the stiffness matrix, together with the
diagonal structure (2.8) of the lumped mass matrix, implies that, for every s > 0, M̄ + sA is an M-matrix.
It then follows that

(M̄ + sA)−1M̄ ≥ 0, (2.14)

meaning that this matrix has non-negative entries. If ξ = 1, from (2.7) we have U(x, t) = 1 for all
(x, t) ∈ Γh × [0, T ], and thus ∇Γh U(x, t) vanishes, which yields A1 = 0. It therefore follows that

(M̄ + sA)−1M̄1 = 1. (2.15)

We will show that (2.14) and (2.15) play a crucial role in the discrete maximum principle for the parabolic
equation (2.2) and the preservation of invariant regions of RDSs (see Section 3).

2.3 Time discretization

By applying the IMEX Euler scheme (i.e., treating diffusion implicitly and the reactions explicitly), with
timestep τ > 0, to (2.10) we obtain the fully discrete scheme

M̄
ξ n+1 − ξ n

τ
+ dAξ n+1 = −βM̄(ξ n

)α , n = 0, . . . , NT , (2.16)

with NT := � T
τ
� and ξ 0 = ξ(0), where ξ(t) is defined in (2.7), or equivalently,

ξ n+1 = (M̄ + dτA)−1M̄(ξ n − τβ(ξ n
)α), n = 0, . . . , NT . (2.17)

We remark that, for β = 0 (i.e. the homogeneous heat equation), the timestepping scheme collapses to
the standard implicit Euler method.

2.4 Semidiscrete and fully discrete maximum principles

It is known that the lumped FEM fulfils a discrete maximum principle for the homogeneous heat equation
on planar domains (see Thomée, 1984). This result has been generalized to general diffusion problems in
divergence form in Nie & Thomée (1985). The purpose of this section is to extend this result to equation
(2.2), which includes as a special case the homogeneous heat equation on Γ .

Theorem 2.3 (Maximum principle for (2.6)) Under the Delaunay condition (2.11), the nodal vector ξ(t)
of the semidiscrete solution of (2.6) fulfils the maximum principle

0 ≤ ξi(t) ≤ max
j=1,...,N

ξj(0), ∀ i = 1, . . . , N , ∀ t > 0. (2.18)

Downloaded from https://academic.oup.com/imajna/article-abstract/doi/10.1093/imanum/drx058/4568335
by St Andrews University Library user
on 07 November 2017



PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 9

Proof. We rewrite (2.10) as

ξ̇ + dM̄−1Aξ = −βξα . (2.19)

Consider the auxiliary equation

ξ̇ = −dM̄−1Aξ − β|ξ |αsign(ξ), (2.20)

where |ξ | and sign(ξ) are the componentwise absolute value and the componentwise sign function of ξ ,
respectively. If μ = maxj=1,...,N ξj(0), it is sufficient to prove that the solution of the ODE system (2.19)
does not escape the region Σ = [0,μ]N , i.e., we have to prove that, for every ε > 0, the solution of
(2.20) does not leave the region Σ̄ := [−ε,μ]N . To this end, we have to prove that the vector field on the
right-hand side of (2.20), computed on every (N − 1)-dimensional face of Σ̄ , points toward the interior
of Σ̄ . To this end, let ξ be a point on ∂Σ̄ . This means that there exists i = 1, . . . , N such that ξi ∈ {−ε,μ}.
Suppose ξi = μ; in the case ξi = −ε, the proof is analogous. Then

ξj ≤ ξi, j 	= i. (2.21)

All we have to prove is that ξ̇i is negative. Hence, we prove that

1. −|ξi|αsign(ξi) = −|μ|αsign(μ) < 0 from (2.21);

2. the ith component of the vector −dM̄−1Aξ is nonpositive. In fact, since M̄ is a diagonal matrix, this
component is given by

−(dM̄−1Aξ)i = −dm̄−1
ii

N∑
j=1

aijξj. (2.22)

We can split the sum on the right-hand side by isolating the aiiξi term:

dm̄−1
ii

(
−aiiξi +

∑
j∈{1,...,N}\{i}

(−aij)ξj

)
. (2.23)

Since aij ≤ 0 for i 	= j from Lemma 2.2 and ξj ≤ ξi for j 	= i from (2.21), expression (2.23) is less
than or equal to

dm̄−1
ii ξi

(
−aii +

∑
j∈{1,...,N}\{i}

(−aij)

)
= −dm̄−1

ii ξi

N∑
j=1

aij. (2.24)

From the definition of A, we have

−dm̄−1
ii ξi

N∑
j=1

aij = −dm̄−1
ii ξi

∫
Γh

∇Γhχi · ∇Γh

N∑
j=1

χi. (2.25)
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Since Γh has no boundary,
∑N

j=1 χi(x) = 1, x ∈ Γh, and thus

∇Γh

N∑
j=1

χi(x) = 0, x ∈ Γh. (2.26)

By combining (2.22)–(2.26), we finally have

−(dM̄−1Aξ)i ≤ 0. (2.27)

The above points (1) and (2) imply the desired result that ξ̇i is negative. This completes the proof. �

Theorem 2.4 (Maximum principle for (2.17)) Under the Delaunay condition (2.11), the fully discrete
solution ξ n with initial data ξ 0 of scheme (2.17) fulfils the maximum principle

0 ≤ ξ n
i ≤ max

j=1,...,N
ξ j(0), ∀ i = 1, . . . , N , ∀ n ∈ N, (2.28)

if the timestep τ > 0 satisfies

βτ ≤
(

max
y∈Γh

{
U0(y)

})1−α
. (2.29)

In particular, for β = 0, (2.28) holds with no restriction on τ .

Proof. From the matrix properties (2.14) and (2.15) we have, for every τ > 0,

(M̄ + dτA)−1M̄1 = 1, (2.30)

(M̄ + dτA)−1M̄ ≥ 0. (2.31)

Let n = 0, . . . , NT . We assume by induction that ξ n ≥ 0. We have to prove that

max
i=1,...,N

ξ n+1
i ≤ max

i=1,...,N
ξ n

i , (2.32)

ξ n+1 ≥ 0. (2.33)

We first prove (2.32). Using (2.30) and (2.31) in scheme (2.17), we observe that

max
i=1,...,N

ξ n+1
i = max

i=1,...,N

(
(M̄ + dτA)−1M̄

(
ξ n

i − τβ(ξ n
i )
α
))

≤ (M̄ + dτA)−1M̄

(
1 max

i=1,...,N

(
ξ n

i − τβ(ξ n
i )
α
)) = max

i=1,...,N

(
ξ n

i − τβ(ξ n
i )
α
)

, (2.34)

Hence, (2.32) holds if

max
i=1,...,N

(ξ n
i − τβ(ξ n

i )
α) ≤ max

i=1,...,N
(ξ n

i ). (2.35)
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PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 11

Since, from the inductive hypothesis, ξ n ≥ 0, then (2.35) holds. We are left to prove (2.33). Using (2.31)
in the scheme (2.17), (2.33) holds if

ξ n − τβ(ξ n
)α ≥ 0. (2.36)

Condition (2.36) holds if

τβ ≤ min
i=1,...,N

((
ξ n

i

)1−α) ≤
(

max
i=1,...,N

(ξ n
i )

)1−α
. (2.37)

We have proved that, for all n = 0, . . . , NT , (2.37) implies (2.32) and (2.33). From (2.32), the most severe
of the timestep restrictions in (2.37) is

τβ ≤
(

max
i=1,...,N

(ξ 0
i )

)1−α
=
(

max
y∈Γh

{
U0(y)

})1−α
, (2.38)

which completes the proof. �

3. RDSs on surfaces

In this section, we consider a more general class of surface PDEs that are RDSs of arbitrarily many
equations. Analogously to the semilinear parabolic equation (2.2), we apply a lumped finite element
space discretization and an IMEX Euler time discretization. We prove that the LSFEM preserves the
invariant hyperrectangles for the semidiscrete and fully discrete problems. For the latter case, a timestep
restriction is required.

3.1 The continuous problem

If Γ is a compact orientable surface in R
3 without boundary, as in the previous section, and r ∈ N, let us

consider the following RDS of r equations on Γ :⎧⎪⎪⎨
⎪⎪⎩

u̇1 − d1ΔΓ u1 = f1(u1, . . . , ur),
... (x, t) ∈ Γ × (0, T ],

u̇r − drΔΓ ur = fr(u1, . . . , ur),

(3.1)

where f1, . . . , fr are C2(S; R) reaction kinetics, with S ⊂ R
r being a compact set, and C2(Γ ) initial con-

ditions are given. We further assume that the solutions are bounded in S. Under these assumptions, (3.1)
admits a unique global solution (Taylor, 1997, Chapter 15.1). As remarked in Section 1, the follow-
ing arguments still hold for systems on surfaces with boundary and homogeneous Neumann boundary
conditions, i.e., zero conormal derivative on ∂Γ (see Dziuk & Elliott, 2013a). Therefore, as a special
case, planar bounded domains in R

2 with zero-flux boundary conditions could be included in our study.
We will confine the present analysis to the case of compact surfaces without boundary to simplify the
presentation. In vector form, system (3.1) is given by{

u̇ − DΔΓ u = f(u), (x, t) ∈ Γ × (0, T ],
u(x, 0) = u0(x), x ∈ Γ ,

(3.2)

Downloaded from https://academic.oup.com/imajna/article-abstract/doi/10.1093/imanum/drx058/4568335
by St Andrews University Library user
on 07 November 2017



