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Abstract: 

Co-electrolysis of H2O and CO2 in a solid oxide electrolysis cell (SOEC) is promising for 

simultaneous energy storage and CO2 utilization.  Fuel-assisted H2O electrolysis by SOEC 

(SOFEC) has been demonstrated to be effective in reducing power consumption. In this paper, 

the effects of fuel (i.e. CH4) assisting on CO2/H2O co-electrolysis are numerically studied using 

a 2D model.  The model is validated with the experimental data for CO2/H2O co-electrolysis.  

One important finding is that the CH4 assisting is effective in lowering the equilibrium potential 

of SOEC thus greatly reduces the electrical power consumption for H2O/CO2 co-electrolysis.  

The performance of CH4-assisted SOFEC increases substantially with increasing temperature, 

due to increased reaction kinetics of electrochemical reactions and CH4 reforming reaction.  

The CH4-assisted SOFEC can generate electrical power and syngas simultaneously at a low 

current density of less than 600Am-2 and at 1123K.  In addition, different from conventional 

SOEC whose performance weakly depends on the anode gas flow rate, the CH4-assisted 

SOFEC performance is sensitive to the anode gas flow rate (i.g. peak current density is achieved 

at an anode flow rate of 70 SCCM at 1073K).  The model can be used for subsequent design 

optimization of SOFEC to achieve high performance energy storage.    
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1. Introduction 

Clean and sustainable energy technologies are urgently needed to address the fossil fuels-related 

energy crisis and environmental problems such as global warming, air pollution and acid rain. 

Renewable energies like solar energy and wind energy can hopefully meet our requirements.  

However, they are restricted in time and space and not reliable for instantaneous supply of 

energy [4].  Therefore, effective energy storage is critical for renewable energy applications.   

Solid oxide electrolysis cell (SOEC) is a high temperature electrochemical cell suitable for 

converting excess renewable power to fuels [5].  The produced fuel can be later converted back 

into electrical power via fuel cells when the renewable power is insufficient.  Compared with 

low temperature electrolyzers, the electrical energy requirement of SOEC is relatively low as a 

significant part of energy input to SOEC is heat [1].  In addition, the high operating temperature 

of SOEC enables the use of non-noble metal catalyst, leading to lower cost of the system. 

SOECs are capable of co-electrolyzing CO2 and H2O to produce syngas (H2 and CO mixture), 

which can be further processed for gaseous or liquid fuel generation using Fischer-Tropsch (F-

T) reactor [6-13].  Becker et al.[9] developed a model for high temperature SOEC co-

electrolysis for syngas production and subsequent conversion to liquid fuels by F-T process. 

They also evaluated the economics of production plant considering variations in electricity 

feedstock costs and operating capacity factors. Stempien et al.[12] further analyzed the 

thermodynamics of the combined SOEC and F-T processes. They proposed an optimized 

system that achieved overall efficiency of 66.67%. Chen et al.[13] integrated the high-

temperature CO2-H2O co-electrolysis and low temperature F-T synthesis in a single tubular unit 

and reached 11.40% of CH4 yield with an overall CO2  conversion ratio of 64.1%. Chen et 

al.[10] modeled this one-step system and identified optimal operating conditions. The 

combination of SOEC co-electrolysis and F-T process offers an alternative way of utilizing the 

captured CO2 for fuel synthesis using excessive renewable power.   
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For widespread application of SOEC, its electrical energy consumption needs to be further 

reduced as the quality of electricity (i.e. exergy) is high.  Recent studies have demonstrated that 

by supplying low cost fuel to the anode of SOEC (termed as fuel-assisted SOEC) for steam 

electrolysis could significantly reduce the operating potential of SOEC thus greatly reduce the 

electrical power consumption[14].  Despite of preliminary modeling study on fuel-assisted 

SOEC for H2O electrolysis, the current literature is lacking detailed modeling of fuel-assisted 

SOEC for syngas production by CO2/H2O co-electrolysis which is very different from steam 

electrolysis due to the more complicated reaction processes.   

To fill the research gap, a 2D mathematical model is developed for an axisymmetric-tubular 

CH4-assisted SOFEC (CH4-SOFEC) for H2O/CO2 co-electrolysis. For SOECs exposed to more 

than one gas, oxygen partial pressure model is adopted as suggested by Stempien et al.[15] The 

model is validated with the experimental data for CO2/H2O co-electrolysis.  Parametric 

simulations are conducted to understand the effect of fuel assisting on the performance of SOEC 

and the interplay of different physical/chemical processes.   

 

2. Model development 

2.1. Model assumption and calculation domain 

The 2D numerical model of tubular SOEC is developed by coupling governing equations of 

electrochemical reaction, chemical reactions, ionic/electronic charge transport, mass transport 

and momentum transport. In the literature, Luo et al.’s work[16] on syngas production by co-

electrolysis provides detailed experimental setup and operating conditions, such as the cathode 

inlet gas composition, the operation temperature, the thickness of SOEC components, etc. In 

their study, the current-voltage (I-V) characteristics of CO2/H2O co-electrolysis by a cathode 

supported tubular SOEC are measured.  

