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HIGHLIGHTS 

1. Hydroxyl radical yield of photocatalysts determined using Coumarin as a OH 

radical trap molecule. 

2. Visible light active photocatalysts compared to a standard P25 UV light 

absorbing material  

3. A range of photocatalysts covering a broad range of band gaps were 

assessed. 

4. Degradation of 7-hydroxycoumarin as a by-product considered. 
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ABSTRACT 

A simple method for determining hydroxyl radical yields on semiconductor 

photocatalysts is highly desirable, especially when comparing different photocatalyst 

materials. This paper reports the screening of a selection of visible light active 

photocatalysts such as Pt-C3N4, 5% LaCr doped SrTiO3, Sr0.95Cr0.05TiO3 and Yellow 

TiO2 and compares them against WO3 and ultra violet (UV) light activated TiO2 P25 

(standard commercial catalysts) based on their oxidative strengths (OH radical 

producing capability) using a well-studied chemical probe – coumarin. 7-

hydroxycoumarin, the only fluorescent hydroxylation product of this reaction can then 

be measured to indirectly quantify the OH radicals produced. P25 under UV light 

produced the highest concentration of OH radicals (16.9 µM), followed by WO3 (0.56 

µM) and Pt-C3N4 (0.25 µM). The maximum OH radical production rate for P25, WO3 

and Pt-C3N4 were also determined and found to be 35.6 µM/hr, 0.28 µM/hr and 0.88 

µM/hr respectively. The other visible light activated photocatalysts did not produce any 

OH radicals primarily as a result of their electronic structure. Furthermore, it was 

concluded that, if any visible light absorbing photocatalysts are to be fabricated in 

future for the purpose of photocatalytic oxidation, their OH radical producing rates (and 

quantities) should be determined and compared to P25. 

Keywords: Photocatalyst, visible light photocatalysts, OH radical, coumarin, P25. 
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1. INTRODUCTION 

Photocatalysis has gained significant interest since the early publication by 

Fujishima and Honda in 1972, demonstrating the potential of splitting water over TiO2 

[1]. Since this publication, photocatalysis has been applied to a broad range of fields 

including waste water treatment, microbe destruction, toxin removal, energy production 

and air treatment. [2-8]. The mechanism of photocatalysis has been well documented 

and can be generally represented by the equations shown in reactions 1-9 [9,10]. The 

formation of surface radical species such as superoxide (O2
.-) and hydroxyl radicals 

(OH.) play a key role in a number of photocatalytic pathways and as such their 

identification and quantification is a key consideration. As shown in reaction 2, OH 

radicals are primarily generated from the reaction between valence band holes (hvb+) 

and hydroxyl ions on the catalyst surface. An indirect pathway, via O2
.-, also results in 

OH radical formation, as shown in reactions 3-6. The efficiency of OH radicals in 

photocatalytic reactions is predominantly based on their strong oxidising potential of 

2.8 V (vs NHE) [11]. The non-selective nature of these reactive oxygen species also 

aids rapid degradation of various pollutants and organic contaminants [3,7,11-16].  
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         ......................................................... (9) 

where, hvb
+ represents VB holes and ecb

- means CB electrons. 

 

Newly developed photocatalytic technologies and materials have often utilised 

model compounds and screening methods to assess their performance [17-20]. 

Common evaluation methods reported in the literature include the decomposition of 

dyes such as methylene blue (ISO test 10678:2010), or degradation of organic 

pollutants such as 4-chlorophenol or toluene [17-20]. These procedures are often 

coupled with the corresponding calculated photonic efficiencies and quantum yields to 

evaluate overall efficiency. While these methods can be effective in identifying the 

specific photocatalytic performance of a material in relation to a fingerprint compound, 

they provide little information regarding the production of OH radicals involved within 

the mechanism. Therefore, the requirement for a simple and robust method of radical 

quantification for screening the oxidative potential of catalysts has significantly 

increased. The challenge in OH radical quantification lies in both the non-selective 

nature and short lifetime (~ 1 nanosecond) of the radical, which restricts the possibility 

of direct quantification [21]. Consequently, a range of methods have been developed 

such as emission spectroscopy, laser induced fluorescence, electron spin resonance, 

spin trap and chemical probes or quencher based methods to quantify OH radicals [21-

37]. 