12 M. FRITTELLI ET AL.

where D := diag(d1, . . . , dr), u := (u1, . . . , ur)
T, ΔΓ u := (ΔΓ u1, . . . ,ΔΓ ur)

T and f(u) :=
(f1(u), . . . , fr(u))T. The weak formulation of (3.1), which requires lower regularity assumptions to
be well posed, is given by: find u1, . . . , ur ∈ L2([0, T ]; H1(Γ )) ∩ L∞([0, T ] × Γ ) with u̇1, . . . , u̇r ∈
L2([0, T ]; H−1(Γ )) such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Γ

u̇1ϕ1 + d1

∫
Γ

∇Γ u1 · ∇Γ ϕ1 =
∫
Γ

f1(u)ϕ1 ∀ ϕ1 ∈ H1(Γ ),

...∫
Γ

u̇rϕr + dr

∫
Γ

∇Γ ur · ∇Γ ϕr =
∫
Γ

fr(u)ϕr ∀ ϕr ∈ H1(Γ ),

(3.3)

where f1, . . . , fr : S → R, with S ⊂ R
r being a compact set, are Lipschitz kinetics and the initial

conditions are H1(Γ ) and bounded in S. We further assume that the solutions to (3.3) are bounded in S.
These assumptions are quite standard in the literature on surface PDEs (see, for instance, Dziuk & Elliott,
2013a and references therein). We will require higher regularity assumptions for the convergence results
in Theorems 4.8 and 4.9, only. To write the corresponding vector formulation, we extend all the spatial
norms considered throughout the article to vector-valued functions w : Γ → R

r or W : Γh → R
r as

follows. Given a function space S, we consider the tensor product norm on Sr defined by

‖w‖Sr :=
√√√√ r∑

i=1

‖wi‖2
S ∀w ∈ Sr . (3.4)

For p ∈ [1, +∞], the Lp([0, T ]; Sr) norms of space- and time-dependent functions u : Γ × [0, T ] → R
r

are defined accordingly. Without any loss of generality, we can write ‖ · ‖S and Lp([0, T ]; S) instead of
‖ · ‖Sr and Lp([0, T ]; Sr). Following Barreira (2009), we introduce the following vector notation:

A : B :=
n∑

i=1

m∑
j=1

aijbij ∀ A, B ∈ R
n,m, ∀ n, m ∈ N.

We can now write the sum of equations (3.3) as

∫
Γ

u̇ : ϕ −
∫
Γ

D∇Γ u : ∇Γϕ =
∫
Γ

f(u) : ϕ ∀ϕ ∈ H1(Γ )r , (3.5)

where ∇Γ u is the r × 3 matrix defined by ∇Γ u := (∇Γ u1, . . . , ∇Γ ur)
T.

3.2 Space discretization

Analogous to the spatially discretized semilinear parabolic equation (2.6), we define the following space
discretization for the RDS (3.3): find U1, . . . , Ur ∈ L2([0, T ]; Sh) with U̇1, . . . , U̇r ∈ L2([0, T ]; Sh) such
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PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 13

that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Γ

Ih(U̇1φ1)+ d1

∫
Γ

∇Γ u1 · ∇Γ ϕ1 =
∫
Γ

Ih(f1(U)φ1) ∀φ1 ∈ Sh,

...∫
Γ

Ih(U̇rφr)+ dr

∫
Γ

∇Γ ur · ∇Γ ϕr =
∫
Γ

Ih(fr(U)φr) ∀φr ∈ Sh,

(3.6)

where the initial condition U0(x) is the piecewise linear interpolant Ih(u−	
0 )(x) of the unlifted exact initial

condition u0(x). By expressing each component ui according to (2.7), we have the matrix form

⎧⎪⎪⎨
⎪⎪⎩

M̄ ξ̇ 1 + d1Aξ 1 = M̄f1(ξ 1, . . . , ξ r),
...

M̄ ξ̇ r + drAξ r = M̄fr(ξ 1, . . . , ξ r),

(3.7)

where M̄ and A are the lumped mass and stiffness matrices defined in (2.8) and (2.9), respectively.

3.3 Time discretization

By applying the IMEX Euler method to (3.6), we obtain the following fully discrete method for (3.3):
for all n = 0, . . . , NT find Un

1 , . . .Un
r ∈ Sh such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Γ

Ih

(
Un+1

1 − Un
1

τ
φn

1

)
+ d1

∫
Γ

∇Γ Un+1
1 · ∇Γ φ

n
1 =

∫
Γ

Ih(f1(Un)φn
1),

...∫
Γ

Ih

(
Un+1

r − Un
r

τ
φn

r

)
+ dr

∫
Γ

∇Γ Un+1
r · ∇Γ φ

n
r =

∫
Γ

Ih(fr(Un)φn
r ),

(3.8)

for all φn
1 , . . . ,φn

r ∈ Sh. We can write the sum of equations (3.8) as

∫
Γ

Ih

(
Un+1 − Un

τ
: φn

)
+
∫
Γ

D∇Γ Un+1 : ∇Γ φn =
∫
Γ

Ih(f(Un) : φn) (3.9)

for all n = 0, . . . , NT and φn ∈ (Sh)
r . System (3.8) can be written in matrix form as

⎧⎪⎪⎨
⎪⎪⎩

ξ n+1
1 = (M̄ + d1τA)−1M̄(ξ n

1 + τ f1(ξ
n
1, . . . , ξ n

r )),
...

ξ n+1
r = (M̄ + drτA)−1M̄(ξ n

r + τ fr(ξ
n
1, . . . , ξ n

r )),

(3.10)

which can be obtained equivalently by applying the IMEX Euler method directly to the ODE
system (3.7).
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3.4 Preservation of the invariant rectangles

In this section, we investigate an interesting property of the lumped finite element discretization of RDSs,
which does not hold in the absence of lumping: the preservation of invariant hyperrectangles. A numerical
counterexample will be given in Section 5. This preservation property is crucial when the continuous
system is known to have an invariant rectangle for two reasons: (i) the solution might be physically
meaningless outside a certain range of feasible values, containing the rectangle and (ii) it is a tool to
prove stability estimates and error bounds for the semidiscrete and fully discrete solutions. We recall the
following definition (see, for instance, Smoller, 1994; Taylor, 1997).

Definition 3.1 For the system (3.1), a regionΣ in the phase space R
r is said to be a positively invariant

region if, whenever the initial condition u0 is in Σ , u stays in Σ as long as it exists and is unique.

The following theorem has been proved in Smoller (1994) when Γ is a monodimensional domain in
R, in Chueh et al. (1977) when Γ is a k-dimensional domain in R

k , k ∈ N (zero-flux boundary conditions
are enforced if the domain is not the whole space) and in Taylor (1997) when Γ is a Riemannian manifold
without boundary. This latter result provides a sufficient condition forΣ to be a positively invariant region
in the phase space.

Theorem 3.2 (Invariant rectangles for the continuous system (3.1); Taylor, 1997, Chapter 15, Proposition
4.3) LetΣ =∏r

k=1[mk , Mk] be a hyperrectangle in the phase space of (3.1), and let n be the unit outward
vector defined piecewise on ∂Σ . If

f(u) · n(u) < 0 ∀ u ∈ ∂Σ (3.11)

then Σ is an invariant region for (3.1). �

We remark that some systems are known to possess an invariant region which do not meet the
strict inequality (3.11). For instance, for many mass-action laws, the positive orthant is invariant (see
Chellaboina et al., 2009) even though the flow of f is tangent to this region, instead of strictly inward.

In the following theorems we prove that, under the same assumptions, Σ is an invariant region for
the semidiscrete problem (3.6) and for the fully discrete solution (3.10) conditionally on τ , as well.
Furthermore, we will relax the strict inequality (3.11) as stated in the following Corollary 3.4 and
Theorem 3.5.

Theorem 3.3 (Invariant rectangles for (3.6)) Let

Σ =
r∏

k=1

[mk , Mk] (3.12)

be a hyperrectangle in the phase space of (3.6), let n be the outward unit normal defined piecewise on
∂Σ and assume the Delaunay condition (2.11). If

f(u) · n(u) < 0 ∀ u ∈ ∂Σ , (3.13)

then Σ is an invariant region for the semidiscrete problem (3.6).
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Proof. We rewrite the semidiscrete problem (3.7) as

⎛
⎜⎝

ξ̇ 1
...
ξ̇ r

⎞
⎟⎠ = −

⎛
⎜⎝

d1M̄−1A 0
. . .

0 drM̄−1A

⎞
⎟⎠
⎛
⎜⎝

ξ 1
...
ξ r

⎞
⎟⎠+

⎛
⎜⎝

f1(ξ 1, . . . , ξ r)
...

fr(ξ 1, . . . , ξ r)

⎞
⎟⎠ . (3.14)

All we need to prove is that the rN-dimensional rectangle Σ̄ =∏r
k=1[mk , Mk]N is an invariant region for the

ODE system (3.14). To this end, suppose that, at some t̄ > 0, the semidiscrete solution (ξ 1(t̄), . . . , ξ r(t̄))
T

is on ∂Σ̄ . This means that there exist i = 1, . . . , N and k = 1, . . . , r such that ξk,i(t̄) ∈ {mk , Mk}. Suppose
ξk,i(t̄) = Mk; in the case ξk,i(t̄) = mk the proof is analogous. Then

ξk,j(t̄) ≤ ξk,i(t̄), j 	= i. (3.15)

All we have to prove is that ξ̇k,i(t̄) < 0. To see this, consider that

1. fk(ξ1,i(t̄), . . . , ξr,i(t̄)) = fk(ξ1,i(t̄), . . . , Mk , . . . , ξr,i(t̄)) < 0 from (3.13);

2. the ith component of the vector −dkM̄−1Aξ k(t̄) is nonpositive. The proof of this condition is exactly
identical to that of Theorem 2.1 and for the sake of brevity we omit the details.