The working process and modeling geometry of the tubular SOEC unit are shown in Fig. 1. 
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Steam, carbon dioxide and H2 are supplied to the cathode channel with length 70mm, inner 

diameter 3mm and outer diameter 5mm. Air is supplied to the anode channel with length 70mm 

and outer diameter 10.09mm. The thickness of cathode support layer, cathode active layer, 

electrolyte and anode are 760μm, 10μm, 10μm and 15μm, respectively. In addition, the modeled 

tubular SOEC uses porous Ni-YSZ (the mixture of nickel and YSZ (yttrium stabilized 

zirconium)) as cathode support layer, porous Ni-ScSZ (the mixture of nickel and ScSZ 

(Scandium stabilized zirconium)) as cathode active layer, dense ScSZ as electrolyte and porous 

LSM-ScSZ (the mixture of LSM (lanthanum strontium manganate) and ScSZ) as anode. The 

current is measured at operating potentials from 0.9 V to 1.4 V. 

The working process and modeling geometry of the methane-assisted tubular SOFEC unit are 

shown in Fig. 2. CH4 and H2O are supplied to the anode channel with length 70mm, inner 

diameter 3mm and outer diameter 5mm. Steam and carbon dioxide are supplied to the cathode 

channel with length 70mm and outer diameter 10.09mm. The thickness of cathode support 

layer, cathode active layer, electrolyte and anode are 760μm, 10μm, 10μm and 15μm, 

respectively. In addition, the modeled tubular SOEC uses Ni- YSZ (the mixture of nickel and 

YSZ (yttrium stabilized zirconium)) as anode support layer, Ni-ScSZ (the mixture of nickel and 

ScSZ (Scandium stabilized zirconium)) as cathode active layer, ScSZ as electrolyte and Ni-

ScSZ as cathode. The material properties of CH4-SOFEC are assumed to be the same with that 

of SOEC.  

 

The main assumptions are shown as the following. 

(1) The reaction sites are uniformly distributed in the porous electrodes.  However, the 

electrochemical reactions in the porous electrodes are not uniform and limited to a thin 

layer near the electrode-electrolyte interface. 

(2) The ionic and electronic charge transport processes take place in PEN (Positive Electrode-
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Electrolyte-Negative electrode assembly).  

(3) All of the gases (CO, CO2, H2, H2O, CH4 and N2) are considered as ideal gases. The flow 

is considered to be incompressible.  

(4) Temperature distribution is uniform in the SOEC. 

(5) H2/H2O and CO/CO2 are the main reactants in electrochemical reactions. 

 

2.2. Governing equations 

The micro-scale tubular SOEC model couples the process of electrochemical reactions in 

porous electrodes, chemical reactions in channels and porous electrodes, ionic/electronic charge 

transport in electrolyte and electrodes, mass transport in channels and micro-pores and 

momentum transport in channels and micro-pores. 

 

2.2.1. Electrochemical reaction model 

As shown in Fig.1, the gas mixture of H2O, CO2, H2, and CO flows in the cathode channel 

while the gas mixture of CH4, O2, H2O and CO2 flows in the anode channel. In the porous 

cathode, both H2O and CO2 molecules diffuse through the porous electrode to the triple-phase-

boundary (TPB), where they are reduced to H2 and CO via reactions (1) and (2), respectively. 

2𝐻2𝑂 + 4𝑒− → 2𝐻2 + 2𝑂2− (1) 

2𝐶𝑂2 + 4𝑒− → 2𝐶𝑂 + 2𝑂2− (2) 

The oxygen ions (O2-) transport through the dense electrolyte to TPB at anode, where they lose 

electrons to form oxygen molecules as described in reaction (3).  

 2𝑂2− → 𝑂2 + 4𝑒− (3) 

The overall reactions for H2O electrolysis and CO2 electrolysis can be written as: 

2𝐻2𝑂 → 2𝐻2 + 𝑂2 (4) 

2𝐶𝑂2 → 2𝐶𝑂 + 𝑂2 (5) 
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In operation, the required potential (V) applied to SOEC can be expressed as[17]: 

𝑉 = 𝐸 + 𝜂𝑎𝑐𝑡,𝑎𝑛 + 𝜂𝑎𝑐𝑡,𝑐𝑎 + 𝜂𝑜ℎ𝑚𝑖𝑐 (6) 

where E is the equilibrium potential (Nernst potential) related with thermodynamics; 𝜂𝑎𝑐𝑡 is the 

activation overpotentials reflecting the electrochemical activity of the electrodes; 𝜂𝑜ℎ𝑚𝑖𝑐 is the 

ohmic overpotential influenced by ionic and electronic conduction. 

 

2.2.1.1. Equilibrium potential (Nernst potential) 

In SOEC co-electrolysis, the equilibrium potentials for reactions (4) and (5) can be determined 

by Eqs. (7) and (8), respectively [11].  It should be noted that the concentration overpotentials 

are included in the equilibrium potential as the gas partial pressure at the reaction sites are used 

in the calculation.  