 

The use of a chemical probe to capture OH radicals presents a potentially efficient 

way to measure the radical due to the low cost, rapid analysis time and reproducibility 

of the method. Monitoring a probe compound through spectroscopy allows the 

concentration of OH radicals to be calculated based on stoichiometric ratios of products 

formed. A recently reported in vivo technique utilised a nanoprobe comprising of a 

nanoparticle and azo dye in order to quantify OH radicals in the femtomolar range [37]. 
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Here the nanoparticle was used as an energy donor and the modified orange was used 

as an OH radical capturing ligand molecule (and the energy acceptor).  

 

Dimethyl sulfoxide (DMSO) based methods for OH radical capture have also been 

utilised in the past to quantify these species via the formation of formaldehyde 

[28,29,31]. The formation of CH4 in a closed system coupled with O2 bubbling however 

reduces the suitability of utilising DMSO as a probe molecule. 

 

In the past, OH radical quantification has been carried out for various commercially 

available photocatalysts, photo-Fenton’s reaction and other modified TiO2 based visible 

light photocatalysts with either coumarin or terepthalic acid as probe molecules 

[21,23,31-36,38,39]. Both compounds are capable of acting as OH radical traps by 

forming fluorescent products as result of reacting with the radical species. Terepthalic 

acid has been investigated in a study by Ishibashi et al. which achieved an OH radical 

concentration of 7 × 10-5 M based on the measurement of 2-hydroxyterepthalic acid 

[35]. In addition to the use of terepthalic acid as a probe molecule, coumarin has been 

used in a number of studies to determine the concentration of OH radicals produced 

from TiO2 at relatively high loadings of 1 to 5 g/L [21,23,40]. For instance, Czili et al. 

used 100 µM coumarin as the probe molecule to capture OH radicals under a 40 W UV 

lamp. They determined a maximum OH radical production rate of 23.39 µM/g/hr 

(calculated from their reported 7-hydroxycoumarin rates) with 1 g/L TiO2 P25 

photocatalyst. 

 

This paper utilises coumarin as a hydroxyl radical trap and reports the screening of 

a selection of visible light responsive photocatalysts under low power illumination 

based on their OH radical producing capability. In contrast to previous reports, which 

concentrated on quantifying the OH radicals produced from TiO2, other commercially 
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available and a few synthesised photocatalysts [21,23,31,40], this work focusses on 

assessing the oxidative strength of visible light photocatalytsts Pt-C3N4, 5% LaCr 

doped SrTiO3, Sr0.95Cr0.05TiO3 (referred to as Cr-SrTiO3 from here on) and yellow TiO2 

and compares them against commercial TiO2 P25 and WO3 for evaluation. In addition, 

a low catalyst loading was used to highlight efficient OH radical formation can be 

achieved without requiring large quantities of powdered catalyst.  

 

2. EXPERIMENTAL PROCEDURE 

2.1 Materials 

Coumarin and 7-hydroxycoumarin were purchased from Tokyo Chemical Industry 

UK Ltd, while TiO2 P25 was purchased from Degussa (now Evonik industries) and WO3 

nano powders were purchased from Sigma Aldrich. All commercial chemicals were 

used as received. The catalysts Pt-C3N4 [41], 5% LaCr doped SrTiO3, Cr-SrTiO3 and 

yellow TiO2 [42] were synthesised at the school of chemistry, University of St. Andrews, 

using methods cited in the literature [41-43]. 

 

2.2 Characterisation of Photocatalysts 

WO3, LaCr-SrTiO3 and Cr-SrTiO3 were characterised by X-Ray diffraction (XRD) 

and UV-Visible absorption. XRD analysis of powders was examined on a SToe 

STADI/P powder diffractometer. Incident radiation was generated using a Cu kα source 

(λ=1.54056 Å). Diffuse reflectance spectra were collected on a JASCO-V550 UV-

visible spectrophotometer. The characterisation of Pt-C3N4 and yellow TiO2 has been 

reported elsewhere in literature [41,42]. 