This completes the proof. �

Corollary 3.4 (Invariant rectangles for (3.6)) Let Σp = ∏r
k=1[mp

k , Mp
k ], p ∈ N be a sequence of

hyperrectangles in the phase space of (3.6) such that Σp+1 ⊂ Σp for all p ∈ N and Σp → Σ for
p → +∞, withΣ as defined in (3.12). For all p ∈ N, let np be the outward unit normal defined piecewise
on ∂Σp and suppose that

f(u) · np(u) < 0 ∀ u ∈ ∂Σp. (3.16)

Then Σ is an invariant region for the semidiscrete problem (3.6).

Proof. From Theorem 3.3 we have that, for all p ∈ N,Σp is invariant for (3.6). Now, since the intersection
of invariant regions is still invariant, we have that Σ = ⋂p∈N

Σp is invariant for (3.6), which completes
the proof. �

We remark that, from Corollary 3.4, a region Σ can be invariant for the semidiscrete system (3.6)
even when the flux of the kinetics through ∂Σ vanishes, i.e., f(u) · n = 0 for all u ∈ ∂Σ . The fol-
lowing theorem is a fully discrete counterpart of Theorem 3.3. Observe that the strictly inward flux
condition (3.13) is replaced by a weaker requirement. This makes the fully discrete scheme (3.10) some-
how more stable than the spatially discrete one (3.6). The reason for this is that, given a trajectory
u(x, t) whose time derivative vanishes at (x̄, t̄), the function t �→ u(x̄, t) might still be strictly mono-
tonic, this means that a trajectory may escape a region Σ even though the flux of the kinetics is tangent
to ∂Σ .
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Theorem 3.5 (Invariant rectangles for (3.10)) Let Σ = ∏r
k=1[mk , Mk] be a region in the phase space

such that

f(u) · n(u) ≤ 0 ∀ u ∈ ∂Σ . (3.17)

For all k = 1, . . . , r, let Lk be the Lipschitz constant of fk on Σ . Then, under the Delaunay condition
(2.11), Σ is an invariant region for the scheme (3.10) if the timestep τ fulfils

τ ≤ 1

max
k=1,...,r

(Lk)
. (3.18)

Proof. From the matrix properties (2.14) and (2.15) it follows that, for every τ > 0,

(M̄ + dkτA)−1M̄ ≥ 0 ∀ k = 1, . . . , r,

(M̄ + dkτA)−1M̄1 = 1 ∀ k = 1, . . . , r.

For the fully discrete scheme (3.10) to fulfil the theorem, it remains to ensure that

mk ≤ ξ n
k,i + τ fk(ξ

n
1,i, . . . , ξ

n
r,i) ≤ Mk ∀ k = 1, . . . , r, ∀ i = 1, . . . , N , ∀ n = 0, . . . , NT . (3.19)

Condition (3.19) is equivalent to

τ ≤ Mk − ξ n
k,i

fk

(
ξ n

1,i, . . . , ξ
n
r,i

) ∀ i s.t. fk

(
ξ n

1,i, . . . , ξ
n
r,i

)
> 0, (3.20)

τ ≤ mk − ξ n
k,i

fk

(
ξ n

i,1, . . . , ξ n
r,i

) ∀ i s.t. fk

(
ξ n

1,i, . . . , ξ
n
r,i

)
< 0, (3.21)

for all k = 1, . . . , r and n = 0, . . . , NT . If fk

(
ξ n

1,i, . . . , ξ
n
k,i

)
> 0 then

fk

(
ξ n

1,i, . . . , ξ
n
r,i

) ≤ fk(Mk)+ Lk

(
Mk − ξ n

k,i

) ≤
(3.17)

Lk

(
Mk − ξ n

k,i

)
. (3.22)

If, instead, fk(ξ
n
1,i, . . . , ξ

n
k,i) < 0 then

fk

(
ξ n

1,i, . . . , ξ
n
r,i

) ≥ fk(mk)− Lk

(
ξ n

k,i − mk

) ≥
(3.17)

−Lk

(
ξ n

k,i − mk

)
. (3.23)

Using (3.22) and (3.23), then (3.20) and (3.21) hold if τ ≤ 1
Lk

for all k = 1, . . . , r, which is true by
assumption. This completes the proof. �

4. Stability and error analysis

In this section, we will prove stability estimates and optimal L∞([0, T ], L2(Γ )) error bounds for the
semidiscrete (3.6) and the fully discrete (3.10) solutions of the RDS (3.1) of r ∈ N equations. This
analysis includes the semilinear parabolic equation (2.2), that is a special case of system (3.1) for r = 1
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and f (u) = −βuα for which the maximum principle 0 ≤ u ≤ max u0 corresponds to the existence of the
invariant regions [0, M] for all M > 0. Next, we introduce some preliminaries and some basic notation.

The lumped L2 product (see, for instance, Thomée, 1984; Nie & Thomée, 1985; Nochetto & Verdi,
1996; Garvie & Trenchea, 2007) defined by

(U, V)h :=
∫
Γh

Ih(UV) ∀ U, V ∈ L2(Γh), (4.1)

where Ih is given in (2.5), induces the following norm on Sh,

‖U‖h = √(U, U)h ∀ U ∈ Sh,

which is equivalent to ‖ · ‖L2(Γh)
, uniformly with respect to h (see Raviart, 1973 for the proof):

‖U‖L2(Γh)
≤ ‖U‖h ≤ C‖U‖L2(Γh)

∀ U ∈ Sh, ∀ h > 0. (4.2)

Let us define the ‘broken’ Sobolev space as

H2
h (Γh) := H1(Γh) ∩

∏
K∈Kh

H2(K),

endowed with the norm and the seminorm defined by

‖U‖2
H2

h (Γh)
:=
∑

K∈Kh

‖U‖2
H2(K)

and |U|2
H2

h (Γh)
:=
∑

K∈Kh

|U|2
H2(K)

, ∀ U ∈ H2
h (Γh), (4.3)

respectively. For the error in the lumped quadrature rule (4.1), if U ∈ H2
h (Γh) and V ∈ Sh then the

following estimate holds (see Nie & Thomée, 1985):

|εh(U, V)| :=
∣∣∣∣
∫
Γh

(UV − Ih(UV))

∣∣∣∣ ≤ ch2‖U‖H2
h (Γh)

‖V‖H1(Γh)
. (4.4)

Inequalities (4.2) and (4.4) have been proved on planar triangulations in Raviart (1973) and Nie & Thomée
(1985), respectively. However, since the respective proofs are done piecewise on each triangle, they can
be trivially extended to triangulated surfaces with an affine map argument.

The following equivalences between the norms of a function U defined onΓh and its lifted counterpart
U	 can be found in Dziuk & Elliott (2013a).

Lemma 4.1 Let K ∈ Kh, K̃ := a(K) ⊂ Γ , where the map a(x) is given in (2.1), and U : K → R. If the
norms exist then the following inequalities hold:

c‖U‖L2(K) ≤ ∥∥U	
∥∥

L2(K̃)
≤ C‖U‖L2(K), (4.5)

c‖∇T U‖L2(K) ≤ ∥∥∇K̃ U	
∥∥

L2(K̃)
≤ C‖∇K U‖L2(K), (4.6)∥∥∇2

K U
∥∥

L2(K)
≤ c

(∥∥∇2
K̃

U	
∥∥

L2(K̃)
+ h

∥∥∇K̃ U	
∥∥

L2(K̃)

)
, (4.7)
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18 M. FRITTELLI ET AL.

where ∇2
K and ∇2

K̃
are the tangential Hessians on K and K̃ , respectively. �

From the previous lemma, we derive the following estimate for the broken H2 norm of U.

Lemma 4.2 If u ∈ H2(Γ ) then u−	 ∈ H2
h (Γh) and

∥∥u−	∥∥
H2

h (Γh)
≤ C(1 + h)‖u‖H2(Γ ). (4.8)

Proof. Let K ∈ Kh. From (4.5) to (4.7), we have

∥∥u−	∥∥2

H2(K)
= ∥∥u−	∥∥2

L2(K)
+ ∥∥∇K u−	∥∥2

L2(K)
+ ∥∥∇2

K u−	∥∥2

L2(K)
≤ 1

c2
‖u‖2

L2(K̃)
+ 1

c2
‖∇K̃ u‖2

L2(K̃)

+ c2
∥∥∇2

K̃
u
∥∥2

L2(K̃)
+ c2h2‖∇K̃ u‖2

L2(K̃)
≤ C

(
1 + h2

) ‖u‖2
H2(K̃)

. (4.9)

Hence from (4.9), we have

∥∥u−	∥∥2

H2
h (Γh)

=
∑

K∈Kh

∥∥u−	∥∥2

H2(K)
≤

(4.9)
C(1 + h2)

∑
K∈Kh

‖u‖2
H2(K̃)

≤ C
(
1 + h2

) ‖u‖2
H2

h (Γ )
. (4.10)

We remark that, in the last inequality of (4.10), the exact equality might not hold, since u−	 being
only H2

h (Γh), its gradient ∇Γh u−	 might have finite jumps across the edges of the triangulation Kh. This
completes the proof. �

When lifting integrals, a geometric error must be taken into account. The following equalities hold
(see Dziuk & Elliott, 2013a, p. 317):

∫
Γh

UV =
∫
Γ

U	V 	

δ	h
∀ U, V ∈ L2(Γh), (4.11)

∫
Γh

∇Γh U · ∇Γh V =
∫
Γ

∇Γ U	RT
h · ∇Γ V 	 ∀ U, V ∈ H1(Γh), (4.12)

where δ	h : Γ → R and RT
h : Γ → R

3,3 are functions such that (see Dziuk & Elliott, 2013a, p. 310)

∥∥∥∥1 − 1

δ	h

∥∥∥∥
L∞(Γ )

≤ Ch2, (4.13)

‖I − Rh‖L∞(Γ ) ≤ Ch2. (4.14)

For the following proofs, we need to define the seminorm | · |D on (H1(Γ ))r and (H1(Γh))
r by

|u|2D :=
∫
Γ

D∇Γ u : ∇Γ u ∀ u ∈ H1(Γ )r , (4.15)

|U|2D :=
∫
Γh

D∇Γh U : ∇Γh U ∀ U ∈ H1(Γh)
r , (4.16)

Downloaded from https://academic.oup.com/imajna/article-abstract/doi/10.1093/imanum/drx058/4568335
by St Andrews University Library user
on 07 November 2017



PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 19

respectively. Since the diffusion matrix D is diagonal with positive entries, it holds that

min
k=1,...,r

(dk)|u|2
H1(Γ )

≤ |u|2D ≤ max
k=1,...,r

(dk)|u|2
H1(Γ )

∀ u ∈ (H1(Γ ))r , (4.17)

min
k=1,...,r

(dk)|U|2
H1(Γh)

≤ |U|2D ≤ max
k=1,...,r

(dk)|U|2
H1(Γh)

∀ U ∈ (H1(Γh))
r , (4.18)

i.e., the norms (4.15) and (4.16) are equivalent to | · |H1(Γ ) and | · |H1(Γh)
, respectively.

The following stability estimates are carried out with the usual energy arguments. However, thanks
to the existence of an invariant region, the estimates will not depend exponentially on time, since the
proofs will not rely on Grönwall’s lemma. Moreover, we require that the reaction kinetics f in (3.2) are
Lipschitz only in the invariant region, instead of being globally Lipschitz.

Lemma 4.3 (Stability estimates for the weak system (3.3)) If u is the solution of (3.3),Σ =∏r
k=1[mk , Mk]

is an invariant region for (3.3), and u0 ∈ Σ then

sup
t∈[0,T ]

||u||2
L2(Γ )

+
∫ T

0
‖∇Γ u‖2

L2(Γ )
≤ C

(
T + ‖u0‖2

L2(Γ )

)
, (4.19)

∫ T

0
‖u̇‖2

L2(Γ )
+ sup

t∈[0,T ]
‖∇Γ u‖2

L2(Γ )
≤ C

(
T + ‖∇Γ u0‖2

L2(Γ )

)
, (4.20)

for all T > 0, where C is a constant independent of T and u0.

Proof. By setting ϕ = u in (3.5), we have

1

2

d

dt

∫
Γ

|u|2 + |u|2D =
∫
Γ

f(u) : u. (4.21)

Combining (4.17) and (4.21), we have

d

dt
‖u‖2

L2(Γ )
+ |u|2

H1(Γ )
≤ C

∫
Γ

|f(u) : u|.

Since u ∈ Σ at all times and f is bounded on Σ , we obtain

d

dt
‖u‖2

L2(Γ )
+ |u|2

H1(Γ )
≤ C. (4.22)

By integrating both sides of (4.22) over [0, T ], estimate (4.19) follows.
To prove the second estimate, we set ϕ = u̇ in (3.5) and obtain∫

Γ

|u̇|2 + 1

2

d

dt

∫
Γ

D∇Γ u : ∇Γ u ≤
∫
Γ

|f(u)||u̇|, (4.23)

but, since f is bounded in Σ , we have∫
Γ

|f(u)||u̇| ≤ 1

2

∫
Γ

|f(u)|2 + 1

2

∫
Γ

|u̇|2 ≤ C + 1

2

∫
Γ

|u̇|. (4.24)
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20 M. FRITTELLI ET AL.

Combining (4.23) and (4.24) we have ‖u̇‖2
L2(Γ )

+ d
dt |u|2D ≤ C, from which, by integrating on [0, T ], we

obtain ∫ T

0
‖u̇‖2

L2(Γ )
+ |u|2D ≤ CT + |u0|2D. (4.25)

Similarly, combining (4.25) with (4.17), we have

∫ T

0
‖u̇‖2

L2(Γ )
+ |u|2

H1(Γ )
≤ C

(
T + |u0|2H1(Γ )

)
,

from which we obtain estimate (4.20). �

The following lemmas show analogous estimates for the semidiscrete and fully discrete problems.

Lemma 4.4 (Stability estimates for the semidiscrete system (3.6)) If U is the solution of (3.6),
Σ =∏r

k=1[mk , Mk] is an invariant region for (3.6), and U0 ∈ Σ then

sup
t∈[0,T ]

||U||2
L2(Γh)

+
∫ T

0
‖∇Γ U‖2

L2(Γh)
≤ C

(
T + ‖U0‖2

L2(Γh)

)
, (4.26)

∫ T

0
‖U̇‖2

L2(Γh)
+ sup

t∈[0,T ]
‖∇Γ U‖2

L2(Γh)
≤ C

(
T + ‖∇Γ U0‖2

L2(Γh)

)
, (4.27)

for all T > 0, where C is a constant independent of T and U0.

Proof. We proceed exactly as in the previous lemma to obtain analogous estimates in the norm ‖ · ‖h and
then we use the equivalence (4.2) between the norms ‖ · ‖h and ‖ · ‖L2(Γh)

on Sh, uniformly in h. �

Lemma 4.5 (Stability estimates for the fully discrete system (3.8)) Let τ > 0. If Ui, i = 0, . . . , NT is the
solution of (3.8), Σ =∏r

k=1[mk , Mk] is an invariant region for (3.8) and U0 ∈ Σ then

∥∥Un+1
∥∥2

L2(Γh)
+ τ

n∑
i=0

∥∥∇Γh Ui+1
∥∥2

L2(Γh)
≤ C(‖U0‖L2(Γh)

+ T), (4.28)

1

τ

n∑
i=0

∥∥Ui+1 − Ui
∥∥2

L2(Γh)
+ ∥∥∇Γh Un+1

∥∥2

L2(Γh)
≤ C

(∥∥∇Γh U0
∥∥2

L2(Γh)
+ T

)
, (4.29)

for all n = 0, . . . , NT and T > 0, where C is a constant independent of T and U0.

Proof. By testing (3.9) with φi = Ui+1, we have

1

τ

(∥∥Ui+1
∥∥2

h
−
∫
Γh

Ih

(
Ui : Ui+1

))+ ∣∣Ui+1
∣∣2
D

=
∫
Γh

Ih

(
f(Ui) : Ui+1

)
.
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PRESERVING INVARIANCE PROPERTIES OF REACTION–DIFFUSION SYSTEMS 21

After multiplying by τ , the Cauchy–Schwarz inequality yields∥∥Ui+1
∥∥2

h
+ τ

∣∣Ui+1
∣∣2
D

≤ ∥∥Ui+1
∥∥

h

∥∥Ui
∥∥

h
+ τ

∥∥f(U)i‖h‖Ui+1
∥∥

h
.

Since Ui and Ui+1 ∈ Σ and f is Lipschitz in Σ , the last term on the right-hand side is bounded by some
constant C > 0: ∥∥Ui+1

∥∥2

h
+ τ

∣∣Ui+1
∣∣2
D

≤ ∥∥Ui+1
∥∥

h

∥∥Ui
∥∥

h
+ Cτ .

Young’s inequality yields

‖Ui+1‖2
h + τ |Ui+1|2D ≤ ‖Ui‖2

h + Cτ .

We sum for i = 0, . . . , n to obtain

∥∥Un+1
∥∥2

h
+ τ

n∑
i=0

∣∣Ui+1
∣∣2
D

≤ ∥∥U0
∥∥2

h
+ Cnτ .

By using (4.2), the equivalence between | · |D and | · |H1(Γh)
and n = 0, . . . , NT , inequality (4.28) follows

immediately.
By testing (3.9) with φi = Ui+1 − Ui we have

1

τ

∥∥Ui+1 − Ui
∥∥2

h
+ ∣∣Ui+1

∣∣2
D

−
∫
Γh

D∇Γh Ui+1 : ∇Γh Ui =
∫
Γh

Ih(f(Ui) : (Ui+1 − Ui)).

The Cauchy–Schwarz inequality yields

1

τ

∥∥Ui+1 − Ui
∥∥2

h
+ ∣∣Ui+1

∣∣2
D

≤ ∣∣Ui+1
∣∣
D

∣∣Ui
∣∣
D

+ ∥∥f
(
Ui
)∥∥

h

∥∥Ui+1 − Ui
∥∥

h
.

Since f is Lipschitz, and thus bounded, in Σ , say maxΣ f = C, we can bound the last term on the right-
hand side as

1

τ
‖Ui+1 − Ui‖2

h + |Ui+1|2D ≤ |Ui+1|D|Ui|D + C‖Ui+1 − Ui‖h.