𝐸𝐻2
= 𝐸𝐻2

0 +
𝑅𝑇

2𝐹
ln [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1

2⁄

𝑃𝐻2𝑂
𝐿 ] (7) 

𝐸𝐶𝑂 = 𝐸𝐶𝑂
0 +

𝑅𝑇

2𝐹
ln [

𝑃𝐶𝑂
𝐿 (𝑃𝑂2

𝐿 )
1

2⁄

𝑃𝐶𝑂2
𝐿 ] (8) 

where 𝐸0 is the voltage under standard conditions (where the pressure of each gas component 

is 1 atm); R is the universal gas constant (8.3145 Jmol-1K-1); T is temperature (K); F is the 

Faraday constant (96485 Cmol-1) and 𝑃𝐻2

𝐿  , 𝑃𝐻2𝑂
𝐿  , 𝑃𝐶𝑂

𝐿  , 𝑃𝐶𝑂2

𝐿  and 𝑃𝑂2

𝐿   are the local partial 

pressures of H2, H2O, CO, CO2 and O2 at the TPB (reaction sites), respectively. The value of 

𝐸0 between 600K and 1200K for H2 and CO can be calculated by Eq. (9) and Eq. (10)[6]: 

𝐸𝐻2

0 = 1.253 − 0.00024516𝑇 (V)(9) 

𝐸𝐶𝑂
0 = 1.46713 − 0.0004527𝑇 (V)(10) 

Thus, the Nernst potentials can be calculated by combining Eqs. (7) - (10) as: 

𝐸𝐻2

0 = 1.253 − 0.00024516𝑇 +
𝑅𝑇

2𝐹
ln [

𝑃𝐻2
𝐿 (𝑃𝑂2

𝐿 )
1

2⁄

𝑃𝐻2𝑂
𝐿 ] (V) (11) 
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𝐸𝐶𝑂
0 = 1.46713 − 0.0004527𝑇 +

𝑅𝑇

2𝐹
ln [

𝑃𝐶𝑂
𝐿 (𝑃𝑂2

𝐿 )
1

2⁄

𝑃𝐶𝑂2
𝐿 ] (V) (12) 

The Nernst potential calculation is a bit different in methane assisted SOEC co-electrolysis 

since H2 and CO are considered as the main reactants in anode electrochemical reactions instead 

of O2. The model based on oxygen partial pressure (Eq. 13) is adopted as suggested by Stempien 

et al.[15].  

𝐸𝑜𝑐𝑣 =
𝑅𝑇

𝑧𝐹
ln(

∑ 𝑃𝑂2,𝑐𝑎
𝐿

∑ 𝑃𝑂2,𝑎𝑛
𝐿 ) (13) 

where 𝐸𝑜𝑐𝑣  is the open circuit potential, z is the number of electrodes transferred per 

electrochemical reaction.  

For H2O/H2 and CO2/CO system, the oxygen partial pressure can be expressed as shown in Eq. 

(14) and Eq. (15): 

𝑃𝑂2,𝐻2𝑂/𝐻2

𝐿 = (
𝐻2𝑂𝐿

𝐻2
𝐿 ∙ 𝑒

∆𝐺𝐻2𝑂/𝐻2
𝑅𝑇 )2 (14) 

𝑃𝑂2,𝐶𝑂2/𝐶𝑂
𝐿 = (

𝐶𝑂2
𝐿

𝐶𝑂𝐿
∙ 𝑒

∆𝐺𝐶𝑂2/𝐶𝑂

𝑅𝑇 )2 (15) 

where ∆𝐺𝐻2𝑂/𝐻2
 is the Gibbs free energy change in the H2 oxidation reaction and ∆𝐺𝐶𝑂2/𝐶𝑂 is 

the Gibbs free energy change in the CO oxidation reaction. 

The Nernst potential in CH4-SOFEC can then be calculated as the difference of cathode and 

anode partial potential caused by oxygen partial pressure as shown in Eq. (16). 

𝐸𝑡ℎ =
𝑅𝑇

4𝐹
ln

𝑃𝑂2
𝐴

𝑃𝑂2
𝐶  (16) 

 

2.2.1.2. Activation overpotential 

The activation overpotentials are related to the activation energy barrier for electrochemical 

reactions to proceed.  The Butler-Volmer equation is widely used for determining the 

relationship between the activation overpotential and the current density[18]: 
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𝑖 = 𝑖0 {exp (
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) − exp (

(1−𝛼)𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) } (17) 

where 𝑖0 is the exchange current density, 𝛼 is the electronic transfer coefficient and n is the 

number of electrons transferred per electrochemical reaction. The cathode exchange current 

density 𝑖0,𝑐𝑎 for H2O electrolysis can be expressed as: 

𝑖0,𝑐𝑎,𝐻2𝑂 = 𝛽𝐻2

𝑃𝐻2𝑂

𝑃𝑟𝑒𝑓

𝑃𝐻2

𝑃𝑟𝑒𝑓
exp (−

𝐸𝑎

𝑅𝑇
) (18) 

Shi’s experimental work has shown that the rate of H2O electrolysis is about 2.2 times stronger 

than CO2 electrolysis, which is also verified in their SOEC co-electrolysis models [16], thus it 

is assumed that 

𝑖0,𝑐𝑎,𝐻2𝑂 = 2.2𝑖0,𝑐𝑎,𝐶𝑂2
 (19) 

 

2.2.1.2. Ohmic overpotential 

The ohmic overpotential in a SOEC consists of ionic ohmic overpotential and electronic ohmic 

overpotential. The ionic and electronic conductivity of electrode and electrolyte materials can 

be found in Table. 1. The ohmic overpotential can be calculated by the Ohm’s law, more detailed 

calculation can be found in[17]. 