 

2.3 Photocatalytic experiments 

All photocatalytic experiments were performed in closed screw cap bottles. The 

reaction solution was composed of 100 ml of 100 μM coumarin along with 10 mg of 
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photocatalyst (0.1 g/L). A magnetic stirrer bar was placed inside the bottle and the 

bottle was then placed on a magnetic stirrer at a distance of 11 cm from a 36 W 

compact fluorescent non-integrated visible lamp (Philips, colour code 830) or a 36 W 

UV lamp (Philips, Cleo lamps). The spectral outputs of the lamps were measured by a 

StellaNet spectrometer and the spectra are shown in the supplementary material 

(Figure S1). Prior to illumination, the reaction solution was stirred in the dark to allow a 

state of equilibrium to be reached. The length of time required in the dark was 

calculated from the control experiments conducted in the absence of light. During 

irradiation, samples (3 mL) were taken at dedicated time intervals for a maximum of 

120 mins. Samples were filtered through a 0.22 μm Millex syringe filter prior to 

analysis. Coumarin absorbance was monitored using a Cary 300 Scan, UV-Visible 

Spectrophotometer at 277 nm, with a scan rate of 400 nm/min. 7-hydroxycoumarin 

fluorescence was measured in a PerkinElmer LS 50B luminescence 

spectrophotometer, using an excitation wavelength of 332 nm and emission 

wavelength at 456 nm [21]. The excitation and emission slit width was 4 mm and the 

scan rate was 200 nm/min. A sample UV/Visible and fluorimeter spectra, with peaks at 

277 nm and 456 nm respectively, are shown in the supplementary material Figure S2 

and Figure S3. All experiments were performed in triplicate. 

 

2.4 OH radical quantification 

OH radicals were quantified based on a modified method described by Zhang et al. 

[38] and according to equation 1. The concentration of OH radicals was calculated by 

assuming that 6.1 % of total OH radicals were captured as 7-hydroxycoumarin. The 

stoichiometric ratio of one mole of OH radical consumed for the production of one mole 

of 7-hydroxycoumarin was used [23]. The total number of OH radicals produced over 

time during this photocatalytic process was calculated using the following equation. 
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  *
 

    
  +   ................................................................. Equation 1 

 

Where, X is the total OH radical concentration (μM) produced during photocatalysis, A 

is the mean 7-hydroxycoumarin concentration (μM) and B is the amount of OH radicals 

(μM) produced during the light control experiments. The concentration of coumarin and 

7-hydroxycoumarin was calculated using a standard curve of known concentrations as 

shown in the supplementary material (Figure S4, Figure S5 and Figure S6). 

 

3. RESULTS AND DISCUSSION 

3.1 Characterisation of Photocatalysts 

XRD patterns of WO3, Cr-SrTiO3 and LaCr-SrTiO3 samples were determined as 

shown (Figure 1). The commercial WO3 nanoparticles exhibited a typical crystallized 

monoclinic phase structure, and the Cr-doped and La,Cr-co-doped SrTiO3 samples 

possessed homogeneous crystallized cubic perovskite structures, with no impurity 

phase found for either of the doped samples and these results were consistent with 

literature [44,45]. In the co-doped samples, since La and Cr substitute the Sr and Ti, 

respectively, and the radius of La is similar with that of Sr while the radius of Cr was 

similar to that of Ti, the peak positions of the Cr-SrTiO3 and LaCr-SrTiO3 samples are 

not shifted compared to those of pure SrTiO3. 

 

Figure 1. 

 

In the UV−visible absorption spectra of WO3, Cr-SrTiO3 and LaCr-SrTiO3 (Figure 

2), WO3 exhibited visible light absorption up to 470 nm, which corresponds to the band-

gap energy of ca. 2.64 eV. SrTiO3, however, has no absorption in the visible light 

region (bandgap of 3.75 eV) and metal-doping has been shown to be a feasible 

method for extending the light absorption of SrTiO3 into the visible region [46]. Doping 
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of Cr into the A-site of SrTiO3 induces an absorption band in the visible region centred 

at around 450 nm (Figure 2). The visible light absorption is ascribed to the electron 

excitation from the Cr doping levels formed above the valence band of SrTiO3 to the 

conduction band of SrTiO3 [43]. It was reported that La, Cr- co-doped SrTiO3 showed 

enhanced photocatalytic performance compared to the single Cr-doped SrTiO3 due to 

the inhibition of the formation of Cr6+ species in the B site [43]. Therefore, a co-doped 

sample, LaCr-SrTiO3 was prepared by the same method. The visible light absorption of 

LaCr-SrTiO3 was significantly enhanced compared to the Cr-SrTiO3, with two strong 

absorption peaks centred at around 450 nm and 650 nm in the visible light region. In 

the case of co-doping, more intermittent doping levels are formed within the band-gap 

of SrTiO3 compared to the single Cr doped SrTiO3, which results in the visible light 

absorption. 