Young’s inequality yields

1

τ
‖Ui+1 − Ui‖2

h + |Ui+1|2D ≤ 1

2
(|Ui|2D + |Ui+1|2D)+ Cτ + 1

2τ
‖Ui+1 − Ui‖2

h.

Rearranging terms and multiplying by 2, we have

1

τ

∥∥Ui+1 − Ui
∥∥2

h
+ ∣∣Ui+1

∣∣2
D

≤ ∣∣Ui
∣∣2
D

+ Cτ . (4.30)

By summing (4.30) for i = 0, . . . , n we have

1

τ

n∑
i=0

∥∥Ui+1 − Ui
∥∥2

h
+ ∣∣Un+1

∣∣2
D

≤ ∣∣U0
∣∣2
D

+ Cnτ .

By using (4.2), the equivalence between | · |D and | · |H1(Γh)
and n = 0, . . . , NT , (4.29) finally follows. �
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22 M. FRITTELLI ET AL.

To prove the convergence of the semidiscrete and fully discrete methods, we will adopt the surface
Ritz projection considered in Du et al. (2011) and Elliott & Ranner (2015).

Definition 4.6 Given u : [0, T ] → H1(Γ ), the Ritz projection of u is the unique function Ū : [0, T ] → Sh

such that ∫
Γh

∇Γh Ū · ∇Γhϕ =
∫
Γ

∇Γ u · ∇Γ ϕ
	 and

∫
Γh

Ū =
∫
Γ

u ∀ ϕ ∈ Sh. (4.31)

We remark that this definition is different from the one considered in Dziuk & Elliott (2013b). The
following error estimates for the Ritz projection can be found in Du et al. (2011) and Elliott & Ranner
(2015).

Theorem 4.7 (Error estimates for the Ritz projection) Given u : [0, T ] → H2(Γ ) such that u̇ : [0, T ] →
H2(Γ ), the error in the Ritz projection satisfies the bounds

∥∥u − Ū	
∥∥

L2(Γ )
+ h

∥∥∇Γ (u − Ū	)
∥∥

L2(Γ )
≤ ch2‖u‖H2(Γ ), (4.32)∥∥∥u̇ − ˙̄U	

∥∥∥
L2(Γ )

+ h
∥∥∥∇Γ

(
u̇ − ˙̄U	

)∥∥∥
L2(Γ )

≤ ch2
(‖u‖H2(Γ ) + ‖u̇‖H2(Γ )

)
. (4.33)

�

If u is a vector function, we will denote by Ū its componentwise Ritz projection and the estimates
(4.32)–(4.33) still hold in the tensor product norms (3.4). An L∞([0, T ], L2(Γ )) error bound for the
semidiscrete solution has been proved in Nie & Thomée (1985) on planar domains. Here, we extend this
result to triangulated surfaces.

Theorem 4.8 (Error estimate for the semidiscrete solution (3.6)) Assume that Σ is an invariant region
for (3.3) and (3.6), that f ∈ C2(Σ) and that u0, U0 ∈ Σ . If the solution u of (3.3) and its time derivative
u̇ are L∞([0, T ]; H2(Γ )) and ‖u0 − U	

0‖L2(Γ ) ≤ ch2 then the following estimate holds:

‖u − U	‖L2(Γ ) ≤ C(u, T)h2, (4.34)

where C(u, T) is a constant depending on u and T .

Proof. Let us write the error as

U	 − u = (U	 − Ū	
)+ (Ū	 − u

) =: θ 	 + ρ	. (4.35)

Since u and u̇ are L∞([0, T ], H2(Γ )), from the error estimates (4.32)–(4.33) for the Ritz projection and
(4.5)–(4.6), we have

‖ρ‖L2(Γh)
≤ C‖ρ	‖L2(Γ ) = C‖Ū	 − u‖L2(Γ ) ≤ Ch2‖u‖H2(Γ ), (4.36)

‖ρ̇‖L2(Γh)
+ h‖∇Γh ρ̇‖L2(Γh)

≤ Ch2
(‖u‖H2(Γ ) + ‖u̇‖H2(Γ )

)
. (4.37)
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It remains to show the convergence for θ 	 in (4.35). For the sake of simplicity, we derive an estimate
for θ in the norm ‖ ·‖h and then we will use (4.2) and (4.5) to estimate ‖θ 	‖L2(Γ ). The continuous problem
(3.3), the semidiscrete formulation (3.6), the definition of the Ritz projection (4.31) and the relations
(4.11) and (4.12) imply that∫

Γh

Ih(θ̇ : φ)+
∫
Γh

D∇Γhθ : ∇Γhφ =
∫
Γh

Ih((f(U)− f(u−	)) : φ)− εh(f(u−	), φ)

−
∫
Γ

(
1 − 1

δ	h

)
f(u) : φ	 −

∫
Γh

ρ̇ : φ + εh(
˙̄U, φ)+

∫
Γ

(
1 − 1

δ	h

)
u̇ : φ	. (4.38)

In (4.38) we choose φ = θ . For the first term of (4.38), we observe that∫
Γh

Ih(θ̇ : θ) = 1

2

d

dt
‖θ‖2

h. (4.39)

We estimate the single terms on the right-hand side of (4.38) in turn. By using the Cauchy–Schwarz
inequality, the Lipschitz continuity of f , the definition of θ , the relationships (4.2), (4.5) and (4.36), we
have ∣∣∣∣

∫
Γh

Ih((f(U)− f(u−	)) : θ)

∣∣∣∣ ≤ ‖f(U)− f(u−	)‖h‖θ‖h ≤ C‖U − u−	‖h‖θ‖h

≤ C
(‖ρ‖L2(Γ ) + ‖θ‖h

) ‖θ‖h = C(u)
(
h2 + ‖θ‖h

) ‖θ‖h. (4.40)

By using estimate (4.4) for εh, (4.8), the regularity assumptions f ∈ C2(Σ) and u ∈ L∞([0, T ], H2(Γ ))

and by applying the chain rule to the composite function f(u), it follows that∣∣εh(f(u−	), θ)
∣∣ ≤ Ch2‖f(u−	)‖H2

h (Γh)
‖θ‖H1(Γh)

≤ C(1 + h)h2‖f(u)‖H2(Γ )‖θ‖H1(Γh)

≤ C(h2 + h3)‖f‖C2(Σ)‖u‖H2(Γ )‖θ‖H1(Γ ) ≤ C(h2 + h3)‖θ‖H1(Γh)
. (4.41)

Since f is Lipschitz over the compact region Σ , then f ∈ L∞(Σ). Hence, by using the Cauchy–Schwarz
inequality and the geometric estimate (4.13), we have∣∣∣∣

∫
Γ

(
1 − 1

δ	h

)
f(u) : θ

∣∣∣∣ ≤
∥∥∥∥1 − 1

δ	h

∥∥∥∥
L∞(Γ )

‖f(u)‖L2(Γ )‖θ‖L2(Γ ) ≤ Ch2‖θ‖L2(Γ ). (4.42)

From the Cauchy–Schwarz inequality, the error estimate (4.37) and the inequality in (4.5) we have∣∣∣∣
∫
Γh

ρ̇ : θ

∣∣∣∣ ≤ C‖ρ̇‖L2(Γh)
‖θ‖L2(Γh)

≤ C(u)h2‖θ‖L2(Γh)
. (4.43)

From the estimate (4.4) for εh, the estimate (4.37) for ρ, (4.5), (4.6) and the triangle inequality, we have∣∣∣εh(
˙̄U, θ)

∣∣∣ ≤ Ch2‖ ˙̄U‖H1(Γh)
‖θ‖H1(Γh)

≤ Ch2
(‖ρ̇‖H1(Γh)

+ ‖u̇−	‖H1(Γh)

) ‖θ‖H1(Γh)

≤ Ch2
(
C(u)h + C‖u̇‖H1(Γ )

) ‖θ‖H1(Γh)
≤ C(u)(h2 + h3)‖θ‖H1(Γh)

. (4.44)
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We remark that, since for all t ∈ [0, T ], ˙̄U(·, t) ∈ Sh is a piecewise linear function, we have ˙̄U : [0, T ] →
H2

h (Γh) and
∣∣ ˙̄U(·, t)

∣∣
H2

h (Γh)
= 0 for all t ∈ [0, T ], where | · |H2

h (Γh)
is the broken seminorm defined in (4.3).

Hence, we have ‖ ˙̄U(·, t)‖H2
h (Γh)

= ‖ ˙̄U(·, t)‖H1(Γh)
, where ‖·‖H2(Γh)

is the broken Sobolev norm defined in
(4.3). The Cauchy–Schwarz inequality, (4.5), the geometric estimate (4.13) and the stability bound (4.19)
yield

∣∣∣∣
∫
Γ

(
1 − 1

δ	h

)
u̇ : θ 	

∣∣∣∣ ≤
∥∥∥∥1 − 1

δ	h

∥∥∥∥
L∞(Γ )

‖u̇‖L2(Γ )‖θ‖L2(Γh)
≤ C(u)h2‖θ‖L2(Γh)

. (4.45)

Combining (4.38)–(4.45), using (4.2), (4.5) and (4.6), we have

1

2

d

dt
‖θ‖2

h + m‖∇Γhθ‖L2(Γh)
≤ C(u)

(
h2 + h3 + ‖θ‖h

) ‖θ‖H1(Γh)

≤ C(u, m)
(
h4 + h6 + ‖θ‖2

h

)+ m‖θ‖2
H1(Γh)

, (4.46)

where m = mink=1,...,r{dk}. Cancelling m‖∇Γhθ‖L2(Γh)
on both sides of (4.46), and again using (4.2), we

have

d

dt
‖θ‖2

h ≤ C(u)(h4 + h6)+ C(u)‖θ‖2
h.