 

2.2.2. Chemical reaction model 

In the cathode side, reversible water-gas shift reaction (WGSR) and Steam Methane Reforming 

Reaction (SMR) are considered as the main reactions as shown in Eq. (20) and Eq. (21)[19], 

respectively.  

𝐶𝑂 + 𝐻2𝑂 = 𝐶𝑂2 + 𝐻2 (20) 

𝐶𝐻4 + 𝐻2𝑂 = 𝐶𝑂 + 3𝐻2 (21) 

Due to the excellent catalytic activity of Ni towards the two reactions, LSM-ScSZ is replaced 

by Ni-ScSZ and the reaction zone is assumed to be limited in the cathode containing Ni catalyst. 
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The reversible WGSR rate (𝑅𝑊𝐺𝑆𝑅  mol m-3 s-1) and SMR rate (𝑅𝑆𝑀𝑅  mol m-3 s-1) can be 

determined by widely used expressions as: 

𝑅𝑊𝐺𝑆𝑅 = 𝑘𝑠𝑓(𝑝𝐻2𝑂𝑝𝐶𝑂 −
𝑝𝐻2𝑝𝐶𝑂2

𝐾𝑝𝑠
) (22) 

𝑘𝑠𝑓 = 0.0171exp (
−103191

𝑅𝑇
) (mol m-3 Pa-2 s-1) (23) 

𝐾𝑝𝑠 = exp (−0.2935𝑍3 + 0.6351𝑍2 + 4.1788𝑍 + 0.3169) (24) 

𝑍 =
1000

𝑇
− 1 (25) 

𝑅𝑀𝑆𝑅 = 𝑘𝑟𝑓(𝑝𝐶𝐻4
𝑝𝐻2𝑂 −

𝑝𝐻2
3 𝑝𝐶𝑂

𝐾𝑝𝑟
) (26) 

𝑘𝑟𝑓 = 2395exp (
−231266

𝑅𝑇
) (mol m-3 Pa-2 s-1) (27) 

𝐾𝑝𝑟 = 1.0267 × 1010 exp(−0.2513𝑍4 + 0.3665𝑍3 + 0.5810𝑍2 − 27.134𝑍 + 3.277) (28) 

In the anode side, H2 and CO are produced by SMR in porous anode, where WGSR is also 

considered. 

 

2.2.3. Mass transport model  

For the porous electrode, gas diffusion occurs by means of both free molecular diffusion and 

Knudsen diffusion. Free molecular diffusion dominates in large pores and Knudsen diffusion 

becomes significant when pore sizes are comparable or smaller than molecular mean-free path. 

The extended Fick’s model is used to describe gas transport in the porous electrodes  as[20]: 

𝑁𝑖 = −
1

𝑅𝑇
(

𝐵0𝑦𝑖𝑃

𝜇

∂P

∂z
− 𝐷𝑖

𝑒𝑓𝑓 ∂(𝑦𝑖P)

∂z
) (𝑖 = 1, … , 𝑛) (29) 

Where 𝑁𝑖  represents the flux of mass transport, 𝐵0  is the permeability coefficient, 𝑦𝑖  is the 

mole fraction of component i, 𝜇 is the dynamic viscosity of the gas and 𝐷𝑖
𝑒𝑓𝑓

 is the effective 

diffusivity of species i. In an SOEC where both molecular diffusion (𝐷𝑖𝑚
𝑒𝑓𝑓

 ) and Knudsen 

diffusion (𝐷𝑖𝑘
𝑒𝑓𝑓

) are important, 𝐷𝑖
𝑒𝑓𝑓

 can be written as: 
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𝐷𝑖
𝑒𝑓𝑓

= (
1

𝐷
𝑖𝑚
𝑒𝑓𝑓 +

1

𝐷
𝑖𝑘
𝑒𝑓𝑓)

−1

 (30) 

𝐷𝑖𝑚
𝑒𝑓𝑓

 and 𝐷𝑖𝑘
𝑒𝑓𝑓

 depend on the micro-structure of the porous electrode and operating conditions, 

the detailed calculation of these two parameters are described in[21, 22]. 