 

Figure 2. 

 

3.2 Photocatalytic OH radical production 

3.2.1 UV light photocatalysis on P25 

P25 has been one of the most extensively investigated and most active 

commercially available photocatalysts under UV irradiation and therefore was used as 

a benchmark for comparison in this study. Although, recent studies have reported that 

nano-spherical InCrO4-loaded TiO2 and TiO2 nanospheres deposited on graphene 

performed better than P25 for OH radical production and dye degradation upon UV 

irradiation [47,48], to date P25 is still regarded as the benchmark. The photocatalytic 

hydroxylation of coumarin over P25 under UV light and subsequent formation of 7-

hydroxycoumarin is shown in Figure 3. The production of 7-hydroxycoumarin under 

these conditions equates to a peak OH radical concentration of 16.9 µM after 45 mins. 
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Figure 3. 

As shown in the figure, near complete degradation (97 %) of coumarin was 

achieved after 120 mins irradiation. This level of degradation was likely to result from 

the increased adsorption of coumarin onto the catalyst, which facilitated the reaction 

with surface bound OH radicals. The role of surface bound radicals and those that are 

present in bulk has been highlighted in a previous publication by Li et al. [49], who 

investigated acid orange oxidation over TiO2 P25 and AgBr. This group investigated 

the quenching of OH radicals at the catalyst surface and in bulk in order to demonstrate 

that surface bound species were the predominant radicals in the oxidation pathway. 

This observation confirmed that increased adsorption of the substrate on the catalyst 

surface can significantly increase the degradation efficiency.  

 

Figure 3 also shows the profile of 7-hydroxycoumarin production and 

decomposition which indirectly indicates the quantity of OH radicals generated. 7-

hydroxycoumarin concentration peaked at 45 minutes, with a maximum concentration 

of 1.045 µM, which was equivalent to 16.9 µM OH radicals (as calculated from 

equation 1). It was observed that an average production rate of 1.8 µM/hr was 

achieved during the first 45 mins, followed by an average degradation rate of 0.46 

µM/hr during the latter stages of irradiation. The decrease in concentration of 7-

hydroxycoumarin could also be attributed to the presence of superoxide radicals as 

reported by Czili and Horvath [23].     

 

Several reports have suggested the kinetics for 7-hydroxycoumarin generation 

from coumarin with P25 under UV irradiation are zero order [21,23,38,50-52], however, 

a number of these investigations also used a high concentration of both catalyst and 

coumarin. Furthermore, it has been suggested that at higher concentrations of 

coumarin (>100 µM), more UV light is absorbed by this probe and not the catalyst, 
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which results in a low 7-hydroxycoumarin and OH radical production rate [23]. In the 

present study, Kapp which is the rate constant for the formation of 7-hydroxycoumarin 

was calculated to be 0.0234 µM/min whereas Kdis, the rate constant for the 

disappearance of 7-hydroxycoumarin was calculated to be 0.0135 µM/min. In this study 

we have established that both, production and degradation of 7-hydroxycoumarin 

followed zero order kinetics, which is agreement with previous studies.  

 

3.2.2 Visible light photocatalysis 

A number of visible light catalysts were also selected for comparison to P25 TiO2. 

While the synthesised catalysts all possessed energy band gaps that supported visible 

light activation, only WO3 and Pt-C3N4 had energy band potentials (valence band at 3.2 

V and 1.4 V respectively and conduction band at 0.2 V and -1.3 V respectively) that 

would facilitate OH radical formation either directly or indirectly as mentioned in 

reactions 2–6. Catalysts LaCr-SrTiO3, Cr-SrTiO3 and yellow TiO2 (valence bands at 2.7 

V, 2.7 V and 2.6 V respectively and conduction bands at -0.1 V for all the three 

photocatalysts) were selected to monitor if 7-hydroxycoumarin was formed even when 

the electronic structure of the catalyst was not suited to the redox potential of the 

reaction.   