Using Grönwall’s lemma, the assumption ‖θ 	0‖L2(Γ ) ≤ Ch2, the norm estimates in (4.2) and (4.5), we
obtain ‖θ 	‖2

L2(Γ )
≤ C(u, T)(h4 + h6), which yields the desired result. �

In a similar fashion, following the approach in Nie & Thomée (1985) and Lakkis et al. (2013), we
obtain the following L∞([0, T ], L2(Γ )) error estimate for the fully discrete solution (3.8).

Theorem 4.9 (Error estimate for the fully discrete solution (3.8)) Assume that Σ is an invariant region
for (3.3) and (3.8), that f ∈ C2(Σ) and that u0, U0 ∈ Σ . If the solution u of (3.3) and its time derivative
u̇ are L∞([0, T ]; H2(Γ )), ü is L∞([0, T ]; L2(Γ )) and

∥∥u0 − U	
0

∥∥
L2(Γ )

≤ ch2 then the following estimate
holds:

‖un − U	,n‖L2(Γ ) ≤ C(u, T)(h2 + h3 + τ), (4.47)

where un is the exact solution at time tn := nτ and C(u, T) is a constant depending on u and T .

Proof. Let us write the error as

U	,n − un = (U	,n − Ū	,n
)+ (Ū	,n − un

) =: θ 	,n + ρ	,n ∀ n, (4.48)

and the discrete time derivative of any function φ : Γh × [0, T ] → R
r as

∂̄φn := φn − φn−1

τ
∀ n.
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Since u and u̇ are L∞([0, T ], H2(Γ )), from (4.5), (4.6), (4.32) and (4.33), we have

‖ρn‖L2(Γh)
≤ C‖ρ	,n‖L2(Γ ) = ‖Ū	,n − un‖L2(Γ ) ≤ ch2‖un‖H2(Γ ) ∀ n, (4.49)

‖ρ̇n‖L2(Γh)
+ h‖∇Γh ρ̇

n‖L2(Γh)
≤ ch2(‖un‖H2(Γ ) + ‖u̇n‖H2(Γ )) ∀ n. (4.50)

It remains to show convergence for θ 	,n in (4.48). To this end, we derive an estimate for θ n in the L2(Γh)

norm and then use (4.2) and (4.5) to estimate ‖θ 	,n‖L2(Γ ).
The continuous problem (3.3) and the fully discrete formulation (3.8), the definition of Ritz projection

(4.31) and the relations (4.11), (4.12) imply that∫
Γh

Ih(∂̄θ
n : φn)+

∫
Γh

D∇Γhθ
n : ∇Γhφ

n = −εh

(
f
(
u−	,n−1

)
, φn
)

+
∫
Γh

Ih

((
f(Un−1

)− f
(
u−	,n−1

))
: φn)−

∫
Γ

(
1 − 1

δ	h

)
f(un−1) : φ	,n

+
∫
Γ

(
f
(
un−1

)− f(un)
)

: φ	,n −
∫
Γh

∂̄ρn : φn + εh(∂̄Ūn, φn)

−
∫
Γh

(∂̄ − ∂t)u−	,n : φn +
∫
Γ

(
1 − 1

δ	h

)
u̇n : φ	,n. (4.51)

In (4.51), we choose φn = θ n. For the first term in (4.51), from Young’s inequality we have that∫
Γh

Ih

(
∂̄θ n : θ n

) ≥ 1

2τ

(‖θ n‖2
h − ‖θ n−1‖2

h

)
. (4.52)

We estimate the single terms on the right-hand side of (4.51) in turn. From the Cauchy–Schwarz inequality,
the Lipschitz continuity of f , the definition of θ n, (4.2) and (4.49), it follows that∣∣∣∣

∫
Γh

Ih((f(Un−1)− f(u−	,n−1)) : θ n)

∣∣∣∣ ≤ ‖f(Un−1)− f(u−	,n−1)‖h‖θ n‖h

≤ C‖Un−1 − u−	,n−1‖h‖θ n‖h ≤ C(‖ρn−1‖L2(Γ ) + ‖θ n−1‖h)‖θ n‖h

≤ C(u)(h2 + ‖θ n−1‖h)‖θ n‖h. (4.53)

From the estimate (4.4) for εh and (4.8), we obtain∣∣εh(f(u−	,n−1), θ n)
∣∣ ≤ Ch2‖f(u−	,n−1)‖H2

h (Γh)
‖θ n‖H1(Γh)

≤ C(1 + h)h2‖f(un−1)‖H2(Γ )‖θ n‖H1(Γh)
≤ C(1 + h)h2‖f‖C2(Σ)‖un−1‖H2(Γ )‖θ n‖H1(Γh)

≤ C(h2 + h3)‖θ n‖H1(Γh)
, (4.54)

where we have exploited the regularity assumptions f ∈ C2(Σ) and u ∈ L∞([0, T ], H2(Γ )). Since f is
Lipschitz over the compact region Σ then f ∈ L∞(Σ). This fact, together with the Cauchy–Schwarz
inequality, (4.5) and the geometric estimate (4.13) yields∣∣∣∣

∫
Γ

(
1 − 1

δ	h

)
f(un−1) : θ 	,n

∣∣∣∣ ≤
∥∥∥∥1 − 1

δ	h

∥∥∥∥
L∞(Γ )

‖f(un−1)‖L2(Γh)
‖θ n‖L2(Γ ) ≤ Ch2‖θ n‖L2(Γh)

. (4.55)
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The Cauchy–Schwarz inequality, together with (4.5) and the stability estimate (4.20), yield

∣∣∣∣
∫
Γ

(f(un−1)− f(un)) : θ 	,n
∣∣∣∣ ≤ ∥∥f

(
un−1

)− f(un)
∥∥

L2(Γ )
‖θ n‖L2(Γh)

≤ C‖un − un−1‖L2(Γ )‖θ n‖L2(Γh)
=
∥∥∥∥∥
∫ tn

tn−1

u̇

∥∥∥∥∥
L2(Γ )

‖θ n‖L2(Γh)

≤ ‖θ n‖L2(Γh)

∫ tn

tn−1

‖u̇‖L2(Γ ) ≤ τ‖u̇‖L∞([0,T ],L2(Γ ))‖θ n‖L2(Γh)
= C(u)τ‖θ n‖L2(Γh)

. (4.56)

From the Cauchy–Schwarz inequality and estimate (4.50) for ρ̇, we have

∣∣∣∣
∫
Γh

∂̄ρn : θ n

∣∣∣∣ ≤ C‖∂̄ρn‖L2(Γh)
‖θ n‖L2(Γh)

= C

τ

∥∥∥∥∥
∫ tn

tn−1

ρ̇

∥∥∥∥∥
L2(Γh)

‖θ n‖L2(Γh)

≤ C

τ
‖θ n‖L2(Γh)

∫ tn

tn−1

‖ρ̇‖L2(Γh)
≤ C‖ρ̇‖L∞([0,T ],L2(Γh))

‖θ n‖L2(Γh)
≤ C(u)h2‖θ n‖L2(Γh)

. (4.57)

From estimate (4.4) for εh, estimate (4.50) for ρ, the equivalences (4.5), (4.6) and the triangle inequality,
we obtain

∣∣εh(∂̄Ūn, θ n)
∣∣ ≤ Ch2‖∂̄Ūn‖H1(Γh)

‖θ n‖H1(Γh)
≤ Ch2

τ
‖θ n‖H1(Γh)

∫ tn

tn−1

‖ ˙̄U‖H1(Γh)

≤ Ch2‖ ˙̄U‖L∞([0,T ],H1(Γh))
‖θ n‖H1(Γh)

≤ Ch2
(‖ρ̇‖L∞([0,T ],H1(Γh))

+ ‖u̇−	‖L∞([0,T ],H1(Γh))

) ‖θ n‖H1(Γh)

≤ Ch2
(
C(u)h + C‖u̇‖L∞([0,T ],H1(Γ ))

) ‖θ n‖H1(Γh)
≤ C(u)(h2 + h3)‖θ n‖H1(Γh)

, (4.58)

where, for Ūn, we have used the same argument explained after (4.44). From the Cauchy–Schwarz
inequality and (4.5) we have

∣∣∣∣
∫
Γh

(∂̄ − ∂t)u−	,n : θ n

∣∣∣∣ ≤ C‖(∂̄ − ∂t)un‖L2(Γ )‖θ n‖L2(Γh)

≤ C

τ
‖θ n‖L2(Γh)

∫ tn

tn−1

‖u̇(t)− u̇(tn)‖L2(Γ )dt ≤ C

τ
‖θ n‖L2(Γh)

∫ tn

tn−1

∫ tn

t
‖ü(s)‖ ds dt

≤ Cτ‖ü‖L∞([0,T ],L2(Γ ))‖θ n‖L2(Γh)
= C(u)τ‖θ n‖L2(Γh)

, (4.59)

where we have exploited the assumption that ü ∈ L∞([0, T ], L2(Γ )). The Cauchy–Schwarz inequality,
(4.5), the geometric estimate (4.13) and the stability bound (4.19) yield

∣∣∣∣
∫
Γ

(
1 − 1

δ	h

)
u̇n : θ 	,n

∣∣∣∣ ≤
∥∥∥∥1 − 1

δ	h

∥∥∥∥
L∞(Γ )