 

2.2.4. Momentum conservation model 

The general Navier-Stokes equation is used to describe the momentum conservation.  For 

momentum conservation in channels, the equation can be described as: 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢∇𝑢 = −∇𝑝 + ∇[𝜇 (∇𝑢 + (∇𝑢)𝑇) −

2

3
𝜇∇𝑢] (31) 

For momentum conservation in porous electrodes, the equation is modified by including the 

Darcy’s term for momentum conservation in the porous layer: 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢∇𝑢 = −∇𝑝 + ∇[𝜇 (∇𝑢 + (∇𝑢)𝑇) −

2

3
𝜇∇𝑢] −

𝜀𝜇𝑢

𝑘
 (32) 

where  𝜌  is the gas density, u is the velocity vector, p is pressure and 𝜀  is the porosity the 

electrode. More detailed calculation of these parameters can be found in[23]. 

 

2.3. Boundary conditions 

2.3.1. Electrochemical reaction 

The electric potentials are specified at the outer boundaries of anode and cathode as working 

potential and zero potential, respectively. The bottom and top of the cell is considered to be 

insulation. 

 

2.3.2. Mass transport 

Inflow gas mole fractions are specified at both cathode inlet and anode inlet, for the cathode 

and anode outlet, the convective flux boundary condition is specified. Zero flux is assumed at 

the electrolyte/electrode interface and the ends of electrodes. 
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2.3.4. Momentum conservation 

Standard gas flow rate (standard cubic centime per minute: SCCM) is specified at both cathode 

and anode inlet while pressure condition is specified at the outlet. No slip condition is applied 

to the electrolyte/electrode interface and the ends of electrodes. 

 

2.4. Model parameters 

For model validation, the values material property and operation parameters are consistent with 

experimental conditions in ref. [10] as shown in Table 1 and Table 2.  In parametric simulations, 

the parameters are varied to evaluate their effects on the SOEC performance.  The tuning 

parameters used for base-case simulation are summarized in Table 3. 

 

2.5. Model solution 

The model is solved at certain cell voltage/inlet gas flow rate/inlet gas species mole 

fraction/temperature. The outputs of the model are the distributions of current density, species 

concentration, chemical reaction rates and others. The calculations are performed using the 

finite element commercial software COMSOL MULTIPHSICS®. 

 

3. Results and discussion 

3.1. Model evaluation 

In this section, the modeling results of current-voltage characteristics are compared with 

experimental data for model validation. The model tuning parameters can be found in Table 3. 

The simulation results and experimental data are compared in Fig. 3.   Small difference between 

the modeling results and experimental data is achieved. In the subsequent parametric 

simulation, the operation voltage, inlet gas flow rate and inlet gas composition are purposely 
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varied to evaluate their effects on SOFEC performance.  

 

3.2. Effect of operating temperature on CH4-SOFEC 

The effects of operating temperature on CH4-SOFEC co-electrolysis and SOEC co-electrolysis 

of CO2 and H2O are shown in Fig. 4 and Fig.5. The detailed operation conditions are shown in 

Table 4.  

As expected, the current density of both conventional SOEC for CO2/H2O co-electrolysis and 

CH4-SOFEC for CO2/H2O co-electrolysis increase with increasing operation temperature 

(Fig.4a). Compared with conventional SOEC co-electrolysis, the performance of CH4-SOFEC 

co-electrolysis has a much higher improvement with the increase of temperature. This 

advantage is mainly benefited from the quickly increase of SMR rate at higher temperature, 

which means more H2 and CO can be converted from CH4.   Besides, from Fig. 4b it can be 

found that a higher temperature is beneficial to the performance improvement of CH4-SOFEC 

in the whole range of applied cell potential. Especially when CH4-SOFEC is operated at a high 

temperature, it can produce not only H2 and CO at cathode but also electricity.  

Fig. 5a shows the effect of temperature on the outlet gas composition in CH4-SOFEC cathode. 

As the temperature is increased from 1023K to 1150K, the cathode outlet molar fractions for 

both H2 and CO are increased, which is mainly due to the enhanced electrochemical reaction at 

a higher temperature. When temperature increases from 1150K to 1173K, the outlet molar 

fraction of CO is still increased but of the outlet molar fraction of H2 is slightly decreased, 

which is caused by the favor for reversed WGSR at high temperature.   

The gas composition change with temperature in anode is more complicated.  In anode, methane 

reacts with H2O to produces H2 and CO and WGSR happens simultaneously. With the increase 

of temperature, the utilization ratio of methane is largely increased due to the higher SMR rate 

(Fig. 5b), which in turn results in a high outlet H2 and CO concentration. It means that syngas 
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(CO and H2 mixture) can be produced in both cathode and anode of CH4-SOFEC at a high 

temperature, offering an interesting way for effective syngas production.  

From Fig. 6, we can see the difference of reversed WGSR rate between different temperatures 

in cathode. When temperature is relatively low (1023K and 1073K), reversed WGSR rate is 

relatively weak while when the temperature is high enough (1123K and 1173K), reversed 

WGSR rate is very strong at the inlet part of cathode and then soon decreased to a level near 0 

at the cathode outlet. 

 

3.3. Effect of applied potential 

The effects of operating voltage on conventional SOEC co-electrolysis of CO2 and H2O and 

CH4-SOFEC co-electrolysis of CO2 and H2O can also be seen from Fig.4.  

As expected, the current density of both conventional SOEC for CO2/H2O co-electrolysis and 

CH4- SOFEC for CO2/H2O co-electrolysis increase with increasing operation potential (Fig. 