 

The photocatalytic hydroxylation of coumarin to 7-hydroxycoumarin over WO3 and 

Pt-C3N4 under visible light is shown in Figure 4. As can be seen, minimal conversion of 

coumarin was observed over both Pt-C3N4 and WO3, which was also supported by the 

low formation of 7-hydroxycoumarin (Figure 5). Pt-C3N4 displayed a slow yet steady 

conversion rate, reaching a 0.91 % drop in coumarin after 120 mins of irradiation 

whereas, a varying coumarin concentration pattern was seen over time on WO3. It is 

interesting to note that there was an initial decrease in coumarin concentration followed 

by an increase which may be attributed to coumarin desorption from the surface of 
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WO3. This desorption could be a result of the alteration in equilibrium in the closed 

system due to the possible evolution of O2 from water on WO3 under visible light. 

 

Figure 4. 

 

While the decrease in coumarin concentration is low, production of OH radicals 

over Pt-C3N4 and WO3 was supported by the detection of 7-hydroxycoumarin upon 

photocatalysis (Figure 5). When WO3 was used as the photocatalyst, there was no 7-

hydroxycoumarin production until 30 minutes of irradiation which could be due to the 

rapid recombination of the electrons and the photo generated holes. After 30 minutes, 

OH radical production was steady with a gradual generation of 7-hydroxycoumarin 

being observed. In the case of Pt-C3N4 however, 7-hydroxycoumarin production was 

seen from 15 minutes.  The initial increase in the 7-hydroxycoumarin concentration 

correlates to a rapid degradation of coumarin during the first 60 mins of irradiation.  

 

Figure 5. 

 

In contrast to Pt-C3N4 and WO3, the catalysts LaCr-SrTiO3, Cr-SrTiO3 and yellow 

TiO2 displayed no activity towards coumarin conversion to 7-hydroxycoumarin, which 

indicates no OH radical formation. Furthermore, under prolonged visible light irradiation 

no detectable 7-hydroxycoumarin was recorded.  

 

3.2.3 Influence of photocatalysts’ electronic structure and particle size on OH 

radical formation 

In order to evaluate and discuss the performance of the catalysts, it is essential to 

consider the primary contributing factors; electronic structure and particle size. The 

electronic structure of the catalysts dictates the initial photo-excitation of electrons to 
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higher energy levels, while the particle size dictates the concentration of photons 

absorbed and surface reactions between coumarin and OH radicals. As shown in 

reactions (2) – (6), OH radicals can occur via two routes in photocatalysis. The direct 

formation at the valence band requires a redox potential of 2.8 V vs NHE, while the 

indirect method occurs via the intermediate radical, O2
.- and requires a redox potential 

of -0.33 V vs NHE [53]. The electronic structure of the catalysts tested in this study, in 

relation to the redox potentials required for radical formation, are shown in Figure 6. 

 

Figure 6 

 

As Figure 6 shows, catalysts TiO2 P25, Pt-C3N4 and WO3 possess an electronic 

structure which corresponds to the redox potential of OH radical formation via either 

direct or indirect mechanisms. The favourable electronic structure of TiO2 for OH 

radical formation has been well documented and is evident from the results highlighted 

here. The performance of Pt-C3N4 and WO3 for OH radical formation, however, has not 

been as well reported. The structure of WO3 with a more positive valence band 

suggests it is capable of generating surface OH radicals, however, the results obtained 

indicate minimal 7-hydroxycoumarin production within 2 hours. Based on the structure, 

it was likely an increased rate of recombination preventing OH radical formation via the 

valence band hole, due to insufficient energy to initiate a reduction reaction at the 

conduction band [21]. To prevent recombination and to increase the OH radical 

production, Kim et al. synthesised Pt-doped WO3 and found that the OH radical 

production from Pt-WO3 was significantly higher than un-doped WO3 [20]. Furthermore, 

the large particle size of approximately 100 nm for WO3 indicates a smaller surface 

area, which leads to minimum absorption of light. 
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The electronic structure of Pt-C3N4 as seen from Figure 6 clearly indicates a 