‖u̇n‖L2(Γ )‖θ n‖L2(Γh)
≤ C(u)h2‖θ n‖L2(Γh)

. (4.60)
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Combining (4.51)–(4.60), using (4.2) and Young’s inequality we get

1

2τ

(∥∥θ n
∥∥2

h
− ∥∥θ n−1

∥∥2

h

)
+ m

∥∥∇Γhθ
n
∥∥

L2(Γh)
≤ C(u)

(
h2 + h3 + τ + ∥∥θ n−1

∥∥
h

) ‖θ n‖H1(Γh)

≤ C(u, m)
(
h4 + h6 + τ 2 + ‖θ n−1‖2

h

)+ m‖θ n‖2
H1(Γh)

, (4.61)

where m = mink=1,...,r{dk}, from which, cancelling ‖∇Γhθ
−	,n‖L2(Γh)

on both sides of (4.61), and using
(4.2), we have

∥∥θ n
∥∥2

h
≤ (1 + C(u)τ )

∥∥θ n−1
∥∥2

h
+ C(u)τ (h4 + h6 + τ 2). (4.62)

By repeatedly applying (4.62), taking into account the assumption that ‖θ 0‖L2(Γ ) ≤ Ch2, and then using
(4.2), (4.5), we obtain

∥∥θ 	,n∥∥2

L2(Γ )
≤ C(u)

(
h4 + h6 + τ 2

)
,

which yields the desired result. �

The previous theorems imply that our semidiscrete and fully discrete methods exhibit optimal
convergence rates, that are quadratic in the meshsize h and linear in the timestep τ .

5. Numerical experiments

In this section, we provide numerical validation of our theoretical results and we show that the LSFEM
combined with the IMEX Euler in time

• exhibits the optimal convergence rate predicted in Theorem 4.9 (see Sections 5.1–5.4);

• fulfils the discrete maximum principle for the homogeneous heat equation, while the standard SFEM
does not (see Section 5.2);

• preserves the invariant rectangles of RDSs, while the standard SFEM does not (see Section 5.3).

The simulations have been carried out using MATLAB. In particular, the meshes for our numerical
examples have been constructed by using the MATLAB package DistMesh (see Persson & Strang, 2004).
A posteriori, we have verified that the generated meshes fulfil the Delaunay condition (2.11). The linear
systems arising at each timestep have been solved with the MATLAB direct solver in the ‘backslash’
command. The code is available on request.

5.1 Numerical experiment 1: the linear heat equation and convergence study

In this experiment, we solve the parabolic equation (2.2) in the linear case α = 1 on the unit sphere
Γ = {(x, y, z) ∈ R

3|x2 + y2 + z2 = 1}, given by

{
u̇ − dΔΓ u = −βu,

u0(x, y, z) = xyz, (x, y, z) ∈ Γ ,
(5.1)
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Table 1 Numerical experiment 1: comparisons of the convergence analysis in L∞([0, T ], L2(Γh)) norm
between the SFEM and the LSFEM for the linear heat equation (5.1) with d = 1

24 and β = 1
2 .

SFEM LSFEM

i N h L∞(L2) error Rate L∞(L2) error Rate

0 126 4.013e−01 6.100e−03 — 3.061e−03 —
1 258 2.863e−01 3.129e−03 1.977 1.846e−03 1.498
2 516 2.026e−01 1.594e−03 1.951 1.095e−03 1.510
3 1062 1.414e−01 7.899e−04 1.953 5.444e−04 1.945
4 2094 1.007e−01 3.966e−04 2.030 3.025e−04 1.731
5 4242 7.082e−02 2.013e−04 1.925 1.401e−04 2.184
6 8370 5.041e−02 1.003e−04 2.049 7.671e−05 1.773
7 16962 3.542e−02 5.063e−05 1.938 3.529e−05 2.200

Fig. 2. Numerical experiment 1: The LSFEM solution corresponding to the linear heat equation (5.1) with d = 1
24 and β = 1

2
obtained on the Delaunay mesh for i = 7 with N = 16962 nodes, meshsize h7 = 3.542e−2 and timestep τ7 = 1.6e−3 at T = 1
(left) and its planar projection through spherical coordinates (right).

with d = 1
24 and β = 1

2 , to test the convergence rate of the LSFEM method. The exact solution of (5.1)
is u(x, y, z, t) = xyz e−t , (x, y, z) ∈ Γ , t ≥ 0. In this experiment, as well as in the following examples, the
problem is solved on a sequence of eight meshes Γi, i = 0, . . . , 7 with corresponding meshsizes hi with

h0 = 4.013e-1 and hi ≈ √
2

−i
h0 for all i = 1, . . . , 7 and corresponding timesteps τi with τ0 = 0.2 and

τi = 2−iτ0 for all i = 1, . . . , 7 (see parameter values in Table 1). Hence, τi is approximately proportional
to h2

i to reveal the quadratic convergence, with respect to the meshsize of the method. All of the τi fulfil
the stability condition given in Theorem 2.4. For every i = 0, . . . , 7, the L∞([0, T ], L2(Γh)) error between
the numerical solution U and the interpolant Ih(u) of the exact solution is reported in Table 1. The lumped
solution U at the final time T = 1 obtained on the finest mesh is shown in Fig. 2 (left), as well as its
planar projection through spherical coordinates (right)

x = cosφ cosψ , y = cosφ sinψ , z = sinψ , with (φ,ψ) ∈ [−π ,π ] ×
[
−π

2
,
π

2

]
.

In this example, the predicted second-order convergence in space is attained. Furthermore, we observe
that, for this specific example, the lumped SFEM exhibits a better accuracy than the standard SFEM. We
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Table 2 Numerical experiment 2: discrete maximum principle analysis on Γh×]0, T ]: comparisons
between the SFEM and the LSFEM for the homogeneous heat equation (2.2) with β = 0 and initial
datum (5.2).

i N h min
Γh×[τ ,1]

U SFEM min
Γh×[τ ,1]

U LSFEM

0 126 4.013e−01 −3.454e−04 7.016e−09
1 258 2.863e−01 −4.695e−06 4.812e−12
2 516 2.026e−01 −1.299e−03 1.213e−16
3 1062 1.414e−01 −2.123e−07 2.746e−23
4 2094 1.007e−01 −7.546e−04 3.142e−32
5 4242 7.082e−02 −1.037e−05 1.816e−45
6 8370 5.041e−02 −4.163e−04 5.324e−64
7 16962 3.542e−02 −1.254e−04 3.126e−90

believe that this phenomenon, which does not occur in general, is due to the particular symmetry of the
considered problem.

5.2 Numerical experiment 2: the homogeneous heat equation and the maximum principle

We solve the parabolic equation (2.2) for the homogeneous case β = 0 on the unit sphere Γ with d = 0.1
until the final time T = 1 and the non-negative compactly supported H1(Γ ) initial datum

u0(x, y, z) =
{ √

1 − x2+y2

0.04 if x2 + y2 ≤ 0.04, z > 0,

0 elsewhere.
(5.2)

In this case, the invariant region is Σ = [0, 1], then the solution must stay non-negative at all times.
Moreover, since β = 0, the IMEX Euler time discretization reduces to implicit Euler. The minima of
the computed numerical solution obtained by SFEM and LSFEM for each mesh (hi, τi), i = 0, . . . , 7,
(constructed as in the previous example, see Section 5.1), are reported in Table 2. This experiment confirms
our findings, as the LSFEM fulfils the discrete maximum principle, while the standard SFEM violates
the maximum principle as illustrated in Table 2.

5.3 Numerical experiment 3: RDS and the preservation of the invariant rectangle

In this experiment, we consider the RDS with Rosenzweig–MacArthur kinetics (see González-Olivares
& Ramos-Jiliberto, 2003; Garvie & Trenchea, 2007){

ut − d1ΔΓ u = au(1 − u)− b uv
u+α ,

vt − d2ΔΓ v = c uv
u+α − dv,

(5.3)

where α, a, b, c and d are positive constants, d1 and d2 are positive diffusion coefficients. The surface
considered is the Dupin ring cyclideΓ := {(x, y, z) ∈ R

3 :
(
x2+y2+z2+ 261

100

)2−4
(
2x−

√
39

10

)2− 361
25 y2 = 0

}
(see Fuselier & Wright, 2013).
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This system has been numerically solved in Garvie & Trenchea (2007) on a planar domain with
LFEM in combination with an implicit Euler time discretization. However, since the theory developed in
Garvie & Trenchea (2007) addresses a problem on domains of more general dimension (n ≤ 3), there is
no discrete maximum principle and the authors consider modified kinetics to ensure the positivity of the
numerical solution. The present example shows that, on two-dimensional manifolds, lumping guarantees
the preservation of the invariant region without the need of modifying the kinetics.

When c = d and 0 < α < 1√
2

for every 0 < ε < 1 − 2
√

a, the rectangle

Σ := [ε, 1] ×
[
0,

aα

2b

]
(5.4)

is an invariant region for (5.3), see, for instance, the analysis in González-Olivares & Ramos-Jiliberto
(2003). An easy way to see this is to observe that, for every ε, ε′ > 0, the rectangle

Σ1 :=
[
ε, 1 + ε′aα

b

]
×
[
−ε′,

aα

2b

]

fulfils condition (3.11). Since the intersection of invariant regions is still invariant, thenΣ is invariant for
(5.3). The H1(Γ ) initial datum

u0(x, y, z) =
{
ε + (1 − ε)

√
1 − y2

0.16 if y2 ≤ 0.16,

0 elsewhere,

v0(x, y, z) = aα

2b
∀ (x, y, z) ∈ Γ ,

is contained in the invariant region Σ . Furthermore, for 0 < α < 1, it is easy to verify that, in Σ , the
Lipschitz constants L1 and L2 of the kinetics in (5.3) fulfil

L1 <
√

2

(
3a + b

2α

)
and L2 <

√
2

(
c

2α
+ d

2

)
.