4a). Compared with conventional SOEC co-electrolysis, CH4-SOFEC co-electrolysis operates 

at a much lower voltage to reach the same current density. When SOEC and CH4-SOFEC 

operates at a higher temperature, more electrical energy can be saved due to a much quicker 

SMR rate, which produces more H2 and CO in anode. 

 

3.4. Effect of inlet methane concentration 

The effects of inlet methane concentration on CH4-SOFEC co-electrolysis of CO2 and H2O are 

shown in Fig. 7. The detailed operation conditions are shown in Table 5.  

As shown in Fig. 7, the current density of CH4-SOFEC co-electrolysis of CO2/H2O increases 

with increasing methane concentration at 1073K. This behavior indicates that a higher inlet 

methane concentration can help save more electrical energy usage. This effect is more obvious 

when the applied voltage is higher as shown in Fig. 7. From Table 6 it can also be found that a 
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higher methane concentration can save much more electrical energy at higher current density. 

Corresponding with the effect on current density, cathode molar fraction of H2 and CO also 

increases with higher anode inlet methane concentration as shown in Fig. 8.  However, CH4 is 

also a useful fuel for various applications.  The optimal amount of CH4 for CO2/H2O co-

electrolysis needs to consider the energy/exergy efficiency as well as the economics of the 

system.   

 

3.5. Effect of cathode inlet gas flow rate 

The cathode inlet gas flow rate is varied to examine its effect on both SOEC co-electrolysis and 

CH4-SOFEC co-electrolysis at different applied potentials and temperature. The cathode inlet 

gas flow rate changes from 20 SCCM to 200 SCCM with 1.3 V and 0.7 V applied voltage for 

SOEC and CH4-SOFEC, respectively. More detailed operation conditions can be seen in Table. 

7.  

It can be found from Fig. 9a and Fig. 9b that the current density increases quickly with 

increasing cathode inlet gas flow rate in both SOEC and CH4-SOFEC. This is because the 

higher flow rate of the H2O/CO2 mixture reduces the gas composition change along the gas 

channels and thus relatively higher reactant concentrations in the downstream, leading to better 

overall cell performance.    However, the performance improvement is insignificant when the 

cathode gas flow rate is very high, as the gas composition along the gas channel becomes almost 

uniform. 

 

3.6. Effect of anode inlet gas flow rate 

The anode inlet gas flow rate is varied to examine its effect on both conventional SOEC co-

electrolysis and CH4-SOFEC co-electrolysis at different temperatures. The anode inlet gas flow 

rate changes from 20 SCCM to 100 SCCM at 1.4 V and 0.7 V applied voltage for SOEC and 
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CH4-SOFEC, respectively. More detailed operation conditions can be seen in Table 8.  

Fig. 10a shows the effect of anode inlet gas flow rate on SOEC current density change, at 

operating temperature of 1073 K.  The SOEC performance is only slightly increased by about 

1% with increasing anode flow rate from 20SCCM to 200 SCCM. In CH4-SOFEC, the 

phenomenon is quite different as shown in Fig. 10b.  With the increase of anode inlet gas flow 

rate in CH4-SOFEC, its performance is increased with the anode gas flow rate is increased from 

20 SCCM to about 50 SCCM but decreased gradually with further increase in anode flow rate 

at a temperature of 1123K. The existence of an optimal anode flow rate is mainly caused by the 

dependence of SMR rate on gas composition. With the increase of anode flow rate, more CH4 

and H2O are supplied so that the mount of H2 and CO produced through SMR is increased so 

that the performance of CH4-SOFEC gets increased. However, if the anode flow rate is too 

large, the generated H2 and CO are diluted by the CH4/H2O mixture, which in turn decreases 

the performance of CH4-SOFEC. As SMR rate is much higher at a higher temperature, the 

decrease of CH4-SOFEC performance at high anode flow rate is much slighter than that at lower 

temperature. Thus there exists a “best” anode flow rate at certain operation conditions, which 

can be determined. 

 

4 Conclusions 

A multi-physics model including electrochemical reaction, chemical reactions, ion/electronic 

charge transport, mass transport and momentum transport is developed to characterize the 

performance of a methane assisted SOEC for H2O/CO2 co-electrolysis. For comparison, a 

multi-physics model with same structure parameters is also developed to characterize the 

performance of an air assisted SOEC for H2O/CO2 co-electrolysis, which is validated by 

comparing the simulation results with experimental date offered by Shi’s group. 

It is found that the CH4-assisting can significantly reduce the applied voltage thus greatly reduce 
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the electrical power consumption for H2O/CO2 co-electrolysis.  At a low current density and 

sufficiently high temperature, the CH4-SOFEC can be used for syngas and electrical power 

cogeneration.   

The electrical power saving by CH4-assisting can be increased by increasing the CH4 

concentration in the anode but the optimal amount of CH4 concentration requires a full 

consideration of the energy/exergy efficiency and the economics of the CH4-SOFEC system.   