reducing catalyst, which is also supported by its application in water reduction 

investigations [54]. Therefore, the hydroxylation of coumarin and subsequent formation 

of 7-hydroxycoumarin, as indicated by the earlier results, is likely via the indirect O2
.- 

pathway. Based upon this observation, it is likely the low yield of OH radicals is a result 

of competition for the conduction band electron between superoxide formation and H+ 

reduction to form H2 (0 V vs NHE). In addition, since all these experiments were 

performed in a closed system with limited O2, a reducing catalyst such as Pt-C3N4 is 

expected to produce less OH radicals than an open system. Furthermore, despite a 

favourable particle size of 20-40 nm, Pt-C3N4 was observed to agglomerate to form 

larger aggregates leading to a decrease in surface area and in turn light absorption.          

 

In the case of LaCr-SrTiO3, Cr-SrTiO3 and yellow TiO2, the electronic structures 

showed both the valence band and conduction band of all these catalysts to be lower 

than the redox potentials to facilitate radical formation as seen in Figure 6. These 

catalysts were primarily used as a control parameter to ensure no 7-hydroxycoumarin 

formation was observed.    

 

The calculated OH radical concentrations and production rates produced over all 

catalysts screened are summarised in Table 1. The results show that the activity of the 

visible light activated photocatalysts studied were significantly lower than commercial 

P25 under UV light. This further emphasises that although there are numerous visible 

light absorbing photocatalysts, their ability to produce OH radicals is significantly lower 

than P25. In future, if any visible light absorbing photocatalysts are to be fabricated for 

the purpose of photocatalytic oxidation, their OH radical producing rates (and 

quantities) should be determined and compared to P25 as demonstrated here. 
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Table 1 

 

4. CONCLUSION 

The aim of screening UV and visible light absorbing photocatalysts to assess their 

oxidative strength was accomplished successfully by trapping OH radicals produced by 

the photocatalysts in 7-hydroxycoumarin. The OH radical production capabilities of 

various photocatalysts covering a range of band gaps and particle sizes were assessed 

by comparing and discussing their differences with the commercial UV light activated 

P25.  To conclude, visible light activated photocatalysts such as LaCr-SrTiO3, Cr-

SrTiO3 and yellow TiO2 did not produce any OH radicals and this could be attributed to 

their electronic structure. Whereas, the (pseudo) maximum OH radical production rates 

of other visible light activated photocatalysts namely, WO3 (0.28 µM/hr) and Pt-C3N4 

(0.886 µM/hr) were found to be significantly lower when compared to the commercial 

UV light activated P25 photocatalyst (35.654 µM/hr). This method could be further 

exploited as novel photocatalysts are developed and to compare a range of P25 

concentrations for OH radical production. This study further emphasises the challenges 

faced by the visible light photocatalysts for photocatalytic oxidation.  
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List of Captions for figures and tables. 

Figure 1: XRD profiles of photocatalysts representing the plane indices [44,45]. 

Figure 2: UV-Visible absorption spectra of photocatalysts 

Figure 3: Coumarin and 7-hydroxycoumarin profiles of 100 ml of 100 µM coumarin with 
0.1 g/L P25 under 36 W UV light 

Figure 4: Coumarin profiles of 100 ml of 100 µM coumarin with 0.1 g/L visible light 
photocatalysts; Inset: coumarin profiles of WO3 and Pt-C3N4 

Figure 5: 7-hydroxycoumarin production profiles of 100 ml of 100 µM coumarin with 0.1 
g/L visible light photocatalysts 

Figure 6: Electronic structure of the photocatalysts used 

 

Table 1: Pseudo maximum OH radical production rates and quantities. 
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Figure 3 
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Figure 4  
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Figure 5 
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Figure 6 
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Photocatalyst 
Light 
Source 

Maximum OH 
radical 
concentration 
(µM) 

Time at which 
maximum 
concentration 
of OH radical 
was 
produced 
(min) 

Maximum 
OH radical 
production 
rate 
(µM/hr) 

P25 UV 16.9 45 35.654 

WO3 visible 0.560 120 0.280 

Pt-C3N4 visible 0.254 30 0.886 

 

Table 1 