In the following, we choose d1 = d2 = 1e-2, α = 1e-3, a = 10, b = 1e-2, c = d = 1 and ε = 1e-7.
With these settings, the invariant region (5.4) becomes

Σ = [1e-7, 1] ×
[

0,
1

2

]
, (5.5)

and the stability condition (3.18) on the timestep is fulfilled if we choose

τ ≤ τ̄ := 1√
2 max

{(
3a + b

2α

)
,
(

c
2α + d

2

)} = 1.4e-3. (5.6)

We thus solve the problem on a sequence of seven spatial meshes Γi, i = 0, . . . , 6 with corresponding

meshsizes hi with h0 = 1.190 and hi ≈ √
2

−i
h0 for all i = 1, . . . , 6, with a fixed timestep τ̄ = 1e−3

and final time T = 5. In Tables 3 and 4, we show the minima and the maxima of the components of the
computed numerical solutions: we observe that the LSFEM solutions preserve Σ , while the SFEM ones
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Table 3 Numerical experiment 3: invariance analysis for the SFEM solutions of (5.3) with parameters
and initial datum as reported in the main text. The solutions blow up on all meshes.

i N h min
Γh×[τ ,5]

U max
Γh×[τ ,5]

U min
Γh×[τ ,5]

V max
Γh×[τ ,5]

V

0 242 1.190e+00 −2.199e+173 1.670e+169 −1.157e−01 5.159e−01
1 486 8.537e−01 −1.654e+161 2.663e+157 −1.629e+00 7.239e−01
2 986 5.898e−01 −2.788e+254 5.341e+250 −5.002e−01 2.170e+00
3 1950 4.273e−01 −4.164e+174 7.136e+170 −2.448e+00 3.394e+00
4 3866 3.011e−01 −5.784e+215 8.624e+211 −2.816e+00 7.301e+00
5 7766 2.114e−01 −1.961e+158 5.002e+154 −2.472e+01 2.114e+01
6 15552 1.531e−01 −2.891e+178 1.688e+175 −5.529e+01 1.085e+01

Table 4 Numerical experiment 3: invariance analysis for the LSFEM solutions of (5.3) with parameters
and initial datum as reported in the main text. The values of N and h are as in Table 3. The solutions stay
in the invariant rectangle [1e−7, 1] × [0, 1

2

]
for all meshes. The minima of U coincide up to machine

precision.

i min
Γh×[τ ,5]

U max
Γh×[τ ,5]

U min
Γh×[τ ,5]

V max
Γh×[τ ,5]

V

0 1.005e−07 0.999919049314999 0.140403459482026 0.499999499006500
1 1.005e−07 0.999859791592458 0.140314932710790 0.499999500147031
2 1.005e−07 0.999928903829794 0.140311706814337 0.499999500464241
3 1.005e−07 0.999882762800890 0.140311624718897 0.499999500411808
4 1.005e−07 0.999929620790774 0.140311624053878 0.499999500465688
5 1.005e−07 0.999932927703920 0.140311624044096 0.499999500467816
6 1.005e−07 0.999934143729114 0.140311624043996 0.499999500468662

blow up on all meshes. In Fig. 3 we show, for the v component, the SFEM (left) and the LSFEM (right)
solutions, computed on the mesh for i = 6, at the time t̄ := 0.4770 in which the SFEM solution attains its
absolute minimum (−5.529). In Fig. 3, we set the bounds of the grayscale (colourmap online) to the end
points of the invariant region ([0, 0.5]) to highlight the points on the surface in which the SFEM solution
violates the region.

5.4 Numerical experiment 4: RDS with activator-depleted kinetics and convergence study

In this example, we test the convergence rate of the LSFEM method on the unit sphere Γ for the well-
studied activator-depleted substrate kinetics (see Prigogine & Lefever, 1968; Gierer & Meinhardt, 1972;
Schnakenberg, 1979; Murray, 2001) with an additional forcing term

{
ut − d1ΔΓ u = a − u + u2v + f1(x, y, z, t),

vt − d2ΔΓ v = b − u2v + f2(x, y, z, t),
(5.7)
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Fig. 3. Numerical experiment 3: component v of the numerical solution of (5.3) with d1 = d2 = 1e−2, α = 1e−3, a = 10,
b = 1e−2, c = d = 1 obtained on a mesh with N = 15552 grid points and h = 0.1531. Numerical solutions by the SFEM (left)
and the LSFEM (right) at the time t̄ = 0.477. The bounds of the grayscale (colourmap online) are set to [0, 0.5] to highlight the
points in which the SFEM solution violates the invariant region (5.5).

Fig. 4. Numerical experiment 4. Top row: the u-component of the LSFEM solution corresponding to the RDS with activator-
depleted substrate kinetics (5.7) with a = b = 1, d1 = 1

6 , d2 = 1
12 and initial condition as stated in the text, obtained on a mesh

with N = 16962 nodes and timestep τ = 1.6e−3 at T = 1 and their corresponding planar projections through spherical coordinates.
Bottom row: convergence analysis of the SFEM and the LSFEM. As predicted, the LSFEM retains the quadratic convergence rate
of SFEM.
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where the functions f1(x, t) and f2(x, t) are chosen in such a way that the exact solution is known at
all times. Although this example is beyond the scope of the present work, due to the space and time
dependence of the reaction terms, we include it merely as a numerical test. We choose a = b = 1,
d1 = 1

6 , d2 = 1
12 , f1(x, y, z, t) = xy e−t(1 + x2y2 e−2t)− a, f2(x, y, z, t) = −x3y3z e−t − b and the following

initial condition: u0(x, y, z) = xy, and v0(x, y, z) = −xyz for all (x, y, z) ∈ Γ . In this case, the exact
solution is given by u(x, y, z, t) = xy e−t and v(x, y, z, t) = −xyz e−t for all (x, y, z) ∈ Γ and t ≥ 0. We
solve the problem on the same sequence of meshes and timesteps considered in numerical experiment 1,
with final time T = 1, for both the SFEM and the LSFEM, where the contributions due to the forcing
terms fk , k = 1, 2 are approximated with the standard and lumped quadrature rules given by∫

Γh

Ih(fk)χi, and
∫
Γh

Ih(fkχi), ∀ i = 1, . . . , N ,

respectively. We observe that the standard quadrature rule is exact for piecewise linear functions, while
the lumped one is only exact when the product of the functions is piecewise linear. For this reason, the
LSFEM is expected to produce larger errors than the SFEM. The L2 errors and experimental convergence
rates are plotted in Fig. 4 together with the u component of the LSFEM solution obtained on the finest
mesh at the final time T = 1. As expected, the LSFEM exhibits slightly larger errors than the SFEM.
Nonetheless, they have the same convergence rate, in agreement with our theoretical findings.

6. Conclusions

The contributions of the present paper can be summarized as follows:

• In Section 2, we considered a class of semilinear parabolic scalar problems on surfaces. For the
spatial discretization, we introduced introduced a lumped surface finite element method (LSFEM),
by extending its planar counterpart in Nie & Thomée (1985), inspired by the ideas in Dziuk & Elliott
(2013a). We carried out a time discretization by applying the IMEX Euler method. We showed in
Theorem 2.3 that the spatially discrete problem fulfils a discrete maximum principle. In particular,
we proved that no restriction on the timestep is required in the homogeneous case (thus extending the
result of Thomée, 1984 to surfaces); the timestep restriction (2.29) is required in the presence of the
nonlinear reaction term in (2.2).

• In Section 3, we applied the LSFEM space discretization and the IMEX Euler time discretization
to general systems of arbitrarily many reaction–diffusion equations. In analogy with the continuous
setting (see Chueh et al., 1977), in Theorem 3.3 we showed that under the sole assumption of Delaunay
regularity for the mesh, one of the two strictly inward flux conditions (3.13)–(3.16) is sufficient for
a rectangle in the phase space to be invariant for the spatially discrete scheme. For the fully discrete
problem, we showed in Theorem 3.5 that under the timestep restriction (3.18) involving the Lipschitz
constants of the reaction kinetics, condition (3.11) is still not only sufficient to ensure a hyperrectangle
is invariant but can even be weakened by requiring nonoutward fluxes (3.17). To the best of our
knowledge, Theorems 3.3 and 3.5 are a novelty also on planar domains.

• For both the semidiscrete and fully discrete formulations of the RDSs considered in Section 3,
including the parabolic problem of Section 2 as a special case, optimal L∞([0, T ], L2(Γ )) error
bounds were proved in Section 4.

• The numerical examples in Section 5 confirm our theoretical findings. The usefulness of the LSFEM
is illustrated in numerical experiments 2 and 3. In particular, we showed that in the absence of
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lumping, the numerical solution of the homogeneous heat equation violates the maximum principle
(Section 5.2) and the numerical solution of a classical predator–prey model blows up instead of being
bounded by the invariant rectangle (numerical experiment 3).

Emerging applications encourage the extension of the present study to more general cases of RDSs, for
example, where cross-diffusion is present and/or when the surface is evolving in time, which are beyond
the scope of this work and will be addressed in future studies.
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