Another interesting finding is that the effect of anode gas flow rate is significant for CH4-

assisted SOEC.  Optimal anode gas flow rate is observed for CH4-assisted SOFEC.  Regarding 

the cathode flow rate, the CH4-SOFEC performance increases significantly with increasing 

cathode flow rate at the beginning but tends to approach a limit with further increase in the flow 

rate.  This is totally different from the conventional SOEC in which the anode gas flow rate 

effect is small.  

The present study also provides other detailed information for better understanding the working 

mechanism of methane assisted SOEC for H2O/CO co-electrolysis like the important effect of 

WGSR in cathode.  
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Nomenclature 

 

Abbreviation 

CH4-SOFEC Solid oxide CH4-assisted electrolysis cell  

F-T  Fischer Tropsch 

LSM  Lanthanum strontium manganite 

SMR  Steam methane reforming reaction 

PEN  Positive Electrode-Electrolyte-Negative electrode assembly 

SCCM  Standard cubic centime per minute 

ScSZ Scandium stabilized zirconium 

SOEC  Solid oxide electrolysis cell 

SOFEC Solid oxide fuel-assisted electrolysis cell  

TPB  Triple phase boundary 

WGSR  Water gas shift reaction 

YSZ  Yttrium stabilized zirconium 

  

 

Roman 

𝐷𝑖
𝑒𝑓𝑓

 Effective diffusivity of species i., m2·s-1 

𝐷𝑖𝑘
𝑒𝑓𝑓

  Knudsen diffusion coefficient of 𝑖 , m2·s-1 

𝐷𝑖𝑚
𝑒𝑓𝑓

  Molecular diffusion coefficient of 𝑖, m2·s-1 

𝐸 Equilibrium Nernst potential, V 

𝐸𝑎  Active energy, J·mol-1 

𝐹 Faraday constant, 96485 C·mol-1 

𝑖𝑜 Exchange current density, A·m-2 

k Reaction rate constant, in terms of m, mol, Pa and s 

𝐾𝑝𝑟,𝐾𝑝𝑠 Equilibrium constant of SMR and WGSR 

n Number of electrons transferred per electrochemical reaction 

𝑁𝑖  Flux of mass transport, kg·m-3·s-1 

𝑝 (partial) Pressure, Pa 

𝑅 Gas constant, 8.314 J·mol-1·K-1 

𝑅𝑀𝑆𝑅  Rate of methane steam reforming reaction, mol·m-3·s-1 

𝑅𝑊𝐺𝑆𝑅  Reaction rate of water gas shifting reaction, mol·m-3·s-1 

T Temperature, K 

u Velocity field, m3·s-1 

  

  

  

Greek letters  

𝛼  Charge transfer coefficient 

𝛽𝐻2
  Electrochemical kinetics parameter for H2 

𝜀  Porosity 

𝜅  Permeability, m2 

𝜌  Fluid density, kg·m-3 

𝜇  Dynamic viscosity of fluid, Pa·s 

𝜂𝑎𝑐𝑡  Anode activation polarization, V 

𝜂𝑜ℎ𝑚𝑖𝑐  Ohmic polarization, V 
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Subscripts  

an Anode 

ca Cathode 

  

  

Superscripts  

0 Parameter at equilibrium conditions 

L Local 
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Tables 

Table.1 Model parameters[16] 

Parameters Value or expression Unit 

Ionic conductivity 

ScSZ 

YSZ 

 

6.92 × 104exp (−9681/𝑇)  

3.34 × 104exp (−10300/𝑇)  

 

Sm-1 

Sm-1 

Electronic conductivity 

LSM 

Ni 

 

4.2 × 107exp (−1150/𝑇)  

4.2 × 106 − 1065.3𝑇  

 

Sm-1 

Sm-1 

Porosity 

Cathode support layer 

Cathode active layer 

Anode  

 

0.36 

0.36 

0.36 

 

 

𝐒𝐓𝐏𝐁  

Cathode layer 

Anode layer 

 

2.14 × 105  

2.14 × 105  

 

m2m-3 

m2m-3 
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Table. 2 Operation parameters for model validation 

Parameter Value Unit 

Anode gas flow rate  150 SCCM 

Cathode gas flow rate  350 SCCM 

Anode gas composition Air  

Cathode gas composition CO2(28.6%)+H2O(28.6%)+H2(14.3%)+N2(28.5%)  

Temperature  1073 K 
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Table.3 Model tuning parameters 

Parameter Value Unit 

Cathode tortuosity 3  

Anode tortuosity 3  

H2 electrochemical kinetics, 𝜷𝑯𝟐
 3.3× 108 𝐴𝑚−2  

O2 electrochemical kinetics, 𝜷𝑶𝟐
 4.2× 107 𝐴𝑚−2  

H2 charge transfer coefficient, 𝜶𝑯𝟐
 0.65  

CO charge transfer coefficient, 𝜶𝑪𝑶 0.65  

O2 charge transfer coefficient, 𝜶𝑶𝟐
 0.5  
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Table.4 Operation parameters for temperature effect study 

Parameter SOFEC SOEC Unit 

Anode flow rate  100 100 SCCM 

Cathode flow rate  100 100 SCCM 

Anode gas composition 40%CH4&H2O+20%N2 Air  

Cathode gas composition 40%CO2&H2O+20%N2 40%CO2&H2O+20%N2  

Temperature  1023, 1073, 1123 1023, 1073, 1123 K 
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Table.5 Operation parameters for inlet methane concentration effect study 

Parameter SOFEC Unit 

Anode flow rate 100 SCCM 

Cathode flow rate  100 SCCM 

Anode gas composition 40%CH4&H2O+20%N2; 

30%CH4&H2O+40%N2; 

20%CH4&H2O+60%N2; 

 

Cathode gas composition 40%CO2&H2O+20%N2  

Temperature  1073 K 
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Table.6 Comparison of applied voltage between different inlet methane concentrations 

 40%CH4-

SOFEC 

20%CH4-

SOFEC 

 

Current density (A/m2) Applied voltage (V) Electricity energy save (W/m2) 

400 0.1 0.15 20, (33%) 

800 0.16 0.24 64, (33%) 

1200 0.21 0.31 120, (32%) 

1600 0.25 0.39 224, (36%) 

2000 0.28 0.47 380, (40%) 
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Table.7 Operation parameters for cathode inlet gas flow rate effect study 

Parameter SOFEC SOEC Unit 

Anode gas flow rate  100 100 SCCM 

Anode gas composition 40%CH4&H2O+20%N2 Air  

Cathode gas composition CO2(40%)+H2O(40%)+N2(20%) CO2(40%)+H2O(40%)+N2(20%)  

Temperature  1073, 1123 1023 K 

Applied voltage  0.7 1.4 V 
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Table.8 Operation parameters for anode inlet gas flow rate effect study 

Parameter SOFEC SOEC Unit 

Cathode gas flow rate  100 100  

Anode gas composition 40%CH4&H2O+20%N2 Air  

Cathode gas composition CO2(40%)+H2O(40%)+N2(20%) CO2(40%)+H2O(40%)+N2(20%)  

Temperature  1073, 1123 1073 K 

Applied voltage  0.7 1.4 V 

 

 

  



29 

 

 

List of Figures 

Fig.1 Schematic of traditional SOEC  

Fig.2 Schematic of CH4-assisted SOFEC  

Fig.3 Comparison of calculated data with experimental data for model validation 

Fig.4 Effect of temperature on CH4-SOFEC and SOFC co-electrolysis: (a) at 0.7V and 1.4V 

for CH4-SOFEC and SOEC, respectively (b) at operating temperature of 1023K, 1073K and 

1123K for CH4-SOFEC and SOEC 

Fig.5 Effect of temperature on the outlet gas composition in (a) CH4-SOFEC cathode and (b) 

CH4-SOFEC anode at operating voltage of 0.7V 

Fig.6 WGSR rate (vertical axis, mol m-3 s-1) at different temperatures in cathode 

Fig.7 Effects of inlet methane mole fraction on CH4-SOFEC performance at 1073K 

Fig.8 Distribution of H2 and CO mole fractions in cathode at 20% (a, d), 30% (b, e), 40% (c, 

f) inlet methane mole fraction at applied voltage of 0.7V and temperature of 1073K 

Fig.9 Effects of cathode inlet gas flow rate on the performance of (a) CH4-SOFEC at 0.7V 

and (b) SOEC at 1.4V 

Fig.10 Effects of anode inlet gas flow rate on (a) SOEC and (b) CH4-SOFEC performance at 

1.4 V and 0.7V applied voltage, respectively 

 

  



30 

 

 

 

Fig.1 Schematic of traditional SOEC  

 

 

Fig.2 Schematic of CH4-assisted SOFEC  
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Fig.3 Comparison of calculated data with experimental data for model validation 
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Fig.4 Effect of temperature on CH4-SOFEC and SOFC co-electrolysis: (a) at 0.7V and 1.4V 

for CH4-SOFEC and SOEC, respectively (b) at operating temperature of 1023K, 1073K and 

1123K for CH4-SOFEC and SOEC. 

a 

b 
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Fig.5 Effect of temperature on the outlet gas composition in (a) CH4-SOFEC cathode and 

(b) CH4-SOFEC anode at operating voltage of 0.7V. 

b 

a 
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Fig.6 WGSR rate (vertical axis, mol m-3 s-1) at different temperatures in cathode 

 

Fig.7 Effects of inlet methane mole fraction on CH4-SOFEC performance at 1073K.  
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Fig.8 Distribution of H2 and CO mole fractions in cathode at 20% (a, d), 30% (b, e), 40% (c, 

f) inlet methane mole fraction at applied voltage of 0.7V and temperature of 1073K 

a c 

d e f 
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Fig.9 Effects of cathode inlet gas flow rate on the performance of (a) CH4-SOFEC at 0.7V 

and (b) SOEC at 1.4V. 

a 

b 
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Fig.10 Effects of anode inlet gas flow rate on (a) SOEC and (b) CH4-SOFEC performance at 

1.4 V and 0.7V applied voltage, respectively. 

 

 

a 

b 


